

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

MODEL-BASED ROBOT CONTROL

AND MULTIPROCESSOR IMPLEMENTATION

A DISSERTATION

SUBMITTED TO THE FACULTY OF ENGINEERING

OF GLASGOW UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

HAMID MIRAB

September 1990

© Copyright 1990 by Hamid Mirab

All Rights Reserved

ProQuest Number: 10983751

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10983751

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A bstract

Model-based control of robot manipulators has been gaining momentum in recent

years. Unfortunately there are very few experimental validations to accompany

simulation results and as such majority of conclusions drawn lack the credibility

associated with the real control implementation.

In this thesis the main theme is to demonstrate the potential enhancements that

are brought about by way of implementing this class of controllers as far as manip­

ulator trajectory tracking is concerned. Particular emphasis is on experimental

evaluation to render valid conclusions and to give through appreciation of the

merits of various controllers.

The approach taken is to recognise that the realistic role of model based controllers

at the initial stage is to reduce rather than eliminate the nonlinear and coupling

effects inherent in manipulator dynamics. The level of reduction of these effects

is obviously dependent on the modelling effort and the accuracy of the developed

model.

Model inaccuracies have two forms: parameter uncertainties that arise from limi­

tations in specification of numerical values for the kinematic and dynamic robot

parameters or payload variations; and unmodeled dynamics possibly arising from

simplified models.

In particular, two aspects of such controllers are presented and experimentally

verified: firstly estimating the mass of the load carried by the gripper to overcome

performance degradation due to payload variations and secondly incorporating a

suitable self-tuning method in the control system to account for other modelling

inaccuracies.

Consideration is given to the requirements regarding computational powers for

real-time implementation of the controllers. These suggest that, to achieve the

sampling rates needed, parallel processing and the use of fast processors such as

the INMOS TRANSPUTER are appealing. Such processors are used for the ex­

perimental implementation of the control algorithms reported here.

The suitability of multiprocessing approach for a robot programming system is

also discussed.

In the context of the modelling, the importance of including drive system dy­

namics in the system model is emphasised and use of CAD-based modelling is

addressed.

The use of symbolic algebraic manipulation for obtaining efficient and/or cus­

tomised dynamic equations for reducing the amount of computational effort and/or

formulating the model in a certain manner such as linear in the parameter (for

estimation purposes) is presented. Experimental validation of an obtained model

and a load mass estimation method developed are included.

Acknowledgem ents

The author wishes to sincerely express his deepest gratitude to his supervisor Pro­

fessor P. J. Gawthrop, for the encouragement, guidance, and inspiration conveyed

to him during the preparation of this thesis.

Deepest appreciation is also expressed to Professor B. F. Scott and Mr. J. Howell

who offered helpful suggestions.

The continuous support and encouragement of all the members of the Control

Group, especially Dr. H. Demircioglu, Dr. D. Ballance, Mr. G. Worship, Dr. R.

Jones, Y. Mather and D. Sbarbaro, served to lighten the burden of this work.

Thanks are also due to Mr. I. Russell.

Contents

A bstract ii

Acknowledgem ents iv

1 Introduction 1

1.1 O bjectives 2

1.2 M otiva tions... 3

1.3 Structure of the t h e s i s .. 6

1.4 Sensory d e v ic e s ... 8

1.5 Contributions of this w o r k .. 9

2 R obot Control Program m ing System s 11

2.1 In troduction ... 11

2.2 Description of a Robot Programming System 14

2.2.1 Characteristics of the Programming S y s te m 15

2.2.2 Programming and Operating Surfaces..................................... 16

2.2.3 Implementation of the Language... 17

2.2.4 Language Attributes ... 18

2.3 A comparative study of Robot Programming S ystem s................... 20

2.4 Requirements, Future Trends ... 28

2.4.1 Future T ren d s ... 35

2.5 A Transputer Approach .. 38

v

3 R obot M odelling and Validation 42

3.1 In troduction ... 42

3.2 Robot K inem atics... 45

3.2.1 Direct K inem atics... 45

3.2.2 Inverse K in em atics ... 55

3.3 Robot Manipulator D yn am ics 59

3.3.1 Customized Robot D y n a m ic s .. 63

3.4 Actuation M o d e l .. 68

3.4.1 F r ic t io n ... 75

3.5 Model V a lid a tio n .. 77

4 M odel-Based Identification of R obots 82

4.1 In troduction 82

4.2 Literature r e v ie w .. 83

4.3 Load Mass E s tim a tio n .. 88

4.3.1 On-line adaptive estimation of load m a s s 89

4.4 S im ulation... 94

4.5 Im plem entation.. 95

4.6 Experimental R esu lts .. 99

4.7 D iscussion... 102

5 Transputer-Robot Interface 105

5.1 In troduction ... 105

5.2 Standard interface ... 106

5.3 The Transputer and O c c a m .. 107

5.4 The Parallax S y s te m ... 110

5.4.1 H a rd w a re .. I l l

5.4.2 Driver so ftw a re 113

5.5 Meiko Computing Surface ... 116

5.6 Electronic Interface Units .. 119

vi

5.6.1 Voltage Controlled Output, Driver C i r c u i t 119

5.6.2 Current Controlled Output, Driver C irc u it 124

6 Control of R obot M anipulators 130

6.1 In troduction .. 130

6.1.1 Robot Control S trategies... 132

6.2 Some non-linear feedback control algorithms for R o b o ts 134

6.2.1 Method of Goodwin and M idd le ton 139

6.2.2 Method of Slotine and L i ... 140

6.2.3 Another method of Slotine and L i ... 141

6.2.4 Method of Craig .. 142

6.2.5 Method of Sadegh and Horowitz.. 144

6.2.6 Com m ents.. . 146

6.3 Linear Perturbation Adaptive C ontrol.. 146

6.4 Model Reference Adaptive C o n t r o l .. 147

6.5 Self-Tuning Adaptive C o n tr o l .. 152

6.5.1 Indirect design ... 155

6.5.2 Direct d e s ig n ... 155

6.5.3 Continuous-Time approach................................. 155

6.5.4 Some approaches based on the self-tuning m e th o d 161

6.6 Robust C o n tro l .. 165

6.6.1 Variable Structure C o n tro l.. 165

6.7 Model-Based Adaptive Control with Load Mass Estimation 171

6.8 Model-Based Continuous-time Variable Structure Self-Tuning Con­

trol .. 173

6.9 Some other methods for control of robot m anipulators.................... 176

7 Control Im plem entation using Transputers 180

7.1 Introduction ... 180

7.2 Parallel C o m p u ta tio n s ... 183

vii

7.2.1 Parallel algorithm re p resen ta tio n .. 184

7.2.2 Performance characterisation ... 185

7.2.3 Dynamic program m ing.. 187

7.3 Multiprocessor implementation of Dynamic Equations of Manipu­

lators ... 189

7.3.1 Review of the work in Parallel Processing for calculating

Robot Dynamic Equations .. 189

7.3.2 Parallel calculation of robot dynamic equations using trans­

puters ... 191

7.4 Parallel Implementation of some Control Algorithms on an M A3000

robot using T ra n s p u te rs ... 193

7.4.1 Computed Torque... 196

7.4.2 Model-based control with load mass e s t im a t io n 198

7.4.3 Model-Based VS Self-Tuning C o n tro l.................................... 206

7.5 Results and d iscu ss io n ... 216

7.5.1 S im u la tions ... 217

7.5.2 Controller experim ents... 230

7.5.3 C onclusions... 233

8 Conclusions 237

A Part of the OCCAM code for com p, torque 241

B Pascal and OCCAM SC progs for Filtering 252

C Param eters and two procs for M BV SST 261

D M ass M atrix (M), and (Q) Vector 267

Bibliography 275

viii

List o f Tables

2.1 Some language a ttrib u tes ... 19

2.2 Some language a ttrib u tes ... 19

2.3 Some language a ttrib u tes ... 20

2.4 Comparison of AML/X and VAL I I 26

3.1 Robot Arm link coord, parameters .. 47

3.2 MA3000 link parameters obtained from CAM-X (w aist) 52

3.3 MA3000 link parameters obtained from CAM-X (shoulder) 53

3.4 MA3000 link parameters obtained from CAM-X (e lb o w) 54

4.1 Comparison of Real and Estimated Load M a ss 102

5.1 Register Accessed.. 112

5.2 8 bit Status W o rd .. 112

5.3 MEMORY M A P .. 115

7.1 Table of comparison for difF. topologies... 192

ix

List o f Figures

2.1 IRDATA within a Robot Programming System 31

2.2 Robotic Flexible Manufacturing C e l l 36

3.1 Link coordinate system and orientation vectors for an MA3000 Robot 47

3.2 Four views from the 3-D model of w ais t.. 52

3.3 Four views from the 3-D model of shou lder....................................... 53

3.4 Four views from the 3-D model of e lb o w .. 54

3.5 Schematic of a dc motor with gears -pulley & belt - load assembly 69

3.6 Model of an Armature driven dc m o to r 70

3.7 Block diagram for one joint of the robot a r m 71

3.8 WAIST joint data for finding motor constant (64V step input) . . 73

3.9 SHOULDER joint data for finding motor constant (64V step input) 74

3.10 ELBOW joint data for finding motor constant (64V step input) . 74

3.11 Friction m odel... 77

3.12 Model behaviour and the real robot, WAIST (PWM voltage) . . . 79

3.13 Model behaviour and the real robot, WAIST (const, current) . . . 80

3.14 Model behaviour and the real robot,ELBOW (PWM voltage) . . . 80

3.15 Model behaviour and the real robot, ELBOW (const, current) . . 81

4.1 Load Mass E s tim a tio n ... 95

4.2 Angular position and velocity, against t im e 97

4.3 Angular accelerations and Resultant Torques............................. 97

4.4 Comparison of Load Mass and estimation values 99

4.5 filtered values of accn., vel., and angle from angle input 101

5.1 Block Diagram of IMS T800 Transputer ... 108

5.2 Schematic of the Interface Board .. 120

5.3 Interface Board Circuit D iagram .. 121

5.4 First option for drive and direction signals using DAC chans . . . 122

5.5 Second option for drive and direction signals using DAC chans . . 122

5.6 Overall connections of the In te rface 124

5.7 Typical Transfer Characteristic od IR F 6 1 0 125

5.8 Description of current drive c i r c u i t ... 126

5.9 Current drive circuit d ia g r a m ... 127

5.10 The overall connection of system components 129

6.1 Nonlinear feed b ack .. 137

6.2 Model Reference Adaptive Control ... 151

6.3 Self-Tuning Adaptive C o n tr o l ... 153

6.4 Feed back loop representing the em ulato r...................................... 158

6.5 The equivalent feedback lo o p .. 159

6.6 Phase plane trajectory of a 2nd order V S S 167

6.7 Model-based adaptive control with load mass e s tim a t io n 172

6.8 Detuned relay control... 174

6.9 Model-Based CVS Self-Tuning C o n tro l ... 175

7.1 An example of graph representation of parallel p ro g ra m s 184

7.2 Three Transp. A rchitectures.. 192

7.3 A three segment (3-5-3) polynomial approx. joint trajectory . . . 196

7.4 Basic transputer topologoy for the computed to rq u e 197

7.5 Part of the basic architecture for Adaptive MBC with LME . . . 205

7.6 Transputer Topology when TO SLAVE is u sed 206

7.7 Computed Torque with SW se tp o in ts 218

xi

7.8 Computed Torque with SW se tp o in ts ... 218

7.9 Computed Torque with Polynomial Traj.. 219

7.10 Computed Torque with Polynomial Traj.. 220

7.11 Adaptive model-based with SW setpo in ts....................................... 220

7.12 Adaptive model-based with SW setpo in ts....................................... 221

7.13 Adaptive model-based with SW setpo in ts....................................... 221

7.14 Adaptive model-based with Polynomial Traj................................... 222

7.15 Adaptive model-based with Polynomial Traj................................... 222

7.16 Adaptive model-based with Polynomial Traj................................... 223

7.17 Model-Based VSST with Polynomial Traj... 224

7.18 Model-Based VSST with Polynomial Traj... 224

7.19 Model-Based VSST with Polynomial Traj... 225

7.20 Model-Based VSST with SW s e tp o in ts .. 225

7.21 Model-Based VSST with SW s e tp o in ts .. 226

7.22 Model-Based VSST with SW s e tp o in ts .. 226

7.23 Model-Based Cont. Weigh. VSST with Polynomial Traj............... 227

7.24 Model-Based Cont. Weigh. VSST with Polynomial Traj............... 227

7.25 Model-Based Cont. Weigh. VSST with Polynomial Traj............... 228

7.26 MB Cont. Weigh, with setpoint filter VSST (Poly. T ra j .) 229

7.27 MB Cont. Weigh, with setpoint F VSST with Poly. Traj................ 229

7.28 Model-Based Cont. Weigh. VSST with Polynomial Traj......................230

7.29 Computed Torque (real im plem entation).. 231

7.30 Computed Torque real im plem entation .. 231

7.31 Model-Based Adaptive Control with LME (real implementation) . 232

7.32 Model-Based Adaptive Control with LME (real implementation) . 232

7.33 Model-Based Adaptive Control with LME (real implementation) . 233

7.34 VS Self-Tuning applied to waist (real implementation) 234

7.35 Model-Based VS Self-Tuner with LME (real implementation) . . . 234

7.36 Model-Based VS Self-Tuner with LME (real implementation) . . . 235

xii

7.37 Model-Based VS Self-Tuner with LME (real implementation) .

C hapter 1

Introduction

The interdisciplinary field of robotics entails the interaction of various subject

areas. From an engineering research viewpoint, in addition to each discipline re­

quiring an indepth study, the effect of other areas also need to be considered.

An important issue in this context is the need for the robots to interact with their

environment as well as other systems. As a result treating the robot as an isolated

unit is simplistic and ignores the importance of communication and coordination.

The determining factors in the operational requirements of a robot are the tasks

and applications that the robot is employed to carry out (e.g. assembly, materials

handling, welding) which in turn specify the required capabilities such as trajec­

tory tracking, obstacle avoidance, compliant motion etc.

Once these specifications are available, all constituents of what is referred to as

robotics are combined, each with a certain level of complexity depending on the

specified requirements, to perform the task.

The manipulator type is chosen so that its configuration, basic motion capabilities,

degrees of freedom, and other physical characteristics match the specifications.

Also the measure of performance of the manipulator in terms of load carrying

capacity, precision movement (spatial resolution, accuracy, repeatability), speed

of movement, environmental requirements (e.g. temperature), operating envelope

etc. are suitable for the application.

CHAPTER 1. INTRODUCTION 2

The power unit which also includes the actuators then needs to produce the re­

quired movements according to the specifications of the robot controller in terms

of accuracy, smoothness, speed through command signals that are produced using

the informations from sensors in regular intervals.

It should be mentioned that the controller itself usually has to be synchronised

and coordinated with other systems by a higher level supervisory controller.

Large elements of research interest are directed towards each aforementioned

stages and individual areas with the kind and depth of the research being dic­

tated by the needs of the future market.

1.1 O bjectives

Although intelligent, mobile, autonomous, and human like robots that are capable

of operating in space have their attractions, for more down to earth applications

one emphasis seems to be on the production of light weight fast and accurate

manipulators that can be used in flexible manufacturing environments with the

ability to utilise sensory data of various kinds.

One of the implications of this is the need to further investigate the following:

• Programming and languages for robots with capabilities that extend to cater

for the demands of flexible manufacturing systems and complex applications.

• Kinematics and dynamics of manipulators with considerations given to re­

dundancies and flexibility of joints and linkages.

• Real-time novel control schemes for smoother, accurate and fast motions

and better performance.

• Sensor technology and how sensors can be effectively utilised for robotic

applications.

CHAPTER 1. INTRODUCTION 3

• Faster data processing schemes and utilisation of mutiprocessor environ­

ments for reduction of computation time.

Having identified the above as being potentially high priority research areas, the

objectives of the work presented here are: with the resources and time available,

first of all, study some of these in detail, secondly after gaining insight, propose,

describe, and suggest ways of getting round the problems or introduce new ap­

proaches that overcome the difficulties faced, and finally by way of simulation

and/or implementation verify the credibility of the schemes and methods.

The approach favours use of a real robot where possible for validation and veri­

fication, as attem pts to do this in the literature are very few, although it is very

valuable to move away from mere simulation and consider and observe factors

that can only be studied by actual implementation.

1.2 M otivations

Programming systems and languages in the field of robotics are still far from

ideal. Despite the improvements that have been made by robot manufacturers

and research organisations to accommodate the demands imposed by the nature

of robotics as opposed to applications that general purpose programming lan­

guages cater for, there remains much to be desired.

Communications, standards, user friendliness, appropriate semantics, suitable

front ends, application specific extensions, use of computer graphics and anima­

tion, integration with other systems and finally the question of “a cell language”

all need careful detailed examination.

These are the subject of one area presented here.

Moving on from robot languages and programming, both kinematics and dynamic

modelling of manipulators are of great interest for research purposes. The dynamic

equations of the manipulator are a set of highly nonlinear coupled second order

deferential equations.

CHAPTER 1. INTRODUCTION 4

The need for fast, accurate and versatile manipulators has brought about research

challenges into the dynamic effects.

Kinematic and inertial parameters of robot manipulators that are part of the dy­

namic equations, can be obtained by various methods. Although the accuracy

of these parameters is of paramount importance in schemes that utilise dynamic

equations of the manipulator, comparisons of the methods used have not been ef­

fectively carried out and in particular the benefits of employing CAD approaches,

have been greatly undermined. This approach will be employed to see its effec­

tiveness.

Efficiency of robot dynamic equations have been looked at and symbolic manip­

ulation has specifically been used to achieve efficiency, but it can be used to gain

additional benefits. This will also be addressed in the work presented.

Usually the effects of the mechanical transmission systems, friction, and actuation

dynamics are not included in robot dynamic equations for simplicity, however it

has been shown that they can be significant. These effects are considered and

taken into account in this study.

Only a few research studies have presented model validation using real data ex­

tracted form an actual manipulator, this is done in this work by comparing the

behaviour of the model obtained with the actual robot.

Research into manipulator controllers in majority of cases have been based on the

available theory in the field of control systems engineering with no accounts of

requirements specific to robots, and the familiarity of the designers with a partic­

ular method has been the only factor in the employment of a scheme in a great

number of occasions. Above all, most of the results are based on simulation and

very rarely actual implementation has been successfully attempted.

The controller operates at various levels of hierarchy. At the top level it per­

forms planning and coordination, communicates with other devices, and carries

out transformation of sensory information. A programming system, sometimes

with a degree of intelligence is used to initialise and carry out the commands.

C H A P T E R l. INTRODUCTION 5

- The second level is motion and/or force control. Information from sensors is used

in order to carry out the control with a prespecified performance criteria in either

joint or cartesian space.

Majority, if not all industrial robot manipulators at this point are controlled by

conventional fixed gain controllers based on single-input single-output models for

each joint.

These controllers usually provide an acceptable level of performance, as the de­

mand on their speed and accuracy is not high and in addition they are driven

indirectly through a gear mechanism by a DC motor, which means that the effect

of inertial variations are reduced by the square of the gear ratio.

The adequacy of these schemes is challenged by the emergence of light weight

manipulators as well as increased demand on speed and high performance.

A number of dynamic control schemes have been proposed, but non has been suc­

cessfully implemented on a general purpose industrial robot. The main reasons

behind this are

• High level of computational requirements makes the real-time implementa­

tion on a present day reasonably priced single processor impossible (with

one or two exceptions).

o In practice obtaining an accurate dynamic model of the manipulator is not

easy.

The measures for responding to the computational demands are, to utilise the

specific and usually simple geometric structure of present day manipulators, re­

sulting in simplified dynamic models, and/or enhance the computational efficiency

by exploiting the parallelism of the algorithm. In the work presented here both

of these issues have been taken into consideration. Multiprocessing powers of the

Transputer is utilised as well as its capabilities as a fast single processing unit at

a low cost, to implement model based control algorithms that have high computa­

tional requirements, and their real-time implementation would have been unlikely

CHAPTER 1. INTRODUCTION 6

otherwise.

1.3 Structure o f the thesis

In chapter 2 Robot Control Programming Systems, a comprehensive definition of

robot control programming systems is given and a way of evaluating manipulator

languages based on this is suggested.

The requirements of the next generation of robot programming systems and

proposing that the Transputers, being a fast processor and ideal for multipro­

cessor implementation of algorithms, and OCCAM as its natural programming

system, form a suitable combination for fulfilling these requirements, are also cov­

ered in this chapter.

In chapter 3 Robot Modelling and Validation, direct and inverse kinematics, and

dynamic modelling of an MA3000 robot is presented. The emphasis is on the

inclusion of the actuation system (DC motors) models in the modelling process.

A CAD approach is taken to obtain kinematic and inertial parameters, and a

symbolic manipulation scheme is used to simplify the dynamic equations of the

robot.

The behaviour of the model obtained is then compared to that of the real robot,

based on real input/output measurements, hence validating the model.

In chapter 4 Model-Based Identification of Robots, following a literature review

of dynamic parameter estimation of robot manipultors, a method of estimating

the mass of the load held by the gripper of the manipulator, based on the state

variable filter approach for estimation of continuous time transfer functions is pro­

posed.

Symbolic manipulation is used to obtain a linear in the parameters and compu­

tationally efficient form of the dynamic equations of the robot and, least squares

is used for estimation.

In addition to simulation, experimental results on the MA3000 robot are obtained

CHAPTER 1. INTRODUCTION 7

- which verify the effectiveness of the method.

Chapter 5 Transputer-Robot Interface, describes the transputer systems, the elec­

tronic interface units (both voltage and current driven) between these systems

and the robot, and the low level interface software.

The interface was made to enable transputer implementation of the controllers

that are introduced in chapter 6 on a real robot, as well as for data acquisition

for validation of the model of the robot developed and to show the effectiveness

of the load mass estimation method proposed earlier.

The fact that the literature contains very few results based on the data obtained

from a real robot as opposed to simulation, and the importance of additional

factors introduced when a controller is actually implemented on robots, were the

main motivations behind taking the approach of carrying out experiments on the

MA3000 robot and hence the need to interface it to a fast computer system which

allows real time implementation of the controller cost effectively.

In chapter 6 Control of Robot manipulators, the methods used for manipulator

control both in the commercial scene and the research circles are reviewed and

their short-comings as well as strengths are highlighted. Against this background,

two new model-based adaptive schemes are proposed, one based on estimation of

the load mass and the other a model based variable structure continuous time self

tuning controller.

Chapter 7 Control Implementation, using Transputers, points out the advantages

of using transputers for manipulator control implementation and gives a brief in­

troduction to parallel computation before presenting a detailed account of how

a controller based on the computed torque method, and the two new adaptive

controllers proposed in chapter 6, are implemented on the MA3000 robot, using

a network of transputers. Then a discussion which includes a comparative evalu­

ation of these methods concluded this chapter.

Finally chapter 8 draws some conclusions from the entire work and includes sug­

gestions for future research.

C H APTER1. INTRODUCTION 8

One area that has not been looked at in addition to flexibility of joints and link­

ages and redundancy issues of robot manipulators in the work here, is sensory

devices and their functions in robotics. Due to its importance and the fact that

multiprocessing can play a substantial role in alleviating the problems of com­

putationally intensive data processing in three dimensional vision and even its

suitability for modular nature of data extraction from various sensors to combine

(sensor fusion), a brief outline is given in the next section.

1.4 Sensory devices

A distinction ought to be made between sensors that are employed for manipula­

tor control such as position sensors, and the ones used for object identification and

robot guidance such as vision systems. The research into the former is usually in

the form of finding ways to improve the accuracy of devices as well as lowering the

cost. In the latter case however, the issue is interaction with three dimensional

objects and as such to fully capture the information from the workspace, a sen­

sory system capable of sensing and processing large amounts of three dimensional

data is required. As a result the computational requirements to process this in­

formation in small time scales become prohibitive. A great deal of research effort

has been directed towards the use of parallel processing and in particular use of

Transputers for their power and cost-effectiveness, to achieve fast processing of

vast amounts of data.

Often though, in the context of robot vision for example, the nature of the part

or novel illumination or constraints on the part and sensor placement combine to

allow a two dimensional rendition to suffice.

In addition for many applications that only require discrimination of similar or

nonsimilar objects or information about planar orientation of objects, two dimen­

sional vision based on visible band luminance data is effective enough.

Another interesting area of research is in the field of tactile perception in the study

CHAPTER 1. INTRODUCTION 9

_ of different materials and techniques.

For material handling for instance, determination of the position and orientation

of objects is essential, plus monitoring of this information possibly requiring incre­

mental analysis and verification of delivery being necessary, and in some assembly

operations the requirements go even further including the information about sur­

face features, texture, frictional characteristics and temperature, hence in addition

to vision, tactile sensors are needed to cope with these complex applications. Tac­

tile sensors consisting of pressure sensor arrays can provide information about

grasped objects and can locate surface features.

The ultimate aim in these studies is to enable the implementation of a closed loop

control system for assembly and other applications that includes vision and tactile

sensory information.

A whole new area of research known as sensor fusion, deals with combining these

sensor information. Applicability of parallel processing and multiprocessor based

data acquisition seems natural in this field.

1.5 Contributions o f this work

The contributions of the work presented in this thesis are as follow

• Presentation of a comprehensive definition of Robot Control Programming

Systems which provide suitable grounds for both evaluation and comparison

of robot programming languages. In addition, justification as to why the

Transputer/OCCAM combination is suitable for the next generation of robot

programming systems.

• Use of CAD modelling and a Symbolic Manipulation scheme to obtain the

kinematic and inertial parameters, and develop a dynamic model for a robot.

Also validation of the model, based on real data extracted from the actual

robot.

C H A P T E R l. INTRODUCTION 10

• Proposition of a new computationally efficient load mass estimation method

and verification of its effectiveness by means of experimental data extracted

from a real robot manipulator.

• Interfacing an MA3000 robot to a network of transputers, requiring elec­

tronic units and low level software. As a result, real time implementation of

control, and data acquisition from the robot were made possible.

• Introduction of two new control schemes for robot manipulators, namely: a

model-based adaptive controller with load mass estimation, and a model-

based variable structure self tuning controller in a continuous-time frame­

work.

• Transputer implementation of manipulator controllers on a real robot and

comparison and evaluation of the results.

C hapter 2

R obot Control Program m ing

System s

SU M M A R Y

A robot control programming system is defined in a comprehen­

sive manner. This is useful fo r evaluation purposes and also for

requirement specification of robotic applications. A combination

of the Transputer and OCCAM is proposed as being ideal for the

next generation of robot programming systems after considering

their requirements.

2.1 Introduction

Generally there are two types of approach to Robot Programming, teach pendant

and off-line. Teach pendant programming in which the motion of the robot is

controlled with a series of push buttons on a hand held device (pendant) is easy

to learn. It is also easy to program the robot in more complex geometric situa­

tions and when the robot needs to perform a task under load. However the robot

remains unproductive while it is being programmed, modular program develop­

ment is not possible, general purpose library of subroutines cannot be used and

the operator is in danger during development phase of the program. As a result

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 12

for a highly automated and flexible factory environment, off-line programming

seems more suitable. There are also additional advantages in using off-line pro­

gramming methods, sensors such as vision and force can easily be incorporated,

efficient handling of synchronization with external equipment is achieved, repeti­

tive tasks such as palletizing can be programmed with less effort using macros. In

off-line programming, the program is developed based on a simulated environment

and robots. This results in a number of disadvantages, firstly visualizing a robot

path in a three-dimensional space is quite difficult and reachability, collision-free

paths and correct orientation are not easy to determine. Also the affect of con­

figuration, controller action, dynamics and inaccuracies need to be anticipated.

These drawbacks can be compensated by robot calibration, use of teach pendants

to fine tune the programs, run-time sensing and “adaptive” programs, plus use

of CAD/Graphics techniques. The problem of learning these languages, being

considerably more complex still remains, although attem pts have been made to

design user friendly front ends, having menu driven commands.

Most of the current robot programming systems are based on a dedicated

programming language and consist of a high priority trajectory generator which

computes the sequence of joint variables and a language interpreter. The flow

of the robot program is synchronized with the actual motion of the manipulator.

Three major categories form the basis on which current approaches to robot pro­

gramming can be classified, although other categories have also been specified.

These are:

• Servo Level consisting of a series of end points, represented as a group of

joint coordinates, speeds and input/output commands.

• Robot Level in which a sequence of robot motions are described. Each state­

ment of the program roughly corresponds to one action of the robot.

• Object Oriented where a sequence of positional goals of the object to be

manipulated or sequence of tasks to be performed are programmed. A task

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 13

planner consults a database (world models) and transforms the task speci­

fication into a robot-level program.

Three schools of thought have influenced the way in which off-line robot pro-
tV \e

gramming languages have evolved overvyears. One which argues that for various

reasons, it is more appropriate to extend an already existing general purpose pro­

gramming language and include the constructs needed specifically by robots, the

second which favours using an APT-like language used for Numerical Control ma­

chine tools. And finally a totally new language which is purpose designed for

Robotic Applications. Essentially the issue lies on the emphasis as to the level

of experience that the robot programmer ought to possess. Whichever approach

taken, it is widely accepted that the progran? need to be

1. capable of allowing computation from sensors and interacting with other

devices.

2. able to work in a real-time environment and check conditions to synchronize

events or obtain data when it is needed.

3. general purpose and independent of the physical configuration and kinematic

features of a particular arm.

4. capable of easy expression of manipulator positions in space and support

debugging and testing.

Furthermore the application for which the programming language is to be used,

determines the type of attributes that it should have. As robot tasks become

more complex and more expensive to implement, the cost effectiveness of inter­

active graphic simulation and assisted programming will become apparent. The

evolution of CAD/ CAM integration with robotics and incorporation of ever larger

data bases will lead to more advanced systems. The simulation of sensors and gen­

eration of sensor programs should be included in the graphical simulation. Also

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 14

program utilities should allow planning of such variables as camera angles, posi­

tion and orientation constraints on objects to be located by vision and timing of

vision in relation to robot motion. Most efforts today involving the development

of dynamic models are motivated by improving the control or structural perfor­

mance of the actual robot. However, there is no reason why this could not be

included in an interactive graphic simulation to generate robot programs.

In this chapter a description is given as to what constitutes a Robot Program­

ming System and based on this, existing languages are evaluated. Then the re­

quirements of the next generation of languages are outlined. Finally a Transputer

approach is suggested as a step towards meeting these requirements.

2.2 D escription o f a R obot Program m ing Sys­

tem

A Robot Programming System essentially consists of a number of different inter­

acting elements. Each element’s position in levels of hierarchy depends on how it

can affect and be affected by other elements. In general every robot application

requires certain capabilities to be handled by the robot language. Each of these,

together with the nature of the robot application will influence the type of pro­

gramming and operating environment, as well as implementation and language
a
\ z

features required. These are the issues addressed in this section. After descrip­

tion of individual levels of robot programming systen?and the elements that form

them, evaluation of existing languages become meaningful. Also this is useful for

establishing the requirements for the next generation of robot languages. At the

top-level the Characteristics of the programming system are considered.

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 15

~ 2.2.1 Characteristics o f th e Program m ing System

There are certain issues which come under this category and each one provides

certain capabilities suitable for various robot applications. Hierarchical decom­

position of tasks and modular program development, for example necessitate the

ability of a programming system to create abstract data structures which repre­

sent elements of the problem. This is usually referred to as Extensibility. The

syntactic issues and semantic power which is available to the programmer to rep­

resent his application reflects the Flexibility of the programming system. This is

a measure of the range of applications for which a language can be used. Another

characteristic ties in with the depth to which alternative run-time conditions are

handled, for example since syntactic and semantic errors can potentially be iden­

tified and corrected prior to execution by the controller in compiled programs

as opposed to interpreted ones, they are said to be more Reliable in some ways.

To cope with the nondeterministic nature of physical interactions with the real

world, conditional branching facilities or Decision Making can be used. Faster ex­

ecution speeds can be achieved in some applications, when robot language is able

to represent frequently used robotic functions which results in better Efficiency.

A robot language which is not dependent on a particular hardware has many ad­

vantages, as developed programs could be used for different robots. This issue

represents the Portability of a programming system and can be at odds with the

naturalness of a language to express the problem using language features which

are specific to the application area. Other characteristics of robot programming

systems are: Usability of a language in terms of whether the development meets

the guidelines with respect to cost and Maintainability, and finally how Sensor

Support is catered for. These are but some of the characteristics that in the view

of the author, seem to be important in areas of robot application. Any applica­

tion requiring some or all of the above, will also put demands on the rest of the

elements in the lower levels of the system. The next level is the Programming and

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 16

Operating Surfaces.

2.2.2 Program m ing and O perating Surfaces

This refers to the hardware and software for generation of a robot Program, and

also the Operating environment for its execution. As was mentioned in the intro­

duction to this chapter, an important ingredient of off-line program development

is the Simulation of the robot behaviour. In a larger scale, other parts of a workcell
be.

that interact with the robot should alsovsimulated. Load kinematics, tolerances,

sensor delays and flexibility should ideally be represented, as well as analysis of

data and material flow within the cell. A graphics system can be used for collision

detection, reach testing and reconfiguration of the workcell and task planning so

as to reduce the cycle time of a particular operation. Information necessary for

the modelling of robots and parts for simulation can be held in a CAD Database.

Another issue in the programming environment is the level of Programmer Expe­

rience. That is, whether due to the complexity of programming, a well trained

programmer should be employed so that the programming tools and techniques

available can be effectively used, or have a simple, easy to use language that an

ordinary machine operator can program in. Alternatively a special Editor can be

used that simplifies the task of the programmer by means of introducing templates

of a particular construct or introducing generic commands for a particular opera­

tion. In order to solve frequently occurring programming problems, a Library of

subroutines can be used. Also a Pre-processor can be used to convert an extended

syntax front end to the normal output language. Off-line debugging and various

Programming Techniques also are elements of the Programming surface. Once the

program is generated, it is the responsibility of the Operating Surface to execute

it. Different elements can be identified within this level. The scheduling of the

Tobot program statements is mainly provided by the architecture of the hardware

and the program itself only partially controls the implementation. The Sequence

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 17

of Execution of the program is an attribute of the Operating environment. One

example of this is Parallel Processing in which different layers of control such

as supervisory, trajectory processors, I/O handlers etc. act in parallel, or when

two or more program statements or procedures are executed simultaneously ie.

Concurrent Execution. Unplanned events that might occur during the execution

of the program, and need immediate attention, such as exceeding the limit of a

joint movement, signaled by a sensor can be handled by Interrupts. The program

itself may up to a point specify Process Synchronization. For data transmission, a

standard Networking system can be used such as Ethernet or MAP, which can be

transparent to the robot language. Other elements of this category are Diagnostics

and Peripheral Support.

2.2.3 Im plem entation o f th e Language

One of the key issues which is classed in this level is the Type of Language used.

This is to distinguish between various ways of implementation, and also different

representations based on . distinctive syntactic and semantic features. Inter­

preted, compiled or a combination of these. When an Interpreter is used, it runs

on the target controller and program statements at source level are read one by

one and executed directly. The greatest benefits of the languages that can be run

with an Interpreter are their power and ease of debugging. Much of the power

comes from the notion of delayed binding and dynamic scoping. However, syntac­

tic errors may be encountered at run time, as there is no off-line translation. Also

they are slower compared with compiled programs, due to the fact that before

execution, interpretation of a program statement requires significant overhead in

contrast with when a Compiler is used that reads in the higher order language

and puts out an object code. Other issues are, whether the language is procedu-

rally oriented or like AML/X and LISP, expression oriented, object oriented (like

SMALL TALK) or goal driven (like PROLOG), which are suitable for Task-level

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 18

programming approach for Robotic Applications. After issues related to how the

language is processed, questions as to how the actual configuration enables cer­

tain kinds of Run-time Debugging and System Access become important. Then

the remaining semantic and process synchronization errors can be pin pointed

using for example tracing, single stepping, breaking and run-time editor. In work­

cell controllers that orchestrate the communication and control of robots, sensors

and other devices, access to the system supervisor program is essential. When

programming Multi-Robots, coordination of the control becomes complicated due

to the extra degrees of freedom introduced, as well as timing constraints and in

some applications, simultaneous control of force due to contact of two robots. It

is important that an accurate simulation of these kinds of operations are carried

out before hand, based on complex models incorporating forces and sensors.

2.2.4 Language A ttributes

This is at the bottom level of the Robot Programming System and represents a

good measure of comparison for Robot Programming Languages. The important

elements of this category are shown in the following tables. Individual elements of

each feature represented in the tables can influence the elements of the previous

levels discussed. As an example, whether static or dynamic scoping (in Declara­

tions and Variables) in table 2.1, is used can affect the reliability of a programming

language, ie. static scoping tends to create optimizable and more reliable execu­

tion. The need for these elements in a Robot Programming Language is primarily

determined by the type of application used. Generally there is a need for rep­

resenting angles, coordinates, forces, velocities represented in a vector form (in

Array) and hence vector operations ie. dot product and cross product etc. In­

put/O utput feature elements are also shown in table 2.1 . In some applications

where coordinated control of motion and sensors is necessary, Timers are needed

to make this possible. Control Structures are shown in table 2.2 , again empha-

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 19

Declarations and Variables Array Input/Output
variable type vector binary

variable frame analogue
identifier matrix vision

label coordinate system compliance
constant guarded motion

declaration timers
scope wait

assignment text i/o
file i/o

Table 2.1: Some language attributes

sizing the application dependence of the elements. When more than one robot is

involved in an operation, a structure for controlling multiple robot arms is needed

and perhaps need for parallel processing and parallel execution. Another feature

shown in the table is Sub-Programs. Macros can be utilized by means of viewing

a large piece of detailed code, as a template with slots that can be filled in accord­

ing to the invocation for example in palletizing applications. Subroutines can be

useful for various activities such as motion, sensing, transformation calculations,

or specified actions such as move, rotate, change speed, grab camera image. When

large programs are to be executed or the program uses a given subroutine for more

than one purpose, Parameter passing becomes a prerequisite. In table2.3 , One of

Sub-Programs Control Structures Operators
macro branching arithmetic operators

subroutines looping boolean operators
nesting iteration relational operators

parameters multiple arm control transformation m atrix
frame affixment

Table 2.2: Some language attributes

the features shown is Data Types. In Robotic applications Geometric data types

are very important for referencing part features such as holes and so on. There­

fore a data type to represent points, lines, planes, curves and surfaces is necessary.

Also shown in the table is Motion in terms of move (grasp, stop) with parameters

specifying speeds, acceleration, forces etc. and path (straight line, circular, or

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 20

along some other geometric curve) possibly in more than one coordinate system.

Tool Statements include Effector Command which references grasping, open and

closure with defined force for example and Tool Command which specifies a move

relative to the gripper held tool frame of reference.

Data Types Motion Tool Statement
elementary move effector command
structured path tool command
geometric

Table 2.3: Some language attributes

The elements of a Robot Programming System described above, form a com­

prehensive representation of the entities, which are important, for evaluation of

individual systems, as well as comparative studies of different ones. These will be

dealt with, in the next section.

2.3 A com parative study o f R obot Program ­

m ing System s

Detailed comparison of Robot Programming Systems is a complex task. There are

numerous different ways that this comparison can be carried out. In the literature,

usually comparisons are either inadequate or unfair. Inadequacy stems from lack

of a comprehensive measure and unfairness is a result of comparing systems which

are meant to be used for different applications. To overcome the former, all ele­

ments of a Robot Control Programming System described in the previous section

ought to be used, not just some and also the interaction of different levels should

be taken into account. One way of tackling the latter problem is establishing a

benchmark for a particular application and then the systems which are designed

for the operation can be compared. There has been some effort in this direction,

for example the development of a European Benchmark for the comparison of

assembly robot programming systems [15] . An insight to the whole issue can be

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 21

gained by looking at how off-line languages for robots evolved over time.

First Generation:

The early robot programming systems were created by extending BASIC to

provide for robot motion which was usually straight-line or circular or along some

arbitrary curve, elementary sensor usage (binary), basic coordination and a min­

imal operating system which were designed to be self contained. Also they were

designed to be usable by operators without computer science training. VAL is an

example of this generation. Due to their limitations, they are restricted to certain

applications which do not need complex computations or interface to complex

sensors. Communication with other computers and controllers are limited and

they are not extensible in a way that allows one to add commands and build

capabilities into the language. Although these languages remove the rigidity of

augmented teach box software, they provide very little new capabilities.

Second Generation:

To overcome the limitations of the first generation, computational complexity

of a modern structured computer language were built into the second generation

Robot Programming Systems. RAIL for example looks very much like its parent

PASCAL, while AML embody new concepts. They have extensions for motion,

sensor communication, improved control and operating systems with more power­

ful editors and file handling capabilities. Nevertheless many of them are supplied

as closed systems which restricts their capabilities for computer communication

and coordination. The main advantage lies in their extensibility. Through the use

of subroutines and functions, new commands can be added to the language that

give capabilities transparent to the user, which then means operators can easily

use them. The second generation languages also have some weakness. They can­

not yet deal with part or cell geometry as is necessary in the work environment

(with the exception of APT-like robot languages). There is still no way to safely

debug a robot program. Robotic applications should be able to access the data

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 22

that resides in a CAD data base, but so far very few can handle the communi­

cations, the different data structures, or the interpretation of geometrical data.

Similarly vast majority of them do not facilitate the integration of robots into

Flexible Manufacturing Systems (FMS) which use computer control to coordinate

combination of NC tools, robots, inspection stations, material handling systems.

In addition significant improvements are needed in the use of robotic software.

Third Generation:

These are usually referred to as task-level or object level languages. Instead

of step-by-step specification, simulation and graphics are combined to direct a

robot to perform a series of tasks, which the software would then determine how

to carry out in detail. The statements correspond to high-level tasks which the

program decomposes into executable actions. Although desirable, they have not

yet matured. There are two fundamentally different theoretical approaches to the

development of task-level programming. One relies on the artificial intelligence for

an expert system solution that will perform tasks according to formal rules gained

from human experts. In the other approach, the task is analyzed from the top

down and is hierarchically decomposed into subtasks that the system knows how
m

to perform. The above classification can at least helpvthe choice of languages with

similar capabilities for the purpose of comparison. The usual comparisons which

have been carried out are based on the features of the programming system, for

example [105]. These features usually include: Type of Geometric Modeler (Solid

etc.), Robot Modeler (kinematic etc.), Programming Language(Manipulator level,

textual ...), Other Features (Reach Testing, Cycle-time etc.) and Graphic Simu­

lation. It should be noted that comparisons based on language features can easily

be done by referring to language manuals, where as when we move further to

include all levels of the programming system for example operating environments,

it is somewhat dependent on the actual implementation. Detailed comparisons

of fourteen languages were made by means of developing a sample program and

using different languages by [10]. The intention was to derive some measure of

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 23

programmability. They included a number of elements of what we defined as

Programming System in the previous section, but not all. One of the measures

of programmability was the number of instructions in the program, excluding

comments, which is quantitative. Other measures were quantified against defined

scales, These measures were: Development time, Readability, Understandability

of Instructions, Structured Format, Flexibility of choosing variables, Ease of ex­

tension, Range of users, Programming complex tasks, Necessary support facilities,

Computer power, Sensing ability, Availability. A different work which again in­

cluded a portion of the categories which form a Programming System were carried

out by [28]. A study to define the characteristics of a good programming system

was carried out by [11]. They came up with a list of quality attributes almost

identical to language capabilities (explained in the previous section) that affect

the life cycle cost of a robot program. For assembly applications in particular

[15] developed an assembly application which they executed on different robots

and concluded what types of entities are desirable to support such applications.

One outstanding result was that different levels of programming system can not

be considered in isolation. They also made a remark that comparison should not

be made in conjunction with a representative range of manipulators.

After studying the literature, and seeing the shortcomings of the comparisons,

an effective evaluation of Robot Programming Systems, in author’s opinion is

that, once an application is specified, its requirements in terms of sensors, decision

making, communications, motion, world modeling etc. ought to be detailed, and

then a class of systems with the inherent required features, capabilities e tc ., should

be selected for comparison. A comprehensive pseudo code which entails all the

requirements should be prepared and then used for programming the application.

A scaled quantitative measure against each of the elements of the Robot Control

Programming System (RCPS), will then be indicative of the suitability of each

system. As an example, consider a typical assembly operation, such as assembly of

a flange. The components which should be provided, to obtain a fast and flexible

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 24

programming system for the above operation are pointed out in [9]. These are:

• Installation of sensors for vision, force-torque, slip, proximity, etc., into the

robot.

• Control of the robot by a run-time system which is able to adapt itself to

on-line changes during assembly.

• The compiler to translate the programmed workcycle should have a compo­

nent which can automatically generate missing information.

The tasks that have to be explicitly programmed, which require the above com­

ponents, can easily be identified, by noting what instructions is carried out, if a

human operator were to assemble the flange. Firstly, dimensions are transferred

from the drawing to the actual assembly object, using vision, and translating the

information. Secondly, past experience is used to supplement missing information,

such as information about the position of the insertion holes. Thirdly, a sensor

controlled positioning operation is performed, for example, to insert a screw into

a hole, vision is used for coarse positioning, and touch for guidance and fine po­

sitioning, hence corrective action, if the thread of the screw does not engage with

that of the hole. Fourthly, missing assembly element tasks are supplemented, for

example, use of a screw driver for insertion of screws. Finally, fixturing which is

needed during assembly may automatically be done without explicit instructions

from the drawing. Now the requirements are known, robots and their associated

programming systems that are suitable to fulfill the requirements are chosen for

comparison. For simplicity in this case, take only two programming systems,

VAL II and AML/X. Unimation Inc.’s VAL II is used for operation of UNIMATE

and PUMA robots and is referred to by Unimation, as a robot language and

control system with expanded computer logic and advanced communication ca­

pabilities. Three levels of robot control systems exist within VAL II: First level

offers manual teaching capabilities and front-panel programming, second, allows

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 25

development of robot programs written in simple robot programming languages,

and third, allows modification of the arm ’s path from data transm itted through

external sensing devices. VAL II can be interfaced to a supervisory system through

the Digital Data Communications Message Protocol (DDCMP) used by DEC in

its network communication. This protocol provides error checking and automatic

message transmission, as needed for factory communications. VAL II also allows

a second application program to run concurrently with the main robot control

program for the purpose of process control. AML/X is a major revision of AML

and is a general purpose programming language for manufacturing and computer

aided design, by IBM. It has features for conventional data processing and also

object-oriented. An AML/X program is a series of textual expressions evaluated

by an interpreter at run-time according to specific rules. Programming languages

such as LISP and SMALLTALK have influenced its design. Various application

layers can be developed residing on top of AML/X, as well as each other, hence

the end user only sees a very small application specific language. Both of the

above languages should now be compared on the basis of individual elements of

the Robot Control Programming System (RCPS) shown in table 2.4. This could

be done, both by looking at the documentations available for each system and also

programming the assembly operation. An order of preference can then be used

to describe the merits, for example ranging from non-existent (x) , available (a /) ,

poor, acceptable, good, very good to excellent. This is shown for some elements

in table 2.4. As far as Flexibility is concerned, although VAL II has considerable

flexibility in motion control with guarded moves, real-time trajectory updating,

and watchdog monitors over sensors, AML/X seems superior. This is due to its

unique data abstraction, and its debugging procedures for handling exceptions,

which result from unplanned events at run-time, e tc .. Also lack of built-in mo­

tion or sensor primitives, means that it can conveniently work for a great range of

robots and sensors. These primitives can be defined according to the robot appli­

cation and there are some developed definition and implementations, for example

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 26

RCPS elements______________ VAL II________________A M L /X
Extensibility good very good

Flexibility acceptable excellent
Reliability good very good

Decision Making good very good
Efficiency acceptable poor

Portability poor very good
Usability acceptable very good

Maintainability very good very good
Sensor Support good good

Simulation X X

CAD Database X V
Programmer Experience implementation needed implementation needed

Editor good good
Subroutines Library acceptable very good

Pre-Processor X X

Off-line Debugging good poor
Programming Techniques implementation needed implementation needed

Parallel Processing X X

Concurrent Execution X X

Process Synchronization y/ V
Networking acceptable acceptable
Interrupts V V

Diagnostics V V
Peripheral Support V V

Interpreter X V
Compiler V X

Run-time Debugging poor very good
System Access V V
Multi-Robots ? ?

Variables implementation needed implementation needed
Data Types implementation needed implementation needed

Input/O utput implementation needed implementation needed
Sub-programs implementation needed implementation needed

Control Structures implementation needed implementation needed
Operators implementation needed implementation needed

Motion implementation needed implementation needed
Tool Statement implementation needed implementation needed

Table 2.4: Comparison of AML/X and VAL II

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 27

AML/2 for IBM 7575 and 7576 robots. For this element, VAL II is acceptable,

but AML/X seems to be Excellent. In the case of Extensibility, in AML/X, user-

oriented front-ends can be used to extend the capabilities, due to the freedom

for data abstraction. VAL II is capable of controlling various robots from ones

used for clean-room applications and ones for harsh environments, and with the

introduction of VAL DATA Products, CATVAL postprocessor for interface to

CATIA and PCVAL supervisor in 1987, its extensibility was demonstrated. In

this case AML/X can be said to be very good and VAL II, good. For Reliabil­

ity comparison, VAL II’s combination of teach mode and textual programming,

makes run-time debugging more precise, but the extremely sophisticated excep­

tion handling capabilities of AML/X makes it much more reliable. The lack of

sophisticated conditional branching, makes explicit error handling difficult and for

VAL II, run-time failures, will cause problems, considering Efficiency, VAL II is

reasonably fast and allows for multiprocessing. The limitation of AML/X is that

having to go through an interpreter, time-critical applications need to be written

in C and called through its C interface. Regarding Maintainability, they both

score well, AML/X with its data abstraction and self documenting style and VAL

II with its motion sequencing being kept away from the location and trajectory

data. In terms of Portability, AML is very good since the interpreter is written in

the general purpose C language, whereas VAL II is not portable as such.

Similar type of evaluation can also be applied to other elements. It should

however be noted that, language attributes and some elements of other levels, are

best assessed, if programs are actually implemented, so that aspects like ease of

programming can be taken account of.

Other languages can also be compared, in the same sprit, based on the re­

quirements of the application, or even a universal application characterized by a

benchmark, and evaluation of individual elements of RCPS. Now an effective ap­

proach for comparison of programming systems, has been suggested, specification

of requirements and future trends will be dealt with in the next section.

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 28

2.4 Requirem ents, Future Trends

It will be too simplistic to assume that a generalization can be made as to the

requirements of Robot Programming Systems. Some applications may essentially

require certain capabilities and attributes, that might only be desirable or ad­

ditional to others. For example for a complex assembly automation, the robot

system must be equipped with sensors and interfaces to other machines or tools.

Therefore the robot language should include facilities to define data structures

and input/output actions. However, assembly work covers a wide range of tasks,

varying from relatively easy tasks such as transfer of a part which do not neces­

sarily require sensors and interfaces, to precision work such as tasks that involve

interaction of more than one robot with different parts at the same time. Deci­

sion making, Sensing, Communication, World modelling are some of the categories

that make up application features. The increasing complexity of robot applica­

tions, and as a result, the need to include complex sensors and integration with

CAD/CAM systems, plus the move towards Flexible Manufacturing Systems for

small and medium batch productions, make off-line programming as opposed to

lead-through programming essential. The off-line programming system requires

the existence of a theoretical 3-D model of the robot and its environment, so that

real-life behaviour of the robot can be simulated. In addition to this, knowledge

of the task or process to be programmed and verification of it is necessary. A

user friendly programming interface is also needed to allow efficient development

of the programs. Although application is really the driving force behind the lan­

guage requirements that need to be met, sometimes cost effective versatility can

be achieved by inclusion of extra features that improve the performance of the

system. It is generally agreed that a robot which is capable of Straight line mo­

tion in one direction, controlling the gripper, responding to external signals and

originating output signal is able to perform basic assembly operations [15]. The

robot assembly performance can significantly be improved in terms of being able

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 29

to perform a range of assembly operations, by addition of some desirable fea­

tures, such as tactile sensing, servo control of the gripper e tc .. Other features can

also be added to assist the programmer in making full use of the machine, such

as diagnostics, computational ability, software maintenance, CAM compatibility.

There are three main areas that are worth considering when a needs analysis for

a programming system has been carried out and requirements for a particular

application have been specified. These are : Interfaces and Standards, Simulation

and Data Bases.

Interfaces and Standards

Both issues of a Robot Independent programming system and the Communication

between the robots, sensors and other constituents of a manufacturing cell, make

standardization desirable for the sake of efficiency. The main problem that robot

industry has faced, is one of deciding at what point the language instructions are

to be translated from robot independent instructions to movement instructions,

required for execution by a particular robot. In addition, robots of different con­

figurations and geometries that are employed in non-similar workplaces, will need

programs that are specifically written for them, even though the commands might

be the same. Complex and subtle geometrical reasoning is demanded by any robot

independent programming scheme to take into account the location of different

parts of the arm, fixtures, permanent parts of the workcell and the temporary

locations of the parts in process. One suggested approach to deal with this, is

to capture the geometry of the robot and the workspace in tables which the task

program can then access at compilation. The solution to the interface problem

has also been hindered, due to lack of agreement for definition and format of

data elements (such as commands, feedback variables, sensory data parameters)

that need to flow between computing modules. A great deal can be learned from

the standards that already exist in the field of Manufacturing and CAD/CAM,

although they are not directly suitable for robotics. MAP and Initial Graphics

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 30

- Exchange Specification (IGES) are but to name two. The specification estab­

lished by IGES, permits the compatible exchange of product definition data used

by various CAD/CAM systems. The methodology for representing the data is

extensible and independent of the geometric modeling methods used. Geometric,

topological and non-geometric (e.g. data organization) product definition data

are represented in file structure and language formats. An IGES file contains five

subsections which must appear in order. These are: start section, global section,

directory entry, parameter data and terminate section. In this standard, the com­

munications file structure and format are defined, but the specific -features and

protocols for communications media are not included. There has been some in­

vestigations into the implementations and requirements of Programming System

standards, by a European effort and also a Japanese proposal working within the

Computer Aided Manufacturing - International (CAM-I) framework with some

initial agreements.

Benefits can also be gained by standardizing Control Systems, but again to

what levels of control this should be applied to, is still to be agreed upon. For

sophisticated control implementations, feedback data is needed at a variety of

abstraction levels. Control loops can have variety of loop delays and predictive

intervals, so for example force and velocity data used in servo loops for high speed

or high precision motions can be processed and introduced into the control system

very fast, whereas decisions at higher levels (based on vision data for example)

need to be made less frequently, and therefore the greater amount of sensory pro­

cessing can be tolerated. The control level dependence of decision making and

the uniqueness of procedures executed at each level by the computing modules,

necessitates separate subsets of a programming language at each level which could

well have the same logical structures. For Program Format Standards, a view held

by many working in this field is that the useful precedence set by designers of

Cutter Tool DATA (CLDATA) in Numerical Control (NC) ought to be followed,

CHAPTER 2. RO BOT CONTROL PROGRAMMING SYSTEM S 31

as the standard will be based on existing NC technology with which manufactur­

ing engineers are familiar. However, there are vast differences between machine

tools and robots, which have made the expansion of CLDATA a formidable task.

A proposal by the working committee of the German Engineering Association

VDI seems to be the only applicable standard based on CLDATA. It is called

Industrial Robot DATA (IRDATA) and its general structure, record types and

transmission definitions are documented in [95]. The idea is that a user pro­

gram can be compiled and translated into IRDATA-code and after transferring

the program as an IRDATA-text to the robot controller, it will be executed by an

IRDATA-interpreter. Therefore the language can be used for any robot control

which is supported by an IRDATA interpreter. This is illustrated in Figure 2.1

. It allows for description of workspace, coordinate types, position, velocity, ac-

PROGRAM
< >

PROGRAMMING
SYSTEM

TEST INFORMATION
VDI 2863, IRDATA

APPLICATION
PROGRAM '

TEACH INCONTROLLER

CONTROLLING DATA

Figure 2.1: IRDATA within a Robot Programming System

celeration, limits, time of motion, guarded motion, synchronization, and modular

activities. Parallelism which reflects the predicted change from the use of tradi­

tional Von Neumann Computer architecture is also supported.

The general consensus seems to be that experience must be gained over more

applications, and technology should be more mature in order to be able to incor­

porate appropriate requirements into any standard, being at task level or servo

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 32

level. One point to note is that attem pts to create a standard programming sys­

tem which is independent of both robot and applications, can end up being so

complex that might inhibit the functional use of the system.

Sim ulation

When programs are developed off-line, in effect models of robots and the workcell

environment are assumed, in order to be able to input location values, and move­

ment commands. A graphic simulation support which includes animation, can

be a valuable tool for the programmer that provides robot program development,

program editing and debugging. In this way, danger to the operator is minimized,

while the robot can carry on.performing a task during program development. It is

obvious that, the more capabilities built in to the system, the more realistic and

closer to the real life it will be. There are a number of additional benefits that

could be gained, by using a graphic support with the relevant features, some of

these are:

• Collision prevention

• Checking for motion constraints and reach testing

• Shortening of an operation’s cycle time by utilizing the position of parts and

equipment within the workspace

• Analysing the effect of employing different types of grippers

There are graphic simulation packages that include the above capabilities.

GRASP (Graphical Robot Applications Simulation Package by BYG SYSTEMS

LTD. Nottingham, UK) for example is a computer graphics simulator designed

for robotic cells, with wide variety of robots working in many different situations.

Kinematic behaviour of individual robots can be analysed, as well as their inter­

action with each other and the environment. A high level GRASP program can

be created by defining the joint structures, constraints and other data associated

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 33

with the robot, as well as the tool path, and then be converted to a robot control

language (e.g. VAL II) using a postprocessor.

The Robotics module of CATIA (by Dassault systemes, Suresnes, France) is

also an interactive graphics tool for robotic workcell designing and off-line robot

programming, with similar capabilities. Although using these graphic simulators,

Robot Performance can be studied on the basis of workcell characteristics, for a

more realistic model of the robots and the environment as a whole, to allow a

more practical simulation to be carried out, the following need to be included:

• complex models of different types of sensors (tactile, vision, e tc .)

• complex robot dynamic models which vary even with each copy of the same

robot and include coupling, gravitational and inertial effects

• models of joint actuators and control systems used

• non-infinite acceleration and deceleration (to show overshoot errors)

• models of backlash and slop in joints and compliance of links

• model of deformation due to collision etc.

There are simulation packages that include some of the above. I-DEAS Mech­

anism Design and Excitation Definition Module (by SDRC), allows inclusion of

inertia properties and auxiliary functions with motion definition of other joints as

a function of one joint, as well as obtaining and inputing load data. It is based

on Mechanism Design Theory [79] and the mechanism is described by a set of

algebraic equations which must be satisfied during all phases of motion and are

based on the identification of all independent loops in the system. Qualitative

data is generated in the form of function response (XY) plots and forces within

individual joints can be calculated.

ROSI(RObot dynamic Simulator by Cambridge Control Ltd. England) in­

cludes simulation of actuators and control. Its Dynamic engine uses Walker-Orin

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 34

and recursive Newton-Euler algorithms to perform its dynamic computations.

Both the above have limited graphics capabilities, no inverse kinematics and they

produce no output code for use by another user written program. -

Academic research has also been active in this field, Robot Arm Dynamic

Simulation Package (RADSP) by Mech. Eng. Dept. Surrey University is an

example of such activity. This is a simulation program for static and dynamic

analysis of the performance of a multi-arm robot. Free body method is used for

generating the dynamic equations for the manipulator system. Inverse kinematic,

path profile planning of the load and torque generation are included as different

modules. Either lumped or distributed parameter, mo dels of the robot structure

may be accommodated as well as linear or non-linear friction effects at the joints.

Using this package, steady state characteristics of robots can be assessed. Another

academic oriented robot programming system, which includes graphical simulation

is RAPT by University of Edinburgh, which is outlined in [1].

Although these are first steps towards creation of a comprehensive graphics

simulation package, there is still a lot to be done, before this can be a reality. Even

when all the shortcomings pointed out above are dealt with, for the simulated code

to be used as a control program, a great deal of sensory information is needed

to compensate for the errors. It is however true that the direction is towards

creation of an object level programming environment, which graphics simulation

and animation play an important role.

D ata Bases

The type of information that the robot controller can use to enhance its capabili­

ties and also allow it to be efficiently included within an integrated manufacturing

control system, are: Three Dimensional CAD data, information about parts’ ma­

terials, weight and density, flexibility or rigidity, the forces they can withstand,

sensitivity e tc .. A part data base can be created to withhold these information

and from there, data can be ported to the robot software system, when required.

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 35

Artificial Intelligence methods can be used to describe objects, structures and

action sequences, in order to prevent time consuming definition of every robot

movement with the attributes and attribute values. The working sphere of the

robot, the obstacles and other features of the robot environment can be included in

a Knowledge base implementation, based on a special relational database. These

data bases can be updated at run time with the help of sensors. Therefore struc­

ture and data manipulation, evaluation, error monitoring and correction can be

achieved.

2.4.1 Future Trends

To discuss the Future Trends for programming systems, it is valuable to look at

the demands of likely future applications, the deficiencies in the existing off-line

programming methods and the feasibility of further enhancements. As the demand

for employing robots in more complex applications grows, attention must be paid

to increasing the capabilities of robots in terms of sensory information, decision

making and more accurate control strategies. As a result, within the programming

system context, provisions must be made to accommodate complex sensory data

processing, use of artificial intelligence techniques, and control algorithms that

are capable of utilising the sensory data to achieve an improved implementation

of complex tasks. Off-line programming becomes essential, especially for small or

medium batch production and when emphasis is on flexible manufacturing, hence

complex geometric and robot modelers ought to be used for benefits discussed

earlier.

A general representation of various modules, and their interactions within

a robotic manufacturing cell in Figure 2.2, illustrates the layout of the future

cells, in terms of programming system needs (e.g. on-line world model etc.) and

employment of multi-robots, complex sensory devices, various machine tools, and

means of transportation. It seems that the emphasis is towards more autonomy

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S

PLANNING MODULE
(EXPERT SYSTEM)

f ROBOTIC X
MODULE >

INCL. DYNAMICS;
V SENSORS s '

GEOMETRIC
MODULE

ROBOT
DATA BASE

CAD
DATA BASE

ON-LINE

WORLD

MODEL

CELL SUPERVISOR & CONTROLLER

SENSOR
DATA

Figure 2.2: Robotic Flexible Manufacturing Cell

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 37

with the aid of AI techniques, and improvement of individual modules. In essence

improvements can be made in data capturing methods of Geometric modelers,

away from the error prone and time consuming manual approaches. Existing data

stored within a CAD system can be utilised more efficiently and algorithms used

by the robot modeler can be incorporated.

It is difficult to make a general decision as to what kind of approach is most

appropriate for the Robot modeler. A robot specific approach, leads to a simple

implementation, but limits the scope of application. Alternatively, if the approach

is extended to a limited class of structures or even further, to more general complex

manipulator types, the complexity resulted specially when manipulator dynamics

and other desirable capabilities outlined earlier is incorporated, certainly makes

the issue of likely applications, a relevant one. The same dilemma applies in

the case of programming methods, but due to the differences in the functional

requirements and robot techniques for various applications (compare arc welding,

spray painting, and assembly). Modularization can be a possible answer to allow

for the efficiency of the whole system.

Logical movement sequence definition (incorporating robot commands, robot

functions, and cycle logic) and storage within a programming method framework,

can be based on the robot control data within a world model provided by the geo­

metric and robot modeler. An important issue which is worthy of much attention,

is dealing with the implicit differences between an idealized theoretical model and

the real world. Although incorporation of sensor technology to an extent alleviates

the discrepancies, these differences which stem from various sources, ought to be

minimized. The robot manipulators should be constructed with tight tolerances

and where appropriate rigid structures or allow for compliance within the model.

Controllers need to have sufficient resolution and numerical accuracy which can be

achieved by efficient algorithms and long word length microprocessors. Numerical

accuracy of the modelling and programming system and high quality of real-world

model data should also be ensured. Furthermore, the environmental effects within

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 38

the workspace such as tem perature variations should be taken into account. Fi­

nally, multi-robot support, time-based programming with communication between

different program modules and system elements, improved human interface, are

also some enhancements foreseen for future robot programming systems.

2.5 A Transputer Approach

In an integrated manufacturing system, with multiple robots, complex sensors,

machine tools, AG Vs etc. interacting and communicating with various computing

modules which carry out task scheduling, data processing, complex computations,

and so on, the inherent system parallelism can easily be seen at various levels. As

with any other parallel system, issues of modular software development, synchro­

nization, communication, efficient data transmission need to be addressed. Within

the context robot programming languages, three levels of concurrency can be de­

fined:

1. High level synchronization of both manipulators and programs

2. Response to asynchronous events from the environment

3. Monitoring of sensors

In a wider approach, within the computational hierarchy of a robotic cell, while

on the one hand, task decomposition is being carried out at various levels in a

top-down fashion, on the other hand sensory data needs to be processed at the

same levels, but from bottom to the top. Meanwhile, both of these tasks need to

exchange data with the no-line world model. Therefore a minimum of three par­

allel tasks exist, which can then be further divided into subtasks according to the

levels of control hierarchy. There are three control levels, task level, manipulator

level and servo level. At the top of the hierarchy, functional and object oriented

programs can be used to input robot commands to the plan generator. Then at

the manipulator level, a good approach has been to use procedural programms

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 39

for calculation of inverse kinematics and dynamics, plus trajectory generation.

Finally assembly programs at the hardware interface level, have normally been

used for servo control. At this low-level, sensory data processing consists of filter­

ing and scaling joint variables, which are then combined to give data, in required

frames and relative to the desired trajectories at manipulator level. At the task

level, sensory data tend to hold information about surfaces, volumes, and position

and orientation of objects. Once all the subtasks of sensory processing, on-line

world model and task decomposition at various levels, are specified in a parallel

manner, they need to be coordinated and relevant subtasks need to communicate

with each other and other modules to perform motion planning, factory level co­

ordination, task monitoring, error recovery, e tc .. To implement this parallel set

up, in a cost effective way, the use of INMOS Transputers with their general pur­

pose architecture for multi processing environment, and OCCAM language that

makes use of the power of the transputers in a multi processor systems, seem very

appropriate. The current top of the range T800 Transputer is a 32 bit proces­

sor, designed with a RISC-like architecture. At peak, it can operate at 20MIP

instruction rate. The overall throughput is however quoted at 10MIP, due to the

fact that some instructions can take longer than a single cycle (50ns) to execute.

There is 4K bytes of on chip memory which is matched to the speed of the pro­

cessor and can be accessed in 50ns. An external memory interface allows access

to up to 4G bytes of addressable off-chip RAM. There are 4 serial links which

allow data from one transputer either in internal or external memory be DMA’ed

into another transputer’s memory, in parallel with program execution. OCCAM

allows, parallel link communications, using channels, and both parallel and se­

quential process execution. The existence of natural constructs, such as input (?)

and output (!), on the synchronous unbuffered channels, means that there is no

need for constructs such as semaphores, and process synchronisation and mutual

exclusion. The processing power, the memory and the communication links, plus

GHAPTER 2 ' RO BO T CONTROL PROGRAMMING SYSTEM S 40

the on chip floating point unit, internal timers, support for run-time error diag­

nostics, high performance graphics support, and external event interrupts, as well

as its superior cost/performance characteristic, make the Transputer particularly

attractive. The computational speeds achievable, allow the possibility of more

time-critical, demanding advanced control algorithms to be implemented too, as

will be illustrated later in the thesis. All computational needs of a workcell could

be fulfilled, both in areas where large volumes of data need to be processed very

fast (e.g. CAD, where independent sets of data are processed), and also where

communication, monitoring and synchronisation is required (e.g. sensors). Device

interfaces can be implemented, using the event pin of the Transputer and memory

mapping. Definition of communication with memory mapped devices is provided

by OCCAM through the use of PORT which is used as a channel. Signals can

be sent from devices, using the EVENT channel of the Transputer. Transputer

Graphics Systems, are available in the market and they can be utilized for sim­

ulation, modelling and user friendly front ends for program development. All

the robot programming system requirements outlined in the previous section, can

suitably be met, by employing a Transputer based system. W ithin the comparison

scheme framework suggested, including all the elements of RCPS, the benefits of

a Transputer approach can also be seen easily. For instance, Programmability of

the system is improved compared to sequential approaches, and generally other

systems, for the following reasons: Using the Transputer and OCCAM, gives the

benefit of modularity, and can reduce the relative complexity of the software and

cost of production. OCCAM is a very expressive language and with its features

designed for concurrent systems, is very suitable for expressions of control. Exten­

sibility is also improved, as it is easy to add processes, using high-level OCCAM

constructs, and extend the processor power, by adding more Transputers. The

ease of changing the topology of a Transputer network contributes to Flexibility of

the system. The existence of powerful debuggers, means that detection of faults

are easy, which helps Maintainability. In an overall comparison, regarding other

CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S 41

elements such as Efficiency, Process Synchronization, Networking, Subroutines

Library, Peripheral Support, e tc ., the Tranputer OCCAM combination will also

score higher.

Further discussion on the Transputer and occam is presented in chapters 5 and 7.

C hapter 3

R obot M odelling and V alidation

SU M M A R Y

An efficient and reasonably accurate dynamic model is devel­

oped for an MAS000 robot that includes the actuation systems.

A CAD system is used to obtain the kinematic and inertial pa­

rameters of the model accurately. Using data extracted from the

actual robot, the behaviour o f the model is compared to that of

the robot and results show a close match between the two.

3.1 Introduction

A series of links connected together by joints, form the building blocks of Robot

Manipulators. Link movements are caused by actuation systems, under the robot’s

controller command, using transmission elements from the actuators to individual

joints. There are various types of robots, classified on the basis of their anatomy,

arm geometry, actuation types, etc. A Robot model, if created accurately enough,

can help minimise the trajectory errors that might occur in executing a desired

motion. This can be achieved by predicting the actuator commands from the

robot model, given a particular trajectory, and then feeding the information for­

ward in a control loop.

The model of the robot includes the characteristics of the actuation system, the

CHAPTER 3. RO BO T MODELLING AND VALIDATION 43

kinematic parameters, the inertial parameters and finally the dynamic equations

of the robot which includes the joint interactions and all the forces (torques) in­

volved.

Although there are various ways to carry out the modelling for each component,

using different techniques, it is not always clear which method is the most suit­

able. To a certain extent, it depends on the availability of resources, and the level

of accuracy required. The kinematic parameters, can easily be found from the

blueprints of the robot manipulator. For finding the inertial parameters however,

either manual methods, parameter estimation, using appropriate sensors for ac­

quiring measurements, or CAD approaches, are the alternative methods.

The dynamic equations can be based upon Newtonian mechanics or Energy ap­

proaches. The formulation of these equations will have the same final results;

but the representation of these equations and their structures will vary, making

them suitable for different applications. Derivation of these equations by hand,

when the number of linkage elements exceeds two, is time consuming and prone

to human error. Computer assisted formulation of these equations make the task

substantially easier and the equations more accurate. Symbolic manipulation

programs can be used, together with simplification techniques, to create efficient

formulation of manipulator dynamics. These equations are very appropriate for

use , in real-time.

The final component which needs to be modeled is dynamics of the actuation

system. This is not as complicated as the link dynamics modelling, due to the

fact that there is no cross couplings between actuation systems; but it is just

as important. The actuation is either by means of electric motors, hydraulic,

or pneumatic drives. Although data from the manufactures that can be used in

parameterised models which have been developed for various actuation systems

make it possible to model them fairly accurately, this data is not always available.

Hence different techniques are used to obtain the parameters, usually based on the

input and output of the actuation system. Frictional effects, gear backlash and

CHAPTER 3. RO BO T MODELLING AND VALIDATION 44

other nonlinearities associated with the actuation and transmission drive train,

complicate the task of creating an accurate model.

Once the model of a robot is created, it needs to be validated before it can be

used for simulation or control purposes. The process of model validation, is not

only an iterative one, but it always helps to originally divide the complete task of
\rv

validationvto components, which can then be combined to get the total result. By

doing this, errors can be pin pointed to a: , specific area, and as a result, it speeds

up the elimination process.

In this chapter, both direct and inverse kinematics, will be discussed, and then

manipulator dynamics are considered. Since for the experimental work, a rigid, se­

rial open-chained rotational manipulator, namely a TecQuipment MA3000 Robot

is used, the kinematics and dynamics aspects considered, will mainly concentrate

on this type of manipulator . Kinematic and inertial parameters of the MA3000

robot are obtained, for the first three links, using a CAD system. A Symbolic

manipulation approach is used to generate the dynamic equations of the robot.

Based on the particular geometry of the manipulator, algebraic simplifications,

and eliminating repetitive computations, make these equations efficient. Then

permanent magnet dc motors are looked at, and a model of each joint’s motor

is developed. The value for the torque constants, not available in the manufac­

turers catalogue, was found, using steady speed characteristics of the motors and

the joint angle data acquired from the robot, as a result of step voltage inputs.

Although, models of friction and backlash are not included, a number of methods

that can be used for compensation of these nonlinearities, are discussed and the

appropriate method can be used when model-based control is implemented.

Finally behaviour comparisons of the model developed and the real robot is in­

cluded in the final section (Model Validation), and a close match for the waist

and the elbow of the robot is shown. Some explanations are offered, for the

discrepancies in the case of the shoulder.

CHAPTER 3. RO BO T MODELLING AND VALIDATION

3.2 R obot K inem atics

45

3.2.1 D irect K inem atics

Direct kinematics constitutes the problem of finding the position and orientation

of the end effector of a robot manipulator, given the joint variables. The following

approach is taken in order to define the kinematic and inertial parameters for the

MA3000 and also find their values. First of all, a fixed reference coordinate frame

is assumed at the base of the manipulator and then individual body-attached

coordinate frames are established. A convention is used for the principal axes,

whereby the z,_i axis is positioned such that it goes through the rotational axis of

the ith joint, the X{ axis pointing away along the length of the 2r,_!, axis and the y,-

axis is located so that, a right-handed coordinate system is formed. The relative

translation and rotation between the coordinate systems attached to each link is

described by a 4 x 4 matrix which combines a 3 x 3 rotation m atrix (RM), a 3

x 1 position vector (PV) and a 1 x 3 perspective transformation (PT), plus an

element for global scaling factor (E).

R M |' P V

P T | E

In this case P T = 0 and E = 1. This represents the relative position of one link

with respect to an adjacent one. The position and orientation of any of the links

including the gripper can then be described in the three-dimensional space of the

manipulator’s work envelope with respect to the base coordinate system, using

matrix products. Using the Denavit-Hartenberg (D-H) notation, four geometric

parameters, (a, d, a, 9) describe the kinematic relationship between two bodies in

a serial chain mechanism connected by uniaxial joints:

• The twist angle, a,-_i, is defined as the angle between the projection of the

Zi and Z{_i about X{ axis. This is constant for rotary joint robots.

CHAPTER 3. RO BO T MODELLING AND VALIDATION 46

• The length parameter, <Zj_i, is defined as the mutually orthogonal distance

between Z{ and z ^ . This is also constant in the case of MA3000.

• d{ is the distance from the origin of the (i — 1)<A coordinate frame to the

intersection of the z ^ i axis with the X{ axis along ^•_1 axis. Also constant.

• The joint variable 0,- about from Xi-i to xi.

Now a homogeneous transformation matrix A;, that represents a rotation of (a)

angle about followed by a translation of (a) units along the same axis, followed

by a further translation of (d) units along Z{ and a rotation of (0) angle about z,-,

will give the D-H transformation matrix for adjacent coordinate frames i and i-1.

Ai =

cos ${ — sin 9{ cos a sin 0,- sin a a cos 0,-

sin $i cos Oi cos a — cos 0; sin a a sin 0t-

0 sin a cos a d

0 0 0 1

(3.1)

To specify the position of the center of the gripper P, three degrees of freedom are

required, and three more, to specify the orientation of it. The components of P in

the principal axes are px->Py>Pz• Figure 3.1 shows the coordinate frames, the D-H

parameters and the vectors representing the gripper orientation for the MA3000

robot.

The transformation from base to the gripper will then be:

Qrp _-Ln —

Hx Sx @>x Px

T l y S y C l y P y

Tlz &z &Z Pz

0 0 0 1

(3.2)

Vectors a, 5 , n represent the approach vector, sliding vector in the direction of

finger closure, and normal vector to form a right handed system, respectively.

These vectors describe the gripper orientation. nyy nz are the components

of the n. The MA3000 arm link D-H coordinate parameters for the first three

CH APTER 3. RO BOT MODELLING AND VALIDATION 47

Joint i-M

Joint i

Link i - 1
Link i

I—

gripper

base

Figure 3.1: Link coordinate system and orientation vectors for an MA3000 Robot

Joint i Oi (deg.) a,i (m) d{ (m) Joint range {deg.)
1 0 i -90 105 x l0 ~ 3 304.5 xlO-3 0 - 2 7 0
2 $2 0 402 xlO-3 0 0 - 2 7 0
3 $3 0 352.5 xlO-3 0 0 - 270

Table 3.1: Robot Arm link coord, parameters

CHAPTER 3. RO BO T MODELLING AND VALIDATION 48

links are tabulated in table 3.1. The values of a* and d;, along with other link

parameters were obtained using a CAD approach, which will be explained in the

next section. Note that values for d2 and d3 are both zero due to the fact that

the origin of the coordinate frames for shoulder, elbow and pitch are assumed to

be on the same line, to satisfy the sufficient condition of, 3 adjacent joint axes

intersecting, for a closed form solution of the inverse kinematics, which will be

discussed later.

K inem atic and Inertial Param eters of the M A3000

The kinematic and inertial parameters of even identical robots are very rarely

the same, due to errors which occur during the manufacturing process. Even if

this was the case, manufacturers are reluctant to measure the inertial parameters,

as presently this is of no benefit to them, for the type of controllers that they

employ. An experimental way of determining these parameters, would be to take

the components apart, measure them to obtain the mass, counter balance to get

the center of mass and swing the pieces to find the inertias.

Parameter estimation has been used to find both kinematic and inertial param­

eters, treating them as different and independent parameter sets that are to be

identified. To estimate the kinematic set, coordinate frames are assigned to each

link of the manipulator and using homogeneous transformations relating the co­

ordinate frames, then linear equations are formed, in terms of the joint variables,

unknown parameters (eg. length of each link) and the position and orienta­

tion of the end effector. Assuming the joint variable values and the position and

orientation of the end effector are known, least squares is used to estimate the

unknown parameters. For the inertial parameters, nonlinear kinematic equations

of the manipulator, are linearized about the unknown parameters by ignoring the

higher order differential changes and then again least squares is used to estimate

the unknown parameters. Yonghong et al [106] present these methods.

Another Parameter identification approach for inertial parameters is presented in

CHAPTER 3. RO BO T MODELLING AND VALIDATION 49

[4]. In their approach, each link is seen as a load by the adjacent joint. Measure­

ments of the joint torques about the joint axis are made and inertial parameters

that appear linearly in the parameters in the dynamic equations are estimated.

They point out that, since joint torques are not influenced by all the inertial

parameters, they can not all be identified, and the ones that can be identified,

can only be determined in linear coefficients. Nevertheless they conclude that the

parameters that can not be estimated, are unimportant for control, because they

do not effect the torques necessary to drive the robot.

The approach taken here is a CAD approach. As the advantages of using CAD/ CAM

become apparent to manufacturers of various robot components, it can in the very

near future, be the case, whereby the geometric model of individual components

become available in a standard CAD specific data format. Then these can be used

for ; very accurate geometric modelling. In the case of MA3000, unfortunately

this is not the case. Although a bit of effort is required to build the 3-D model

from blue prints, there are many advantages in employing this method. One

advantage is that, as model validation is an iterative process, once the model is

created, alterations can easily be accommodated. Another advantage is that there

is no need to employ force or other type of sensors. However one disadvantage can

be the problem with accuracy, but inaccuracies also exist when sensors are used.

The approximations made were mainly in the inertias of some components, for

example motors. The weight and the volume of the motors were known and an

appropriate density is attached to the whole motor, which means that it assumes

that mass is evenly distributed. However the resulting inaccuracies are not that

great, as the volume to weight ratio is quite small, compared to the overall ratio.

The CAD approach, U sing CAM -X to calculate the param eters

CAM-X, the Ferranti Infographics integrated CAD/CAM system, consists primar­

ily of InfoCAD which is an interactive, computer aided 2D Design/Draughting

system for defining engineering drawings, storage, and output to other systems.

CHAPTER 3. RO BO T MODELLING AND VALIDATION 50

InfoCAD enables the user to interactively communicate with the CAM-X 3D Mod­

eller program and to generate data, either directly from InfoCAD or via the 3D

Modeller. The 3D geometry of mechanical components and assemblies can be

defined using InfoSOLID which is a computer aided 3D design program. The

stages in creating a solid model and extraction of relative parameters from it are

as follows:

• The geometry of the face boundaries and profiles of the parts which consti­

tute a body, are defined in 2D, by digitising the points that form them, or

typing the coordinates.

• Then the 3D models are constructed from 2D face boundaries and profile

data.

• These are then combined, using what is known as boolean operations (unite,

subtract, intersect, . . .) to model the main body in 3D.

• Model data is then available for manipulation and different -views of the

body can be generated for visualisation.

• Finally design related information such as surface areas, columns, and mo­

ments of inertia, position of center of gravity can be extracted.

When dealing with 3D models, accuracy becomes an issue. Depending on how

the model is to be used and the nature of its use, emphasis is put on the trade off

between speed of the processing and accuracy. For example, the calculation of the

properties of a body which contains blended surfaces, is carried out by taking a

user specified number of slices through the body and summing the results obtained

for each slice. Now if the number of slices specified is high, then the model will

be more accurate at the expense of increased computation time. In general the

factors affecting the accuracy of the 3D model include:

• The accuracy to which the model represents the real world.

CHAPTER 3. RO BO T MODELLING AND VALIDATION 51

• The accuracy associated with the interpretation of the real world.

• The precision of the computer.

The 2D model representation was carried out, by digitising the blue print of

different sections. The only significant approximation made, was for modelling

the motors. However, as the weight and volume of the motors were known, the

value of density was fixed, so as to give the correct result for the inertia. As

far as the computer precision is concerned, although the the system uses double

precision, the points can not be defined separately, closer than the distance that

the model resolution dictates. However this resolution was quite satisfactory for

the Robot model. The properties that can be calculated are as follows:

• The area of a specified face or faces of the body (mm2)

• The total surface area of the body (mm2)

• The volume and centre of gravity of the body (mm3)

• The mass properties of a the body or sections of the main body for defined

axis of inertia (The results take into account the specified density of different

sections)

Views of the 3-D model of the waist, shoulder and elbow of MA3000 robot can

be seen in figures 3.2, 3.3, 3.4. And the results are tabulated in tables 3.2, 3.3,

3.4. In the tables, note that the position of center of masses, are measured with

respect to each link’s own coordinate frame. Also only three diagonal elements of

the inertia matrix
IXX I x y I x z

l y x lyy l y z

I z x 1 zy ^ z z

are non zero, because, for example in

CH APTER 3. RO BO T MODELLING AND VALIDATION

i z _

Figure 3.2: Four views from the 3-D model of waist

x comp, position of cent, of mass for waist (m) 32.2461 xlO "3
y comp, position of cent, of mass for waist (m) -57.1215 x lO '3
z comp, position of cent, of mass for waist (m) 211.881 xlO-3

Inertia Ixx for waist (kg.m2) 4.80973 xlO-1
Inertia Iyy for waist (kg.m2) 5.53040 x lO "1
Inertia / „ for waist (kg.m2) 2.24603 xlO "1

Mass of waist (kg) 29543.8 xlO "3

Table 3.2: MA3000 link parameters obtained from CAM-X (waist)

CHAPTER 3. RO BO T MODELLING AND VALIDATION

Figure 3.3: Four views from the 3-D model of shoulder

x comp, position of cent, of mass for shoulder (m) 190.587 xlO "3
y comp, position of cent, of mass for shoulder (m) -1.32364 xlO”3
z comp, position of cent, of mass for shoulder (m) 27.5711 xlO-3

Inertia 1XT for shoulder (kg.m2) 7.34089 xlO -2
Inertia Iyy for shoulder (kg.m2) 7.94399 xlO-1
Inertia Izz for shoulder (kg.m2) 8.75983 xlO-1

Mass of shoulder (kg) 2847.45 xlO "3

Table 3.3: MA3000 link parameters obtained from CAM-X (shoulder)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 54

Figure 3.4: Four views from the 3-D model of elbow

x comp, position of cent, of mass for elbow (m) 18.6629 xlO "3
y comp, position of cent, of mass for elbow (m) -0.439201 xlO "3
z comp, position of cent, of mass for elbow (m) -86.6715 xlO "3

Inertia Ixx for elbow (kg.m2) 1.35227 xlO-3
Inertia Iyy for elbow (kg.m,2) 1.43033 xlO-2
Inertia l zz for elbow (kg.m2) 2.03530 xlO "2

Mass of elbow (kg) 5384.46 xlO "3

Table 3.4: MA3000 link parameters obtained from CAM-X (elbow)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 55

the limits will go from negative to positive along the length, having equal

values at each extreme and hence cancel out one another. This cancellation does

not occur in the case of Ixx, I yy and Izz. In other words, the symmetry of the links

means that the inertial principal axes coincide with the links coordinate system

transfered to the centre of mass.

3.2.2 Inverse K inem atics

This deals with the problem of calculating the joint angles, given the position

and orientation of the end effector. There are various approaches to the inverse

kinematic problem, with individual merits and shortcomings. The main two are,

the inverse transform technique of Paul [75], and a geometric approach, which is

considered more appropriate for selecting a solution from several alternatives, for

a particular arm configuration. In this section, an inverse transform technique is

used, based on the use of the 4 x 4 homogeneous transformation matrices for the

MA3000 Robot. The D-H transformation matrix for adjacent coordinate frames

was discussed in the previous section. Using equation 3.1, in the case of the

MA3000, cos oq = —90, cos 0:2 = 0, and cos 0:3 = 0, therefore:

A 1 =

cos 9\ 0 — sin 9i a\ cos 9\ COS 02 — sin 0 2 0 C*2 COS 02

sin 0 i 0 cos 9\ sin 0 i 11<N

sin 0 2 cos 0 2 0 a2 sin 0 2

0 - 1 0 4 0 0 1 4

0 0 0 1 0 0 0 1

A3 —

cos #3 —sin 6 3 0 as cos 6 3

sin 6 3 cos O3 0 a3 sin 03

0 0 1 4

0 0 0 1

However, a three link transformation matrix from the base to the end of the elbow

is:

°T3 = AjXjAa (3.3)

CHAPTER 3. R O BO T MODELLING AND VALIDATION

Now, the transformation 1713 can be obtained in two ways:

1T3 = A 1~1 x ° T 3

56

and

but

c o s

a , - 1 x° t3 =

which means:

^ 3 =

The second way :

c o s 9i
i2 8i - f s in 2 6i

0
— s in 01

1T3 — An X A?

s in 9i
i2 Q\ + s i n 2 0\co s

0
_______— Pill ______

c o s 2 6\ -J-sin '2 6\ c o s

0

COS 01
>2 0 i + s i n 2 6\

0

0 ~ al nx sx Q>x Px

- 1 di
X

ny sy—ay Py

0 0 nz Sz az Pz

0 1 0 0 0 1

COS

n.

0\Tix A sin 6 \n y • • cos 9ipx + sin 9\py — a\

-P z + di

• • — sin 9\px + cos 9\py

1

(3.4)

COS 02 — sin 0 2 0 «2 COS 02 cos03 — sin 0 3 0 a3 cos 0 3

x A3 =
sin 0 2 COS 02 0 a2 sin $2 sin03 cos 0 3 0 a3 sin 0 3

X
0 0 1 d2 0 0 1 d3

0 0 0 1 0 0 0 1

will give :

1r 3 =

cos 0 2 cos 0 3 — sin 0 2 sin 0 3 • a2 cos 92 + a3 cos 0 2 cos 0 3 — a3 sin 0 2 sin 0 3

cos 0 2 sin 0 3 + sin 0 2 cos 0 3 • • a3 cos 0 2 sin 93 + a2 sin 0 2 + a3 sin 0 2 cos 0 3

d3 + d2

. . 1

Now equating member (3,4) of equations 3.4 and 3.5 will give:

- sin 9ipx + cos 9xpy = d3 + d2

(3.5)

(3.6)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 57

Let px = r cos $ and py = r sin <j> , for </> on the xy plane passing through the base

frame.

4> = tan "1

r = +l/j>*2 + Py2

substituting for px and py in equation 3.6 , we get:

sin 4> cos 0i — cos sin 0 1 = (3.7)
r

with 0 < d2-̂ r L < 1, equation 3.7 reduces to

• (jl n \ d2 + d3sin (0 — ui) = ---------
r

with 0 < (<t> — 0i) < 7r. The Cosine can also be obtained:

cos ((f> — $i) = =h

then

A
-j _ f d>2 A d3\

dj+h. J i J
tan(0 — #i) =

± y j i _ 2 ± \ / r 2 - (d2 + d3)'

hence

(^ — = tan '
± \ / r 2 — (d2 + d3)i

and as a result

d2 4* d3
0 i = tan 1 [— j — tan 1 j.

\ P J ±yfr
(3.8)

'r 2 - (d2 + d3) 2

therefore, since all the parameters in this equation is known, 6 \ can be calculated.

Now equating members (1,1), (2,1), (1,4) and (2,4) from equations 3.4 and 3.5

cos0inx + sin0i72y = cos 0 2 cos 0 3 — sin 0 2 sin 0 3 (3-9)

—nz = cos 02 sin 03 + sin 02 cos 03 (3.10)

cos 6 ipx H- sin $ipy — cq = a2 cos02 + a3cos02cos03 — a3 sin#2 sin03(3.11)

—pz + di = a3cos^2 sin^3 + «2 sin^2 + «3sin^2 cos^3 (3.12)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 58

now equation 3.9 gives

C O s (0 2 + # 3) = COS 0 ! 72* — S m u t t y

as values of $i, nx and ny are available at this stage, the right hand of the equation

is known. Let us call it R.

cos($2 d- $3) = R (3.13)

Similarly from equation 3.10

sin(02 03) = T (3.14)

where T is a known value. From equation 3.11, we have

a2 cos-02 4- 0 ,3 cos(02 4- 03) = cos 0\px 4- sin 0\py — a\

or
. cos Qxpx 4- sin 0 xpy - a x - a 3 cos(0 2 4- 0 3)

cos 02 = ---------------------- -------------------------------a2

again at this stage all the parameters of the right hand side are known, so call the

value M. Therefore

cos 02 = M

Similarly from equation 3.12

sin 02 = N

where N is a known value. And hence dividing and then inverting the function:

02 = tan-1 (j L) (3.15)

Dividing equation 3.14 by 3.13, and taking the inverse of the tan, we get

(0 2 4- 0 3) — tan 1

Finally

03= tan_15) - tan_1 (f

CHAPTER 3. RO BO T MODELLING AND VALIDATION 59

So all the three angles are found.

It should be noted that the problem of being faced with multiple options of joint

angles for a particular end effector position, which results in different configura­

tions is not discussed. A routine can be written that makes the choice. In the

literature, a number of works have been reported to carry this out.

The problem of singularity has also been extensively discussed elsewhere in the

literature.

3.3 R obot M anipulator D ynam ics

Dealing with robot dynamics, two basic problems can be formulated, one of find­

ing the instantaneous joint accelerations, given the joint torques and forces, and

second, determining the required joint torques or forces, given the joint variables

and their derivatives. The former is referred to as forward or direct dynamics,

and is useful for simulation purposes, where the latter is mainly of use in control,

when estimates of the joint forces are required for a particular trajectory, which

might be prespecified, this is known as inverse dynamics.

There are various approaches available for formulating the robot arm dynamics.

Basically the dynamic model for a robot arm can be obtained from known physical

laws such as the laws of Newtonian Mechanics, the Lagrangian formulation, and

from physical measurements.

Lagrangian equation can be used to represent the dynamic behaviour of a system

of rigid bodies. In the Lagrangian approach, the manipulator’s Lagrangian is ex­

pressed in terms of generalized coordinates and their derivatives, which is then

substituted into the Euler-Lagrange equation. This equation is expanded by sym­

bolic differentiation, to give the generalized joint forces in terms of the generalized

coordinates, velocities and accelerations. The Lagrangian is defined as :

L = (Kinetic energy of the system) - (potential energy of the system)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 60

and the Lagrangian equation has the form :

d f d L \ _ d L _ _
(ft U / J % 1, 2 , . . . , n

where qi is the generalized coordinated and is equal to angular displacement 6 { for

rotary joints. And r; is the generalized forcing function.

By application of the Lagrangian equation to a rotary robot with n joints, the

equations of motion can be written in the following matrix form :

M[9(t)]S(t) + Q [0 (t) ,m] + G[6 (t)] = T (3.16)

where M(0) is the N x N inertial coefficient matrix, which is symmetric and

positive definite. Its elements are computed by :

 n

To3 is the D-H transformation matrix from the reference coordinate frame to the

j th coordinate frame.

Q(0,$) is the N x 1 Coriolis and centrifugal force vector, elements of which are

computed by :

N N
= QikmOkOm ^ i = 1, . . . , N

k=1 771=1

elements Qikm afe obtained by :

' - ‘. ‘ . “ - I nj=max(i1k,m) t ' J

G(6) is the N x 1 gravitational force vector. Its elements are computed by :

Gi = n j for i = 1 , . . . , N

where g is the gravity vector expressed in the base coordinate frame, rrij is the

mass of j th link, and ¥j is the mass center vector of the j th link.

Although these equations are structured, they are unfortunately, computation­

ally inefficient. To increase the efficiency, Hollerbach [32] developed a Recursive

CHAPTER 3. RO BO T MODELLING AND VALIDATION 61

method of Lagrangian formulation, which reduced the computational time taken.

An approach which has the advantage of speed and accuracy is based on the New­

ton - Euler vector formulation. The resulting dynamic equations, excluding the

dynamics of the control device, gear friction, and backlash, are a set of forward

and backward recursive equations. These equations are documented in many text

books, eg. [75] and [23].

For the case when the links are rotational these equations are :

Forward equations:

ft = f t- i + *,*-ift. (3.17)

ft = f t-1 + zi-lQi + ft-1 X (Zi-lQi) (3.18)

Vi = $i X Pi* + Bi x (6 i x Pi*) + Vi- 1 (3.19)

d{ = 6 i x Si + 0i x (6 { x si) + V{-1 (3.20)

Backward equations:

Fi = niiSi (3.21)

Ni = i A + Bi x (IiBi). (3.22)

f i = Fi + f i+1: (3.23)

rii = rii+ i + pi* x /,q.i + (p i* + 5j) x F i -f N i. (3.24)

r = riiTZi-i -j- biqi. (3.25)

Where

6 = angle of rotation

qi= the magnitude of angular velocity of link i w.r.t. the coordinate system

(*£{—1,2/i—1 fZi—1)

rrii = total mass of link i

fi — position of the center of mass of link i from the origin of the base reference

frame

Si = position of the center of mass of link i from the origin of the coordinate

system (x{, y{,Zi)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 62

p* = the origin of the ith coordinate frame with respect to the (i - l) th coor­

dinate system

= dfi/dt , linear velocity of the center of mass of link i

a,i = dvi / dt , linear acceleration of the center of mass of link i

Fi = total external force exerted on link i at the center of mass

Ni = total external moment exerted on link i at the center of mass

Ii = inertia matrix of link i about its center of mass with ref. to the coordinate

system (x 0 ,y0, z0)

f i = force exerted on link i by link i-1 at the coordinate frame (?/;_!

,Zi„i) to support link i and the links above it

rii = moment exerted on link i by link i-1 at the coordinate frame y%-\,

Zi-l)

bi = the viscous damping coefficient for joint i

Also
• rj%

Oq = Oq = u0 = 0 and u0 = (gXi g y , g z)

If we choose a 3x3 rotation matrix which transforms any vector with reference

to coordinate frame (#*-, yt*, zf) to the coordinate system y*_i, z*-i), it

is possible to write the recursive equations of motion of a link about its own

coordinate frame.

One of the disadvantages associated with N - E equations is the lack of struc­

ture which is needed for deriving advanced control laws. [53] on the basis of

the Generalized d’Alembert principle, was able to utilise the vector and rotation

matrix representation to describe each link’s kinematic information, obtain the

kinetic and potential energies of the robot arm to form the Lagrangian function,

and apply the E - l i formulation to obtain the equations of motion. This formula­

tion retains the ’’structure” of the problem with a moderate computing penalty.

Another well known method is Kane’s method, where for a system with n degrees

of freedom, Kanes dynamic equations can be written as:

Fr + Fr* = 0, r = 1 , . . . , n

CHAPTER 3. RO BO T MODELLING AND VALIDATION 63

where Fr is the generalized force and Fr*, the generalized inertia forces.

To enhance the efficiency some use notations which cut down on computation,

for example Featherstone [21] used “Spatial Notation”, to represent velocity, ac­

celeration, etc. by a pair of vectors (one linear and one angular) to describe a

number of methods for calculating robot dynamics efficiently, and for algebraic

and notational convenience. Special vectors are similar to quantities called screws

and motors.

In general, it is well established that a closed form of dynamic equations is ap­

pealing for both dynamic modelling and control applications. However deriving

the closed form of these equations, is a tedious task and a very error prone pro­

cess. Developing a computer program that generates the robot dynamics in a

symbolic form, can alleviate the effort of deriving these equations. In fact several

researchers have taken this approach, using various methods. REDUCE, which is

a symbolic manipulation system, C Sz LISP, FORTRAN and MACSYMA are the

systems and languages which have been used.

In the next sub section, different approaches for obtaining efficient robot dynamic

equations will be discussed.

3.3.1 C ustom ized R obot D ynam ics

To enhance computational efficiency for dynamic simulation and real-time con­

trol, it is possible to generate a simplified symbolic model on the basis of both

the manipulator structure and algebraic simplification, which remove repetitive

calculations. The above two principles were exploited, as will be explained later,

in obtaining the dynamic equations for the MA3000 robot.

Observations made by Hollerbach [32] about the computational efficiency of ma­

nipulator dynamics namely:

CHAPTER 3. RO BO T MODELLING AND VALIDATION 64

• Particular kinematic and dynamic structures of manipulators can be utilised,

for improving the computational efficiency of dynamic algorithms, (eg. reg­

ularity of manipulator configuration)

• Fundamental physical principles of formulations, can be used to achieve

efficiency, (simplification based on structure of the equations)

form the basis of simplifications achievable for manipulator dynamic equations.

In addition to these, general simplification procedures that apply to all algebraic

systems can be used. A number of research works have been dedicated to devel­

oping methods that contribute to the simplification of dynamic equations, both

for simulation purposes and control.

Efficient methods for simulating a robotic mechanism is considered in [98], and

efficient solution of the dynamic equations for a general N degree of freedom,

single open chain robotic mechanism is discussed. As in the general form of equa­

tions of motion for a manipulator, the joint torques are linear functions of joint

accelerations, the equations of motion are written in the form

H(q)q = (r — 6) (3.26)

where q is the vector of joint variables, H is the inertia matrix, r is the vector of

torques of each joint actuator, and b represents the torques (forces) due to gravity,

centrifugal and coriolis accelerations, and external forces and moments on link N.

Accelerations can then be found by solving this linear equation. By setting q, q

and the vector of external moments (k) to their current state, but letting q = 0,

b can be computed.

Four techniques are then described to find elements of the inertia matrix. In the

first method, elements of the matrix are evaluated by setting q to its current state,

and computing the matrix one column at the time, when joint velocities are zero,

there are no gravitational effects and the joint accelerations are all zero apart from

one corresponding to the column being computed which is 1, and then solve the

CH APTER 3. RO BO T MODELLING AND VALIDATION 65

linear equations for acceleration.

The second method they suggested is the same as above, but symmetry of matrix

H is used to only calculate the diagonal and the bottom half of the off-diagonal

terms. The third method is again the same as the first, but a different procedure

is used for computing the inertia matrix.

In the fourth method, an iterative process is used to solve for the joint accel­

erations. In this method, an initial estimate for the joint accelerations is made

and this is followed by successive adjustments until they converge to the correct

solution.

They found that the third method was the most efficient one, due to the fact that

it takes into account the symmetrical form of moment of the inertia matrix, and

also utilises a recursive procedure for computing the mass, the center or mass and

the moment of inertia matrix of the composite system of links.

An efficient algorithm for generating the dynamic equations of open chain ma­

nipulators is presented in [104]. Their method is based on a modified Lagrange-

Christoffel formulation and they include generalized pseudo-inertia matrices of

manipulators. The use of Christoffel expression of the Coriolis and centrifugal

coefficients:
_ 1 (dM ij dM ik dMjk\

^ ijk 2 \ d q k ^ dq5 dqi)

leads to substantial simplification for symbolic derviation of these coefficients.

This is due to the fact that the obtained inertial coefficients are used.

Calculation of generalized forces is suggested to be divided into two parts by [37],

dynamic coefficients in the background and generalized forces in real-time. They

created a LISP program capable of symbolic manipulation, to generate the dy­

namic coefficients automatically, with D-H parameters, masses, center of gravity,

and moments of inertia of the links as input, and a C program that calculates the

coefficients as output. One of the limitations of their work is that the capability

is limited to only the inertial and gravitational coefficients and does not include

the centrifugal and coriolis coefficients. This is only suitable for low speed robot

CHAPTER 3. RO BO T MODELLING AND VALIDATION 66

manipulators.

An efficient form of symbolic generation of manipulator equations is presented in

[12], where the amount of real time computation required to compute the complete

set of configuration dependant dynamic parameters is reduced. They base their

simplification upon two stages: firstly factorization of the equations of motion

using a set of rules to guide the factorization and simplification, and secondly,

segregation of the computations into configuration dependant and configuration

independent portions, where possible. The configuration independent portion is

computed once and stored as constants.

A detailed description of systematic organisation of, symbolic dynamic robot

models, which are generated by the computer program Algebraic Robot Mod­

eler (ARM) is given in [69]. The performance of the systematic organisation

procedure is compared with other organisations documented, and its superiority

is shown. The systematic organisation procedure, is applicable to both closed-

form and recursive dynamic robot models. It consists of removing unnecessary

calculations, identifying constant expressions, ordering the calculations, eliminat­

ing redundant transcendental function calls and removing repetitive calculations

within and across the equations.

The important aspects in the selection of a method for simplification of dynamic

equations can be : the complexity of the method, complexity of the equations, cost

of computation, possibility of interpretation and possibility of reduction, possibil­

ity of integration of the code into an existing code and so on. Recursive numerical

methods are known to be faster, with the penalty that structural information

about the model can not be obtained.

Since the equations in the case of the MA3000, need only be generated once (as

its configuration is not likely to change) and the relatively long computational

time for generation of a symbolic code is not really problematic, it was decided

to use a software package (REDUCE) for symbolic manipulation of equations.

One further point to note is that, the simulations were to be carried out using

CH APTER 3. RO BO T MODELLING AND VALIDATION 67

MATLAB 1 and it is possible to write a reasonably short code to create outputs

in a MATLAB readable format. Also the control programs that make use of the

dynamic equations, are written in OCCAM, and creation of OCCAM readable

files from REDUCE is not very difficult. The equations used, were the recursive

N-E about each links coordinate frame. The steps in the REDUCE code, to carry

out the symbolic simplifications and arrangement of the results in a closed-form

are :

1. Get the number of degrees of freedom (N)

2. Define the kinematic parameters including D-H parameters, and inertial

parameters

3. Define all the vectors and matrices including the homogenous transformation

matrix

4. Define the initial value processes

5. Generate the forward dynamic equations for 1 to N

6. Generate the backward dynamic equations for N to 1

7. Define all trigonometric simplifications

8. Output the Inertia matrix M and the vector of coriolis and cetrifugal torques

Q, in a required format

The the joint torques from actuators are calculated from:

t = M9 + Q (3.27)

where 6 is the vector of joint accelerations.

It should be noted that M is symmetric, positive definite and bounded above and

1i.e. Matrix Laboratory, is an interactive program for scientific calculations.

CHAPTER 3. RO BO T MODELLING AND VALIDATION 68

below. It is also nonsingular and its inverse is positive definite and bounded. The

Kinetic energy of the manipulator has the form

l & TM e
2

where 0 is the vector of angular velocities, and its derivative is equal to the

power input by the actuators and gravitational torque. The correctness of these

equations were tested against equations generated by the Lagrange-Euler method,

using REDUCE. The resulting equations are of the form:

t = M(0)Q + Q(0,9) + G(9) (3.28)

where G(0) is the vector of gravity torques. Both approaches, resulted in the same

set of equations.

3.4 A ctuation M odel

In general the actuation systems for industrial robots, are either hydraulic, pneu­

matic, or electrical. The MA3000 robot, has permanent magnet dc motors for the

five main degrees of freedom, and a pneumatic drive for the gripper. Since we

only concentrate on the first three links, namely waist, shoulder and elbow, only

the relevant motors will be considered.

The motors are equipped with gear systems, to achieve the high torques required,

from relatively high rotational velocities and low torque produced. Pulleys and

belts are then used to deliver even higher torques to the joint bearings. Figure

3.5 shows a representation of a dc motor with gears and pulley- belt arrangement,

together with the load.

The Subscripts a represent the associated parameters of the actuator (motor),

m, the manipulator (fixtures and so on) at the motor side, and /, the load param­

eters. Subscript g is for gravity. The inertias are represented by J , B represents

the damping coefficient, r , torque and 9, angular displacement. 0 S is the angular

CHAPTER 3. RO BO T MODELLING AND VALIDATION 69

g /T 7777777777

m

TTTTTTTTTTTT1 m

m

Figure 3.5: Schematic of a dc motor with gears -pulley h belt - load assembly

displacement at the load side.

Now the gear ratio n which in our case will also include the pulley-belt system

ratio, is defined as

n =

or

0 S — m (3.29)

The inertial load torque can be found using D’Alembert’s principle to obtain:

Ti — Bi$s = Jibs

Similarly at the motor shaft, we get

Tm — nTi — B m6 m = (Ja + Jm)0T

From equations 3.29, 3.30, and 3.31, we obtain

Tm - n(Bi0s) - B m0m = (Ja + Jm)0r
A..

(3.30)

(3.31)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 70

or

T m — (J a + J m + n 2 J l) Qm + (B m + n 2 B i) 9 r (3.32)

ef f B <=//

Jef f and B ef f are the effective inertia and effective damping coefficient at the

motor shaft. The Laplace equivalence of 3.32 is

Tm(s) — (JeffS2 + B ef f s) 0 m(s) (3.33)

An electro-mechanical model of a permanent magnet dc motor can be seen in

figure 3.6.

A r m a t u r e w i n d i n g

ef f

7777777777777

Figure 3.6: Model of an Armature driven dc motor

Resistance and Inductance are represented by R and L respectively. V(t) is

the drive voltage and Vb(t), the back emf. Vb(i) is proportional to the angular

velocity 6m, which means:

Vb(t) = K b6m(t) (3.34)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 71

where K b is a constant. The following frequency domain relation can be obtained

by applying Kirchhoff’s voltage law to the circuit and noting that the inductance

is negligible.

V(s) - I<bsOm(s) = (Ls + R)I(s) £ RI{s) (3.35)

The torque generated will be proportional to the armature current, when the

motor is operated in its linear range and hence:

Tm(s) = K II{s) (3.36)

Kj is usually referred to as the torque constant of the motor. Combining equa­

tions 3.35 and 3.36, we get

Tm(s) = j f / W ~ (3. 37)

Replacing Tm in 3.37 with the right hand side of equation 3.33, we get:

/ 7 „2 , D „ \ /2 \ („ \ TS K b s ® m { s)\JeffS "I* BeffSjOmyS) —

Rearranging, the following transfer function from the applied voltage to the an­

gular displacement of the motor shaft is obtained:

 _______________ ^■I_________________________ (q 3g \

V{s) slRJeffS + i RB ' f f + KjKb)) K }

The block diagram of this transfer function can be seen in Figure 3.7.

The effect of other joints are: inertia couplings, centrifugal and coriolis terms

which also contribute to the overall forces (torques). These are shown in the fig­

ure, as well as the quantities that represent the reaction from the physical burden

to the robot, i.e. the external load torque T}, and gravitational torque Tg.

Between the angular dispacements at load side and motor shaft, there is a dead

zone representation for free play (backlash) between the two gears, where no

output is produced while the input changes. Compensation for backlash is not

included here, and the above is only included to highlight the nonlinearities that

exist. There are various approaches for dealing with backlash. The usual way is

CHAPTER 3. RO BO T MODELLING AND VALIDATION 72

T.+T,

Inertia couplings,
centrifugal + coriolis forces

S 0
■O

J s + B
•ff eff

Figure 3.7: Block diagram for one joint of the robot arm

to consider them as unknown high frequency disturbances, when their frequency

is higher than the control bandwidth. One approach for dealing with low fre­

quency backlash is suggested by de Silva [17] whereby gear stages are included

in the dynamic formulation of the manipulator and using Newton-Euler recursive

formulation, drive torques are calculated for each gear stage. Then if drive torque

changes sign at a gear stage, it means backlash exists and that stage is disen­

gaged and zero transmitted torque is assumed. By applying the N-E recursion

to the final section which is disengaged up to the gripper, the drive torques for

the specified gripper trajectory should then be computed. Finally the motion of

the remaining sections are computed, using drive torques which were calculated

at the start, then disengagement of the sections can be checked.

Calculation of Kj and Kb

At a steady speed, the electrical power of the motor converted to mechanical form,

i.e. Vbl or Kt,0I, should equal the power at the shaft in mechanical form i.e. Tm0

CHAPTER 3. RO BO T MODELLING AND VALIDATION 73

or KiIO , which means Kb = Ki. An approximation can be made at maximum

speed, where speed has reached a constant value and there is no acceleration, by

ignoring the frictional effects. This means that, as torque Tm = Jef j9 and 9 is

zero, then there will be no torque. And as Tm = Kj l , there will be no current.

However the drive voltage

V = I R + I<b9

and having zero current means :

V = K b9

or

Hence from a graph of angular velocity against time, with the knowledge of the

input voltage, the back emf constant K b can be calculated.

This can also be seen from equation 3.7, when the friction term He/ / is neglected,

and K i = K b, the equation reduces to:

6m(s) _ K b
V(s) ~ R J cils + K l

which at steady state will reduce to:

Or„ = J _
V K b

To find the value of K b for the first three joints of MA3000, namely, waist,

shoulder and elbow, a step voltage input was applied to each joint and the angular

displacements were recorded, from which the angular velocities were obtained.

Plots of these can be seen in Figures 3.8, 3.9 and 3.10. As can be seen from the

plots, the steady state value for 9 is (10.5) for waist, (9.25) for shoulder and (35.5)

for elbow. Hence:

For waist
64

CHAPTER 3. RO BO T MODELLING AND VALIDATION 74

►%
8O>
<33

Time (Seconds)

Figure 3.8: WAIST joint data for finding motor constant (64V step input)

>»
•ga>
I
z

Time (Seconds)

Figure 3.9: SHOULDER joint data for finding motor constant (64V step input)

CHAPTER 3. RO BO T MODELLING AND VALIDATION 75

40

Time (Seconds)

Figure 3.10: ELBOW joint data for finding motor constant (64V step input)

For shoulder

I<b = = 6.92
9.25

For elbow

K h =
64

38.0
= 1.684

Strictly speaking, the value of K j , the motor torque constant, for many motors

depends on the relative oscillation of the rotor and stator at high frequencies. This

is referred to as ripple torque.

3.4.1 Friction

Frictional effects can at times be considerable and neglecting them may not be

realistic. There are two basic types of friction: static, which is also referred to as

stiction, is the required force for initiating motion (rolling or sliding) between

two contacting surfaces, and dynamic which applies to the bodies in motion, can

be in the form of coulomb friction which is caused by irregularities of contact­

ing bodies engaging or viscous friction due to viscosity of a lubricant, or both.

Coulomb friction depends on the force with which the two surfaces are pressed

together and Viscous friction is considered to be a force proportional to velocity,

CHAPTER 3. RO BO T MODELLING AND VALIDATION 76

or higher powers of velocity at high speeds. But a suitable description is that,

viscous friction is a nonlinear function of angular velocity.

There is a great deal of disagreement as to the structure of the friction model.

The characteristic functions of models vary from only a constant coulomb friction

torque, when the angular velocity is zero, to symmetric models where both static

(direction dependent) and dynamic (usually ramps) are represented. Various tech­

niques also have been suggested to compensate for frictional effects. For example

Wu and Paul [101] introduced a high gain feed back, which is not suitable for

when there is a need for linear compensation of small errors, de Silva [17] used an

experimental friction model developed by Shibley, in which the frictional torque

for a joint is obtained by

Tf = f { 6) x t

where / is the friction coefficient as ,a function of angular velocity, and r is the

reaction torque of the joint. He approximates the relationship between / and 6

by two straight line segments. Joint reaction torques and angular velocities are

then calculated by Recursive Newton-Euler equations. Velocities are used to find

the relevant coefficient of friction from the approximated relationship, and this

value is multiplied by r to get Tf . He also points out that, as reaction torques

could change due to the presence of friction, one cycle of computation might not

be enough for convergence of the values.

An interesting approach for nonlinear compensation of friction is presented by

Canudas et al [13] in which, based on experiments on a servo, a model which is

asymmetric and includes both Coulomb friction and viscous friction is suggested

and an adaptive compensation scheme is developed, so as to cope with the de­

pendency of friction on operation conditions. This model includes variations and

asymmetried of the friction torque which are not dealt with in other models. The

CHAPTER 3. RO BO T MODELLING AND VALIDATION 77

model used is:
a i $ + / ? i , 9 > 0

t , (s) = ;
£*2 9 0 2 , 9 < 0

Figure 3.11: Friction model

Then a l , 01, a 2 , 02 are estimated. One way of doing this as the^suggest, is

applying standard linear parameter estimation to the following equation:

JQ
J — = K I (t) - a i9 - 0 i

where J and K are assumed known, and the current I needs to be measured.

Symbol tilde, represents the filtered values. Although they use a tachometer, the

values of 9, can be found from angular measurements.

This approach seems quite appropriate, and suitable for friction compensation.

It should be noted that the method of compensation depends very much on the

model chosen.

3.5 M odel Validation

So far Kinematics, dynamics and actuation models, particularly relevant to the

MA3000 robot, have been discussed. The next step is to make sure tha t the

models developed are accurate enough for the purpose of model based controllers

which will be considered in a different chapter. The model validation approach

taken is an iterative process in which the behaviour of the model developed, is

CHAPTER 3. RO BO T MODELLING AND VALIDATION 78

compared with the behaviour of the actual robot, and in case of discrepancies,

various possibilities, as to the source of errors are considered. Then attem pts are

made to eliminate these errors, or at least reduce them to an acceptable level.

This loop is then repeated a number of times, and if the model does not match

the real system, either a different model is employed or the assumptions made

about the real system are altered.

A program was written in MATLAB that includes the model and also reads data

captured from the real robot, and then by means of exciting the model with the

same inputs as the captured data from the robot is based upon, the outputs are

graphically compared. The implementation steps are as follows:

1 . Read the data file of the first three joint angles of the robot, corresponding

to particular voltage inputs.

2. Use a third order filter to filter the data.

3. Define and input values of the motor related parameters, such as the torque

constant found in the previous section, resistance of the motors, gear ratios

including the pulleys, and so on.

4. Include the kinematic parameters, found using CAM-X and D-H parameters.

5. Input initial values for angle 0, angular velocity 0,and angular acceleration 9

and calculate the inertia matrix M and the vector of centrifugal, coriolis and

gravity torques Q. These are calculated based on the customised dynamics

developed in a previous section and with the kinematic parameters of the

previous step.

6 . calculate the torque vector r from

i (K v - kA \ '
T% GearRatio \ 1 R{)

where R{ is the resistance of motor z,and V is a voltage input, the same as

filtered real values for joints.

CH APTER 3. RO BO T MODELLING AND VALIDATION 79

7. Then calculate angular accelerations from:

0 = M - \ t - Q)

8 . Integrate 0 to get 0 and integrate again to get 6 , and save the value of the

angles.

9. Return to step 5 and put the values of the previous step in place of initial val­

ues and follow on repeating the process for a duration of time, including the

same sampling for the integration, as the sampling rate of data acquisition

of the real angles.

10 . Once the specified duration is over, plot the real angles against the angles

obtained from the model.

Figures 3.12, 3.13, show the comparison of the real and the generated data for

waist. The first figure is for a pulse-width-modulated voltage input and the

140

120

100

o
I

40

1.5 2.50.5

Time (seconds)

Figure 3.12: Model behaviour and the real robot, WAIST (PWM voltage)

second one is for a constant voltage and current input. The solid line is the real

data, dashed line is the data from the model based on the filtered voltage input,

and the dotted line is the filtered real data. It can be seen that the model output

CHAPTER 3. RO BO T MODELLING AND VALIDATION 80

180

160

140

120

100o3o•ac<
60

40

1.50.5 2.5

Figure 3.13: Model behaviour and the real robot, WAIST (const, current)

closely matches that of the real data. The small distance between the filtered and

real data is due to the data line representing an integrator. Figures 3.14, 3.15,

show a similar comparison for the Elbow. Again a close match of the model

120

100

80

¥§>
3 60
o•ac<

40

20

0.5 1 1.5

Time (seconds)

...........

....

//.... /
//

Z5

Figure 3.14: Model behaviour and the real robot,ELBOW (PWM voltage)

output with the real data can be seen.

In the case of the shoulder, for a short duration the match is reasonably close,

and then it starts to show an oscillatory behaviour. One possible explanation for

CHAPTER 3. RO BO T MODELLING AND VALIDATION 81

250

200

150

o

0.4 0.6 0.8 1.20.2 1.4 1.6

Time (seconds)

Figure 3.15: Model behaviour and the real robot, ELBOW (const, current)

this is that the kinematic parameters, might not be accurate. As it was explained

earlier, the process of model validation is an iterative one. In fact at the beginning,

the models for the other links were not so close either, and CAD modelling had to

be repeated, a number of times, and each time more details had to be included.

The attachment of densities to various parts had to be carefully arranged, so that

assumptions of uniform density in some cases could be accurate enough. As the

shoulder seems to be the least complex of the three links considered, and the

other two give a reasonably correct answer, it is very unlikely that the cause of

the mismatch is errors in kinematic parameters. Errors due to incorrectness of

dynamic equations is also unlikely, as two approaches, Lagrangian and Newtonian

approach, resulted in the same equations of motion. The motor used for shoulder

is the same as the one for waist, and the possibility of the motor model or the

parameters being wrong is very slim. Ignoring frictional effects and backlash also

apply to the waist. The only explanation can be that, as mass of the waist is

much greater and inertias are different, whatever effect causes the inaccuracy of
tVvot

the model lies within the factvthey do not dominate the equations for the waist,

but do in the case of the shoulder. Even numerical errors can be a possibility.

C hapter 4

M odel-B ased Identification o f

R obots

SUM M ARY

Some work in parameter estimation of robot manipulator dynam­

ics is reviewed and a new method developed for estimating the

mass of any load the manipulator might be holding is presented.

The effectiveness of the method is backed by both simulation re­

sults and experimental means.

4.1 Introduction

Accurate robot models can be used in the context of adaptive control of robot ma­

nipulators, for improving their dynamic accuracy. The parameters of these models

need to be fairly accurately obtained for the control schemes based upon them

to yield effective results. Mass distribution parameters of a rigid body, namely

mass, position of the centre of mass and moments of inertias, are the constituent

dynamic parameters and can be obtained by various methods. This was discussed

in the previous chapter. One method for finding the values of these parameters,

is to employ estimation techniques, following a suitable parameterisation of the

dynamic equations of manipulators.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 83

The techniques vary in how the dynamic equations are formulated, and the esti­

mation methods used, as well as what variables need to be measured. The main

approach used here is to obtain a linear in the parameters form of the estimation

equations, although the dynamic equations of the manipulator are non-linear, and

then apply linear estimation methods to estimate the unknown parameters.

Generally, the inertial parameters of the manipulator links need only be obtained

once and do not vary. Hence an off-line method for obtaining these parameters is -

sufficient. However, in various applications, the mass of the load which the robot

needs to manipulate might change, or the robot might have to deal with compo­

nents that have different mass properties. This will affect the inertial parameters

of the final link of the manipulator. In this case, an on-line method of estimating

the load inertial parameters is needed, to allow compensation of the affect.

Following a literature review of the techniques used for estimation of the load in­

ertial parameters, a new method will be presented for estimation of the load mass,

based on developing a linear in the parameter model of a manipulator using sym­

bolic manipulation approach for computational efficiency, and linear estimation

techniques. Both simulation and experimental results for the MA3000 robot will

then be presented to show the effectiveness of this method. An adaptive controller

could be designed to enhance the accuracy of the robot motion based on the de­

veloped model with estimation of the load mass. This will be addressed in the

next chapter. The load estimator and the controller could operate concurrently,

which means that computational speeds can be improved, if parallel processing is

utilised. This will be discussed in the chapter on parallel implementation.

4.2 Literature review

Dynamic parameter estimation of Robot manipulators have been the subject of

investigation by a number of researchers. Nearly all of these methods rely on sim­

ulation to show the convergence of the estimated parameters to their true values.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 84

ck
Invmajority of these approaches, the computational requirements are the main

reason for not being able to implement them on-line.

Similar to their link inertial parameter estimation, which was discussed in the

previous chapter, Atkeson et al [4] presented a method of estimating the inertial

parameters of a rigid body load using, instead of joint torque, wrist force/torque

sensing. In their approach the parameter equation is derived, by relating 3 coordi­

nate systems, (base or inertial coordinate, force reference coordinate system of a

wrist force/torque sensor, and principle axis of the rigid body load attached at the

centre of mass) and expressing the inertial parameters of the load in terms of the

motion of the load and the forces and torques exerted on it, using Newton-Euler

equations.

The force and torque measurements by the wrist sensor are obtained and are

expressed in terms of the product of known geometric parameters and unknown

inertial parameters. Then some notations and quantities are used to formulate

these as a system of linear equations with unknown inertial parameters. In addi­

tion, measurements or estimates of the position, velocity, acceleration, orientation,

angular velocity, and angular acceleration of the force sensing coordinate system

are needed to estimate the inertial parameters using Least Squares estimation

algorithm. The location of the load’s centre of mass, its orientation, and its prin­

cipal moments of inertia can be recovered from the sensor referenced estimated

parameters. These can be used for object recognition and verification. Some other

work which utilise joint torque or wrist force/torque sensing to estimate inertial

parameters of the load, (mostly simulation) are also discussed in the above refer­

ence.

By effective exploitation of the structure of manipulator dynamics, and employing

the approach of Atkeson et al, that the dependence of the system dynamics on

the unknown parameters can be made linear in terms of a suitably selected set of

robot and load parameters, Slotine and Li [86] estimated the unknown manipula­

tor and payload parameters on-line in a full dynamics feedforward compensation

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 85

routine for an adaptive robot control algorithm.

Equivalent parameterisation was introduced by Goodwin et al [67] to obtain dy­

namic equations that are linear in the unknown parameters for a general rigid

body. In their method, noting that there are ten free parameters in a general 3D

body, suitably chosen fixed position vectors are used and the rigid body is parame-

terised by ten point masses. These parameters are related to the mass of the body,

centre of mass vector times mass and inertia matrix, by a linear transformation.

This transformation can be made non-singular by a suitable choice of position

vectors. Measurements of the motor torques, and joint position and velocities are

required for obtaining the unknown parameters. The significant advantage of the

method is that acceleration of the manipulator need not be measured.

Employing this approach, Walker [97] investigated the on-line estimation of the

load-mass and its moments based on measurements of the manipulator joint posi­

tion, velocities and the force exerted by the end-effector on the load. The simu­

lation results presented, show that their algorithm performs reasonably well, but

the computational load is fairly high.

A manipulator terminal-link parameter estimation method is presented by [42] in

which an Instrument Variable Method (IVM) is used to estimate the unknown

parameters.

They use IVM to overcome inaccuracies which result from random noise involved

in joint acceleration and joint torque measurements associated with algorithms

such as [65] that is based on the least squares method, and uses measure­

ments of the joint position, velocity, acceleration and joint torque.

In their approach, the dynamic equation of a serial-rigid link manipulator is writ­

ten in terms of the unknown composite dynamic parameter vector which consists

of the mass, center of mass, inertia tensor, viscous damping, friction coefficient

and the Coulomb friction torque for each link. Since this equation is non-linear,

they use Denavit-Hartenberg Convention of coordinate systems (body attached

frame) to formulate the linear equations in unknown dynamic parameters from

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 86

the Newton-Euler formulation. Based on the assumptions that : the geometric

and the actuator parameters are known exactly, the joint position and velocity

measurement noises are negligible, the joint acceleration measurement noise is

white noise which has a zero mean, and the joint torques are calculated from the

actuator equation which are linear with respect to joint acceleration, the compos­

ite dynamic parameters are estimated by IVM.

The criterion to be minimized has a weighting matrix. In the case of least squares

method, all the elements of the weighting matrix are one. Due to the correlation

of two members of the estimation equation, least squares does not yield the true

values of the unknown parameters. Simulation results show this. However ex­

perimentally least squares and IVM converge to the same value. They conclude

that this is due to the acceleration measurement noises being small. Also their

experimental results show that if the magnitude of variation of desired trajectory

is small, the estimated values show better agreement with the theory. The in­

strument variable which is correlative to acceleration of joints is obtained from

the instrument model, by assuming the dynamic equation of each link motion is

linear and time-invariant. In addition to the terminal link parameter variation,

some parts of the nominal composite parameter errors must also be estimated in

some situations. Real-time estimation calculations need a dedicated VLSI chip.

To do away with the fact that most commercial robots do not provide for inter­

nal measurements of torque, velocity or acceleration; and even when they do, the

measurements are in most cases inaccurate and noisy, Raucent et al [76] presented

an external measurement approach to identify the mass distribution parameters

of robotic manipulators.

The method is based on an auxiliary base reaction model which is linear with

respect to the mass distribution parameters and completely independent of joint

forces and torques, including friction effects. Six generalized coordinates repre­

senting three angular and three linear displacements of the base of the robot are

added and hence the degrees of freedom become (n -f 6). The robot is placed on a

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 87

force sensing platform, and six components of reaction torques and forces between

the bedplate and the robot are measured. A high precision vision device is also

used to accurately determine the motion of the robot i.e. position, velocity, and

acceleration.

The method allowed most of the mass distribution parameters to be estimated,

as long as persistently exciting trajectories existed.

For simulation of weightless conditions on space emulators, similar methods for

estimating some combination of mass properties of manipulators by measuring

the reaction moments of their base, have been used. In these methods the mass

properties identified are not sufficiently complete for dynamic control techniques,

but allow compensation for the gravitational load on the links of the manipula­

tors.

There has not been any published material to the best knowledge of the author,

as to any work based on this method to estimate the load mass.

A method consisting of three types of tests performed without decomposing the

manipulator into parts, was introduced by Mayeda et al [65] in which first of all

static tests are performed, where the manipulator is made to stand still in var­

ious configurations, then constant angular velocity for one joint at a time and

accelerated motions are carried out. The data which is acquired from the motion

is then used to estimate the coefficients of the dynamic equations. This method

is only applicable to manipulators with any two adjacent joint axes, parallel or

orthogonal. They make the assumption that Coulomb friction force is constant

during the test motion, which is critical to the accuracy of the identification. This

only applies to a class of manipulators.

One difficulty with the method itself is to find suitable accelerated motion tests

such that the whole essential coefficients of the non-linear dynamic model of the

manipulator can be determined from the estimated coefficients of the tests.

There is no reference to load mass estimation in this work.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 88

The state variable model of a robot manipulator is linearised around a chosen tra­

jectory, assuming small perturbations, and the discretised version of the steady

state innovation of the linearised manipulator is considered by Mahalanabis and

Galou [63] for recursive parameter estimation. An observer form of the model is

used for the development of an on-line algorithm for the estimation of the model

parameters and for subsequent state estimation. In this work the results are il­

lustrated through simulation studies of a three link manipulator, and there is no

mention of load mass estimation.

The estimation of unknown payload mass has been addressed in the context of

non-linear adaptive control too. Hemami et al[29] developed an adaptive control

algorithm with a non-linear reference model for an N-link planar robot with an

unknown load. The trajectory error in the vertical direction which represents the

potential energy dilference between the actual motion and the desired motion, is

used to estimate the mass of the load. Computation times need to be reduced,

before this algorithm can be implemented in a real-time environment.

4.3 Load M ass E stim ation

Parameter estimation can be used in the case of incomplete a priori specification

of the dynamics of the manipulator. We specifically consider the case where the

load mass is unknown. The idea is to provide the load mass estimates which could

be used by a controller to maintain a desired response. This is achieved by using

an on-line estimator to provide periodic updates of the estimates of the mass of

the unknown load that the gripper holds.

The load can be considered as having the effect of an unknown, possibly time-

varying, gravitational force applied to the arm end, as well as inertia effects. This

can be extended to the case where the force can be applied in other directions,

apart from the vertical. So that we are able to track a slowly varying force applied

to the end effector. This method of estimation contrasts with the methods based

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 89

on the learning theory of for example [41] which typically requires several cycles

of operation.

Here a new method is presented in which a software package for symbolic manip­

ulation of equations (REDUCE) is used to generate the n x n generalized inertia

matrix and the vector, containing the centrifugal, coriolis, gravitational torques

in symbolic terms, from the forward and backward equations of the recursive N-

E dynamic equation for serial-rigid manipulators or from Lagrangian approach,

similar to the way discussed in the previous chapter.

An extra link of zero length, but of finite mass is included in the definition of

the links which represents the load mass carried by the gripper. This will be the

unknown parameter which will be estimated. The equations are linear in the un­

known parameter and least-squares is used for estimation.

Simulation and experimental results show that the estimated parameter converges

to its true value of the load mass in a short period.

4.3.1 On-line adaptive estim ation o f load mass

In the context of Self-Tuning Adaptive Control, it is recognised that there are two

stages of parameter estimation [93]. In the first stage, from the dynamic model

of the system, parameter estimation equations are derived and then in the second

stage, an estimation method is used to estimate the parameters of the model.

Method of linear Filters, where the linear dynamic operator is a low-pass fil­

ter is one approach for deriving the parameter estimation equations. Using the

state-variable filter approach for estimating parameters of continuous-time trans­

fer functions is described in [27] etc.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 90

E stim ation Procedure

Based on the state-variable filter approach for estimating parameters of continuous­

time transfer functions, the dynamic equation of the Robot Manipulator is formu­

lated in a way that, although nonlinear, the parameter estimation equations are

linear-in the-parameters. Then a standard least-squares estimation can be used

to estimate the load mass.

Using the customised robot dynamic algorithm based on the recursive N-E equa­

tions of motion, the dynamic equations for a four link manipulator, with the final

link represented as a link of zero length and finite mass say m 4 is obtained. The

explicit expressions for the inertia matrix M and the torque vector Q are shown

in Appendix D.

As the centrifugal, coriolis and gravity torque associated with the final link, as

well as the corresponding inertia matrix member and joint acceleration are zero,

the equations are linear in the parameter m4:

£ = M 1 {6)rriA9 4 - M 2 {9)9 + Q1 ($ J)m 4 + Q2 (9,9) (4.1)

where

r is a 3 x 3 vector of torques

M 1(0,m 4) is a 3 x 3 inertia matrix which is a function of joint angle 9 and

load mass m4 . It is linear in m4 .

M o(9) is a 3 x 3 inertia matrix, not a function of m4

Qt {9,9, m4) is a 3 x 1 vector of centrifugal, coriolis and gravity torques. It is

linear in m4

Q2 (9,9) is a 3 x 1 centrifugal, coriolis and gravity torques, not dependent on

m4

9 is a 3 x 1 joint acceleration vector.

If the load mass is represented as added mass on the third link, then the

customised robot dynamic equations are no longer linear in the parameter. This

is due to the fact that, as load mass varies, so does the position of the center of

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 91

mass of the third link. And this means that the estimation method will not apply.

Hence using the linear in the parameter equations and taking the terms that

depend on m 4 to one side, equation 4.1 becomes:

z - (MdL + <?2) = (M il. + Q_1)mA (4.2)

Now let

L ~ (M 2 I + Q0) =

(t)

M *)

M l)

and

M i£ + < 2 i

^a(^)

X b{ t)

X c (t)

Then

M *) Xa(i)

M i) = M i) 7714

. M i) _ m M i) .

(4.3)

There are a number of ways to estimate the value of ra4 from equation 4.3. One

way would be to take one component of the equation for example

M i) = x a{i)m4

and based on this obtain the data and output vectors with members corresponding

to each sample interval. The following equation is formed

M M •̂ a (i 1) e(ii)

M f 2)
=

M M m 4 -f
e{t2)

$ c(in) c{in) c{in)

(4.4)

where e(/i)

or

e(tn) represent the errors.

.2. = X rrid 4" E_ (4.5)

CHAPTER 4. MODEL-BASED IDENTIFICATION OF ROBOTS 92

note that 7724 is a scalar.

Then using the least squares method, the criterion function to be minimised

is

R = E t E = (5Lr - X Tm 4)(}$ - X m 4) (4.6)

multiplying

R = S l ± - S j X m 4 - X ^ m 4'S + X jm 4Xm4

as 2. and X_ axe both vectors, then W X = X Ti$. therefore

R = 4<_T - 2<$_TX m 4 + X TX m 4 2

The value m4 which minimises R makes the gradient of R with respect to X zero:

d R n
d X ~

using a standard result for derivatives of vector expressions, i.e.

d B TA
OA

= B

we have

or

—2*km 4 + 2X772 \ = 0

= Xm<

pre multiplying by X

therefore

X T<1 = X TX m 4 (4.7)

m 4 = (X TX) ' (X Ty) (4.8)

and hence 7724 which is the estimated value of 7724 can be found using least squares

estimation.

Another way of estimating 7724 from equations 4.3 is to take all, as opposed to

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 93

one component of the equations and obtain the data and output vectors for each

sample interval to form

V>a(*l) *Ea(̂ l) ^a(^l)

1pb(t l) X6(fl) e&(*i)

c (t l)
=

Xc(t i)

m 4 -f

ec(^l)

^a(^n) ^ai^n) ^a(^n)

b(tn) 'Ebitn)

^bi^n) ^c(^n)

and proceed similarly to the previous approach. The results in both cases are

similar and this can be verified by simulation.

In the case of a real robot, position sensors can be used to obtain joint positions.

After filtering these, joint velocities and accelerations are calculated by differen­

tiation. The corresponding input torques applied to joints are also filtered using

a third order filter

(7 (s) = 3 3 - j - C i S 2 - f C 2 <S - f C3

Then the values of filtered torque, filtered angle, angular velocity and acceleration

are used in the customised dynamic formulation to obtain the output and data

vectors. Least squares is then used to estimate the load mass ie. 7714. Recursive

Least Squares can also be used for estimation, making use of the solutions of

previous equations and hence reducing the computational time. In situations

where position data is obtained and processed in parallel in order to increase

computational speed, the Recursive LS can still be used, as the data and output

vectors have to be formed sequentially. The need for sequential formation of these

vectors are due to the fact that, interaction of the joints are taken into account

and as a result, information about other joints is needed in order to calculate

inertias and other quantities due to one joint. In the case of recursive LS, one

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 94

component of equation 4.3 i.e.

$a{t) = x a(t) x ra4

is used at each sampling interval. Hence the recursive equations will be :

m 4(N + 1) = m 4 (N) + k(N) x [î a{N + 1) — x a(N + 1) x m4(iV)] (4.10)

k(N) = P(N) x x a(N + 1) x [l + xa(N + l) x P (N) x ^ (A f + l)]-1 (4.11)

P (N + 1) = [1 - k(N) x xa(N + 1)] x P(N) (4.12)

And for time varying load mass, a loss function with exponential weighting is used

i.e.,
N

R = J 2 V '-1 X 0>a{t) - x a(t) x m 4]2 (4.13)
t = 1

where A is the “forgetting factor” . The least squares estimate is then given by

replacing equations 4.11 and 4.12 by the following two equations respectively.

k(t) = P(t) x x a(t + 1) x [A + x a(t + 1) x P(t) x x a(t + l)]-1 (4.14)

P(t + 1) = [1 — k(t) x x a(t + 1)] x P (t)A (4-15)

where A is less than one. Usually about 0.98 .

4.4 Sim ulation

The simulation is based on the first method of estimating the load mass described

in the previous section. It consists of five parts:

First, the definition of desired trajectory for each joint and calculation of the cor­

responding torques, based on the dynamic equation of the robot.

Then in the second part, the values of torque are used in a robot simulator, in

order to obtain the position, velocity and acceleration of each joint. Although in

the first part, the torque values were based on one value of load mass, here the

load mass is varied. In the third part, the torques, angles, velocities and accel­

erations are filtered using a third order filter. To implement the state variable

CHAPTER 4. MODEL-BASED IDENTIFICATION OF ROBOTS 95

approach, the filter transfer function is represented in state space and then the

discrete forms of A, B, C, D are found. Then states (filtered position, velocity

ROBOT

- o DYNAMIC

- o MODEL

ROBOT■o

C(s)C(s)

LINEAR IN THE PARAMETER
DYNAMIC EQUATIONS

OUTPUT VECTORDATA VECTOR

LEAST
SQUARES

ESTIMATED
LOAD MASS

Figure 4.1: Load Mass Estimation

and acceleration) are updated L

Then customised dynamic equations which are linear in the parameter, as ex­

plained earlier are used to form the data and output vectors.

Finally, least-squares estimation is used to estimate the load mass.

A block diagram representing this procedure is shown in Figure 4.1.

4.5 Im plem entation

A REDUCE program that takes as input the number of links and the definitions

of kinematic and inertial parameters of a manipulator, was written to symbolically

^ h e details of the state variable approach can be found in reference [24] etc.

CH APTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 96

manipulate the N-E equations of motion for robot manipulators and perform all

algebraic simplifications possible.

Four links were defined, the final being of finite mass and zero length, representing

the load mass held by the gripper of the manipulator (strictly speaking, the load

mass also includes the mass of the wrist).

The outputs of the program were the elements of the inertia matrix as well as the

vector of centrifugal, coriolis, and gravitational torques.

A factorisation was then performed to separate the terms that depend on the load

mass, hence the following were obtained:

• M 1 (e) , M 2 (0)

• q ^ A q ^ A

The terms with subscript 1 are dependent on the load mass. These correspond to

equation 4.1.

The explicit expressions for these terms were then modified to a MATLAB read­

able format.

A function was then written in MATLAB that uses these expressions together

with the values of kinematic and inertia parameters of the MA3000 robot, with

external input of the joint angles and angular velocities, to output the actual val­

ues of the above terms.

This function was used in a MATLAB program to obtain the joint torques corre­

sponding to a' defined trajectory (angular displacement, velocity and acceleration

of each joint) according to equation 4.1. A known load mass (e.g. 5 Kg) was used

in the calculations.

Figures 4.2 and 4.3 show the defined trajectory, as well as the resultant torques

for a 5 Kg load mass.

Then, using the first set of values of joint torques obtained from the previous

stage, and some initial values for angular position and velocity of the joints, in

the MATLAB function described above, the first values of angular accelerations

To
rq

ue

(N
-m

)
An

gu
lar

 A
cc

ele
ra

tio
ns

An

glu
lar

 v
elo

cit
y

(d
eg

re
es

/se
c)

An

gle

(d
eg

re
es

)
CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS

250

150

100

1.5 2.5
Time (seconds)

800

600

400

1.5 2.50.5
Time (seconds)

Figure 4.2: Angular position and velocity, against time

6000

4000

2000

2.51.50.5
Time (seconds)

5

0

-5

10

15

■20 2.51.5 20.5 L0
Time (seconds)

Figure 4.3: Angular accelerations and Resultant Torques

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 98

are calculated according to

I = (M 2 + M i ^ 4)_1[l - (Q2 + Q^m^] (4.16)

By integration, values of angular position and velocity are,found from angular ac­

celerations, which are then used in the next time step, and the process is repeated

for all the values of joint torques.

This implements a robot simulator to which, joint torques are input and form it

angular acceleration, velocity and position is obtained. However, the load mass

7724 is varied-from 0Kg to 5Kg in 0.5K g increments as the process is repeated,

this is despite the fact that the values of the joint torques correspond to a 5 kg

load mass. This introduces perturbations from the original joint torques.

The values of the torques, angular position, velocity, and acceleration are then fil­

tered using the Lsim function in matlab toolbox for simulation of continuous-time

systems.(a third order filter is used).

Then the data vector and the output vector is found and the equations of motion

are written in the standard form of least squares to estimate the unknown param­

eter, namely the load mass.

Figure 4.4 shows the values of Load Mass and their estimation. As can be seen

the estimated values that are shown as dashed lines are very close to the actual

values. One point to note is that the original value of the load mass on the basis of

which the torques were generated, are important not to be too large or too small

compared to the estimated values, otherwise the estimation will not be accurate.

Simulation results of when recursive LS is used for estimation, also show that the

values of the estimated load mass converge to their true value after a few samples.

Having been able to show that, it is possible to estimate the varying load mass

that a gripper carries, control algorithms that utilise this can be implemented for

various applications. The algorithm can also be extended to the case of varying

reaction forces on the gripper, when the equations are formulated to include three

components of force/torque, as opposed to just gravity torque.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BO TS 99

B•ac/>w

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

-i--------------1--------------1--------------r "i--------------r

o 0.5 1.5 2 2.5 3 3.5 4

Increments of 0.5 (kg) for each sample

4.5

Figure 4.4: Comparison of Load Mass and estimation values

The next step is to verify these results experimentally, using the MA3000 robot

manipulator.

4.6 Experim ental R esults

Step voltage inputs were applied to the waist joint motor of the robot, and angular

position 9 of each joint was obtained from plastic film potentiometers with linearity

of ± 0.25 % measured to 12 bit resolution, and saved in data files. The operation

was repeated for various load masses, attached to the gripper of the robot.

A third order filter was chosen

 1 _ ________

d o <S3 "I* d i S 2 + < 2 2s 4 ” a 3

and this representation was changed to state-space and discretized to get

1 — AdX{ -{- BdU (4.17)

CHAPTER 4. MODEL-BASED IDENTIFICATION OF ROBOTS 100 -

After including the initial values, at each sampling interval, the input u = 9 is

used to get

where x\ is filtered acceleration, x 2, filtered velocity and £3 filtered angular po­

sition. This is repeated for each sample of 100 HZ. In the implementation,

a0 = 0.001, a\ = 0.03, a2 = 0.3, and a3 = 1 were chosen empirically, to give

good results.

Figure 4.5 shows a block diagram representation of the above procedure. Once

these filtered values were obtained, motor torques were calculated, using

V - k 'LT =-L m. —
R

where k' corresponds to the motor torque constant which is equal to the back emf

constant, at steady speeds (the values of these were found to be 0.01, 0.17, and

0.009 for waist, shoulder and elbow respectively), 9m is the angular velocity of the

motor, R, the motor resistance, and V the voltages applied.

Then the contribution of the load torques are included (i.e. \ T l , where n rep­

resents the combination of gear and pulley-belt system ratios) in the equation of

motion:

T m T l = J e f f 9mn

However to calculate Tl , the value of load mass say 7714 need to be known, and as

this is the value to be estimated, the torque is divided into two parts, one which

depends on the load mass, Ti, and another that does not, T 2. Then

letting

J e f f 9 m + —T\ — T m — T 2rri4n

X = T*

(4.18)

= Je f fO H Tln

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 101

where ^ is the output vector, and X_ the data vector. Least squares estimation is

used to find m 4 .

A number of different voltages were applied, both pulse width modulated, and

constant step inputs, to individual joint motors for various load masses and an­

gular outputs were used in the above algorithm to estimate the load masses.

The results show that, the best estimates are obtained when the waist data is

used for estimation, this is probably due to the fact that the rotation of this joint

is about the vertical axis, which means that the affect of variation of gravitational

torques is less, compared with other joints.

Also it was found that applying higher voltages which effectively meant higher

accelerations, resulted in better estimates. Also PWM signals, caused the angular

O

Figure 4.5: filtered values of accn., vel., and angle from angle input

position data obtained to be noisier, compared to constant voltage which, using

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 102

Voltage applied Real Load Mass (kg) Estimated Load Mass (kg)
88.5v constant 0 0.0319
88.5v constant 0.908 0.9457

64v PWM 0 0.4401
64v PWM 0.908 1.247

Table 4.1: Comparison of Real and Estimated Load Mass

a different amplification hardware that will be explained in a future chapter, pro­

vides constant current input.

The noisier data also contributed to the estimates, being less accurate. Table 4.1

shows as an example that higher voltage of 88.5 volts and constant current, gave

better estimated results for both 0 kg and 0.908 kg, compared to 64v PWM volt­

age input.

However even the less accurate estimates were quite reasonable considering the

sources of errors which will be discussed in the next section.

4.7 D iscussion

It is certainly true that identification of the link parameters of robots tends to be

a on-off task in general, as their value do not change greatly, to have to calibrate

them frequently. And there are other methods other than estimation, which at

times are more convenient and serve the purpose, to produce accurate enough

results, such as the CAD approach discussed in the previous chapter.

Nevertheless the load mass that the robot carries can vary considerably during

operations, and it is useful to be able to estimate the value of the load mass and

hence the affect of its variation on the terminal link of the manipulator.

Some work was discussed, where by the parameters of the mass distribution of

the load are estimated. Amongst these, the work of Atkeson et al [4] seem to be

one in which, there are reasonable implementation results to be able to see the

effectiveness of their approach.

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 103

In the new method introduced above, only the value of the load mass are es­

timated, as opposed to the cases where moments of inertia and centre of mass

parameters are also estimated. It should be noted that it is possible to formulate

the equations in such a way that they are linear in one of the unknown parameters.

The use of symbolic manipulation to derive these equations, is important.

Attention should also be drawn to the fact that from the findings of Atkeson et

al, the estimation of moments of inertia parameters, despite the requirement of

extensive computational efforts, does not lead to accurate estimates, and even in

some cases, for example its application to the PUMA robot, needs special test

movements, as the torque due to gravity for example is about 40 times greater

than the torque due to the maximum angular acceleration. Acceleration capacity

requirements for the algorithm to yield reasonable results, were higher than the

acceleration capability of the PUMA. Loads specifically designed to produce large

moments of inertia, had to be used, for testing the estimation algorithm. And

slight noise in the data resulted in poor estimates.

They finally concluded that for control purposes, even poor estimation of the mo­

ment of inertia parameters, will allow good estimates of the total force and torque

necessary to achieve a trajectory.

Although their algorithm worked better for the case of their Direct Drive Arm

to estimate the moment of inertia parameters, it raises the question that in large

majority of industrial robots the impracticality and inconvenience of using di­

rect drive arms, together with having to set up force sensors and providing large

computational means of implementing the algorithm, justifies the ability to inac­

curately estimate the moment of inertia parameters, which even if their estimates

are not accurate, will not affect the performance of their controller anyway.

The semiconductor strain gauges used for force sensing are prone to drift and

frequent calibration of them is necessary to prevent additional sources of error in

the estimation.

The algorithm introduced, that estimates the load mass, only requires angular

CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS 104

position sensing, it is not computationally intensive, and it gives reasonable esti­

mates, that can be improved when

• A smooth high order polynomial trajectory is used to minimize the mechan­

ical vibrations and not excite unmodelled dynamics

• The kinematic and dynamic parameters obtained are as close to their true

values as possible

• Noise of the data obtained are reduced

• A smooth voltage input is used

• Data for the waist is used in the algorithm, so that the estimated values are

closer to the true value of the load mass

In addition, there is a possibility that other parameters of the load can also be

estimated, one at the time, using symbolic manipulation of the equations.

Chapter 5

Transputer-R obot Interface

SUM M ARY

A description of the hardware units which were build in order

to operate an MA3000 robot using a network of transputers, in­

dependent of its standard controller is given. The correspond­

ing interface software developed is also presented. The trans­

puter network consists of a Parallax system which includes an

AD C and a DAC, and a Meiko computing surface runing OPS,

MeikOS and CS Tools.

5.1 Introduction

When a high speed operation is required in a robotic application, increased joint

velocities imposed on the manipulators result in an increase in the effects of cou­

pling between the joints.

More joint interaction certainly brings about a need for employment of advanced

controllers that are able to compensate for the effects that can cause loss of per­

formance and accuracy.

Model-based controllers that incorporate a complete dynamic model of the ma­

nipulator including joint interactions, are seen as ideal schemes to achieve high

performance. However a combination of high computational requirements of these

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 106

methods and lack of accurate manipulator models, has made their real-time im­

plementation prohibitive.

The motivation behind building an interface between the MA3000 robot and the

transputer network which is described in this chapter is to be able to exploit the

capabilities of the transputer as a fast processing unit and as part of a network

for implementing advanced control algorithms in real-time.

Although simulation results can give a lot of insight as to the suitability and ef­

fectiveness of a particular algorithm, there are various factors that only practical

implementation can truly incorporate.

In this chapter, following a description of the standard interface unit of the

MA3000 to a host computer and outlining its limitations, a brief overview of

the transputer and, the occam language with its unique features for programming

concurrent systems, designed for implementation on the transputer, is given to

justify their choice. Then, the three components which form the controller of the

robot, , namely a Parallax System, a Meiko Computing Surface with provisions

to communicate with the parallax, and an electronic interface unit between the

ADC and DAC of the parallax, and the joint motors of the robot, are dealt with.

5.2 Standard interface

The controller of the MA3000 TecQuipment Robot is connected to an IBM PS/2

host computer, via an interface unit, which provides communication, using the

8255 Peripheral Interface Adaptor (PIA) and associated circuitry, resident in the

backplane assembly.

It is possible to develop basic PID (Proportional, Integral, Derivative) algorithms

to control individual joints. The operating software of the controller, and the

default values for the PID control parameters are held in ROM.

The controller, as well as the host computer can access areas of RAM used as a

work space and shared memory, which is used to relay control information to the

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 107

controller CPU (a 6502 microprocessor is used).

A 256 byte memory slot is required for memory mapping, which is generated as

a pseudo memory expansion bus, using programmable input/output ports. This

is slower than direct memory mapping and restricts the maximum speed of the

robot joints. The host computer addresses the area with the interface card.

The interface unit is also used for host communication with two sets of read write

latches, used for process inputs and outputs, also for keyboard and front panel

controls

One limiting factor in using this set up to implement novel real-time controllers,

which are capable of taking the interaction of the joints into account and allow

tuning of the controller parameters, is the computational speed. Considerably

higher processor speeds are required to deal with the computational burden that

this class of controllers impose.

A choice which can help achieve the speeds required, is the Inmos Transputer,

which is a high performance single chip computer, with its capabilities as a fast

single processing unit and whose architecture facilitates the construction of par­

allel processing systems. Different parallel architectures could be devised to suit

various control algorithms, hence making the real-time implementation possible.

5.3 The Transputer and Occam

The Inmos Transputer, is a general purpose, very high speed processor, designed

as a processing element which can be connected to other transputers, to provide

a concurrent processing environment with extensive capabilities.

In addition to the high processing speeds attainable, either as a single unit or

part of a network, it has a number of unique features. Figure 5.1 shows a block

diagram of the T800 Transputer. The processor is 32 bit wide and it occupies

25 % of the total silicon area [35]. The following are some special features of the

Transputer:

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 108

▼ T

32

32

32

32

32

32

32

^ ~ ~ ^ 32 bit External Memory Bus

Event

Link
Interface

Link
Interface

Link
Interface

Link
Interface

Memory
Interface

*k bytes
of

On-cnip
RAM

System
services

32 bit
Central
Processor
Unit

Floating point Unit

Figure 5.1: Block Diagram of IMS T800 Transputer

• Eight 20 Mbits/S on chip serial communication links (DMA engines), four

IN and four OUT

• Communication being autonomous from the processor, which only issues

authorisation, that takes 1 y/s per message, regardless of the length of the

message.

• 4 kbytes of static on chip RAM to allow high speed I/O and computation,

matched to the speed of the processor and can be accessed and cycled in 50

nS

CH APTERS. TRANSPUTER-ROBOT INTERFACE 109

• Minimal Instruction Set, few registers, and can operate at a peak 20 MIP

rate, although the overall throughput is quoted as 10 MIP, as some instruc­

tions take longer than a single cycle

• Extra external memory of up to 4 Gbytes can be fitted

• The hardware scheduler of the Transputer allows, even a single transputer,

handling multiple jobs at the same time

To utilise these features of the Transputer, Occam has been designed, as a software

support that is capable of expressing systems level requirements of concurrency

and communication.

Any number of parallel processes can be specified in an occam program, and these

can run on one or more transputers. Multiple processes are supported by means

of task switching mechanism provided by the instruction set of the transputer.

Communication between processes is via point to point links known as channels.

Occam channels between parallel processes in the same machine are implemented

by locations in memory.

Communication provided by the occam model of concurrency is synchronised and

unbuffered [36]. This avoids the overheads of organising message queues, data

buffer and so on , while giving advantages in terms of simplicity of programming

and avoidance of many of the simple causes of deadlocks.

The occam process, is a procedural unit, defined by the P R O C statement. Chan­

nel declaration C H A N , defines the interface through which the process commu­

nicates with the rest of the program.

Processes are built from 3 primitive processes (assignment, input, output SKIP,

and STOP). SKIP is a process that does nothing and terminates, used for com­

pleting the syntax of constructs. STOP is a process that does nothing, but does

not terminate. These primitive processes are combined to form constructs:

SEQ sequential, P A R parallel, IF conditional,

W H IL E iteration, ALT, alternative.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 110

A construct itself is a process and may be used as a component of another con­

struct, suitable for hierarchical decomposition of complex tasks. This is unlike

conventional sequential programs, expressed with variables, and assignments com­

bined to form sequential, conditional and iterative constructs.

Real-Time programming in occam is possible, by using Timers. A channel like

type T IM E R which is only capable of input, is used to declare named objects

which can input the current time represented as a value of type IN T . The operator

A F T E R can be used followed by an expression representing time, to introduce

delays.

P R I can be used in real-time programming, to signify priority among processes.

Prioritized PAR, has the effect of assigning a priority to the parallel processes, the

level of which is determined by the textual order of the processes. In prioritized

ALT, when two inputs become ready simultaneously, the process with the higher

priority will be executed.

A powerful feature of occam is that it allows the use of a device called the replica­

tor to be used with one of the constructs, for construction of arrays of processes,

in addition to data and channel arrays.

A process can communicate with external devices which are connected to the

processor’s memory system [64], using memory mapped interfaces, provided by

occam. A port specification which is similar to a channel specification, is used.

A port input, inputs a value from the port, assigns it to the variable and then

terminates. A port output evaluates the expression and outputs the result to the

port. Occam also provides bitwise operators, to allow low level operations on the

individual bits in a value.

5.4 The Parallax System

The Parallax system, consists of four JD 002s (each providing two T800 Trans­

puter based systems) and two single T800 transputer based GBUS96 systems

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 111

(providing G64 and G96 bus interfaces to application boards). A 12bit resolution

ADC and a 12bit DAC board were connected to the GBUS96s.

5.4.1 Hardware

The ADC and DAC boards are interfaced to the network of transputers via G64

busses provided by GBUS96 10 Motherboards.

G BU S96 (Transputer based I /O M otherboard)

On this board as well as a T800 transputer chip, there is half a megabyte of con­

figuration EPROM and half a megabyte of RAM .Therefore it could be used as a

stand alone system or be part of a network [31]. The edge connector allows ac­

cess to four transputer links, as well as the up, down ports which enable external

control of transputer Reset and Analyse signals and the system port , which in

a parallax system containing a special system management card can be used to

control and monitor the transputer systems environment.

The board provides an interface to application boards such as ADC or DAC via a

G64/G96 bus. It supports asynchronous and synchronous modes for data transfer,

interrupt and bus request handling in bus master mode, as well as direct memory

access requester mode.

The G64/G96 interface is mapped into the upper half of the transputer memory

addressing space. Five ports are available for synchronous(2) and asynchronous(2)

addressing of cards as well as managing the I/O bus control signals(l). It should

be noted that the port addressing space for synchronous and asynchronous ports

overlap and application cards must be placed at different addresses to avoid con­

flict.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 112

Address Read Write
BASE Data most sig. byte Init. 12-bit conv.

BASE + 1 Data least sig. byte Init. 8-bit conv.
BASE + 2 STS word Clears EOC latch
BASE + 3 (unused) Multx. chan, latch

Table 5.1: Register Accessed

bit in OCCAM function
7 STS AND with # 80 converter STS line (high during conv.)
6 STS AND with # 40 latched end of conv. (active high)

0 - 4 STS AND with # IF multx. chan, address latch cont.

Table 5.2: 8 bit Status Word

SY N -D A C 8 D igital to analogue converter (B y Syntel m icrosystem s)

This is a G64 bus compatible analogue output module with eight 12bit resolution

channels [89]. A set of dip switches are used for selecting the board base address

within the system Valid Peripheral Address (VPA).The base address set is relative

to the system VPA base address.

DAC8 occupies 16 bytes of VPA space (two bytes per channel).The base address

offset is set to zero. Updating the DACs are done by writing the correctly formated

data to the appropriate address. The data format was chosen to be left justified

and the jumpers were connected so that the output range was between -10V and

+10V.

SY N C -A D C 4 A /D converter m odule

This is a 32(single ended) or 16(differential) channel, 12bit resolution (left justi­

fied) G64 bus compatible board which occupies 4 bytes of system VPA space [88].

Voltage range of -10V to + 10V was chosen by connecting the appropriate links

on the board. The base address is selected using a number of dip switches. This

address was set to 800 to be different from the address of DAC8. Accessing the

registers for the board are summerised in table 5.1 The status word is made up

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 113

of 8 bits and the function of single bits are described in table 5.2.

5.4.2 Driver software

Transputer Development Systems (TDS), was used to develop the Occam driver

software. This is a complete interface for Occam, combining a folding editor with

configuration and compilation utilities. SYN-ADC4 and SYN-DAC8 are both ad­

dressed synchronously. Thus the synchronous port of the I/O motherboard is

used to address them. Control, port is defined as PORT OF INT in the occam

program and is placed at #38000000 which is the OCCAM MAP word offset. The

diagram of the memory map, which specifies the machine map byte address and

the occam map word offset can be seen in Table 5.3.

To access 10 memory space in synchronous mode Synnc.IO.Space are declared as

memory INT arrays (INT = 4 bytes), covering all the length of G64 bus address­

ing space (16 data bit bus with 2x64 kbyte addressing space). Sync.IO.Space is

placed at #34000000 (look at the memory map).

Three jumpers LK8, LK9 and LK10 were configured on the motherboard to select

the operation of the board as G64 bus-master mode as opposed to Direct Memory

Access (I/O device).

Addressing the ADC and DAC and arbitrating between bus request and/or inter­

rupts are the responsibility of bus management port. This port consists of a single

register to which a control word can be written and the status read back. This

is done during initialisation, where configuration data is written to the control

register to define the operating mode of the card. Once this is done the G64 bus

must be enabled by deasserting the G64 Reset.

To drive the converter boards bus master board, Procedure Init.Interface (BOOL

Bus.Master.Mode, PORT OF INT Ctrl.Port) is used with bus.master.mode set to

TRUE . This initialises the interface such that the I/O motherboard is operating

in bus-master mode and the bus activity is enabled.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 114

The declarations of control and status values required to drive the I/O mother­

board bus interface via the control port and declarations of maximum page length

is included in a library. Example of these declarations are:

P O R T O F IN T Control.Port :

P L A C E Control.Port AT # 38000000 :

[G96.max.page.length] IN T Sync.IO.Space :

P L A C E Sync.IO.Space AT # 34000000 :

The procedures for the interface are also in a library These include Initialising the

Interface, Bus Master Event handeler, Direct Memory Access on and off.

The initialisation of the interface PROC looks like this

P R O C Init.Interface (BO O L Bus.Master.Mode,

P O R T O F IN T Ctrl.Port)

VAL IN T Set.BM IS #0A000000

VAL IN T Clr.BM IS #0A010000

VAL IN T Enable.Interface IS #0A060000

VAL IN T G64.max.page.length IS #10000

SEQ

IF

Bus.Master

Ctrl.Port ! Set.BM

T R U E

Ctrl.Port ! CLr.BM

Ctrl.Port ! Eriable.Interface

The library logical names are included in the Toolkit fold for when TDS is used.

For ADC, a 12bit conversion is initiated and when bit 7 of the status word is low,

8 relevant bits (data most sig. byte) are read to baseO, by masking off the other

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 115

Machine Map. Occam Map.
Byte Address Hi Lo Word Offsets

7FFF FFFC # 3FFF FFFF
EPROM Code
& Config data

7000 0000 # 3C00 0000
Control Word

6000 0000 # 3800 0000
Sync. I/O

5000 0000 # 3400 0000
Async. I/O

4000 0000 # 3000 0000
Sync Mem PI

3000 0000 # 2C00 0000
Sync Mem P0

2000 0000 # 2800 0000
Async Mem PI

1000 0000 # 2400 0000
Async Mem P0

0000 0000 # 2000 0000

Table 5.3: MEMORY MAP

bits of the BASE. Then the remaining 4 bits (data least sig. byte) is read to

basel from BASE + 1. note that data is left justified. Then these are combined

by shifting the most sig. byte of the data to the left and the least sig. byte of the

data to the right by 4 bits and using bitwise OR.

In the case of DAC, the digital values are written to BASE address and BASE

+1 in order to produce the converted voltage on channel 0. Note that there are 2

bytes per channel and data is left justified.

A library was created which contains the procedures for driving individual links in

a specified direction, as well as opening and closing of the gripper for the MA3000

Robot. This library also contains a procedure that sets all the output channels of

the DAC to zero.

As an example, the waist or link 1 is driven using channel 2 of the DAC i.e.

Sync.IO.Space[804]

Sync.IO.Space[805]

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 116

and its direction is selected using channel 5.

The values for the direction correspond to the level of voltage required for the

particular direction choice, as described earlier.

5.5 M eiko Com puting Surface

The idea behind using this system, was to extend the computing power of the

Parallax, by addition of more processors. Another motivation was, utilisation of

the provision of the facilities which allow cross-development compilers, offered by

Meiko Computing Surface. This meant that control programs and routines in pas­

cal, did not have to be rewritten in OCCAM.

Using the electronically configurable link connections, was an added bonus.

The Meiko Computing Surface provides an architecture for building scalable con­

current computing systems [66]. The boards within the system, consist of different

function blocks, Computing Elements, consist of a processor and some memory,

Supervisor Bus Interface, provides a global communications route between the lo­

cal Host and the processors within the system, monitoring and diagnostics, Link

Network Interface, allows manual or electronic routing of user determined link

connectivity, and Event Control Logic, describes the sources, masking and en­

abling of events to the processors.

The surface can comprise of a number of modules, configuration of which and

connection between them, depending on the requirements of the application, is

decided by the user. The modules should be connected together by a control in­

terface and user links.

The processors in the system used are hosted by an MK050. In all, eight quad

compute boards, MK060s which consist of 4 x T800 processors each, together with

communications, DRAM, and an interface on to the supervisor bus, are included.

In addition, there is a T800 based Frame Grabber (MK027) and a Graphics board

(MK015), which were not used.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 117 -

Meiko Multiple Virtual Computing Surface (MMVCS) operating system was used

to organise domains of processors in a variety of sizes and shapes, as required and .

develop programs. It contains two other operating systems, MEiKOS, which is

Meiko’s UNIX-based operating system, and OPS, which is the Occam Program­

ming System, similar to TDS, on Parallax.

Meiko Pascal Compiler and associated software tools can be used both within OPS

and stand-alone compiler from MEiKOS. This allows parallel versions of pascal

to run concurrently with Occam programs and communicate with them.

In this way, Occam, which is the native language of the Transputer, with control

constructs such as (SEQ, PAR, ALT, IF, WHILE) closely modelling the control

capabilities of the transputer hardware, while its communications primitives give

effective access to the Transputer’s inter-process and inter-processor communica­

tion links, can be used, and at the same time communicating pascal routines could

also run concurrently with them.

The possibility of being able to employ Communicating Sequential Tools (CS

Tools), which is a program development toolset for multiprocessor computer sys­

tems on Meiko is also appealing.

. CS Tools supports the programming of multiprocessor applications using familiar

development environments and standard languages. It consists of cross-development

tools, compilers and configuration systems, as well as runtime facilities such as

high level communication services and symbolic debuggers.

Parallel applications are expressed as multiple sequential code threads which co­

operate by message passing. One of the utilities CS Build, used for loading the

sequential threads on to application processors, operating at load time, enables a

parallel application to be re-targeted to different parallel machine configurations

with no modification to the application itself.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 118

Com m unication w ith Parallax

To be able to communicate with the Prallax, from MCS, two hardware interfaces

are needed, one link and the other control. The link interface can be implemented

in a similar way to the inter-module link interface, which is described by a Meiko

Technical Info, sheet.

Due to the inherent low tolerance of Inmos link protocol for data errors, a high

quality connection technique, with good noise immunity, allowing for 20 Mbits/s

link speed is needed and a moderate distance between the Meiko and the Parallax.

The transputer links, use full CMOS output drivers and TTL threshold receivers,

which are single ended, and when unbuffered, are unlikely to offer adequate per­

formance.

The best noise rejection and noise margin is provided by a differential buffering

technique. To provide this and also allow for high bandwidth, an ECL driver

receiver pair using differential signaling is used, which according to data sheets

and experiments by Meiko, fall within the specifications.

By using TTL-ECL, ECL-TTL translators, typical bandwidths of 85 MHz can be

achieved, with typical combined skews of around 2.5 nS

Resistors are used to form a series termination network into a cable made up of

twisted pairs, insulated and individually screened. This way the maximum output

current of the translators are limited, under short circuit conditions. A distorted

waveform at the transmit end of the cable, but a clean signal at the received end

is generated.

Resistors are also used to provide pull down for the output of the driver, provide

a small bias current to the output of the differential receiver, when the cable is

disconnected, and to limit the potential current that flows between driver and

receiver pairs during power up.

Control Interface to provide remote reset, analyse, software and hardware error

connections and a link for supervisor type communication, are also needed. The

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 119 -

control signals are buffered on input and output and daisy chained between the

Meiko and Parallax. They use RS423 signaling levels and active low signals. The

rise and fall time of the drivers are set to approximately 100 fi,S to minimise

crosstalk.

A driver software which allows addressing of the free Ports on the CS is included

with the MMVCS (To Slave Port is used for control, and for links, Inter-Cabinet

Link interface is used)

5.6 Electronic Interface U nits

Two interface units were designed, one current driven for computed torque control,

as in the type of motors used, torque is proportional to current T oc z, and one

voltage driven for position and velocity control, as velocity is proportional to

voltage 9 on V. Also the current profile under the voltage controlled scheme,

was observed not to be smooth enough for one of the controller implementation,

namely adaptive computed torque with load mass estimated on-line, hence the

current controlled approach was employed.

5.6.1 Voltage Controlled O utput, D river Circuit

The motor drive amplifiers, as well as the feedback circuitry in the controller

unit of the MA3000, were used in their original form and the Test of the hardware

needed was built. A schematic representation of the interface board built is shown

in Figure 5.2.

Analogue voltage signals from the DAC provide both direction and speed control of

individual joint motors. The motors for base and shoulder are Bodine 32D3BEPM-

W permanent magnet D-C motors, for elbow Bodine NPM-13 permanent magnet

D-C motor and a Portescap 34L11-224E5 is used for pitch motion. For all the

motors except the last, amplified Pulse W idth Modulated (PWM) signals are used

to drive them. As can be seen from Figure 5.2, a comparator is used to produce

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 120

a PWM signal from the analogue voltage from DAC together with a repetitive

ramp waveform (sawtooth) signal obtained a tap point on the controller board of

the MA3000.

SIGNAL
FROM

DECODER
DAC

LOGIC

CWSIGNAL
FROM PWM

CCW
DAC SIGNAL'

SIGNAL

JOINT
MOTOR

SAWTOOTH
v SIGNAL)

COMPARATOR
DIRECTION

ROUTER
LOGIC

MOTOR
DRIVE

AMPLIFIER

Figure 5.2: Schematic of the Interface Board

DAC voltages on different channels are decoded and passed through some initial

logic gates before going to direction router logic with the PWM signal in order to

establish the direction of movement. The resulting signals are sent to the motor

joints via motor drive amplifiers for the first three motors.

The interface board provides arrangements for the interface of the fifth joint motor

(ie. roll movement) as well as the gripper , but roll movement motor is not used

at present. The circuit diagram of the interface board is shown in Figure 5.3. The

assignment of DAC channels and the pin numbers corresponding to individual

joints are shown in the Figure.

Since there are only 8 DAC channels, a decision had to be made as to either build

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 121

a circuit that allows the direction selection by providing positive or negative drive

voltage corresponding to cw or ccw, or if direction signal had to be provided from

a different DAC channel, one channel was capable of providing direction signals

for two joints. These two options are represented in Figures 5.4 and 5.5. As

JLfli
= t>

CHflN 7

CHflN 0 ■=t>

CHflN 3
6RIPPER

CHflN 4

CHflN 5

18

19

14

15

17

20

13

16

22

24

26

ROLL

PITCH

ELBOV

SHOULDER

WAIST

Figure 5.3: Interface Board Circuit Diagram

can be seen the first option involves having a DAC channel that provides four

distinct voltage levels namely -10...-5, -5...0, 0...+5, +5...+10 in order to supply

+5V or -5V for two of the joints, according to the tru th table shown. In the second

option, both direction and speed signals for a motor is provided from one DAC

channel, by means of positioning two diodes with operational amplifiers, hence

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 122

VOLTAGE
(-10. . - 5 ; -5 . .0 ;0 . .+5 ;+5 . .+ 10)SIGNAL

22K
+5V

+5V
-5V

22K

22K

-5V

R B C p Q X Y
0 0 0 1 0 l l
l 0 0 0 0 0 l
l 1 0 0 0 0 0
l 1 1 0 1 1 0

Figure 5.4: First option for drive and direction signals using DAC chans

10M

+ 10V 10K
OR

-10V

LM339

LM339

Figure 5.5: Second option for drive and direction signals using DAC chans

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 123

restricting the flow of current in either sense depending on whether the voltage

signal is negative or positive.

Although the second option would have decreased the programming effort, but

due to its complexity and extra hardware needed ,for example a large number

of resistors around the opamps to prevent bias problems which could arise when

voltages of around OV are provided, option one was chosen. A power supply to

give -f 5V and -5V was included on the interface board to give the required voltages

of this option.

The Overall Circuit

It was decided to leave the circuit which provide the emergency stop signal and

the signal which indicates whether any of the joints are out of their limits or not

(info, by means of LEDs on the front panel of the controller).Also it was decided

to leave the circuit for ROLL movement, so that it could be operated manually

from the front panel. The overall connections could be seen in Figure 5.6. Voltage

signal from DAC is provided through a 20 way socket-plug arrangement to the

interface board. The eight channels available provide both direction and drive

signals. In the case of direction these pass through LM348 opamps which will

output either +5V or -5V for each motor depending on the level of the input

voltage. These were grounded via 22K resistors to prevent floating. For the logic

gates 7428LS single ended nor gates and 7432LS or gates were used.

A sawtooth signal is supplied from TP6 of the controller board. This signal

together with the DAC drive voltage signals are input to LM339 single-ended

comparators which output PWM signals and these go through direction router

logic 7404 NOT gates with direction signals.

These are then connected to a 26 way socket-plug (not all of the 26 pins are

connected (only the ones shown in Figure 5.3 are)) and are further connected via

a ribbon cable to a junction, where another ribbon cable from the 26 way socket-

plug of the controller board joins. From this junction all the wires of the first

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 124

ribbon cable and the wires from the second cable that correspond to the missing

ones of the first are combined and sent to the 26 way socket of the power amplifier

board. There is also a 20 way socket on the controller board which provides the

SIGNAL FROM DAC

POWER

SUPPLY,

TO JOINT MOTORS

INTERFACE BOARD 26 WAY SOCKET

AMPLIFIER
JUNCTION

BOARD

CONTROLLER BOARD
TP6

28 WAY SOCKET

2 0 WAY S O C K E T
FB VOLTAGE FROM POTENTIOMETERS

TO ADC _

Figure 5.6: Overall connections of the Interface

Feed Back Voltage from potentiometers mounted on individual joints. This is

connected to the ADC. The designation of ADC and DAC channels are shown in

section 4.

5.6.2 Current Controlled O utput, D river C ircuit

In this circuit, PWM is not used, as current control is not possible without, sig­

nificant additional hardware, and due to rapid switching of the current through

-an inductor (the armature), electrical electrical noise is created.

In addition when direct control of torque is required, as is the case for model-based

control algorithms of robots, then linear operation with an amplifier is preferable

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 125

to PWM.

To be able to control the amount of current that is supplied to individual motors,

by varying the input voltage, n-channel enhancement type power MOSFETs are

used.

In this type of MOSFET, when gate is made positive with respect to source, the

field of the positive gate repels holes in the p-type substrate away from the in­

sulating layer, leaving behind a narrow channel of n-type silicon. This narrow

2.5
T I = -5 5 ^ C— ■»(// I " "

<c* 2.0 ■ 1 28T 0 - u 1

UJ
a:
a: 1.5-

1 1

______J_______ L .
1 I II

- * - 1 2 5 ^ C

I
O 1 1 V I
z
2

1.0 •- - j - - U y L J --------- J------------
a 1 1 / I
!
a 0 .5 .

— 1 Yn --
i- i

-4
- 1 1

0
1 i

) 2 4 6 8 10

- GATE-T0-S0URCE VOLTAGE (V)

Figure 5.7: Typical Transfer Characteristic od IRF610

channel provides a conducting path from source to drain. In this way, given a

certain positive voltage on the gate to make the device conduct, the drain current

is under the -control of the gate voltage.

There are advantages in using MOSFETs, as opposed to bipolar transistors. They

operate at much higher speeds, and have a positive temperature coefficient, that

means their resistance increases with temperature, so that the MOSFET is inher­

ently stable in response to temperature changes and protected against thermal

run-away.

They can also be operated in parallel with other MOSFETs without “current

hogging”, which means if any device overheats, its resistance increases, and the

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 126

current is rerouted to the cooler chip [33]. A typical transfer characteristic of the

+ 128 0 /1 5 V MOTOR
 SUPPLY —

, VOLTAGE L.V.
P.S.U.

0 /5DC
MOTOR D/A

+ 5+ 12

D/A
POWER

MOSFET0 -1 0

LOW
VOLTAGE

P.S.U.
ADJ.ADJ. FUSE

L.V.
P.S.U.

MAINSAC

LEVEL
CONVERTER

VOLTAGE
CLAMP

D.P.
RELAY

RELAY

DRIVER

SCALING
CIRCUIT

UNITY
GAIN

BUFFER
AMP.

DIRECTION
LOGIC

7TL

2-W AY
RELAY

DOUBLE
POLE

Figure 5.8: Description of current drive circuit

IRF610, which was used after considering various types of MOSFETs is shown

in figure 5.7. As can be seen the linear region of the graph, spans for about two

volts, which in practice due to high currents resulting at the top end of the scale,

saturation occurs before reaching the maximum. Hence input variation of one volt

can be used to linearly vary the current.

The circuit diagram description for implementing the current drive is shown in

Figure 5.8. It shows that the control voltage which is output from DAC (between

0-10 V) is fed through a scaling circuit and a level converter, so that the voltage

range is scaled down and added to the threshold voltage value specified by the

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 127

- transfer characteristics of the MOSFET. This is then passed to the power MOS­

FET, after a buffer amplifier LM324.

DAC channel outputs (0-5) are also passed through direction logic (7405) and a

relay driver to operate a relay for direction change of the motor when required.

A relay is also used to prevent the output plug pins of the circuit which can carry

RLY
80/15 v

12V
+12V

€>RLY

DC
MOTOR1717

100K

820K + 12VIRF
610 , 12V

COIL
>160R

LM
324 414 81 -1 0

DAC 820K 2N
3 9 0 4

+5V

10K

100K 2K
250
mA I

0 /5
7 4 0 5

TTL
GND

17/7

Figure 5.9: Current drive circuit diagram

up to 88.5 volts, to have any voltage present, unless the plug is coupled with the

robot socket, as a safety measure.

The circuit diagram of the above is shown in Figure5.9 A current lim iter' is also

added to the circuit, in order to prevent excessive currents to the motor. This is

not shown in the diagram.

CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 128 -

The overall representation of the system connections , including, the Meiko, Par­

allax Interface Unit, and the MA3000 is shown in Figure 5.10.

CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 129

MEIKO COMPUTING SURFACE

ONE M K 0 0 9 -4 x T 8 0 0

EIGHT MK060 4 x T 8 0 0

ONE MK027 lx T 8 0 0

ONE MK015 lx T 8 0 0

ONE MK050 HOST [> < 3

SUN WORKSTATIONS

TDS ENVIRONMENT OR STRNDRLONE TRANSPUTER PROG

LRB-IBM
RDRP. CARD

JD002S

- 4 iRANSPUTER
NETWORKGBUS96 GBUS96

SIGNAL FROM DRC
SIGNAL TO ROCLINK

RESET. ANALYSE. ERROR

i n t e r f a c e

UNIT

Figure 5.10: The overall connection of system components

90^634

C hapter 6

Control of R obot M anipulators

SU M M A R Y

After a brief introduction which points out the difficulties with

PID controllers that a great majority of robot manufacturers em­

ploy for manipulator control, a review and discussion of major

control schemes that have been proposed to improve the perfor­

mance and capabilities of manipulators for mainly trajectory fol­

lowing tasks is presented. Two new adaptive schemes that utilise

a priori knowledge of robot dynamics are introduced in sections

6.7 and 6 .8 . Implementation of these methods to control an

MA3000 robot will be explained and discussed in the next chap­

ter. One of the control shemes is model based control with load

mass estimation, and the other is model based continuous time

variable structure self tuning.

6.1 Introduction

The robot manipulation problem is basically defined as dynamic control under

kinematic constraints. To control the manipulator to follow a desired path, one

needs to servo the manipulator’s joint actuators.

Prior to this, path planning ought to be carried out to ensure a particular type of

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 131

movement, obstacle avoidance etc.

Therefore robot manipulation is done in two stages. First the trajectory planning,

where the desired path is usually specified by a class of polynomial functions which

generate a sequence of time-based control set points. And secondly the motion

control, where on the basis of the knowledge of kinematics and dynamics, a con­

trol strategy is employed to achieve a desired response and performance.

Kinematics and dynamics of manipulators were discussed in a previous chapter.

As stated dynamic equations of robots can be represented by a set of highly cou­

pled nonlinear second order differential equations.

Industrial robot controllers, mainly operate on joint basis and ignore the dynamic

interaction of the joints, and as a result accurate trajectory following and high

speed operations are not catered for. Simplicity and low price of implementation

associated with the PID (Proportional, Integral, and Derivative) control method

has led the majority of industrial robot manufacturers to employ this approach.

Each joint of the robot is taken to be a second order system with inertia and fric­

tional damping, and usually gravitational loading as well. By careful choice of the

controller gains to suit system inertia and damping, a satisfactory transient re­

sponse with little overshoot can be achieved but only if the inertias were constant.

Configuration dependant inertias can vary largely during an operation cycle. In

addition, although steady state errors due to gravitational loading can be reduced

to acceptable values by gain adjustment, handling different load masses, results

in inertia changes.

This means that one PID setting can result in transient responses which are over,

under, or critically damped, depending on the position of the robot and the load

mass that it carries. The usual design procedure is to predict the worst case of

inertia that each joint actuator is likely to encounter and then choose the PID

parameters that give a critically damped transient. As a result the system will be

overdamped most of the time during an operation.

Depending on the kind of application that the robot is meant to be used for, this

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 132

type of control strategy is quite frequently appropriate and the results are accept­

able. For example for low speed point to point operations it gives good accuracy.

For trajectory tracking, the accumulation of errors resulted from individual joints

can be quite significant at times, and at high speeds the centrifugal and coriolis

forces which create mechanical coupling between the joints can be large enough,

to require some kind of dynamic compensation for good performance.

There have been a number of attempts to calculate the robot dynamics on-line

and use the information within a control scheme, which will be discussed. The

general view point in this chapter will be that in addition to this, there is a need

for an adaptive control scheme to allow for parametric and structural uncertain­

ties that are invariably present, as well as neglected dynamics in the modelling

process and existence of variety of disturbances.

6.1.1 R obot Control Strategies

For a six degree of freedom robot arm, there are two type of movements, one that

involves the first three joints and presents the first phase of the control objective

to move the arm from initial position and orientation to the vicinity of the desired

final position and orientation, and the second is the fine adjustments to get to

the desired location as close as possible, which requires control of the end effector

degrees of freedom.

In the former motion also referred to as gross motion the dynamic coupling be­

tween the joints and the configuration dependent inertias are significant, and

majority of the control strategies in the literature address the control strategies

for this type of motion.

In addition to path trajectory tracking, there are various other control schemes

that are presented within the context of manipulator control, for example impedance

and force control, coordinated control of multi robot systems, or incorporation of

control schemes within learning algorithms.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 133

The path trajectory tracking can be joint motion control, cartesian space control

where the motion of various joint motors are combined and resolved into sepa­

rately controllable hand motions along a specified coordinate system by means of

simultaneously running the joint motors at different time-varying rates.

Adaptive controllers are in general employed to deal with inaccurate modelling

and uncertainties.

They are designed to achieve objectives such as insensitivity to parameter uncer­

tainties and unknown payload variations and to obtain decoupled joint response.

There are various ways of classifying adaptive controllers. It could be on the ba­

sis of the control objective which results in a particular controller structure, or

whether the update of the parameters is done according to the error between the

estimated parameters and the true parameters (prediction error), or the difference

between the actual and the desired output (tracking error).

Another approach can be based on whether there is any approximation involved or

not. The non-approximation methods generally consider the nonlinear dynamics

of the manipulators fully, which are time varying and reflect their coupled nature.

The main bulk of recent work in this area utilise the idea of being able to select

a set of parameters that the manipulator dynamics depend linearly upon and as

a result the restrictive assumptions such as slow variation of inertia m atrix or de­

coupled motion of the joints can be lifted. This certainly also gets round having

to linearly approximate the dynamics around a desired trajectory too.

Finally the type of measurements required can form the basis for classifying adap­

tive controllers.

In the following sections first of all nonlinear feedback control algorithms for ma­

nipulators, and some methods that have been developed to take advantage of the

possibility of linear parameterisation of manipulator dynamics are discussed.

As classification of the form stated above might confuse the issue, some main

schemes are discussed on the basis of the authors that presented them. They

CHAPTER 6. CONTROL OF RO BO T M ANIPULATORS 134

basically cover most of the variations. In all cases global convergence of the algo­

rithms have been shown.

Then linear perturbation adaptive control, model reference and self-tuning adap--

tive controls, robust control and in particular variable structure control applied

to robot manipulators and an adaptive controller based on the idea of estimat­

ing the load mass that the robot carries are discussed. Finally a new method

namely a model-based variable structure self tuning adaptive control is presented

which decouples the dynamics and accounts for nonlinearities before applying a

variable structure self tuning controller to each joint of the manipulator. This

is usually implemented by first designing a non-linear feedback to transform the

robot model into an equivalent linear system, and then use a linear controller for

achieving desired closed loop response of the joints.

Although the above does not include all the approaches in adaptive control of

robot manipulators, it represents a reasonable cross section which other methods

are slight variation of. In the last section, miscellaneous methods which are of

importance will be mentioned.

Where necessary issues of convergence and robustness will be included.

6.2 Some non-linear feedback control algorithm s

for R obots

In this class of controllers, the dynamic robot model is utilised to control the robot

joints.

There are three main points to note, firstly the exact knowledge of the robot

dynamic model is needed, second, the calculations of the equations need to be

performed on line in real-time when implementing the scheme, so speed of compu­

tation ought to be considered, and finally the scheme is not robust in the presence

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 135

of modelling and parameter errors. In this section the general methodology be­

hind this model-based approach will be given and then the work which has been

done will be looked at.

The dynamics of the robot manipulators was discussed in a previous chapter. The

structured closed form dynamic robot model for rotary joints can be represented

as

M (0) 8 + Q(O,6) = t (6.1)

where 0 represents the joint angles, M the inertia matrix, and Q the vector of

centrifugal and coriolis forces.

This provides physical insight into the nonlinear system. It should be noted

that the inertia matrix can be shown to be positive definite over the entire work

space as well as bounded from above since it contains only polynomials involving

transcendental functions of 0 .

The equation can be brought to the state-space form by letting

A / n A
x = (0 , 0) ; u = r

to get

Xx = x 2
(6.2)

x 2 = - M 1(x 1) [Q (x 1, x 2) - u]

Actuator (motor) dynamics should be included in the dynamic equations of the

manipulator to give a realistic model of the robot behaviour, the way which was

stated earlier, or similar to the method of Tourassis [91], in which the dynamic

model of the actuator of joint i is represented by a second-order differential equa­

tion

JAitii + FAidi + ^ ^ K A i U i i t) , for i = 1,2, • ■ ■, jV (6.3)
1VAi

where Ja% is the motor inertia, Fjxi the motor damping coefficient, N&i the gear

ratio, K ai the gain, n(t) the the actuating joint torque, and Ui(t) is the input

voltage.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 136

Also
JP D . K tI<B 1 j r K tFAi =. B H------- - — and K Ai =

R M N AiR

B being the motor damping constant, K t , the torque constant, R the armature

resistance, and K b , the back e.m.f constant.

Then the constant actuator inertias scaled by the squares of the gear ratio are

superimposed on the diagonal elements of the inertia matrix, and the reflected

motor torques are directly added to the Q vector.

Sometimes the dynamic equations are represented in the form

M(0)0 + C(0, 0)0 + G(0) = r (6.4)

where compared to equation 6.1 (7,the gravity dependent terms are represented

separately.

The adaptive control implementation of Craig et al. [16] etc. suggest replacing

M , C, and G by their estimates. In other words, based on the representation of

equation 6.1 the actuating torque signals required to control the robot model are

calculated from

r(t) = M(0)u(t) + Q(0, 0) (6.5)

where circumflex represents the estimated values, and u{t) is the control signal,

which is designed to be the superposition of a nominal feed-forward signal r(t)

and a linear state-variable feedback control signal.

Equating the torques in 6.1 and 6.5:

M{0)0 + Q(0,0) = M{0)u(t) + Q(6>, 0) (6.6)

and adding M0 to both sides and then rearranging, the following equation is

obtained:

£ = « (*)+ ‘ ~1{ [M{ O) - M{ O)] $ + [Q(0 , 0) - Q(e , 8] } (6.7)

This can be written in a simple form:

0 = u(t) + s(t) (6.8)

92

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 137

m(g) ROBOT
0(t)

v(t)

Figure 6.1: Nonlinear feedback

The block diagram representation of this strategy is shown in figure 6.1.

The control signal is equal to

u(t) = r(t) - K v(0 - v) - K P(Q - v)

where u(t) represents the measurement noise vector, and I{v and K v are the

velocity and position feedback gain matrices respectively.

Substituting u(t) into equation 6.8, we get
+

9 -f K v '(9) + I<p9 = r (t) -f s(t)Kvi) + K pv

This is the closed loop system including modeling errors and measurement noise.

The dynamic equations of the manipulator, in addition to being used in control

schemes that will be discussed, can also used to study asymptotic tracking of

desired joint positions. For example it can be shown that a PD controller of the

form

u = K PS - K d 9 (6.9)

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 138

where 6 = 0d — 0 and K v and K v are diagonal matrices of positive proportional

and derivative gains, achieves zero steady state error [87] in the absence of gravity.

As described in [87], considering the Lyapunov function candidate

V = 10t (M(0))9 + 1 9t Kp9 (6.10)

where V is positive except at 6 = 6 <i, 0 — 0 where it is zero.

It can be shown that along any motion of the robot V decreases to zero. Since Oj

is constant

V = 9t (M (0))0 + \ e TM{6)0 - BTK„e (6.11)

Solving for M0 in the dynamic equation of the form

r(t) = M(0)0 + C(0,0)0 + B0 + G(0) (6.12)

where B represents damping coefficients, with gravity terms equal to zero and sub­

stituting the results in the above equation and using the skew symmetric property

of the dynamic equations M — 2C, with the PD control law substituted it can be

shown that

V = - 0 t [Kd + B]0 < 0 (6.13)

as long as 0 is not zero, V is decreasing.

The possibility of the angles not being equal to their desired values when the

angular velocity is zero is ruled out by assuming V = 0, then equation 6.13

implies that 0 = 0 and hence 0 = 0. From equations of motion with PD control

M0 + Q(0,0 = —K P0 - K d 9

—K p0 must equal zero, so 0 = 0, 0 = 0. Using LaSalle’s Theorem that states:

Given the nonlinear system x = f{x) on supposing a Lyapunov function

candidate V is found such that, along solution trajectories V < 0 then the system

is asymptotically stable if the only solution of the system satisfying V = 0 is the

null solution, the system must be asymptotically stable.

This study further shows that in the presence of the gravity term in the dynamic

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 139

equations, the PD controller alone cannot guarantee asymptotic tracking and

modifications to cancel the effect of the gravity need to be included.

For the purpose of control, the methods which are discussed in the next section

utilise some properties of the equation of motion of manipulators.

Three main properties are

• Symmetric, positive definitness of the inertia m atrix and for revolute joints

the boundedness of it and its inverse.

• Ability to write the dynamic equations in a form that is linear in some

parameters of interest such as masses, moments of inertia etc.

• If we represent the dynamic equations in the form 6.4 then M(0) — 2C(0, 0)

is skew symmetric

Using these, global asymptotic stability can be established. In cases where filtered

acceleration is used in methods the third property is not needed.

6.2.1 M ethod o f G oodw in and M iddleton

This method is described in [67]. Presenting the dynamic equations of manipu­

lators in the form of equation 6.4, linear parameterisation is used to obtain the

model in the form

t = Ti(0,0,0)a (6.14)

where Yi is a non-linear matrix function of the angles, and their first and second

derivatives, and a is a vector of equivalent parameters

Then the acceleration terms are eliminated from the above equation by filtering

both sides of the equation through an exponentially stable and strictly proper

filter shaped to effectively filter out high and low frequency disturbances.

Convolving both side of the equation by w(t), the impulse response of the filter,

and eliminating 0 by integrating by parts the following equation is obtained

y(t) = W(0,0)a (6.15)

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 140

where y is the filtered torque and W the filtered non-linear matrix function Yi .

Then a prediction of the filtered torque and a prediction error can be generated

based on the estimated parameters a from the adaptation law

y(t) = W(9,0)a(t)e = y — y = Wa (6.16)

with a = a — a being the estimation error.

6.2.2 M ethod o f S lotine and Li

The method is introduced in [83]. Again representing the dynamic equations of

the manipulator in the form 6.4, the estimated parameters a(t) are substituted in

M (0), C(9,9) and G(0) to obtain M, C and G. The control law is written as

r = M{0)0r + C(0,9 ,9r) + G(9) - I<Ds (6.17)

This equation represents an adaptive feedforward action to adaptively cancel the

robot dynamic forces, and a PD action regulating the tracking error to zero.

And the adaptation law is

h(t) = - p 0 Y T(9,e,er,er)s (6.18)

where K d thqt can be time-varying is a uniformly positive definite matrix, the

adaptation gain P0 is a constant symmetric positive definite matrix, and

0r = 0d - A0

which is introduce d to guarantee convergence of the tracking errors, rather than

just the velocity errors.

s = 0 - 0 r = 9 + A0 (6.19)

where 0 = 9(t) — 0d(t), and A is a constant positive definite matrix.

This is a measure of tracking accuracy and is used to drive the parameter adap­

tation.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 141

Matrix Y of equation 6.18 is defined by

M(0)0r + C(0,9)9r + G(0) = Y (0 ,0 , 6 r, 9r)a

Y can be calculated from measurements of only 9 and 9, as

0 r = 0 d - A O

Global tracking convergence of the adaptive controller, is shown by first of all

substituting the control law into the manipulator dynamics and obtain the closed-

loop dynamics

M s + (Kd + C)s = Ya (6.20)

And considering the Lyapunov function candidate

V(t) = \ [s t M s + ar P0- 1a] (6.21)
oA 'A

V , >/ *
as well taking to account the skew-symmetry of (M — 2(7), the following - resulted

V(t) = - s T K D s < 0 (6.22)

As a result boundedness of s and a and convergence to zero of both position error

and velocity error is shown. However exponential convergence of the tracking

errors in the presence of persistent excitation has not been shown.

6.2.3 A nother m ethod of S lotine and Li

An approach that uses both tracking error and prediction error for their adaptation

law was presented in [84]. Using the same symbols as the previous method, in

this method the adaptation law has the form

h(t) = —P(t) (YTs + W TR(t)e) (6.23)

W being the filtered value of a nonlinear matrix function of 9, and 9. R(t)

is a uniformly positive definite weighting matrix, and P(t) is uniformly positive

definite gain matrix.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 142

The form of the control law and the closed loop dynamics are the same as the

previous method.

In [85] they show the global asymptotic and exponential convergence of the track­

ing errors and parameter errors for the above adaptation law. The convergence

analysis uses the Lyapunov function candidate

V(t) = s t M s + aT P~x a] (6.24)

They also show that the method has faster parameter convergence and better

tracking performance compared to the previous method, by simulation.

P can be generated using the gain update technique of various parameter estima­

tors. Slow convergence of the gradient method and unsuitability of the standard

least squares for time varying parameters led them to study parameter estimation

methods such as bounded gain forgetting and cushioned-floor method [56] with

desirable robustness and convergence properties.

In this method like the previous one discussed, there is no need for measurement

of joint acceleration or for inverting the estimated inertia matrix. In fact it is

an extension of the previous method in the sense that the tracking error in this

method is essential to the Lyapunov convergence analysis.

6.2.4 M ethod o f Craig

A description of this method can be found in [16]. In this proposed control law in

the ideal case of perfect knowledge of parameter values and no disturbances, the

gains of the closed loop dynamics may be chosen to place the poles of the system,

and is of the form

T = M(0)6* + Q(6 , 6) (6.25)

where circumflex represents the estimates and

0* = §d + K VE + K PE (6.26)

CHAPTER 6. CONTROL OF RO BO T M ANIPULATORS 143

E representing the difference between the desired and true values of the angles.

Including the control law in the dynamic equation of the form

t = M{0)0 + Q(0,0) - (6.27)'

the following error equation is obtained

E + K VE + K PE = M -\0)[M (9)0 + Q(6,0)] (6.28)

where t i l d e represents errors in the dynamic model used in the controller, i.e. the

difference between the estimated values and the actual values.

The error equation is written in the form

E + K VE + K PE = M ~ 1(0)W(0,6,0)$ (6.29)

$ being the r x 1 vector of parameter errors and W an n x r matrix of functions.

The filtered servo error

Ei = E + ^ E

where = diagfyi fa ” m ?/>; > 0

is used, so that parameter estimates can be changes as a function of this. This is

the adaptation law.

The criterion for choosing is that the transfer function

s + ipj
S “f" l^vi & 4 " kpi

is strictly positive real.

In the state space form the filtered error equation is given by

X = A X + B M ~ 1W $ E 1 = C X (6.30)

where A,f?, and C are block diagonal with the matrices of a minimal state space

realisation of the filtered error equation on the diagonal, and X is the collection

of state vectors.

Then Lyapunov theory is used to derive the following adaptation law

P = T W t M - 1E 1 (6.31)

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 144

Also the parameter update law is augmented to restrict the parameter estimates

within the bounds defined.

In this method stability of the adaptive system in the sense that all the signals

remain bounded is shown. Also convergence of the servo errors to zero is shown.

A condition on the desired trajectory such that all parameters will be identified

after a sufficient learning interval was derived in this work.

Practical applicability of the above method is questioned for two reasons, firstly

the requirement to measure joint acceleration is noise prone and secondly the

inversion of the estimated inertia matrix which is assumed to remain uniformly

positive definite in the course of adaptation is computationally expensive.

6.2.5 M ethod o f Sadegh and H orowitz

As explained in [77], this method exploits the skew symmetry property of the

manipulator dynamic equations. When the dynamic equation is written in the

form of linear in the parameters, the matrix of known functions is independent of

the joint acceleration, which is an advantage.

The method can be easier analysed if its presentation is based on a theorem

considered in [71].

The theorem is as follows with different notations:

Let t —> 6 d(t) be a given twice differentiable function and define e(t) = 0(t) — 0d(t).

Consider the differential equation

M(0)r + C{0, 0)r + K vr = (6.32)

where M and C are as in 6.4, K v = I(% > 0, r is given by

r = F(s)~1e (6.33)

where F(s) is strictly proper, stable, and the mapping — r —> ^ is passive, i.e.

Tf — rT(t)^(t)dt > —/3 (6.34)
Jo

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 145

for all T and for some (I > 0. Then e E L% C\ L 3, e € TJ, e is continuous and

e —► 0 as t —* oo. In addition, if is bounded, then r —> 0 as t —* oo and as a

result, e —̂ 0.

Given the system dynamics 6.4, the control law is chosen as

r = ,M(0)a + <7(0,9)v + G{0) - K vr (6.35)

where r is defined as r = 9 — v,

v = $d — sK(s)e; a = v — 9 — K(s)e

for I<(s) — K p + KdS + K i /s , an outer loop PID control law.

Substitution into 6.4, gives

M4 + C 6 + G = Ma + Cv + G - K vr (6.36)

Since 9 = r + a and 9 = r + u,

M r + Cr + K vr = Ma + Cv + G (6.37)

The left hand side of this equation is identical to equation 6.32 and if the right

hand side is arranged in the form of a matrix of known functions (being a function

of angle, angular velocity, v and a, which depend on the velocity and acceleration

of the reference trajectory) multiplyed by a parameter vector.

Y (0 j , v , a) $ = V

Parameter update law

$ = - r - ^ r

for some symmetric positive definite matrix T, is used such that the mapping

—r —► $ is passive.

3Standard Lebesgue spaces Loo and ■ I 2 are defined as L^0(R+) = { f ’R+ —■y
R n such that / is Labesgue measurable and ||/||oo < 00} and ^5(-^+) = { f :R+
Rn such that / is Labesgue measurable and ||/||2 < 00} respectively.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 146

6.2.6 C om m ents

The above methods take full consideration of the nonlinear and coupled nature of

robot dynamics and can be regarded as globally convergent.

However they do not give any account of the transient performance or any discus­

sion on nonuniformity of asymptotic stability that can lead to instability in the

presence of small changes in the dynamics.

These issues were recently discussed in [71], where they propose possible modifi­

cations to alleviate the problems. They discuss persistency of excitation, update

laws, and robustness, but not the effect of unmodeled dynamics or bounded dis­

turbances on these methods.

6.3 Linear Perturbation A daptive Control

This method involves the use of perturbation feedback control to control the

manipulator in the vicinity of a desired trajectory. The formulation reduces the

nonlinear control law to a linear one.

A nominal trajectory is used to obtain nominal torques using N-E equations of

motion. Then nominal states from the planned trajectory and the nominal torques

are used in the manipulator dynamic equation to get

xn(t) = / K W , un{t), t) (6.38)

where n denotes nominal.

Then dynamic equation is linearised about the nominal trajectory using Taylor

series expansion and 6.38 is subtracted from it to obtain

Sx(t) = V xf \ n8 x(t) + V uf \ n6 u(t) (6.39)

where V a,/|nandVu/ | n are the gradients of f (x , u , t) , evaluated at x n and un re­

spectively, and 8 represents the difference between the actual and nominal values.

The control problem is then to determine 8 u(t) that drives 8 x(t) to zero and the

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 147

system remains asymptotically stable.

The gradient functions above are complex and are not known exactly, so an adap­

tive approach is needed.

Lee and Chung [52], discretise the model and by assuming the parameters of the

system are slowly time varying, all state variables are measurable, and measure­

ment noise is negligible, use recursive least squares for identification and employ

a coupled linear quadratic controller.

Their scheme presents a heavy computational burden that slows down the adap­

tation rate in real time, as Qn2 parameters need to be estimated on line, n being

the number of links.

Takeyaki and Arimoto [90] by using an approximated robot model investigated

an adaptive control law for 8 u based on MRAC Lyapunov design technique, and

by simulation demonstrated the effectiveness of their method.

Vokobratovic and Kircanski [96] presented a method based on asymptotic regula­

tor properties that relied on linearisation of the dynamic manipulator model along

a given nominal trajectory. It also involved an algorithm for synthesis of a robust

linear regulator to ensure the decoupled control of the system.

The resulting equation of the linear perturbation method is in general time vary­

ing because of nonconstant nominal trajectories, and hence determination of the

stability of the system is difficult.

Bounds on the error terms can be imposed and then the stability of the linear

system can be investigated.

6.4 M odel Reference A daptive Control

This method was originally introduced by Whitaker in 1958, basic ideas of which

are given in [73]. This method was applied to robotics by Dubowsky et al [19]. In

this method a model which gives a desired performance response is chosen, and the

the difference between this and the system’s response is the basis for adjustment

CHAPTER 6. CONTROL OF R O BO T MANIPULATORS 148

of the controller’s parameters in order to provide a suitable control input to the
s

plant. Usually the desired reponse is chosen to be a stable linear time invariant

decoupled system.

The adaptation algorithm is designed based on asymptotic stability requirements

of the MRAC. Lyapunov, hyperstability criteria etc. have been used to ensure

stability. There are various ways of implementation, a continuous-time direct

method could be summarised as follows

Defining the plant as

v(t) = ^ “ (0 (6-40)

where u is the control input, y the plant output, and A and B are polynomials in

the differential operator. We assume that the system is proper (i.e. degA > degi?

) and A is monic (its first coefficient is unity).

Let the model which gives the desired response be represented by

Vm(t) = ~ u c(t) (6.41)
A-m

where uc is the command signal and A m and B m are polynomials in the differential

operator.

A general control law

Ru = T u c — Sy (6.42)

where R, S, and T are polynomials, can be used.

Eliminating u between equations 6.40 and 6.42,

(AR + B S)y = B T u c (6.43)

Factorising B

B = B +B~ (6.44)

where B~ represents the factors that contain poorly damped or unstable zeros

that can’t be cancelled. The assumption that B + is monic, assures the uniqueness

of the factorisation.

CHAPTER 6. CONTROL OF R O BO T MANIPULATORS 149

Now equating the closed loop system’s response and the desired response:

B T B m
A R T B S A m

But A R -f- B S must have A mB + as a factor to obtain the desired closed loop

response i.e.

A R + B S = A mB +A 0 (6.45)

Therefore
B + B - T B m
B ^ AQAm A m

where A q is interpreted as observer polynomial. Hence

B - T _ B m
A qA jji A m

which means

B jrA q = B T

But B + divides B m and as a result

B m = B B,m
(6.46)

T = B'mA 0

In Diophantine equation 6.45 B + divides R

R = B +Rx (6A7)

Now if we divide 6.45 by B +, we get

ARi + B S = A QA m - (6.48)

Equations 6.46, 6.47, and 6.48 give the controller polynomials.

In the case of a minimum phase system, a controller that cancels all the system

zeros can be used, then AoAm = AR\ + boS then if we multiply by y and use the

model equation

AoAmy = b0(Ru + Sy) (6.49)

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 150

The polynomials on the left-hand side are known and can be used to estimate the

unknown controller parameters on the right.

For pole placement design for example, A 0 is specified and R and T are found

from equations 6.47 and 6.46 and substituted in the controller of equation 6.42. Ri

and S should satisfy equation 6.48. In addition pole excess of the model cannot

be smaller than the pole excess of the system and the degree of the observer

polynomial should be sufficiently large.

Once a suitable structure is chosen, then an error model is derived. The error

model should be linear in the parameters, except if the Gradient method is used.

Tricks such as filtering and error augmentation is used to to derive the error

equation.

Following the derivation of the error model, parameters can be updated using a

law such as
dO , x
£ = TV® (6-50)

where, when using the Lyapunov stability

<p = [“ Mc y] T

where uc represents the command input and ?/, the plant output, e is the error.

Representation of a model reference adaptive control is shown in figure 6.2.

In general although the method of MRAC is not computationally demanding,

it is difficult to implement it and adaptation to disturbances is less than satisfac­

tory.

The method of [19], is entirely based on the Model Reference Adaptive Controller,

and the adaptation algorithm is based on the steepest descent, followed by a sep­

arate stability analysis using linearisation.

The adaptation is based on acceleration error which requires measurement of the

acceleration. The controller functions on joint basis and the coupling terms be­

tween joints are ignored. The computation of the torques requires the inversion

CHAPTER 6. CONTROL OF ROBOT MANIPULATORS 151

MODEL
1

m

parameters ADJUSTMENT
SCHEME

1

CONTROL
ACTION } SYSTEM

1

y

Figure 6.2: Model Reference Adaptive Control

of the generalised inertia matrix which introduces difficulties for real-time imple­

mentation.

Later Tomizuka and Horowitz [34], improved on Dubowsky and DesForges ap­

proach and based their overall control strategy on MRAC in an inner loop, but

included a PID fixed gain controller in the outer loop. Their design method is

based on the hyperstability approach, and they explicitly consider the coupling

among joints and the nonlinear terms in the manipulator equations of motion.

They however, only presented simulation results to show that their control sys­

tem was insensitive to variations of manipulator configuration and payload.

Anex and Hubbard [5] implemented and evaluated the adaptive control of Tomizuka

and Horowitz, giving insight into practical problems associated with implemen­

tation, although the structure of the manipulator that they used (Rhino XR-2)

does not allow full evaluation of the algorithm as they suggested due to speed

limitations.

They addressed disturbances due to Coulomb friction, gravitational loading, and

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 152

actuator saturation.

They also developed a bond graph model of the manipulator which is simpler than

usual models and allows all manipulator subsystems to be included in a uniform

way.

They found that the manipulator has significant amount of Coulomb friction which

is a nonlinear disturbance, that unless cancelled degrades the performance of the

controller and had to include it in the model.

They also found that the motors saturated easily due to an integral gain term

in the inner loop of the adaptive controller, which was not really needed for the

elimination of the steady state error. This elimination was already being provided

by the integral nature of the parameter adaptation of the feedback loop.

They suggested that due to the fact that a system can never be modelled exactly,

the adaptive scheme should be modified slightly to make the reference model

independent of the plant output.

6.5 Self-Tuning A daptive Control

In this type of adaptive control strategy, a set of desired controller parameters

are found according to a design procedure for example minimum variance, lin­

ear quadratic, pole-placement, model-following etc., and an estimation method is

used to estimate the unknown parameters. The estimation method can be least

squares, stochastic approximation, etc. .

The starting point for self-tuning control was when Kalman in 1958 introduced

a deadbeat controller combined with least squares estimation. However at that

stage an analysis of the closed loop system was not given. Then it was Wies-

lander and W ittenmark [100] who based their design on minimum-variance and

least-squares and some consideration was given to uncertainties of the estimates.

Astrom and Wittenmark [6] presented analysis of the asymptotic properties of a

direct self-tuning control whereby controller parameters can be estimated directly.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 153

In the minimum variance design, a prediction model that allows prediction of the

output d steps ahead is estimated, and this model is used to determine a control

signal that brings the predicted value to a desired value.

A similar type of controller was also developed by Clarke and Gawthrop [14] known

as generalised minimum variance, which unlike the minimum variance method

does not result in large control signals. It decreases the variation of the control

signal by generalising the loss function to contain a penalty of the control sig­

nal. It resembles Linear Quadratic self tuning, but with a reduced computational

burden due to simplification of the problem on the basis of one-step ahead loss

function.

The idea of self-tuning adaptive control can be seen by the block diagram repre­

sentation of figure 6.3.

disturbances

SYSTEM■ o

PARAMETER
ESTIMATIONO

CONTROL
SYNTHESIS

CONTROL
ACTION

Figure 6.3: Self-Tuning Adaptive Control

As Landau [50] points out the limitations of the first generation of self-tuning

controllers based on minimum variance, such as lack of robustness with respect to

noise, unmodelled dynamics, and disturbances, lead to the development of pole

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 154

placement, linear quadratic control and generalised predictive control.

Self-tuning controllers were originally developed using a discrete-time design ap­

proach, and a brief description of the operation of pole placement and model

following self tuning in this context is as follows

Defining the SIS0 plant as

= B(q)u(t) + C(q)e(t) (6.51)

where y is the output of the system, u, the input to the system, e(t) is a sequence

of independent equally distributed Gaussian variables, and A, B , and C are poly­

nomials in the forward shift operator q.

For pole-placement and model following, the desired closed loop response can be

specified by the following with notation similar to MRAC.

A m(q)y(t) = B m(q)uc(t) (6.52)

and the controller of the form

R{q)u(t) = T(q)uc(t) - S(q)y(t) (6.53)

The Diophantine equation is

ARi + B ~ S = A 0 A m (6.54)

variables in paranthesis are not shown for simplicity where

B = B +B~ (6.55)

B m = B~B'm

T = AoB'm (6.56)

R = B +Ri (6.57)

These equations are the basis for various design problems, once causality of the

controller is ensured.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 155

6.5.1 Indirect design

The closed loop transfer function B m/ A m and a desired observer polynomial A 0 is

specified and then the coefficients of A , B , and C are replaced by their estimates

in equation 6.51 and then equation 6.54 is solved to obtain Ri and S. T and R are

then found from 6.56 and 6.57. The control signal is then calculated from 6.53.

6.5.2 D irect design

The model of equation 6.51 is reparameterised in i?, and S. One way of

reparametrisation is by multiplying equation 6.54 by y(t) and using equation 6.51

to get

R\Ay(t) + B~Sy(t) = A QA my(t)

R 1 B u (t) A B ~ S y (t) A R i C e (t) = A 0 A my(t) (6.58)

B~(Ru(t) + Sy(t)) + RiCe(t) = A 0 A my(t)

Estimating B ~, R, and S means that the controller polynomials S and R can be

found directly. Following this, using equation 6.56 control signal can be obtained

from 6.53.

6.5.3 C ontinuous-Tim e approach

This approach was developed by Gawthrop, for details see [24], in which controller

design is carried out in continuous-time based on a continuous-time representation

of the system, and after a continuous to discrete transformation, a discrete-time

control is implemented.

A observation made by Landau [50] is probably a good starting point for justifying

a continuous-time approach to the design of self-tuning control. He explains that

experience with various applications show that the assumption of the plant being

represented by a discrete-time model with a stable inverse and a fixed delay is not

realistic except for special applications. He then goes on to point out that even

successful applications have required a careful selection of the sampling frequency

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 156

which is a lengthy process..

The advantages of employing a continuous time approach are listed in [24]. Briefly

these are that system characteristics such as relative degree, and zero location

can be directly addressed, control engineers find interpretation of continuous time

results easier, and there is no need for considerations given to controller sampling

interval before and during the design.

The SISO system is represented by the Laplace transform equation

y(s) = (6‘59)

where y is the system output, u, the system input, and u, the disturbance input.

The polynomial A(s) is the system denominator, B (s), system numerator (con­

trol signal), and C(s) is the system numerator (disturbance) and is regarded as a

design parameter. The choice of C(s) does not affect the dynamics of the system,

as far as the control signal is concerned, and it only affects the interpretation of

the disturbance term v. The choice of C(s) should ensure its stability and its

degree should be equal or less than one to the system denominator. A constant or

stepped disturbance term can be included in the system model by letting initial

values of B and A be zero, while initial value of C is non zero.

Extending the idea of Smith’s Predictor, which uses an inverse delay (unrealis-

able) to remove a delay from the loop gain of the system by means of emulating

the unrealisable component (inverse delay) through realisable transfer functions

operating on the system input and output, to also cancel out a high relative degree

and zeros with positive real parts.

The unrealisable transfer function that cancels the aforementioned undesirable

components, generates quantity <j> from the system output as:

<f> = eSTj ^ y (s ̂ (6-6°)

and as a result the net delay should be reduced to zero through esT, the net relative

degree should be reduced to zero when deg(P) — deg(Z) = deg(A) — deg(B), and

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 157

the net number of unstable zeros should be reduced to zero when the denominator

of the unrealisable transfer function contains all the unwanted factors of the system

numerator.

An emulator can be designed to equal the unrealisable quantity (f> in the absence

of disturbances:

substituting for y in equation 6.60 from 6.59, and for simplicity not including (s),

we get
- P B _ ,TP C _ , x
't> = Z A jl + e A Z 5 (6'61)

By construction the transfer function that multiplies u is realisable, but the one

multiplying v is not. Now dividing the later transfer function into realisable and

unrealisable, that is :

e n - u + ^ (6-62)
unrealisable realisable

where deg(F) ‘/^deg(A). Substitution of this decomposed transfer function into

6.61, gives
t P B _ F _ ~ E _
<t> = y x u + A v + e z v 6̂'63^

Now (j)* can be defined as
P B _ F_

4> = j j u + - V (6.64)

v can be eliminated from the above equation by using the system equation 6.59

7, E B _ F _ -
<j> = Y q u + q V (6 -65)

We can also define e* as

So that

e* = e s T ^ - v (6 . 6 6)
/j

(f> = (f>* --f e* (6.67)

This emulator can be incorporated in a feedback loop, replacing the output in

a conventional control law. In other words if 1 /Q(s) represents the controller, the

CHAPTER 6. CONTROL OF R O BO T MANIPULATORS 158

feedback control strategy will be

where u)(,s) represents the set point.

A block diagram illustrating the above can be seen figure 6.4.

EB / CZ

Figure 6.4: Feed back loop representing the emulator

It is easier to analyse the emulator, by replacing the explicit expression for the

emulator represented in equation 6.65 by 6.67 in an equivalent feedback loop.

The expressions for the properties of the closed loop system are:

Notational loop gain

l = 1q™ a ^

Closed loop system output

y = ----------------[e~sTw + e*l -f- Q — v (6.70)
y P B + Q Z A 1 v P B + Q ZA K }

Closed loop system input
L Z A _ f ^

u = ------~=— z (6*71)
1 + L P B v '

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 159

where z is the equivalent set point equal to

F _z = w -v
A

A block diagram representation of the equivalent feedback loop is shown in figure

6.5.

C (s)
A(s)

B(s)-s T
o A(s)Q(s)

Z(s)

Figure 6.5: The equivalent feedback loop

By selecting particular values of P , Q , C and Z , particular control laws can

be chosen, for example

• Smith’s method by selecting P = 1, Z = 1, and C = A

• Model reference control by selecting Z — 1, and Q — 0

• Pole placement control by selecting Z = B, and Q — 0

• Weighted pole placement and model reference control by selecting Q to be

non zero in both cases, typically small at low frequencies to give exact model

matching, and large at high frequencies.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 160

When the system is not exactly known, the emulator does not emulate the de­

sired unrealisable transfer function directly, hence poor and unstable closed loop

performance v results ■.

In this case, the emulator is combined with a parameter identification algorithm

to give a self tuning emulator. To do this the emulator equation is rewritten in

the linear-in-the-parameter form:

- FB F
^ " z o n+cg = - [s)i (6 - 7 2)

where data vector X_ and the parameter vector 0 are given by

2C." ' L
x = X, ; fi = fir

.£< . Si
where

sn

s"_1 . y _ 1u j —y q

sn
sn- i

V _ 1y j £

S n

sn- i

1--

-

I—*
i ■ i 1

H
__

i

and 0_ is given by

9o ' fo ' io

9i f l h
Hu = 5 (Ly — ; =

*.

9n J n in

Issues arising from the above approach including robustness, stability etc. can

be found in detail in [24].

This method will be used in a later section in order to introduce a model based

variable structure continuous time self tuning controller, in which the model of

the manipulator is used in a feedback-feedforward linearisation method of the

nonlinear system and then a continuous time variable structure self-tuning control

is applied to each joint of the manipulator.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 161

6.5.4 Som e approaches based on th e self-tuning m ethod

In self tuning control, the controller gains are adjusted at the sampling instances

on the basis of current measurements, and sensory information which is available

at a sampling time in a suitable form can be utilised in the control strategy, hence

the controller can adapt to environmental variations.

Its past performance on a task can be used to improve the present response and

performance.

As far as robot manipulators are concerned, the task cycle and as a result the

duration of robot’s motion is usually finite which is not quite the same as usual

self tuner notion. This affects the stability studies, where in self tuning control

usually the asymptotic behaviour of the system as the time approaches infinity is

studied and these are local in nature.

The stability of a manipulator system with self-tuning controller has not been

addressed and for a general six joint manipulator the determination of the global

stability in the sense of Lyapunov for example is not within the realm of the

designer, at least at present [49].

When the manipulator contains a self tuning controller as a sole controller with no

cancellation of nonlinear terms, the stability of the system can hardly be proven.

A self-tuning control scheme for manipulators was proposed by Koivo et al [48]

in which coupling between the joints are expressed by a forcing term. These

interactions are not fully compensated. In this controller, R and Q in the cost

function are restricted to be constant. Desired joint positions and velocities are

used, but no systematic computation of the feedback gains is given.

In this approach, an autoregressive model is proposed to model the motion of a

manipulator and to design a controller for the system, motivated by the form of

the multivariable discrete time model which can be obtained if the mathematical

model of the robot is properly linearised about a nominal trajectory and then

discretised by Euler’s method.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 162

The performance criterion to be minimised is

/*(«.) = E{\\y(k + d) ~ y \ K + d) + || u (k) fR/ ^ k - 1)} (6.73)

where || • \\r indicates the norm with weight R (||if||fj = uTRu), and R is a

positive semidefinite symmetric matrix, Q is a positive definite symmetric matrix,

and yd(-) describes the desired path vector as a sequence of discrete points, relative

to the admissible controls while satisfying the constraint equation

y (k) = 0T{k)(f){k - 1) + e(k) (6.74)

Least squares is used for parameter estimation.

An adaptive controller for interacting joints (MIMO) was also presented, but they

showed by simulation that when trajectories are compared, in the cases in which

most estimated parameters had reached the steady state values, with the SISO

case no relative improvements were observed, indicating that adaptive feature of

the closed loop single variable model accounts at least partly for interacting ef­

fects.

Koivo [47] also introduced a MIMO discrete-time stochastic model to represent

the motion of a robot gripper in cartesian coordinates. It is important to note

that planning the manipulator trajectories in cartesian coordinates is preferred to

joint interpolated trajectory planning. Amongst other reasons, this is due to the

fact that in various applications, the trajectory is specified in terms of the end

effector movement.

The R and Q of the cost function were extended to polynomials by Liu [60] and

the parameters of these polynomials were adjusted on-line to achieve a closed loop

pole assignment scheme with better performance. This scheme was then modified

[59] by minimising the variance of a generalised cost function and estimating the

parameters directly. The weighting factor in the cost is adjusted on-line to assign

closed-loop poles. This was further improved, by introducing the nominal torque

feedforward compensation of non-linear coupling among the joints along the de­

sired trajectory.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 163

A pole/zero placement approach was suggested by Linde et al [58] in which the

inverse model of the manipulator is also incorporated and the robot plus the in­

verse show an almost linear behaviour. The resulting system is second order and

system parameters are estimated and used to tune a pole/zero placement. It is

noted that if B polynomial has a non-minimum phase character, the system be­

comes unstable.

Another pole placement STR was described in which a ‘black box’ approach for

modelling a robot arm was used [39] and a third order model was considered

appropriate. The model was then discretised. The resulting model is of non­

minimum phase. In this approach no knowledge of the components of the robot

is requires and the model accounts for system elasticity and other system charac­

teristics. However the couplings between the joints are neglected.

Trajectory control is dealt with in [80] based on invertibility and functional repro­

ducibility results. Both joint angle and position trajectory controls are applied.

In the latter case it is noticed that, the control has singularities on the boundary

of the reachable zone. Robustness issues for small deviations is considered.

Anticipatory action in the form of including subsequent desired joint positions

(two step ahead) was introduced by [44]. This adaptive pole-assignment control

scheme for robotic manipulators was deduced from the well established computed

torque method. In computed-torque, the cross couplings and non-linearities are

compensated for by a non-linear feedback law and the residual is controlled by

state feedback. It should be noted that desired velocities and accelerations are

also needed. The model is recursively identified to allow for the imperfections in

the cross couplings and non-linearities.

Leininger [55] adapted Wellstead’s pole placement self-tuning algorithm to the

closed loop control of multi degree of freedom manipulators, claiming that, as for

non-minimum phase systems, the self tuners are very sensitive to system changes

and pole shifting controllers developed by Wellstead do not attem pt pole/zero

cancellation and are thus “more robust” than the methods of Astrom and Clarke

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 164

and Gawthrop.

Koivo had used the self-tuning method of Clark and Gawthrop [14] which can be

shown to be more robust than the model reference methods discussed earlier, and

applied it successfully to joint control of the Stanford manipulator, but Leininger

suggests that it is not appropriate for control of flexible manipulators or low mass

(inertia) manipulators which may exhibit open loop unstable characteristics (Lya­

punov sense).

He used a modified version of the autoregressive model

(̂<Z-1)2/W = ~ k) + h(t — k) (6.75)

where all the symbols are used in their usual representation, and h(t—k) represents

all unmodeled effects related to gravity torque and other joint coupled interactions.

Tben this term is included in the unknown parameter vector of the parameter

identification to be estimated, and according to the estimate h(t — k) the joint

torque input u(t) is modified to eliminate the effects as

u'(t) = u(t) — h(t — k)/b0 (6.76)

The method is claimed to be suitable for the control of non-linear continuous time

systems.

He then extended the approach to task level [54], where the dynamic interaction

among the coordinate directions in response to joint actuation are learned on line,

hence is in theory capable of correcting for link flexibility, joint compliance, fric­

tion and other fundamental nonlinear coupled interactions.

The proposed method assumes that error measurements in tool position, orienta­

tion, force and/or moment are available as required.

CHAPTER 6 . CONTROL OF RO BO T MANIPULATORS

6.6 R obust Control

165

Generally when there is a need for faster response in the course of variation of

preferably known range of parameters, a robust control design as opposed to adap­

tive control is sought. This seems quite a useful method to handle the problem of

robot control.

There are various approaches for different applications, varying from robust high

gain feedback control in which process uncertainties are explicitly dealt with,

based on Horowitz’s observation that a system in which the Nyquist curve is close

to a straight line through the origin can tolerate a significant change of gain, to

variable structure systems, with discontinuous feedback, and the salient feature of

occurrence of the so-called sliding mode on a switching surface where the system

remains insensitive to parameter variations and disturbances.

In the case of high gain feedback control, it is impossible to know the attain­

ability of the desired closed-loop specifications before hand, and it leads to a

trial-and-error method. This robust technique and others such as adjustment of

gain matrices in the LQG scheme (keeping the loop gain less than one at high fre­

quencies), either have not been thought suitable or simply have not been applied

to control robot manipulators.

However a number of authors have reported quite reasonable results based on the

application of Variable Structure Systems.

6.6.1 Variable Structure Control

Control algorithms based on the theory of Variable Structure Systems (VSS) are

designed in such a way that all trajectories in the state space are directed toward

some switching surfaces, and once there, slide along them. The system response

then only depends on the gradient of the switching surfaces and remains insensitive

to parameter variations and disturbances. This property is important in rejecting

effects due to Coulomb and viscous friction.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 166

The method consists of a non-linear feedback control that switches discontinuously

on a specified surface, not allowing deviation of the natural trajectory of the open-

loop system from this surface.

The VSC method is referred to as robust since it requires complete knowledge

only of the terms in the existing dynamics that may become unbounded. In other

words, the design of a variable structure control which includes sliding mode

doesn’t require accurate modelling and it is sufficient to know only the bounds of

the model parameters.

For a variable structure control system of the form

£(£) = F (t, x, u); z € 7£n, u € (6.77)

control u is piecewise-continuous and is given by

u{(t, x) = ► i = 1,2, • • •, m (6.78)
Ui+(t,x) for 3;(a:) > 0,

U{ ~(t , x) for sz(:r) < 0,

where s is the switching function, that can also be time dependent. Discontinuity

surfaces are defined as Si = {x : S{(x) — 0} and the intersection of an arbitrary

number of them is the sliding surface when it attracts all motions originating in

a neighbourhood (locally asymptotically stable with respect to the dynamics) [7].

If we consider each joint of a manipulator actuated by permanent magnet DG

motors as a second order linear time invariant system and ignore the coupling of

the joints, joint i will be represented by

x T = (^1,^ 2) is angle, x 2 velocity

Xi = x 2
(6.79)

x 2 = ax2 — bu, a , b > 0

The control law is of the form u = U{Xi j , where ut- is defined by 6.78. As it is a

second order system the switching line is defined as

s = cx 1 + x 2 = 0, c > 0 (6.80)

CHAPTER 6. CONTROL OF RO BOT MANIPULATORS 167

where c is a design parameter, determining the response speed in sliding mode.

The phase trajectories of the two linear time-invariant systems with iq- = tq+ and

with Ui = u r are combined to form the phase plane trajectories of 6.79 under the

feedback control law.

As Utkin [94] points out, a property of variable structure systems is that an

asymptotically stable system may consist of two structures, neither of which is

asymptotically stable.

In the case of the above system, the phase plane trajectories are shown in figure

6.6, and as can be seen, one of the structures is marginally stable and the other

is unstable.

REGION B

REGION A

REGION A

REGION B

Figure 6.6: Phase plane trajectory of a 2nd order VSS

If U{ is selected such that s and s have opposite signs in the neighbourhood

of s = 0, motion constrained on the sliding line (sliding motion) occurs on s = 0,

which is not part of trajectories of either linear structures.

The equation of the sliding mode then can be got from 6.80

X \ = —c x i

Robot dynamic equations are highly nonlinear, and to design a variable structure

system systematic use of the rigid body model has to be made.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 168

For nonlinear systems, there is an additional factor to consider, and that is to

ensure in the design that the system trajectories reach the switching line. This

can be achieved by including the condition

ss < 0 (6.81)

A number of applications of sliding mode control to robot manipulators have been

reported in the literature.

Young [107] applied what is known as the hierarchical approach, whereby sliding

mode occurs on the switching planes that are higher in the hierarchy. That is to

say initially sliding mode occurs on the switching plane Si = 0, and then on the

intersection of the switching planes si = 0 and s 2 = 0 and so on until switching

mode occurs on the intersection of all the switching planes. This method was pro­

vided in [94], to give robustness for VSS with multiple input, as in such systems

the existence of sliding mode on the intersection of the switching planes can not

easily be guaranteed. The hierarchy of control method replaces the multi-input

problem by a sequence of single input problems.

The equation of the sliding mode that is derived is in terms of position errors

and derivatives, and not position and velocity. It consists of six uncoupled first

order linear systems, each representing the dynamics of a single degree of freedom

when system is in sliding mode. The nonlinear interactions are eliminated when

in sliding mode.

Young concluded that despite the discontinuous nature of the control signal, the

manipulator filtered out some of the high-frequency behaviour caused by delay.

One shortcoming of this method is that when hierarchical control is used, and it

is assumed the trajectory lies in the intersection of all preceding sliding surfaces,

there is a possibility that convergence to each sliding surface may only be asymp­

totic which renders the assumption invalid as pointed out by Slotine et al. [81].

Also the resulting control torques are excessive.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 169

The problem of excessive torque can also be seen in the work of Morgan and Oz-

guner [68] who employed a dynamic coupling compensation.

Slotine and Sastry [81] introduced the concept of time varying sliding surfaces,

by defining a solution concept for piecewise continuous dynamical systems with

the surface of discontinuity varying with time, based on the results of Fillipov

[22] on solution concepts of discontinuous differential equations. They used this

to address tracking rather than stabilisation problems.

An undesirable characteristic of the behaviour of systems under sliding mode con­

trol is chattering which is attributed to non-idealities in control such as time delay,

hysteresis etc. This can excite high-freqency unmodelled dynamics.

Slotine et al. modified their method by approximating the discontinuous control

laws to obtain continuous control laws with smaller component of high frequency

signal and lower control activity, at the expense of lower accuracy in tracking.

This method was also faced with the problem of excessive torques.

Later Xu et al. [102] simplified the balance conditioning of Slotine [82] which

varies the boundary of the control input interpolation, that smooths out the con­

trol discontinuity in a thin boundary layer neighbouring the switching surface,

hence removing the chattering, according to the balance condition, to cut down

the heavy computational requirements.

Bailey and Arapostathis [7], introduced a simple control law to ensure the stability

of the intersection of the surfaces without necessarily stabilising each individual

one, hence avoiding the high computational power and speed requirements of the

methods above that attem pt to make each surface attracting in order to guar­

antee the asymptotic stability of their intersection. In their method Lyapunov’s

second method applied to differential equations with a discontinuous right hand

side is utilised in establishing asymptotic stability. They also utilise the structure

of the manipulator dynamics to establish a sliding surface on the intersection of

the switching surfaces.

Briefly, similar to the state space representation of the robot dynamic equation

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 170

6.2, the state vector of the dynamics is taken to be

x=[0 o f

Letting 0di(t) and 0di(t) represent the desired position and velocity of the ith joint

of the manipulator respectively, assumed continuously differentiable functions of

time, the objective is to make the actual position and velocity track these values.

The switching surface is chosen to be

Si(t, x) = Si(t, 0, 0) = Ci(0(t) - 0di(t)) + (0(t) - 0di(t)) ; i = 1,2, • • •, n (6.82)

where ct- > 0 are constants.

Then introducing a Lyapunov-function candidate to be

V(t ,x) = \ s t M s
z

where M is the inertia matrix of the manipulator model

and using Koditschek’s identity [45] and the norm-equivalence property of the eu­

clidean space, both asymptotic stability of the switching surface and the property

that every trajectory reaches the sliding surface in finite time is shown.

Yeung and Chen [103] proposed a scheme that takes advantage of the symmetric

positive-definiteness of the inertia matrix to develop a control law that does not

need taking the inverse of the inertia matrix.

They used the Lyapunov function V = sTM s and not the condition 6.81 in their

VSS controller design. They introduces an auxiliary set of planes to prove that

the switching planes were stable, and then transformed the coordinates to get the

results.

They used Slotine’s approach discussed above to deal with chatterings about the

set point, and during the transient phase they eliminated chattering by confining

the trajectories within a sector of the phase plane.

The approach presented in the next section will include a model based controller

which is augmented with a continuous-time variable structure self tuning control.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 171

6.7 M odel-Based A daptive Control w ith Load

M ass Estim ation

Unknown or varying masses of the payloads that the manipulator carries, render

dynamic model of the robot highly inaccurate creating varying operating condi­

tions as the inertias vary.

A way of estimating the mass of any load held by a manipulator gripper was de­

veloped in chapter 4.

A dynamic model of the robot in the linear in the parameters form is obtained by

considering the gross motion of the first three links and an additional finite mass of

zero length representing the unknown load mass, and symbolically manipulating

the N-E equations of motion

r — (Mi'S + Q2) = {M\0 + Qi)rni,oadMass (6.83)

the symbols represent the usual notation and suffix 1 shows dependence on the

load mass of the elements of the equation,

or

^ = XffljjOddMass

and then recursive least squares can be used to estimate the load mass on line.

The method is based on the state-variable filter approach that is used to estimate

the parameters of continuous-time transfer functions as described in [27] etc.

Incorporating a varying load mass in the dynamic model of a robot and estimating

the value of it on-line, results in a better representation of the behaviour of the

dynamic system. This certainly means that when a model-based control strategy

is implemented the resulting overall system is more accurately decoupled and

linearised.

A block diagram representation of a model-based adaptive controller with load

mass estimation is shown in figure 6.7

As can be seen from the figure, the dynamic model of the robot includes a

CHAPTER 6. CONTROL OF RO BO T M ANIPULATORS 172

LOAD MASS
ESTIMATOR

ROBOT

1 k p |

Figure 6.7: Model-based adaptive control with load mass estimation

parameter representing the varying load mass mioad. The load mass estimator

takes values of the joint angles as well as the desired values of joint positions,

velocities, and accelerations at each sample and using the algorithm discussed

in chapter 4 provides estimates for mioad which is then passed to the routines

that compute the dynamic equations. The remaining steps are the same as the

computed torque method.

It should be noted that the actuator dynamics are also included in the model and

in the control implementation for an MA3000 robot which will be discussed in

the next chapter, the value of input voltages that need to be applied to the power

amplifiers and in turn to the DC motors are calculated.

In chapter 4 using data extracted from an MA3000 robot, it was shown that the

estimated load masses were reasonably close to their actual values.

In the next chapter, the improvements of this method as compared with the

computed torque without load mass estimation will be demonstrated by means

of implementing both schemes on a robot and comparing the resulting trajectory

tracking errors, using a network of transputers.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 173

6.8 M odel-Based C ontinuous-tim e Variable Struc­

ture Self-Tuning Control

In this section a control strategy which is thought appropriate for robotic manip­

ulators is developed and in the next chapter its implementation on an MA3000

robot using a parallel architecture is described. Experimental results in the next

chapter provide a valuable means of comparing this scheme with the computed

torque and the adaptive model-based method with load mass estimation of the

previous section.

First of all, a model based controller is used to cause the cancellation of nonlinear

terms in the dynamic model of the robot manipulator. As a result the coupling

between the joints will be allowed for and each joint can be considered as a linear

system.

This statement would be valid only if the dynamic model of the robot was known

very accurately, which due to various factors is not realistic. Consequently if we

were to employ a linear controller for each joint, the resulting performance will

not be satisfactory.

To cope with the uncertainties and modelling inaccuracies, employment of an

adaptive controller is quite an appropriate choice.

In this way variations from the modelled behaviour can be noted via measurements

and after the system performance relative to the desired objectives are evaluated,

corrective action will be taken in the system.

Adaptive controllers and their application to robotics were discussed earlier, and

the advantages of a continuous-time design approach were briefly stated. The

adaptive controller that will be employed is the continuous-time self tuning con­

trol of Gawthrop.

Robust control and in particular variable structure control schemes for robot ma­

nipulators were-also looked at in the previous section, and as it has been shown

that they are quite suitable schemes for coping with parameter uncertainties, it

CHAPTER 6. CONTROL OF ROBOT MANIPULATORS 174

will be useful to evaluate their performance on a real robot.

One area in the VSS context that has not been considered in the robotics ap­

plications is when feed-back control law uses output feedback with observers as

opposed to full state feedback. This was pointed out by Slotine et al. [81].

In the emulator-based control that was discussed previously, where an emulator

(kind of observer) is used to overcome the unrealisability of output feedback, as

is shown in [18], if we let the control weighting equal zero it has the effect of

replacing it by a relay with the system operating in the sliding mode.

However robustness properties of the above can be improved by using the de­

tuned version of the algorithm, where control weighting is chosen to be nonzero

[24]. This is also described in [18], where the control weighting is fed back around

the relay, giving the control law 6.68. This is depicted in figure 6.8.

u=u
RELAY

EB / CZ

Figure 6.8: Detuned relay control

Sliding mode is obtained when transfer function Q -f G /C Z has unity relative

order. A first order low pass filter is added in the relay loop if Q has zero relative

order.

CHAPTER 6. CONTROL OF RO BOT MANIPULATORS 175

The block diagram of the overall model based continuous-time VS self-tuning

method is shown in figure 6.9.

MODEL BASED
CONTROLLER

ROBOT

Variable Structure
Self-Tuner

(Continuous Time Design)

Figure 6.9: Model-Based CVS Self-Tuning Control

The continuous time self tuning part of the algorithm will be implicit off-line

design, details of which is described in [24], due to its robustness properties and

the fact that an off-line design approach is used for implementation.

In the next chapter, the steps for implementation of this method will be included.

R o b u stn ess and s tab ility

The affect of the model based part of the algorithm will hopefully be to allow us

treat individual joints as linear second order subsystems, in which case standard

linear system analysis can be carried out for robustness and stability of the con­

tinuous time variable structure self tuners.

Compared to model reference adaptive control which tries to match the model at

high frequencies [25], the continuous time self tuner can be made robust by using

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 176

control weighting at high frequencies, but not at low frequencies.

An input-output approach as opposed to the state space Lyapunov and Hypersta­

bility approaches to stability is presented in [24] for the continuous time self-tuning

controller.

Gawthrop in this reference points out that the advantage of using this approach

is the availability of standard textbook proofs.

More specifically complete robust stability results are given for the implicit off-line

design when the realisability filter (see next chapter for definition) is equal to one,

and partial results are given when this is not the case.

Under ideal conditions, the continuous time self tuning scheme is shown to be

globally stable [72] and in the presence of unmodeled dynamics, stability is

preserved if a transfer function which depends on the control weighting polyno­

mial, the system and other filters, satisfies a small gain condition.

6.9 Some other m ethods for control o f robot

m anipulators

Lim and Eslami [57] proposed two adaptive controllers for robot manipulators

by using the Lyapunov method first, and then by introducing an auxiliary input

applied to the input stage, a new adaptive controller is proposed with better tran­

sient response and fast convergence speed as shown by simulation.

Seraji [78] developed a "control scheme, structure of which was derived from linear

multivariable theory with a direct adaptation law of model reference adaptive con­

trol type based on the Lyapunov method. The approach is composed of a feedback

controller to provide a stable closed loop system with poles at desired locations

in the complex plane and, a feedforward controller to cause the position vector

to track the reference trajectory, plus an auxiliary input. It is applied in Cartesian

space and measurements of the end effector position and velocity vectors in the

CHAPTER 6. CONTROL OF RO BOT MANIPULATORS 177

Cartesian space. In this method only simulation results are shown.

Han etal. [29] presented an adaptive algorithm with a nonlinear reference model

for an N link planar robot with an unknown load. The stability of the error dy­

namics resulting from the nonlinearity of the plant and the model, is shown using

the extended Lyapunov second method for persistent disturbances. To implement

the scheme, it will be computationally very demanding.

Luo and Saridis [62] proposed an additional feedback implementation as minor

compensating loops built around individual joints in the form of derivatives of the

state variables by analogue techniques. This they claim helps to obtain robust­

ness against variations in open-loop dynamics and decreases the effect of nonlinear

terms due to couplings in suboptimal control systems with quadratic performance

indexes.

Tourassis and Neuman [92] compared the computed torque and the direct-design

methods in the context of nonlinear feedback control for robots.

They point out that, in the direct design the reference signal is proportional to the

desired joint coordinate vector, which results in a system of uncoupled transfer

functions, the gains of which are chosen to ensure that the characteristic polyno­

mials are stable and meet the specified performance.

In the computed torque method, the reference signal is defined to be a linear

combination of the desired joint position, velocity and acceleration vectors, which

introduces zeros to cancel the poles of the closed loop system and leads to a unity

transfer function. The closed loop transfer function in the case of the computed

torque indicates that the method is ideally suited for trajectory tracking applica­

tions. They showed the validity of this by simulation.

Then they showed that neither approach is robust in the presence of modelling

inaccuracies, unmodelled dynamics and parameter errors, and introduced the a-

computed-torque that is meant to reduce the driving vector of the linear computed

torque error equation and diminish the tracking error, and as a result enhance the

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 178

performance of the system, by adding a compensating control signal to the com­

manded acceleration.

The efficiency and applicability of the method for cylindrical robots was shown.

Khosla and Kanade [43] compared the trajectory tracking performance of the

computed torque and independent joint controls. This is one of the very few real­

time implementation of the computed torque method, or indeed any model based

scheme for manipulators.

Outperformance of the computed torque over the conventional independent joint

control scheme in which no acceleration feedforward is introduced, in the absence

of torque saturation is demonstrated .

Their experiments also show that even at low speeds the effect of Coriolis and

centrifugal forces introduce trajectory tracking errors.

An, Atkeson and Hollerbach [3], presented some experimental results using the

three link MIT Serial Link Direct Drive Arm to evaluate trajectory tracking of

various controllers.

They established that feedforward control can improve the trajectory following

accuracy significantly, especially at high speed movements. They also found that

for light links, the unmodelled dynamics including the motor dynamics and fric­

tion, become significant.

In addition to the above, numerous other methods have been proposed for con­

trolling robot manipulators. Some of these methods tend to address the specific

requirements of robots whereas others only apply methods from the established

control theory without specific references to robotics.

Three controllers namely the computed torque, the adaptive model-based con­

troller with load mass estimation, and the model-based variable structure self­

tuner, were presented in this chapter and their simulations and experimental eval­

uations are the subject of the next chapter. These serve to demonstrate:

• The effectiveness of using a model-based approach to decouple and linearise

the manipulator dynamics.

CHAPTER 6. CONTROL OF RO BO T MANIPULATORS 179

• Further enhancements resulting from estimating the payload and addition­

ally augmenting the model-based controller with a self-tuner.

C hapter 7

Control Im plem entation using

Transputers

SU M M ARY

In this chapter parallel computations will be considered with par­

ticular emphasis on robot dynamic calculations and model based

robot control algorithms which utilise the dynamic equations of

the robot.

Three robot control schemes are implemented on an MA3000

robot using a network of transputers, and the results are com­

pared based on the trajectory errors produced.

7.1 Introduction

A great majority of Robot control schemes have not yet been tried on real Robots

to verify their effectiveness. The true effectiveness of these design theories can only

be determined by way of actual implementation and experimental evaluation. By

so doing relative merits between many design approaches can be meaningfully

established.

The functions of a robot controller can consist of planning, organisation, coordi­

nation and decision making at the top of control hierarchy and, joint angle control

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 181

at the bottom end. In chapter 2 robot control languages were discussed and a

new scheme for comparison of these languages and a method of choosing an ap­

propriate one possessing all the needed attributes for a particular application was

presented. The combination of Transputers and OCCAM was suggested as an

ideal way of dealing with the parallel nature of controlling robot manipulators.

In roboticS, the computational needs for processing of the external data and imple­

mentation of complex control strategies for tasks involving precision path following

at high speeds, high band-width compliance and adaptive control, are quite in­

tensive.

However, partitioning of the computational tasks between various independent

processors, which can operate in parallel and communicate with each other when

necessary, can help alleviate the burden and allow real-time implementation of a

desired control algorithm.

For control problem decomposition in general, although some parts of the algo­

rithm can be considered to be efficiently mapped to a standard parallel archi­

tecture, a "Better performance can be achieved, by exploiting the inherent paral­

lelism of the algorithm first and then devising a suitable processor topology, which

matches the number of processes and has identical communication structures, in

relation to the developed parallel algorithm.

Usually for robot control, the subtasks obtained from a decomposition tend to

be fewer in number, but more complex than those obtained in other context, for

example signal processing. As a result coarse-grained parallelism, in which there
rv

is a small number of processors, each faily powerful and loosely coupled seem more

suitable.

The ability of different processors to execute different instructions at any given

point in time i.e. MIMD (Multiple Instruction Multiple Data) is also desirable.

The Transputer, being general purpose, capable of high speed processing with

extensive capabilities is a relatively low cost processor which suitably fulfills the

robot control computational requirements stated above.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 182

In a previous chapter, the Robot-Transputer Network Interface was described.

Here the system is used to study the performance of the transputers, for robot

control applications. Different parallel architectures are utilised, to achieve re­

quired system performance, with a reduced computational time.

Some potentials of the Transputer as a fast single processing unit and its capabil­

ities as part of a parallel network, for implementation of advanced robot control

algorithms are presented.

As a result, the possibility of implementing advanced controllers at relatively low

costs which are demanded by high precision applications, but robot manufacturers

have not yet responded to, is demonstrated.

The superiority of the Transputer in terms of cost/performance compared to other

processors has been shown extensively in the literature, however the decomposi­

tion of the computing load into tasks to be allocated to individual Transputers

in a parallel network is application dependent. Even for a specific application

different network architectures can result in variation in performance.

In this work, no complex task scheduling is involved, rather the parallelism inher­

ent in the task and regular network topology which is suitable for VLSI imple­

mentation is sought. Different parallel topologies for computation of some control

algorithms are employed to investigate their suitabilities.

Following a brief look at parallel computations, a multiprocessing approach to

calculation of dynamic equations of motion of manipulators including a review of

the methods used is presented.

Most of these methods are based on N-E formulation for articulated chain dy­

namics, which yields a set of recursive equations for the dynamic components

consisting of forward and backward phases.

The two basic approaches are dedicated multiprocessor approach, breaking the

computation into a series of subtasks for execution on independent loosely cou­

pled processors, and the systolic architecture approach, where . tightly coupled

processing produce the computations.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 183

Then a suitable parallel topology of a transputer network is presented for the

computed torque of a 3 degree of freedom robot manipulator, taking into account

the disadvantages of large processing times of complex scheduling schemes and

looking at the combination of speed up and efficiency.

This architecture can be used for part of the controllers that use the dynamic

model of the manipulator for decoupling the dynamics and allow for nonlineari­

ties, such as the model-based variable structure self-tuning controller discussed in

the previous chapter.

Then the multi Transputer based control algorithms that are implemented on the

MA3000 robot will be discussed and compared.

The control schemes considered are, the Computed Torque, the adaptive scheme

in which the load mass carried by the Robot end effecter is estimated on line

presented in chapter 4 and, the model based continuous time VS self tuning con­

troller.

7 .2 Parallel C om putations

Construction of multiprocessor systems with high concurrency is a way of dealing

with computationally intensive tasks. This approach has been made more attrac­

tive, with the availability of high performance and inexpensive VLSI chips such

as the Transputer.

Generally speaking when more processors are allocated to execution of a program,

it runs faster. However the law of diminishing returns applies, which means that

at a certain point the extra allocated processors can not be utilised efficiently.

A lot of research has concentrated on exploiting the concurrency of of multipro­

cessor systems in a variety of fields, ranging from numerical methods problems [8]

where vector and matrix computations, parallelisation of iterative methods and

algorithms for systems of linear equations are considered, to dynamic partitioning

of multiprocessor systems [74].

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 184

7.2.1 Parallel algorithm representation

One way of representing the precedence relationships between tasks in a concurrent

program that can also contain information about the length of time 1 that each

task may take to process, is using graphs with directed links.

An example of such representation is shown in figure 7.1.

TASK l \ N0DE
X SEC.

TASK 2 TASK 3 TASK 4
Y SEC. Z SEC. W SEC.

TASK 7 \ (TASK 8 \ (TASK 9TASK 5 TASK 6

TASK 1 f TASK 12TASK 10'

Figure 7.1: An example of graph representation of parallel programs

The graph can be referred to by its set of nodes which represent operations of

the program in the form of subtasks and the set of directed links which show data

dependencies.

The type and size of subtasks can vary from elementary operations such as addi­

tion and multiplication to execution of part of a program.

It will be useful that after specifying the subtasks in a particular order within

the constraints (i.e. a processor can only perform one subtask at a time and this

is after the subtasks that it depends on have been executed and data from them

xThe time element is not usually included and simple task precedence graphs or Directed
Acyclic Graphs (DAG) are used

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 185

has been supplied) imposed, the time taken for each subtask should be measured

individually and introduced to the graph, so that decisions can be made as to how

effectively subtasks can be assigned to processors or when initially one processor

per subtask is designated, the underutilised processors can be identified and their

tasks combined.

For programs that need to be partitioned into elementary subtasks, the graph rep­

resentation might not be very appropriate as it is difficult to represent loops and

conditional branches. However for programs that need only be divided to a small

number of subtasks without the need for branching and loops, it is ideal as based

on the precedence and time for each subtask, rearrangements can be made as to

achieve maximum efficiency. In addition enhanced performance can be obtained

by allocating the under utilised processors to another parallel subtask.

From the above argument it is obvious that a task is not specified by only one

graph representation, but rather various graphs that can represent a task are com­

pared in order to decide which one is most appropriate, using the measures that

^will be discussed in the next subsection.

7.2.2 Perform ance characterisation

To quantify the utilisation of computational resources which can be the basis for

comparison of various architectures, various measures can be used.

These measure can be in the form of the complexity in terms of the number of

processors used, the overall time taken for the algorithm to be executed and com­

munication aspects.

Two concepts that have been used in relation to algorithm comparisons are Speedup

and Efficiency.

Supposing that a parallel algorithm uses n processors, and it takes Tp seconds

to complete, where as the best possible algorithm that can run on one processor

returning the same results takes Ts seconds, then one definition of speedup of the

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 186

algorithm would be

S(n) = p

Now dividing the speedup by the number of processors used gives the efficiency

of the algorithm

E(n) = M
n

which measures the fraction of time that a typical processor is usefully employed.

The ideal situation is that no processor does any work which is unnecessary or

remains idle for any length of time and hence the value of efficiency is one and,

speed up is equal to the number of processors. Realistically speaking however the

aim should be to keep the efficiency bounded away from zero as we increase the

number of processors.

It should be noted that there is always a trade-off between speedup and efficiency.

An observation known as Amdahl’s law [2] can be used to obtain the quantification

of parallel computational utilisation. It basically expresses that some sections of

a program that are inherently sequential can create bottlenecks, when the rest of

the program is able to utilise concurrency in a large scale and be executed fast,

but having to wait for a long time for the sequential parts to terminate.

This means that, the ratio of the amount of time that is sequential to the total

execution time is significant in bounding the execution time of a parallel algorithm.

If we call this ratio / , then the speedup is limited by

5 (n) ~ / + (1 - /) / » ~ 1

where n is the number of processors as above.

The trade-off between efficiency and speedup can be quantified by introducing

the average number of busy processors during the execution of a parallel program

when an infinite number of processors is available. This is referred to as Average

parallelism A and can be used in determining the number of processors that

should be allocated to a task in order to achieve an optimal trade-off.

Another definition, of average parallelism is the total service required by the

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 187

computation to the length of the longest path in the subtask graph.

The upper and lower bounds on speedup in terms of A are

nA
 ---- — < S{n) < m in in .A)
n + (A - l) ~ v J ~ v ’ J

Useful as it might be, determination of average parallelism for a system that does

not have (as assumed) unlimited number of processors is difficult.

Average parallelism can also be obtained from histogram of the number of active

processors over the execution time of a parallel program that is monitored. And

consequently this can be used to estimate the appropriate number of processors

to allocate.

Number of processors n to be allocated can be found from

” = A + M ' p) ~ 4
where V, M, and m are variance in parallelism, maximum and minimum paral­

lelism for the program respectively.

The term in square brackets represents the amount of deviation of processor allo­

cation from A when the parallelism variability is high, p is the average processor

utilisation.

Eager et al [20] used average parallelism «•

In task allocations that is to follow, speedup and efficiency are considered as well

as the average activity of each processor.

By monitoring individual processors and measuring the percentage of the time

that they are busy (i.e. calculating their average activity), in the case of differ­

ent suitable architectures for a particular problem, one can modify the processor

assignment so as to increase the overall average activity and hence efficiency.

7.2.3 D ynam ic program m ing

Although dynamic programming is not going to be applied in this work, a brief

mention of it is not quite irrelevant.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 188

Dynamic programming deals with the issue of making optimal decisions sequen­

tially for data routing in a given network of processors.

If graph representations are used, once a decision is selected at a node then the

next node is chosen according to a known probability distribution that depends on

the selected decision. This leads to a model involving a finite-state Markov chain

2, the transition probabilities of which are influenced by the choice of decision.

A special case of dynamic programming is what is known as the shortest path

problem which is to find a desirable path (minimum cost path) for routing data.

A cost is resulted from every decision made and each decision affects the options

of subsequent decisions. Therefore future situations where high costs might result,

should be avoided, while a low cost for the present decision is aimed for.

Unlike dynamic programming, there is no unpredictability of the next node being

chosen, once a decision is made at a given node in the case of shortest path prob­

lem.

Another concept in parallel programming is the notion of dynamic partitioning.

-This deals~with reconfiguration of multiprocessor systems to accommodate addi­

tional programms to the network by optimal partitioning of the system. Marko­

vian models can be used for dynamic partitioning.

2A discrete time, finite state, homogeneous Markov chain is a sequence {Xk\k = 0,1,2, • • •}
of random variables that take values in the finite set (state space) such that

P r (X k+1 = j \ X i , • • •, Xk = i) = Pij V* > 0

where each Pij is a given non negative scalar. In particular the probability distribution of the
next state depends on the past only through the current state and since the coefficients pij
do not depend on the time index k , the transition probabilities Pr(Xk+i = j \X k = i) are
independent of k.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 189

7.3 M ultiprocessor im plem entation o f D ynam ic

Equations o f M anipulators

To achieve better performance in task execution of Robot Manipulators, advanced

real-time control algorithms are needed to deal with the non-linear system dynam­

ics and the uncertainties in the robot model.

When implementing robot control algorithms, simplifications are usually made,

-tVe. most common form of which is to ignore the centrifugal and coriolis forces created

by the coupling of the dynamics and each joint is treated as a decoupled system.

The dynamic equations for robot manipulators which can be used in advanced

control algorithms, to enhance their capability, are computational intensive, but

by efficient formulation and exploiting the power of fast processors and paral­

lel processing, the on-line implementation of the control schemes based on these

equations are possible.

7.3.1 R eview of th e work in Parallel P rocessing for cal­

culating R obot D ynam ic Equations

There has been a number of publications that focus on the utilisation of parallel

processing to alleviate the computational burden which is faced, when calculating

the dynamic equations of Robots. In some specific instances , parallel algorithms

are developed to deal with real-time calculation of the manipulator inertia matrix,

where as in other cases concentration is on the time-optimum scheduling problem.

Majority of these approaches are based on the Newton-Euler (N-E) formulation of

Manipulator Dynamics. A parallel processing system (N-E based) was suggested

by Luh et al[61] in which one CPU is utilised for each link of the manipulator.

W ith this architecture, as a result of the precedence relations that appear among

the subtasks to be executed due to the dynamic coupling between adjacent links

and the large number of choices of alternative subtasks, the effort of searching

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 190

for minimum-time schedule is complicated. To overcome this, they developed a

’’variable” branch-and-bound method which discards the branches whose conser­

vatively estimated execution times are longer than the current established upper

bound. Also to bring the total processing time to a manageable level, the sub­

tasks need to be arranged so that the precedence relations no longer exist. The

usefulness of the scheduling problem was later demonstrated on an experimental

processing system by Kasahara et al [40] They considered the optimal assignment

of tasks to varying number of processors.

Two parallel algorithms executed on special-purpose processors were proposed by

Lathrop [51], one a linear parallel N-E and another logarithmic parallel N-E. In

this work inertial information via coordinate transformation between successive

pairs of aggregate bodies are consolidated and as a result of this a reduction in the

time requirement is accomplished by avoiding a serial recursion. Another multi­

processor system was proposed by Nigam and Lee [70] which consisted of available

microprocessors arranged in such a way as to permit piplining at a macro level

-with parallelism within each macro block. In this work there is no reference to

the fact that the time requirement of a piplined algorithm is governed by the

number of machine cycles rather than arithmetic operations. In spite of algorith­

mic constraints imposed by the pipelined computations Wander and Tesar [99]

showed that the number of arithmetic operations can be reduced by expressing

the time-varying inertia content of a manipulator in terms of kinematic influence

coefficients which are represented by explicit functions of only the generalised co­

ordinates.

More recently with the availability of the Transputers which in terms of cost

and performance have superiority over many other processors, being classed as

one of the fastest 32-bit floating-point processors available, a few have attem pted

to show their potential applicability in the Robot Control Applications. A new

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 191

parallel algorithm for inverse dynamics based on Kane’s formulation 3 for manip­

ulator dynamics was introduced by Hashimoto and Kimura [30] which was said

to be suitable for VLSI implementation. The algorithm was implemented using

4 T800 Transputers with a good response time. Two architectures for parallel

computation of N-E equations were simulated by Jones and Entwistle [38] using

Transputers. First, one processor per link which results in loss of parallelism

which was shown to be poor in terms of processor utilisation. And second, using

a processor farm which has the advantage of being able to change the number

of processors used, but the performance is not good due to the large scheduling

times required. An interesting observation in this work is that they showed, the

Transputer’s effective link transfer rate is slower than the quoted values and is

dependent on the size of data block transferred. For example for T800-20, the

quoted value is 20 Mbits/s, whereas they found it to be 6.5 M bits/s to pass blocks

of 32 bit words, it should be noted that in the algorithms this is a small percent­

age compared to the time taken to compute the tasks.

7.3.2 Parallel calculation o f robot dynam ic equations us­

ing transputers

Three different Transputer network architectures for computing the torques that

result from robot dynamic equations are shown in Figure7.2 for the case when

three links of the manipulator are considered.

The OCCAM TIMER was used to calculate the overall time and in one case the

time taken by individual processors. From this the performance of each is evalu­

ated in terms of speed-up and efficiency. The results are shown in the table 7 A*

In the case where 3 Transputers are used plus 2 for communication,

a speed up of 1.478 and an efficiency of 0.49 is achieved. Each row of the inertia

3Kane’s formulation describes the N-E in a different way, resolving the task of kinematic and
dynamic computations into a set of subtasks

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 192

EXE,

(FI)

M12, M13y

v — V-^ 1JEW,

(B)

MX1.

,KX3,

NX2J

(C)

Figure 7.2: Three Transp. Architectures

No. of Procs Time (ms) Speed up Efficiency Ave. activity
one EXE 6.797

3 plus 2 communication 4.6 1.478 0.49
(M il M12 M13 Ql) 95.65 %
(M21 M22 M23.Q2) 43.48 %
(M31 M32 M33 Q3) 21.72 %

13 plus 6 communication 2.832 2.4 0.18
10 plus 6 communication 0.24
4 plus 3 communication

(M il M12 M13 Ql) 2.75 1.47 0.37
(M21 M22 M33 Q2) 1.175 1.43 0.36
(M31 M32 M33 Q3) 0.733 1.24 0.31

Table 7.1: Table of comparison for diff. topologies

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 193

m atrix plus one member of the force vector are assigned to one Transputer.

Looking at the average activity of individual processors, it can be seen that the

computational intensity decreases from top to bottom. As a result perhaps a

different architecture which combines two of the processors with lower average

activity can be used to increase the efficiency. However as each row corresponds

to a particular joint torque, having taken account of the coupling, the topology

which was explained earlier (ie. one transputer dedicated to one joint which could

further be replaced by a suitable number of processors to increase efficiency) is

not suitable because of the communication overheads.

When 13 Transputers with an additional six for communication is used, the speed

up does not really justify the loss of efficiency. Even when the symmetrical for­

m at of the inertia matrix is exploited in the 10 processor case, there is not much

improvement. This architecture might be relevant when a 6 x 6 inertia m atrix is

computed when six joints of the robot are modelled. The final set up shows the

comparison of dividing the computation of each of the rows of the inertia matrix

-and one member of the force vector between 4 Transputers. As can be seen ef­

ficiencies can be achieved with reasonable speed ups. Again this might be taken

advantage of for larger inertia matrices.

7.4 Parallel Im plem entation o f som e Control

Algorithm s on an M A3000 robot using Trans­

puters

Taking the bending mode frequencies of manipulators into account, sampling fre­

quencies of 100HZ and above are quite sufficient for manipulator control imple­

mentation. Employing one transputer is more than sufficient for implementing a

PID controller. Model based controllers in general require more computation time

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 194

and as a result, by utilising parallel architectures, the required sampling frequen­

cies can be achieved.

To implement the following control methods, a three segment trajectory planning

scheme in joint coordinates is used for the gross motion (motion of the first three

links) of the manipulator, to give a realistic representation of a real situation in

robotic applications.

Usually trajectories are specified in cartesian coordinates in the form of straight

line segments which when converted to joint coordinates are not straight line any

longer. Having to convert individual points from cartesian to joint space, results

in problems of large memory requirements etc., and as a result the usual practise

is to approximate the joint movements by polynomial functions.

The specified path together with constraints imposed by the manipulator’s dy­

namics and the path constraints .sWould satisfy a set of boundary conditions to

ensure continuity of position, velocity and acceleration of the joints, for a smooth

movement.

depending on the specifications, a~ different order polynomial can be used and

this is dependent on the type of task the manipulator is employed for, for ex­

ample when position and velocity of the joint is specified at the initial and final

times, they provide boundary conditions that can be satisfied by a third order

polynomial with four unknown parameters.

The resulting equations can be simplified considerably by introducing a normalised

time.

The approximate function used for the first segment (i.e. when the movement

starts) is a third order polynomial of the form

Pi(t) = [<5i - M i - t3 + [siM]/2 + (Mi)* + Vo

Vl = ^ - 2 v0 -
„ 6vg 9
“ i - 7 ^ ~ i f ~ ~ ao

(7.1)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 195

Then the second segment is represented by a fifth order polynomial of the following

form
p2(f) = [6<52 - 3t>i<2 - 3i>2i 2 - ^ ^] i 5

+ [—15<52 + 8ui<2 "{■ 7t>2*2 "1" 3ai2*2----- «2*22]*4

+ [10 2̂ - 6t)!<2 - 4u2*2 - + 22|2i]i3

+ [“‘~2]t2 + (vit2)t + Pi

V2 = St ~ 2vJ + 2
a f t ,

(7.2)

(7.3)

a2 — — 2in in v
And finally a third order polynomial is used for the last segment.

P n (t) = [6n - V f t n + H h L -]t3 + (—3<5n + 3 Vf t n - Clftn2) t 2

+ [3£n — 2 V f t n + —]t + P2

In the above equations p represents position, v velocity, and a acceleration, t is

normalised time, t G [0,1] and is equal to

t = - - - I * - ; r G [Ti_ 1? r .]

where t{ = r t- — rt_! is the feal time required to travel through the ith segment,

and r represents the real time. 6 is the difference between successive positions.

A graph of combination of the three functions for arbitrary positions and durations

can be seen in figure 7.3.

After set points are generated from the above trajectory planning method,

the actual resulting trajectory of the joints under the controller commands are

subtracted from the desired values and the resulting errors are graphically shown

for each control scheme. This way the methods can be compared.

The first controller implemented is the Computed Torque method, then a model

based controller based on load mass estimation and finally a model based contin­

uous time variable structure self tuning.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 196

o
£
u
-s

30

25

20

15

10

5

00 2 3 4 51 6 7 8
Time (seconds)

Figure 7.3: A three segment (3-5-3) polynomial approx. joint trajectory

7.4.1 Com puted Torque

Parallel implementation of the computed torque scheme is discussed here.

Based on the findings of the previous section the most appropriate architecture

for the computed torque method when the dynamic equations correspond to three

joints of the manipulator is option (A) of Figure 7.2. In other words by using one

processor to calculate the three members of the inertia matrix and the member

of the force vector that correspond to one joint, the sampling frequency needed

can be achieved and it leaves room for extra calculations to be carried out when

controllers with added demands on computing are to be implemented without

going above the sampling frequency.

This is particularly useful since the next two control strategies to be implemented

are model based and use the dynamic equations of the computed torque and as

such having one processor dedicated to a joint cuts down the amount of alterations

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 197

necessary and in turn reduces the complications that might arise when commu­

nication aspects are considered. Furthermore additional processors can be used

with minimum effort for computationally demanding tasks as shall be seen.

Figure 7.4 shows the basic set up for implementing the computed torque method.

TO
EXE

ADC

DAC

C2 C3

MX

Figure 7.4: Basic transputer topologoy for the computed torque

The EXE process which sits on the host processor is used to signal the start

of the control operation. The MX process running on the root processor acts as

a multiplexer, recieving set point trajectory data from the EXE and distributing

it to the controller processors for individual joints C l. C2, and C3 and then after

the controllers have completed their operations, it receives the trajectory errors

from them and passes these to the EXE to be filed.

The control processes receive angular data at each sample from the ADC and

using these calculate the voltages for each motor and pass the values on to the

DAC which in turn sends the analogue signals to motor amplifiers.

The calculations are based on the customised dynamic equations which were de­

veloped as discussed in chapter 3. An occam library called robdy was created to

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 198

implement these equations in occam and was used by the three controllers.

In Appendix A part of the occam code of the EXE and PROGRAM for the im­

plementation of the computed torque is shown.

As it was mentioned in chapter 5, due to the fact that ADC and DAC are only

available on the Parallax, there is a need for the Meiko and the Parallax to com­

municate.

A Transputer Subsystem Interface (TSI) software allows a transputer domain on

the Meiko to have an external dummy processor which can communicate with the

rest of the transputers on the domain using the Inter-Module Control Interface

provided on the TO SLAVE 9 way connector mounted on the rear panel and

Inter-Module Link Interface of the same connector or a 37 inter cabinet link.

For convenience and as it did not increase the computation time drastically, it was

decided to only use the TO SLAVE. As a result only one output and one input

link exist for communication between the Meiko and the Parallax hence four extra

processors are used for a smooth multiplexing.

-The transputer set up used, with extra processors is similar to the one shown in

Figure 7.6 with the exception of the processor for filtering and connections for

Load Mass Estimation (LME) processes.

A TSI hardware allows ECL-TTL and TTL-ECL translation to be performed as

described in chapter 5, for Meiko - BOOS compatible board communication.

7.4.2 M odel-based control w ith load m ass estim ation

The adaptive manipulator control schemes often ignore the effect of the payload

mass on the inertia characteristics of the manipulators, in order to make simplifi­

cations.

What is clear is that, modelling of the payload can improve the accuracy of dy­

namic representation of the manipulator and hence the schemes that rely on the

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 199

dynamic equations to decouple the model and allow for nonlinearities, can be im­

plemented more accurately.

The approach taken to include the load mass held by the gripper in the manipula­

tor dynamic model was described in the previous chapter. To implement this, in

addition to the customised robot dynamic equations similar to those for the com­

puted torque method which are implemented in OCCAM, the numerical solution

of the state variable filter given by the n th order differential equation

j t 2Lc{t) = A X ‘(t) + Uu (7.4)

which is the controllable state-space form of the differential equation for a strictly

proper subsystem, is required.

As explained in [24], if the subsystem is not strictly proper, an extended state

vector can be used. The above differential equation is written as an n first order

differential equations plus an algebraic equation. The Laplace transform of the

extended state vector with zero initial conditions is:

(7-5)

In this formulation the states are all derivatives of the partial state x cn.

The above is fully explained in [24] and its implementation in Pascal is discussed in

[26] as a procedure in an emulator-based self-tuning control program (CSTC). The

program includes both continuous-time and discrete-time implementations of the

state-variable filter. As the use of continuous-time version has more advantages

[26], this is the one which is used.

Briefly, equation 7.4 is integrated between two consecutive time points and two of

the terms are expanded in a truncated Maclaurin series and as a result a recursive

scheme is obtained.

In a modified version of the continuous-time state variable filter that is compiled

2Lc(s) =

S ' "

.71 — 1

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 200

as a self contained program, Functions StateOutput, Delayed, DelayFilter, and

Procedure TimeDelayInitialise are not included. In addition modifications are

made to allow communication with the OCCAM programs that addresses the

ADC and DAC and implements the customised dynamic equations of the robot.

A listing of the program can be seen in Appendix B.

The communication between the Pascal and OCCAM is described shortly.

Using the Pascal program, a discrete-time approximation to a continuous-time

transfer function is achieved, the accuracy of which can be changed by varying

the sample interval and the approximation order.

The input to the Pascal program is the joint angles at each sample and the results

for each angle input, assuming a second order filter are:

s~ *
Filter State. State[i] = — — — x 9

C{s)

where $ represents the angle input.

In other words filtered angle, filtered angular velocity, and filtered angular accel-

—eration are: _

Filter State. State[2]j Filter State. State[l]; Filter State. State[0]

respectively.

Simplifications on the basis of the sparseness of the A matrix to reduce calculations

is noticeable.

Com m unication betw een OCCAM and Pascal (OCCAM harness)

The Pascal program was compiled using a Prospero Pascal compiler designed for

the Meiko Computing Surface. Both the compiler and the generated programs

require the T800 transputer for execution. MeikOS, CS Tools, and occam oper­

ating environments are supported. The assembler and linker needed to produce

an executable program form part of the operating system and as a result the ex­

ecutable programs produced run independently of the Pascal software.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 201

Besides the features of Standard Pascal, it contains a number of extensions such

as an additional data type ‘channel’ which is a general channel type occupying

one word.

One feature of Prospero Pascal which was utilised for communication with OC­

CAM programs is access to the operating system by calling routines using the C

calling conventions. It has a language extension to allow C routines to be called

directly. In this way, attributes of the transputer such as efficient execution of

many concurrent processes and management of communication between them us­

ing its links and input/output facilities can be employed.

A C routine is declared as being a procedure or function by using the C directive

provided and is used in a similar manner to an external Pascal procedure. The

body of the procedure must not be given and it must be declared at the outer

level. The procedure can not be passed as a procedural parameter. A procedure

or function declared as a C function obeys the C calling convension, and in par­

ticular, the parameter list does not need to be reversed. When the C routine is

-declared in- the Pascal program, an underscore must prefix the name of the rou­

tine.

A C library exists which provide routines that enable C procedures that are called

from the Pascal to make use of the transputer features. Messages are sent and

received on channels using two routines in particular that provide support for the

transputer architecture, namely cwrite and cread respectively. The parameters of

these routines are

• The channel for sending or recieving messages

• A message buffer

• The size of data to send or receive

As explained in a previous chapter, communication using channels is always point

to point and synchronous.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 202

Channel access is provided in the C routine by including a header file chanio.h

which defines the type CHAN and the C macro function CHAN *occam channel();.

The macro indexes the channels which correspond to an OCCAM procedure’s ar­

ray parameter representing channels (chanArray). The elements of this array can

be passed as parameters to functions within the C program, but chennels can only

be accessed using cread and cwrite routines.

One undocumented point to note with Prospero Pascal is that a single astrix can

not be included as a string character in for example comments, or this results in

unexpected errors.

Although CS Tools could have been used to combine the OCCAM and the Pas-
<K

cal, asvmajority of the code was written in occam, an occam harness seemed

more appropriate. The way this was implemented was to create a ‘shell’ proce­

dure in occam which does nothing except call the Pascal program and then an

OCCAM harness was written which connects the shell to the computing surface.

When the Pascal program and in turn the C procedures are called from occam,

-^an array of channels is passes to it”in the chanArray parameter.

One way to implement the harness is to include it in a Seperately Compiled (SC)

program and run it in parallel with other SCs. An EXE program then is needed

to allow keyboard, screen, and filing system access. A terminal emulator EXE

program is provided with the Meiko Occam Programming System (OPS) to per­

form communication with the SC programs in the network and supply a run-time

environment including connection of the program to the Computing Surface su­

pervisor bus.

As using the terminal emulator EXE requires addition and running of a number of

system routines in parallel with the shell in the created harness and it also means

that there is no flexibility when the standard terminal emulator is used, an EXE

was written for screen, keyboard and filing system access and also performing the

trajectory planning stage of the control operation similar to that of the previous

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 203

subsection. Messages to and from the harness were then routed through trans­

puter channels.

The SC program that performs the filtering is shown Appendix B. The Pascal

program for carrying out the state-variable filter is called tering and after com­

pilation etc., the library created is tering.U8 , which is included in the occam by

USE. For every trajectory point, three joint angles are input to the program

through channel in i . Then the values of each angle are sent to the Pascal state-

variable filter procedure and filtered values of the angle, velocity and acceleration

is received and is output from the program on channel o u tl .

The function of various parameters are explained in the program by comments.

It should be noted that arguments of the Pascal programs are standard and the

value of heap space should not be less than what is indicated in the program or

it halts. When compiling the Pascal program the amount of workspace, stacksize.

and Freestore ought to be increased depending on the program requirements.

There are three C procedures which should be linked with the Pascal. First

there is a dummy program that returns -1 and 1 for standard checks that are

made when a program needs to be run under OPS.

/* dummy. c * /

include <errno.h>

in t f s t a t (in t fd ,ch a r *buffer)

{

errno = ENOTDIR;

r etu rn (- 1);

}

in t l in k (ch a r *name,char *namel)

{

errno = EINVAL;

retu rn (- 1) ;

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 204

in t i s a t t y (i n t fd)

{

retu rn (1);

}

Then it is the C program for reading from a channel:

/* c f i l t i . c * /

/* To be used in con. with te r in g .p a s * /

inc lu de <std io .h>

#inclu de <chanio.h>

#d efin e chan .in 1

c f i l t i (f l o a t *a)

{

cread (occam _channel(chan_in), a, s i z e o f (f l o a t)) ;

>

And finally the C program for writing to a channel:

/* c f i l t o . c * /

/* To be used in con. w ith te r in g .p a s * /

inc lu de <std io .h>

inclu de <chanio.h>

#d efin e chan_out 0

c f i l t o (f l o a t a)

{

cwrite(occam_channel(chan_out) , &a, s i z e o f (f l o a t)) ;

}

Part of the basic transputer architecture for the adaptive model-based control

method with load mass estimation is shown in Figure 7.5.

Filtering of angles is performed using the processor FILTER, and the results

are passed to the processor which implements the Load Mass Estimation (LME)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 205

C3

ADC

C2

LME

FILTER

Figure 7.5: Part of the basic architecture for Adaptive MBC with LME

algorithm (discussed in chapter 4). In addition another filtering procedure for

the value of the voltage is included in the controller C l. as the first joint or waist

model is used for estimating the load mass, the filtered value of voltage for the first

joint is passed to LME. After estimating the value of the load mass by LME, this

value is sent to the three controller processors, so that the model can be updated.

The LME process take5roughly the same length of time to calculate as the robot

dynamic model. Although the structure is different, the computational times for

the part of the equation that is suitable for allocation to separate processors is not

a great percentage of the total. A higher speed up is achievable by allowing the

linear in the parameter dynamic equations to be calculated on a separate Trans­

puter or even three, similar to the dynamic model calculations of the computed

torque scheme discussed, but this is not necessary for the case of equations for

only three joints.

The rest of the set up is the same as for the computed torque method.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 206

The discussion about extra processors to enable the use of the TO SLAVE con­

nector for communication between the Meiko and the Parallax applies here too.

The topology used is shown in Figure 7.6.

C3 FILTERC2

EXTRA 1 EXTRA2

EXTRA3

DUMMY
PARALLAX

ADCDAC

Figure 7.6: Transputer Topology when TO SLAVE is used

7.4.3 M odel-Based VS Self-Tuning Control

Implementation of a VS self-tuning controller which will be combined with the

model based control discussed above is explained here.

The proposed approach is a combination of a continuous time variable structure

self tuning control, based on the idea of Variable Structure Systems and emulator

based self tuning control of Gawthrop [24], and the model-based adaptive control

with load mass estimation of the previous section. The method was discussed in

chapter 6.

The objective of using the VSS approach is to achieve a performance that is ro­

bust with respect to disturbances and modelling errors, while it provides accurate

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 207

tracking. This results in rejection of Coulomb and viscous friction effects.

The method presents a control law that forces every trajectory to eventually come

in contact with and remain on the intersection of switching surfaces in the joint

space of the manipulator, with each surface being described by a linear combina­

tion of a joint position error and joint velocity.

Physical implementations of the method have given rise to chattering, which is

highly undesirable, as it results in excitation of underdamped unmodeled dynam­

ics. This problem is addressed in [102] where the discontinuous switching rule is

replaced by a smooth version in which tracking precision is sacrificed for improved

transient response. This was also discussed in chapter 6.

Koditschek [46] points out that the objective function in the Sliding Mode is ex­

plicitly time varying and as a result, natural control strategies cannot be applied

with confidence so, instead the existing dynamics are cancelled or forced toward

those desired by making systematic use of the rigid body model.

He. shows that all trajectories originating away from the objective surface tend

-towards ilTasymptotically.

In the proposed method here, the non-linear terms in the dynamic equation of the

robot manipulator

M(6)0 + Q(0,0) = t (7.6)

where M is the n x n inertia matrix, Q is the vector of centrifugal, coriolis and

gravitational forces, and r is applied torques for rotational joints, can be cancelled,

thereby decoupling the plant.

Once the plant is decoupled, a VSS self tuning is then applied to individual joints.

In the VSS self-tuning control, implementation of which is in Pascal (CSTC) and

is documented in [26], only measurements of the system output <*re required as op­

posed to measurements of the system states. The implementation of the switching

surface is achieved by employing a self tuning emulator in place of unrealisable

derivatives.

The basic idea behind CSTC is to unify a number of self-tuning algorithms and

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 208

with this in mind the major emphasis is on a continuous-time approach where

controller design is carried out based on a continuous-time representation of the

system.

A modified version of CSTC is used in the implementation of MBVSSTC. A brief

description of CSTC’s operation will be given, as well as pointing out the modifi­

cations that are made to allow three programs to be used for three robot joints to

run in parallel and allow communication of the programs with the OCCAM sec­

tions of the controller code. And finally transputer implementation is described.

In CSTC transfer functions are represented as ratios of polynomials that are in

turn defined by their degrees and corresponding coefficients. A large number of

polynomial manipulation routines are provided which are used by various proce­

dures.

As it is stated in [26], the implementation of the self-tuning controller is in the

form of a self tuning emulator in a feedback loop. It consists of a tunable feed­

back controller and a parameter identification phase. Employment of an adaptive

controller as compared to its non-adaptive counterpart means that the system

parameters (coefficients of A(s), B(s) and T) need not be known in advance for

achieving a desired performance. This is the main reason for replacing a fixed

emulator by a self tuning one.

Emulators are used as is described in [24] for:

• Reducing the relative degree of the system.

• Reducing the number of non-minimum phase system zeros.

• Reducing system time delay.

In the first case Markov recursion is used for emulating linear combination of

output derivatives.

To divide the Laplace transform of derivatives of impulse response of the system

into proper and improper parts, Markov parameter representation is used. To

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 209

do this, the transfer function is expressed in terms of s_1 and the relative order,

then repeated algebraic long division is used to express the transfer function as

a polynomial in s -1, the coefficients of which are the system Markov parameters.

This process with some algebraic manipulation can be expressed in a recursive

form.

In the second case, there is a need to detect common factors between the open-loop

system denominator A(s) and the notationally non-realisable part of the design

parameter Z (s), i.e. Z~(s). This is implemented using Euclid’s algorithm to find

the Greatest Common Divisor (GCD) of two polynomials.

Then the Diophantine equation of the form

P(s)C{s) = E 2 (s)A(s)Z+(s) + F 2 (s) Z - (s) (7.7)

are solved for E 2 (s) and F2 (s) by finding the GCD of Z~(s) and A (s)Z +(s) and

deducing E 2 and F2 by solving

l = e(s)yl(3)Z+(Jj) + /(s)Z - (s) (7.8)

and using e(s) and f (s) to solve the equation recursively.

In the third case, Pade polynomial is used as an approximation to time delay.

The emulator based control law is either in explicit form

“= - ^
where is strictly proper and as can be seen the right hand side does not depend

on the control signal, and is implemented by feeding the error signal inside the

square brackets into a filter implementing or it is in the implicit form

4>*(s)Q(s)u(s) — Rw(s) = 0 (7.10)

where the numerator and the denominator of have the same degree. In this

case the value of the control signal is put equal to zero once and then unity

u = 0 => k0 = 4>q(s) — Rw(s) (7-11)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 210

it = 1 => /ci = (j>i(s) — Rw(s) (7.12)

If we draw /c against u, and try to find the value of u when /c is zero, similar

triangles can be used to obtain the following equality:

—/Co —kq + Ki
~ Q ~ “ I

Now replacing from 7.11 and 7.12 for Kq and /ci the value of it can be found from

- $J(s)

To avoid saturation, the control action of the feedback controller is limited by

including a non-linearity between the control signal and the ^ y transfer function,

hence an important factor emphasised in [24] of emulator operating on the control

signal before the saturation as opposed to the signal before saturation is taken

account of.

It is possible to implement variable structure control by setting the control signal

to a minimum or a maximum whichever is closest to the value of the signal.

For self-tuning control the emulator equation needs to be represented in the linear-

in-the parameters form

where in the Laplace transform

’ M e „

£ .(*) = ; 0e =

0 ,

are data and parameter vectors respectively.

This is not explicitly implemented, instead, after generating the data vectors,

inner product of the data vectors are formed from the coefficients of respective

polynomials and in this way the emulator output is found.

The emulator output value is then estimated and this replaces the emulator out­

put.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 211

For parameter identification, CSTC uses the discrete-time algorithm for recursive

least squares estimation which is regarded as an approximation to the continuous­

time algorithm discussed in [24]. It should be mentioned that with this algorithm,

continuous time parameters are estimated.

In [24] it is shown that discrete-time estimation of continuous-time parameters

does not introduce sampling errors which means estimation sample rate and con­

troller sample rate can be independent from one another.

The particular Self Tuning Control (STC) scheme used for the purpose of con­

trolling the robot joint movements is the Implicit control-weighted model-reference

with off-line design as explained in [24]. It is shown in [26] that the control signal

is reduced when control weighting is not zero, and although model following is

not exact, but no steady-state offset is ensured by using the Q(s) design rule.

A detuned (control-weighted) version of this algorithm, where the control weight­

ing is finite is used for a robust control, with a moderate penalty that the algorithm

will no longer be quite as exact.

The closed-loop transfer function generating the system input when there is no

time delay, control weighting or setpoint filter is

- / x Z +(s)A(s) F(s) N
“ W = P(s)B+(s){w(s) ~ W) Z + i T f W

For model-reference control B~(s) = Z~(s) = 1. The control signal is stable if

B(s) is stable.

When we include a set point filter (i.e. R{s) ^ 1), R(s) has no effect on the

feedback loop, but then it can affect the set point response the same way that

■p̂ y can (i.e. it can be set equal to the desired model). However P(s) alters

the disturbance response and close-loop sensitivity. The requirement of a unity

steady-state system gain from setpoint to output imposes R(s) = 1

In the Implicit STC, the emulator parameters are directly tuneA and the design

phase is avoided. The off-line design means that the emulator design parameter,

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 212

the control weighting and the set point filter are chosen off-line before the self­

tuning starts. There are two phases associated with the off-line design, one the

a-priori design phase and the other on line tuning phase.

The steps to implement the off-line phase are to choose

• Emulator polynomials P(s), Z +(s), Z~(s), and C(s)

• Control Weighting filter Q(s)

• Set point filter R(s)

• System order

• Realisability filter A(s) 4, typically

Depending on the type of approach, the choice of emulator polynomials and the

realisability filter might not be as above. For example if the Boolean variable

UsingLambda is set to TRUE , then A(s) is chosen to be , otherwise it is

equal to unity.

In the on-line phase if using lambda filter :

• The quantity (}>̂ {t) is generated.

• The control signal u(t) and the system output y(t) are filtered by the real­

isability filter.

• Using the filtered signals of system output and control signal, and the fol­

lowing differential equation 5

4-X c = A X C + Uu
dt

also discussed in the previous subsection , generate the emulator data vector

■£*(<)•
4Many emulators <f>(t) which are used in the continuous time approach to self tuning are not

realisable and, a realisability filter A(s) is appended so as to obtain a realisable signal <f>\(t)
5The controllable state space representation of the filter is obtained and with 2L as input,

the first state is the output, second the first derivative etc.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 213

• The emulator parameter estimate vector Oe(t) is updated using discrete least

squares from the linear in the parameters model.

• The emulator signal <j>(t) is generated using

m = 2 g (t) L (t)

• The control signal in the Laplace-transform terms is generated

Q(s)

In the step before the last, emulator signal is generated using a modified control

signal which is the actual signal the plant receives and not the saturated value.

This is due to a procedure that limits the value between a maximum and a mini­

mum and also allows implementation of variable structure control.

The emulated signal also updates the corresponding emulator states.

The value of the emulator design parameters chosen as well as other parameters

such as the initial values A(s) and B(s) etc. can be seen in Appendix C.

M odifications

A number of procedures were not included such as Input, output, Polynomial

output, WriteLnData, W riteData etc. for simplicity; as they are not used in the

transputer program. These procedures are basically used for prompting for and

inputting the value of various parameters such as the ones shown in Appendix C

in the initial interaction with CSTC before the self-tuning starts. This requires

access to the keyboard, screen, and the filing system which if was to be done for

three joints (three separate programs), the data routing can get a bit complicated,

not to mention the time taken to input three lots of parameters some of which

hardly need to be changed anyway. In addition it was decided beforehand as to

what type of self-tuning algorithm was to be used. Therefore the initialisation

stage was performed explicitly within the program.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 214

In addition the only data which was of interest was the trajectory error data which

needed to be recorded and as a result the data recording in files of the emulator

parameters, model output etc. that is possible in CSTC were not performed.

A procedures GetData and PutData in CSTC were modified to ConveyData and

DeliverData that are shown in Appendix C.The , ' ; procedures take:

the values of the setpoint, system input, and system output from an occam pro­

gram using a C procedure crec, and after the self-tuning is performed deliver the

new input to the occam program using the C procedure csend, so that it could

be combined with the model-based input and then be passed to the DAC and in

turn to the motor amplifiers.

Besides other modifications which were made to exclude writing to the screen or

a file or reading from the keyboard and modifications which exclude unnecessary

steps such as the ones involving External data etc. or functions and procedures

such as procedure HighGainControl which were not necessary for the particular

self-tuning implementation in mind for clarity and simplicity, the following modifi­

cations were also made: Limiting the chapters only to two (6, 7) and not including

the function for selection of appropriate chapter, and repeating the modified pro­

cedure OneTimeStep as many times as there were trajectory points specified by

the occam program so that self-tuning is performed at each sample for the speci­

fied trajectory until the run is finished based on one set of initial conditions. The

value of real variable LastTime should be twice the value of Samplelnterval so

that the number of runs would match the number of setpoints provided.

The occam harness for the Pascal was similar to the one described for the adaptive

model-based control of the previous subsection. However the value of fast stack

arrays and the heap space had to be increased to 1M bytes in the occam program

and when compiling the same increase applied to workspace, stacksize, and the

freestore.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 215

Transputer architecture

The transputer architecture for implementing the MBVSST algorithm is the same

as the one used for the adaptive model-based control of the previous subsection.

The variations in processes assigned to processors are: each controller processor

C l, C2, C3, in addition to dynamic equation calculations carry out the self-tuning

control for individual joints on one processor per joint basis. Measuring the time

taken to carry out the whole process shows that by doing this the target sampling

frequency is still achievable. In fact without introducing any delay, the sampling

frequency was measured to be 125 HZ. It should be noted that for the adaptive

model-based control of the previous section the the sampling frequency is 167 HZ

and for the computed torque it is 217 HZ.

Another variation is that C l sends the value of the voltage to LME and the fil­

tering of this voltage is performed on LME processor.

Further speed up can be achieved by dividing the self tuning to Identification and

Control and allowing each stage to be performed in parallel on separate transput­

ers.

Simple graph representation can be used, representing data dependencies of vari­

ous operations, allowing for input-output, communications and path sequences of

subtasks. From this, complexity measures (both time and communication com­

plexity plus number of processors) can be analysed and as a result a suitable

topology can be designed. In addition, speed up and efficiency considerations

should be looked at and where possible subtasks should be allocated to the most

lightly loaded processor to increase efficiency.

In the next section, the transputer network topologies and the programs that were

discussed above are used to carry out a number of simulations and experiments,

the results of these are presented and discussed.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 216

7.5 R esults and discussion

Prior to the actual implementation of the control algorithms on the robot, some

simulations were performed to assess the suitability of these schemes as well as

verifying how close the simulation results, which are based on the model of the

robot, are to the experimental outcome using the robot itself.

One point should be made at this stage: the motor speeds of the MA3000 robot

are slow. For the case of the waist and shoulder, the maximum speed is quoted

as being 22.5 deg/sec and for the elbow the value is 45 deg/sec maximum.

All the experiments were started when the shoulder and elbow were at a vertically

upright position which corresponds to absolute 140 degrees. Movement of each

joint was from this initial position through 30 degrees according to the polynomial

trajectory described earlier; shown in figure 7.3, or application of a square wave

setpoint with time period of 4.9 s. Only the deviations of the measured trajecto­

ries from the desired ones (trajectory errors) are shown for clarity.

The input voltages to the joint motors at each sample could vary between 88.5V

and -88.5V. These correspond to the preamplified values output from the DAC of

10V and -10V respectively. As the voltages calculated from the model-based al­

gorithms that are presented can exceed the maximum value or are at times below

the minimum or even are below the threshold voltage that can actually result in

motion, the signals were restricted to either maximum or minimum.

An additional consideration is that, when the model-based controllers are com­

bined with variable structure self-tuners, the limitation of VS self tuners to have

only maximum and minimum does not lead to domination of one signal over the

other and both signals will have equal effects.

To perform the simulations in line with the experiments, the same conditions as

for the experiments were applied.

For each controller simulation or experiment, in addition to the trajectory error

profiles for each joint; individual control signals over the time duration will be

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 217

graphically shown and in the adaptive cases, the graph of estimated values of the

load mass against time will be displayed.

All the robot model parameters for the controllers are based on the model of the

MA3000 robot developed in chapter 3 and the values are presented there.

7.5.1 Sim ulations

Using the same transputer topologies as for the real experimental implementa­

tions, the processes and the corresponding processors for Analog to Digital and

Digital to Analog conversions (the communication routes between the circuit that

drives the robot and the network of transputers) were replaced by a robot simula­

tor. The simulator was itself implemented in OCCAM on the transputer network.

In the robot simulator, the model of the robot is used to calculate the resulting

joint accelerations for given input voltages at each sample. Then the accelerations

are integrated once to find the joint velocities and twice to find the joint angles.

Values of joint velocities and angles are are then used in the next sample. The

process includes a matrix inversion of the 3 x 3 mass matrix at each sample.

C om puted Torque

The first simulation performed involved Computed Torque control with a square

wave set point. The torques were computed on the basis of a correct system

model.

The diagonal elements of the gains I(p and K v of the characteristic equation which

describes the suppression of errors in the control system:

e -f- R ve + K pe — 0

were experimentally adjusted for the critically damping case to be

I<p = 1600 K v = 80

The trajectory errors for the waist, shoulder, and elbow can be seen in figures 7.7

and 7.8.

vo
lt

ag
e

vo
lt

ag
e

vo
lt

ag
e

d
eg

re
es

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 218

0 .1 5

0.1

0 .0 5

0

■ 0 .0 5 ---
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

- 5 0

-100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.7: Computed Torque with SW setpoints

100

5 0

o

- 5 0

■100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

- 5 0

•100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r E lb o w
t -------------- 1--------------- 1— ° i-------------- !-------------- r

C o n tr o l s ig n a l f o r S h o u ld e r

j_________ i_________ i_________ i_________ i_________ i_________ l

C o n tr o l s ig n a l f o r W a is t

T r a ie c to r y erro rs f o r W .S .E1 .. | " 1 " 1 r,"‘i-"l "i 1""’ 1 1 j

...... J-------- i-------- i-------- i--------L L — • -- ■ _____ 1 i

Figure 7.8: Computed Torque with SW setpoints

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 219

As can be seen the errors are quite acceptable.

Next simulation was again the computed torque, but this time the setpoints were

defined according to a polynomial trajectory.

The trajectory errors and the control signals are shown in figures 7.9 and 7.10.

T r a je c to r y erro rs f o r W .S .E0.2

- 0 .4

- 0.6
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r W a is t

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.9: Computed Torque with Polynomial Traj.

The errors are slightly higher than the previous case but still quite reasonable.

There is less switching in the control signals in comparison to the previous case.

M odel-Based A daptive Control w ith LME

The model-based adaptive controller with load mass estimation was simulated

next. The initial estimate for the load mass was chosen to be 1.5kg (according

to the results presented in chapter 4 regarding the load mass estimation method,

the discrepancy between the initial and the actual value should not be too large).

Firstly square wave setpoints were applied, the results of which can be seen in

figures 7.11, 7.12, and 7.13 and then polynomial trajectory setpoints, results shown

in figures 7.14, 7.15, and 7.16. In the latter case improvements in reducing the

trajectory error for the waist is noticeable.

vo
lt

ag
e

d
eg

re
es

vo

lt
ag

e
v

o
lt

a
g

e

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 220

100

5 0

0

- 5 0

■100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

- 5 0

•100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.10: Computed Torque with Polynomial Traj.

0 .0 6

0 .0 4

0.02

o
- 0.02

- 0 0 4
' 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

.inn
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r W a is t

T r a je c to r y er ro r s f o r W .S .E— j ! !
.. :

-....t-4
! i l J IT !" J

.........1........ -

..

. i i.. _____1

7 +

_________ |_________ C o n tr o l s ig n a l f o r E lb o w j_________ r

J_________ 1_________ 1_________ 1_________ I_________ 1-------------- 1-------------- 1-------------- L

C o n tr o l s ig n a l f o r S h o u ld e r

Figure 7.11: Adaptive model-based with SW setpoints

vo
lta

ge

vo
lta

ge

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 221

C o n tr o l s ig n a l f o r S h o u ld e r

C o n tr o l s ig n a l fo r E lb o w

Figure 7.12: Adaptive model-based with SW setpoints

Estimated load masa against time

- - -

0

0 1 2 3 4 5 6 7 8

Tune (aeconds)

Figure 7.13: Adaptive model-based with SW setpoints

vo
lt

ag
e

vo
lt

ag
e

vo
lt

ag
e

d
eg

re
es

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 222

0 .4

0.2

0

- 0.2

- 0 .4
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

- 5 0

-100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.14: Adaptive model-based with Polynomial Traj.

100

5 0

o

- 5 0

100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

100

5 0

0

- 5 0

•100
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r E lb o w

_̂________ (_________ C o n tr o l s ig n a l f o r S h o u ld e r _________

T r a ie c to r y erro rs f o r W .S .E

Figure 7.15: Adaptive model-based with Polynomial Traj.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 223

load tti«m against tima

'eoa
I
3
2
I

Tim e (tecondi)

Figure 7.16: Adaptive model-based with Polynomial Traj.

M odel-B ased VS Self-T uner

Using the adaptive model-based controller with load mass estimation to linearise

and decouple the system and then applying a variable structure self-tuner was

a subject of discussion in the previous chapter. This combined controller was

simulated and the results can be seen in figures 7.17, 7.18, and 7.19. The particular

type of VSST used was implicit model reference with control weighting Q = 0.

The trajectory errors for shoulder and elbow are reduced considerably, where the

control signal switching for the model-based adaptive part is reduced.

The same controller was simulated this time with square wave setpoints. The

results are shown in figures 7.20, 7.21, and 7.22. The errors compared to when

only a model-based adaptive controller was used with square wave set points are

considerably reduced.

When the control weighted version of the above self-tuner was applied with a

polynomial trajectory and Q(s) = j* -, the errors increased as can be seen from

the results shown in figure 7.23.

Addition of a setpoint filter R(s) = did not improve the situation as

can be seen from figure 7.26

vo
lt

ag
e

vo
lt

ag
e

d
eg

re
es

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 224

0.2

0
- 0.2

- 0 .4

- 0.6

“ 1>' ■ ' ■

-- - — - .

0 5 0 0 1000

100

5 0

oea
a o
o>

- 5 0

-100

S T c o n tr o l s ig n a l f o r W a is t

5 0 0 1000

1 0 0 S T c o n tr o l s ig n a l f o r S h o u L

- 5 0

-100 C
5 0 0 1000

1 0 0 S T c o n t r o l s ig n a l f o r E lb o w

o>
- 5 0

-100
5 0 0 1000

Figure 7.17: Model-Based VSST with Polynomial Traj.

100

5 0

ooo
a o
o>

- 5 0

-1000

I n v D y c o n t r o l s ig n a l f o r W

5 0 0 1000

100

5 0

0

I n v D y c o n t r o l s ig n a l f o r S

-100 L 0 5 0 0 1000

I n v D y c o n tr o l s ig n a l f o r E100

oooa
>

-100 L
5 0 0 1000

Figure 7.18: Model-Based VSST with Polynomial Traj.

vo
lt

ag
e

d
eg

re
es

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 225

Eirim ittxl load m i u against lime

3
3 3
Sj 1 5

0.5

Figure 7.19: Model-Based VSST with Polynomial Traj.

T r a je c to r y erro rs fo r W .S .E
0 .0 4

0.02

- 0.02

- 0 .0 4
5 0 0 1000

1 0 0 S T c o n tr o l s ig n a l fo r W a is t

5 0

1000

1 0 0 S T c o n t r o l s ig n a l f o r S h o u l.

5 0

1 0 0 S T c o n tr o l s ig n a l f o r E lb o w

5 0

3 0
o>

- 5 0

1000
-100 > - 0 5 0 0 1000

Figure 7.20: Model-Based VSST with SW setpoints

v
o

lt
a

g
e

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 226

1 0 0 f r w D v c o n tr o l s ig n a l f o r W

1000

^qq I n v D v c o n tr o l s ig n a l f o r S

5 0

0

- 5 0

-100

I n v D y c o n tr o l s ig n a l f o r E

5 0 0 1000 1000

Figure 7.21: Model-Based VSST with SW setpoints

Estimaasd load mass against time

|
I

2 .5

1

Tim e (seconds)

Figure 7.22: Model-Based VSST with SW setpoints

C0B

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 227

1 0 0 S T c o n t r o l s ig n a l f o r W ai:

0
00 a
1

5 0 0 1000

q ̂ T r a je c to r y erro rs fo r W .S .E

0.2

-0.2

- 0 .4
10005 0 0

1 0 0 S T c o n t r o l s ig n a l f o r E lb o w

o>

5 0 0 1000

1 0 0 S T c o n tr o l s i y i a l f o r S h o u l.

a>
8P
>

5 0 0 1000

Figure 7.23: Model-Based Cont. Weigh. VSST with Polynomial Traj.

I n v D y c o n tr o l s ig n a l f o r W

jq q I n v D y c o n t r o l s ig n a l f o r E^q q I n v D y c o n tr o l s i g n a l f o r S

Figure 7.24: Model-Based Cont. Weigh. VSST with Polynomial Traj.

vo
lt

ag
e

d
eg

re
es

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 228

Estimated load masa against tim e

1
0

O J

Figure 7.25: Model-Based Cont. Weigh. VSST with Polynomial Traj.

2 q q S T c o n tr o l s ig n a l fo r W a is t

5 0 0 1000

T r a je c to r y errors fo r W .S .E
0 .4

0.2

- 0.2

- 0 .4
10005 0 0

S T c o n t r o l s ig n a l fo r E lb o w100

u
00
3*3>

5 0 0 1000

S T c o n tr o l s ig n a l f o r S h o u l.100

10005 0 0

Figure 7.26: MB Cont. Weigh, with setpoint filter VSST (Poly. Traj.)

v
o

lt
a

g
e

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 229

I n v D y c o n t r o l s ig n a l f o r W

1 0 0 I n v D v c o n tr o l s ig n a l f o r S I q q I n v D y c o n t r o l s ig n a l f o r E

Figure 7.27: MB Cont. Weigh, with setpoint F VSST with Poly. Traj.

Estimated load mass against time

as
2.5

0.5

Tim e (seconds)

Figure 7.28: Model-Based Cont. Weigh. VSST with Polynomial Traj.

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 230

7.5.2 Controller experim ents

The sampling frequency achievable to implement the computed torque on the

transputer network topology discussed earlier is 215 HZ and the values for the

model based adaptive controller with load mass estimation and the model based

variable structure self-tuner are 167 HZ and 121 HZ respectively.

To keep all the conditions for the three controllers the same, delays were intro­

duced so that the lowest sampling frequency i.e. 121 was applied for all controllers.

The overall duration for each control scheme to go through 900 points according

to the polynomial trajectory discussed earlier was 7.4s.

C om puted Torque

Firstly the computed torque scheme was implemented. The trajectory errors and

the corresponding control signals for all the three joints are shown in figures 7.29

and 7.30.

The errors are certainly larger compared to the simulated results, but still quite

reasonable since a polynomial trajectory setpoint is applied.

6

4

MO
a 2 60 ^TJ

0

-2
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

10

5

o
60a o
n
>

-5

- 1 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r W a is t

m

T r a je c to r y erro rs f o r W .S .E

Figure 7.29: Computed Torque (real implementation)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 231

10

5

0

- 5

-10

C o n tr o l s ig n a l f o r S h o u ld e r

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r E lb o w

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.30: Computed Torque real implementation

M odel-B ased A d ap tiv e C o n tro l w ith LM E

When the model-based adaptive controller with load mass estimation was applied

the errors for the waist were reduced which is consistent with the simulated results.

This can be seen in figure 7.31.

The graph of estimated load mass against time is shown in figure 7.33.

It can be that the eifect of the load mass on the waist is higher compared with

the other joints and as a more accurate value of the load mass is included in the

model, the model gets closer to the real representation of the actual robot (note

that the gripper is part of the load in this case).

Furthermore as the load estimation routine only uses the dynamic equations of

the waist (as its feasibility was discussed in chapter 4), this could also play a part

j - i , ___ 4- _________________ 4 . 1 , ----------------- u _iii luc uuu^umc ui luc icauiuo.

3

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 232

T r a je c to r y erro rs f o r W .S .E

C o n tr o l s ig n a l f o r W a is t

Figure 7.31: Model-Based Adaptive Control with LME (real implementation)

C o n tr o l s ig n a l f o r S h o u ld e r

oeo
3”3>

-10
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

C o n tr o l s ig n a l f o r E lb o w

o>

-10
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.32: Model-Based Adaptive Control with LME (real implementation)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 233

Eitim ated load mtsa again tt tim e

- 3 3 J A
3 3si , ,3
1I

0 5

l im e (leconda)

Figure 7.33: Model-Based Adaptive Control with LME (real implementation)

M odel-B ased VS self-tun ing con tro l

From simulation results and by carrying out a number of experiments, the most

suitable (in terms of producing the least trajectory errors) type of variable struc­

ture self-tuner to combine with a model-based controller was found to be a model

reference self-tuner with no control weighting.

When the self-tuner was applied by itself without linearising or decoupling the

system first, the overall results were not acceptable due to trajectory errors pro­

duced being large. When the self-tuner was applied to individual joints with all

other joints not moving, good performance was only exhibited in the case of the

waist as can be seen from figure 7.34.

Combination of the VS self-tuner and the model-based adaptive control with

load mass estimation produced the best results of all.

The trajectory errors are quite small as can be seen from figure 7.35 and in com­

parison with the other controllers, the results are much more improved.
r p i „ i „ j „ __ ____ 4. ; j . i _______ : „ £ n nn
x n c l e a n m c i D o c o l i i i i o l c o e o n uc o c c n i l l n g u ic i . o i .

7.5.3 Conclusions

The conclusions drawn from the simulation and experimental results and also from

what has been discussed so far can be summerised as follows:

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 234

E

T r a je c to r y erro rs
4

2

■2

-4
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00

S T c o n tr o l s ig n a l

-10
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 7.34: VS Self-Tuning applied to waist (real implementation)

o T r a je c to r y erro rs f o r W .S .E

2

1
0
1

■2
5 0 0 10000

10

5

0

- 5

-10

S T c o n tr o l s ig n a l f o r W a is t

0 5 0 0 1000

S T c o n tr o l s ig n a l f o r S h o u l .

5 0 0 1000

10

5

uoo
2 0

-10

S T c o n tr o l s ig n a l f o r E lb o w

5 0 0 1000

Figure 7.35: Model-Based VS Self-Tuner with LME (real implementation)

v
o

lt
a

g
e

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS 235

I n v D y c o n tr o l s ig n a l f o r W

I n v D y c o n tr o l s ig n a l f o r EI n v D y c o n tr o l s ig n a l f o r S

Figure 7.36: Model-Based VS Self-Tuner with LME (real implementation)

Estimated load against tima

------ j... f---—r ----

I i !

■ * 1

... w —

IT
------ j { \ ------ ------

t
11

------ -)..— | ------
1ol i i-------i-------i-------i-------1-------1-------i-------1

0 1 2 3 4 5 6 7 8

Time (seconds)

Figure 7.37: Model-Based VS Self-Tuner with LME (real implementation)

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPU TERS 236

• There is a need for using transputers and parallel processing to implement

the type of controllers that were used, if required sampling frequencies is to

be achieved.

• Experiments are needed in addition to simulations which are purely based

on a model that might not be accurate enough.

• Experimental results help verify the validity of a developed model if they

are consistent with simulation results.

• Model-based control is certainly effective if a good model is available.

• The load mass estimation method introduced in chapter 4, incorporated into

a model based control scheme results in a more accurate model and hence

the model can be used more effectively to decouple and linearise the system.

• Combining a model based controller with a suitable variable structure self­

tuner results in an excellent controller as far as trajectory following is con­

cerned.

C hapter 8

Conclusions

During the course of the research, a number of hypotheses and concepts regarding

model-based control of robot manipulators for gross motion trajectory tracking

have been brought under scrutiny and most of the relevant issues in the area have

been considered.

The following are the issues considered:

• Kinematics and dynamics of manipulators.

• Modelling of manipulators including the actuation systems.

• Obtaining parameters of the overall model, using experimental data from

the robot and using a CAD-based approach.

• Model validation.

• Load mass estimation.

• Computing requirements for real-time control implementation and choice of

parallel processing as a suitable option to meet these requirements.

• Requirements of a robot control programming system.

• Hardware and software interfaces needed for experimental evaluation.

CHAPTER 8. CONCLUSIONS 238

• Comparison of various manipulator control methods.

• Realistic simulation and experimental evaluation of the control strategies.

Experimental evaluations provided some valuable insights for better understand­

ing of various aspects of robot control as well as giving credibility to the conclu­

sions drawn. For example

• The ability of model-based controllers to produce a reasonable trajectory

tracking accuracy, provided that the robot dynamic model is sufficiently

accurate.

• The importance of cancelling coriolis and centrifugal forces, even at low

speeds, to reduce tracking errors.

• The improvements that can be achieved, as far as trajectory tracking is

concerned, by estimating the mass of the payload carried by the manipulator

gripper.

• The unsuitability of employing a linear self tuning controller for each joint

of the manipulator without decoupling and linearising the system first (es­

pecially for trajectory tracking applications).

• The trajectory error reduction, resulting from addition of suitable self-tuners

to decoupling and linearising model-based controllers, to reduce the effect

of having an inexact dynamic model.

• The suitability of using a variable structure self-tuner which uses output

feedback with observers as opposed to full state feedback in the self-tuning

part of the control law.

• The increase in the trajectory errors, as a result of using a detuned version of

the self-tuner (nonzero control weighting), although its robustness properties

are desirable.

CHAPTER 8. CONCLUSIONS 239

Employment of model-based algorithms for robot control is essentially to com­

pensate the nonlinear dynamics of the manipulator at the initial stages especially

at high speeds. Having this in mind, the limiting factor in the experimental evalu­

ations was the relatively low speeds of the MA3000 robot which was used. However

this limitation served to provide a suitable ground for showing that compensation

for coriolis and centrifugal forces and joint interactions led to improved trajectory

tracking accuracy even at low speeds.

To achieve better tracking accuracy, some have embarked on development and use

of direct-drive robots to overcome the domination of the motor and drive system

dynamics over joint dynamics and to avoid the friction of the gear train. However

there are two points to note: firstly that the former argument does not necessarily

imply that joint dynamics may be neglected in the presence of large motor and

drive dynamics as was experienced in this work; and secondly, by inclusion of a

friction model in the dynamic equations, the later argument is no longer an im­

portant factor at least in the case of non compliant motion.

The modelling of the robot does not need to be extremely accurate, although a

CAD approach proved to be quite acceptable, as long as finer adjustments are

made at a later stage using self-tuning methods. In other words a dynamic model

of the robot that includes the motor and drive system dynamics can be used to

reduce the nonlinear and coupling effects and then a self-tuner is employed to pro­

vide enhanced accuracy in tracking. The most appropriate self-tuner in relation

to the above was found to be a variable structure one with no control weighting

as described in chapters 6 and 7. Both the simulation and experimental results

show the effectiveness of this approach.

Any deviations from the set trajectory due to variations in the payload of the ma­

nipulator can be suppressed by using an estimation method which was introduced

in chapter 4 to allow payload adaptation. The effectiveness of the method which

is developed by symbolic algebraic manipulation of the dynamic equations and

is based on the state-variable filter approach and least squares estimation, was

CHAPTER 8. CONCLUSIONS 240

demonstrated experimentally.

It should be noted that as the load mass estimation algorithm is based on the

model of the robot, accuracy of this model is of prime importance for good re­

sults.

Use of symbolic algebraic manipulation also resulted in a more efficient set of

dynamic equations which meant less computational effort in implementing the

model-based controllers. However even with this reduced set of equations, inher­

ent coarse parallelism of the control algorithms had to be exploited and to carry

out the computations in real-time and to achieve the required sampling rates,

parallel processing and fast processors (transputers) had to be employed.

Suitability of a transputer network for implementation of a robot programming

system was also argued.

Suggestions for future research

It would be useful to pursue two areas as an extension to the work presented here;

firstly an investigation into the cartesian space control along the same lines as the

joint space approach that was dealt with in this work; and secondly look at the

effects of adding a velocity self-tuner to the control system.

An interesting area of research in the field of robotic control is to develop suitable

controllers for assembly operation applications. This entails considering multiple

arm interactions, compliant motion and force control.

A ppendix A

Part o f th e O C C AM code for

com p, torque

TH E EXE

PROC C on tro ller (CHAN OF INT keyboard, CHAN OF ANY screen ,

[4]CHAN OF ANY f r o m .u s e r . f i l e r , t o . u s e r . f i l e r)

#USE u ser io

#USE in t e r f

#USE maths32.1ib

VAL lin k ou t IS [0 ,1 ,2 ,3] :

VAL l in k in IS [4 ,5 ,6 ,7 3 :

CHAN OF ANY t o . f i r s t , f r o m .f i r s t :

PLACE t o . f i r s t AT l in k o u t [1] :

PLACE f r o m .f i r s t AT l i n k i n [1] :

SEQ

PROC datavalues (CHAN OF ANY screen)

INT i , j :

[1000]REAL32 data:

APPENDIX A. PART OF THE OCCAM CODE FOR COMP: TORQUE 242

[1000]REAL32 d ata l:

[1000]REAL32 data2:

[1000]REAL32 time:

[1000]REAL32 e rro r l:

[1000]REAL32 error2:

[1000]REAL32 error3:

[1000]REAL32 c o n t s ig l :

[1000]REAL32 con ts ig2 :

[1000]REAL32 con ts ig3 :

REAL32 pO, p i , p2, pn, t , t l , t 2 , t n , p2A, p2B:

REAL32 v l , a l , v2, a2:

REAL32 t p l , tp 2 , tp 3 , tp 4 , tp 5 , t l p 2 , t2p 2 , tnp2:

REAL32 d e l t a l , d e l ta 2 , d e ltan :

REAL32 ta u , s e g l , seg2 , segn:

REAL32 tauO, t a u l , tau 2 , taun:

REAL32 th e t a O ,t h e t a l , t h e t a 2 :

SEQ

w r i t e . t e x t . l i n e (screen,"Program running . . . ")

s e g l := 2 . 0(REAL32)

s e g 2 := 7 . 0(REAL32)

segn:= 9.0(REAL32)

pO:=0. 0(REAL32)

p i : = 5 . 0(REAL32)

p 2 := 2 5 .0 (REAL32)

pji * — 3 0 .0 (REAL32)

d e lta l := p l -p 0

d e lta 2 := p 2 -p l

d e l t a n :=pn-p2

tl:=2.0(REAL32)

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

t 2 := 5 .0 (REAL32)

t n := 2 .0 (REAL32)

tauO:= 0 .0 (REAL32)

t a u l := 2 .0 (REAL32)

ta u 2 := 7 .0 (REAL32)

ta u n := 9 .0 (REAL32)

i :=0

j:=0

SEQ

SEQ

tlp 2 := POWER (t 1 , 2 . 0 (REAL32))

t2p2:=P0WER (t 2 , 2 . 0 (REAL32))

tn p 2 :=P0WER (tn,2.0(REAL32))

t a u : - 0 . 0 (REAL32)

WHILE tau < s e g l

SEQ

t: = (t a u - t a u O) / t l

tp2:=POWER (t,2.0(REAL32))

tp3:=POWER (t , 3 . 0(REAL32))

tp4:=P0WER (t,4.0(REAL32))

t p 5 :-POWER (t , 5 . 0 (REAL32))

p i := (d e l t a l *tp3) + pO

v l ;= (3 . 0(REAL32) * d e l t a !) / t i

a l := (6 . 0(REAL32) * d e l t a l) / t lp 2

dataCi] := p i

datalC i] := v l

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

d a ta 2 [i] := al

t im e [i] := tau

t a u :=tau+0.0 1 (REAL32)

i : = i + l

ta u :“ s e g l

WHILE (tau >= s e g l) AND (tau < seg2)

SEQ

t : = (t a u - t a u l) / t 2

tp2:=P0WER (t,2.0(REAL32))

t p 3 :=P0WER (t,3.0(REAL32))

tp4:=P0WER (t , 4 . 0(REAL32))

tp5:=P0WER (t,5.0(REAL32))

p2A:= (((((((6 . 0(REAL32) * d e lta 2) +

(-(3.0(REAL32) * (v l * t 2)))) +

(-(3.0(REAL32) * (v2 * t 2)))) +

(- (0 . 5 (REAL32) * (a l * t2p2)))) +

(0 . 5(REAL32) * (a2 * t 2 p 2)))) * tp5) +

(((((((- (1 5 . 0(REAL32) * d e l ta 2)) +

(8 . 0(REAL32) * (v l * t 2))) +

(7 . 0(REAL32) * (v2 * t 2))) +

(1 . 5(REAL32) * (a l * t2 p 2))) +

(- (a 2 * t2 p 2)))) * tp4)

)2B:—((((((((1 0 . 0 (REAL32) ♦ d e lta 2) +

(-(6.0(REAL32) * (v l * t 2)))) +

(-(4.0(REAL32) * (v2 * t 2)))) +

(-(1.5(REAL32) * (a l * t 2 p 2)))) +

(0.5(REAL32) * (a2 * t 2 p 2)))) * tp 3) +

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

((0.5(REAL32) * (a l * t2p 2)) * tp 2)) +

(((v l * t2) * t) + p i)

p2 := p2A+p2B

v2 := 3.0(REAL32) * (d e lta n / tn)

a2 := (-(6.0(REAL32))) * (d e lta n / tnp2)

d a ta [i] := p2

d a t a l [i] := v2

d a ta 2 [i] := a2

t irae[i] := tau

i : = i+ l

t a u :=tau+0.0 1 (REAL32)

tau:= seg2

WHILE (tau >= seg2) AND (tau < segn)

SEQ

t : = (ta u - ta u 2) / tn

tp2:=P0WER (t,2.0(REAL32))

tp3:=P0WER (t,3.0(REAL32))

tp4:=P0WER (t,4.0(REAL32))

tp5:=P0WER (t,5.0(REAL32))

pn := ((d e lta n * tp3) +

((- (3.0(REAL32) * d e lta n)) * tp 2))+

(((3.0(REAL32) * d e lta n)* t) + p2)

d a ta [i] := pn

d a t a l [i] := 0.0(REAL32)

d a ta 2 [i] := 0.0(REAL32)

t im e [i] := tau

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE 246

i : = i + l

tau:=tau+0.01(REAL32)

SEQ

t o . f i r s t ! data

f r o m .f i r s t ? e r r o r l ; c o n t s ig l ; e rr o r2 ;co n ts ig 2 ; error3 ;con ts ig3

WHILE j<= 900

SEQ

w r ite .r e a l3 2 (screen , e r r o r l [j] , 6 , 4)

w r ite .r e a l3 2 (screen , c o n t s i g l [j] , 7 , 6)

w r ite .r e a l3 2 (screen , e r r o r 2 [j] , 6, 4)

w r ite .r e a l3 2 (screen , c o n t s i g 2 [j] , 7 , 6)

w r ite .r e a l3 2 (screen , e r r o r 3 [j] , 6 , 4)

w r ite .r e a l3 2 (screen , c o n t s i g 3 [j] , 7, 6)

INT pos:

[80]BYTE t e x t . l i n e :

SEQ

pos : = 0

w r i t e . t e x t . l i n e (screen , [t e x t . l i n e FROM 0 FOR p os])

j - = j +l

INT kchar:

INT error:

cm

w r ite , f u l l , s t r in g (screen , "Do you want to f i l e th e output? ")

read . ech o . char (keyboard, screen , kchar)

n ew line(screen)

— mask o f f a lp h a b etic case

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE 247

VAL bchar IS BYTE (kchar / \ # 5 F):

IF

bchar = i Y >

CHAN OF ANY fromprog, t o f i l e :

INT foldnum:

PAR

SEQ

datavalues (fromprog)

w rite .endstream (fromprog)

SEQ

scrstream .fan .ou t (fromprog, t o f i l e , screen)

w rite.endstream (t o f i l e)

SEQ

s c r s t r e a m . t o . f i l e (t o f i l e , f r o m .u s e r . f i l e r [0] ,

t o . u s e r . f i l e r [0] , " d a ta f i le " , foldnum, error)

IF

error = 0

SKIP

TRUE

STOP

TRUE

datavalues (screen)

w r i t e . f u l l . s tr in g (sc r e e n , "Type ANY to return to TDS")

INT any:

new lin e(screen)

C o n tro ller (keyboard, screen , f r o m .u s e r . f i l e r , t o . u s e r . f i l e r)

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE 248

TH E PR O G R A M

VAL lin k ou t IS [0 ,1 ,2 ,3] :

VAL l in k in IS [4 ,5 ,6 ,7] :

CHAN OF ANY fromROOT, toROOT :

[16]CHAN OF ANY l in k s :

{ { { SC MX (CHAN OF ANY inn , o u t t , i n i , o u t 1, in 2 ,o u t2 , in 3 ,o u t3)

{ { { MX (CHAN OF ANY inn , o u t t , i n i , o u t 1, in 2 ,o u t2 , in 3 ,o u t3)

PROC MX (CHAN OF ANY inn , o u t t , i n i , o u t 1, in 2 ,o u t2 , in 3 ,o u t3)

[1000]REAL32 erro r1:

[1000]REAL32 error2:

[1000]REAL32 error3:

[1000]REAL32 c o n t s ig l :

[1000]REAL32 con ts ig2 :

[1000]REAL32 co n ts ig3 :

[1000]REAL32 TRAJdata:

SEQ

inn ? TRAJdata

PAR

SEQ

o u tl ! TRAJdata

SEQ

out2 ! TRAJdata

SEQ

out3 ! TRAJdata

SEQ

in i ? erro r l ; c o n t s ig l

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

SEQ

in2 ? error2 ; con ts ig2

SEQ

in3 ? error3 ; con ts ig3

outt ! e r r o r l ;c o n t s ig l ; e rro r2 ;co n ts ig 2 ; e rro r3 ;co n ts ig 3

>}}
}}}
. . . SC position(CHAN OF ANY o u t l , out2, out3)

. . . SC SIGNAL(CHAN OF ANY i n i , in 2 , in3)

. . . SC Cl (CHAN OF ANY i n i , in 2 ,o u t2 , out)

. . . SC C2 (CHAN OF ANY i n i , in 2 ,o u t2 , out)

. . . SC C3 (CHAN OF ANY i n i , in 2 ,o u t2 , out)

PLACED PAR

PROCESSOR 0 T8

PLACE fromROOT AT l i n k i n [2] :

PLACE toROOT AT l in k o u t [2] :

PLACE l i n k s [11] AT l i n k i n [3]

PLACE l in k s [8] AT l in k o u t [3]

PLACE l i n k s [12] AT l i n k i n [0]

PLACE l i n k s [9] AT lin kout [0]

PLACE l i n k s [13] AT l in k in [1] :

PLACE l i n k s [10] AT l in k o u t [1]

MX(fromROOT,toROOT,links[1 1] , l i n k s [8] , l i n k s [12] ,

l i n k s [9] , l in k s [1 3] , l i n k s [10])

PLACED PAR

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

PROCESSOR 1 T8

PLACE l i n k s [0] AT l in k o u t [0] :

PLACE l i n k s [1] AT l in k o u t [2] :

PLACE l i n k s [3] AT l in k o u t [3] :

p o s i t i o n (l i n k s [0] , l i n k s [1] , l i n k s [3])

PLACED PAR

PROCESSOR 2 T8

PLACE l i n k s [4] AT l i n k i n [2] :

PLACE l i n k s [5] AT l i n k i n [0] :

PLACE l i n k s [6] AT l i n k i n [1] :

SIGNAL(links[4] , l i n k s [5] , l i n k s [6])

PLACED PAR

PROCESSOR 3 T8

PLACE l i n k s [0] AT l i n k i n [0] :

PLACE l in k s [8] AT l in k in [3] :

PLACE l i n k s [11] AT l in k ou t [3] :

PLACE l i n k s [4] AT l in k o u t [2] :

C l (l i n k s [0] , l i n k s [8] , l i n k s [1 1] , l i n k s [4])

PLACED PAR

D D n P T T O O n D A T Q
A I b U V L j U U U A V “X I V

PLACE l i n k s [1] AT l in k in [0] :

PLACE l in k s [9] AT l i n k i n [3] :

PLACE l in k s [12] AT l in k ou t [3] :

PLACE l in k s [5] AT lin k o u t [2] :

APPENDIX A. PART OF THE OCCAM CODE FOR COMP. TORQUE

C 2 (l in k s [1] , l i n k s [9] , l i n k s [1 2] , l i n k s [5])

PLACED PAR

PROCESSOR 5 T8

PLACE l i n k s [3] AT l i n k i n [0] :

PLACE l i n k s [10] AT l i n k i n [3] :

PLACE l i n k s [13] AT lin k o u t [3] :

PLACE l i n k s [6] AT l in k o u t [2] :

C 3 (l in k s [3] , l i n k s [1 0] , l i n k s [1 3] , l i n k s [6])

A ppendix B

Pascal and O CCAM SC progs

for F iltering

TH E PASCAL

PROGRAM F i l t e r (I n p u t , Output);

PROCEDURE _ c f i l t o (x : r e a l) ; c ;

PROCEDURE _ c f i l t i (var y : r e a l) ; c ;

CONST

Version = 'Version 1 .1 ' ;

NumberParameters = 3;

MaxDegree = 4;

MaxState = 2;

MaxDimension = 6;

C r iter io n = 0 .01;

TYPE

Degree = - 1 . .MaxDegree;

Polynomial =

RECORD

Deg: Degree;

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

Coeff: ARRAY [0 . .MaxDegree] OF REAL

END;

StateV ector = ARRAY [0 . .MaxState] OF REAL;

TypeFilterKnobs =

RECORD

Sam ple ln terva l: REAL;

ApproximateionOrder: INTEGER;

ConstantBetweenSamples: BOOLEAN;

END;

T yp eF ilterS ta te =

RECORD

S tate : StateVector;

Old: REAL;

END;

Dimension = 1 . .MaxDimension;

Vector = ARRAY [Dimension] OF REAL;

Matrix =

RECORD

Rows: Dimension;

Columns: Dimension;

Element: ARRAY [Dimension, Dimension] OF REAL;

END;

VAR

InData: TEXT;

D 01 P r t n + r r t l C i r r n a l C J*re»+ * o t n r i n 4 , n i i 4 * ♦ 1 5 1 7 A T ♦
A W J. } V VAIi V X k / y k/Jf M U Wi.lL W U U ^ /U W • JL h u n i i y

C ontro lS ta te , OutputState: T yp eF ilterS ta te;

X, XPsi, Parameter: Vector;

XX: Matrix;

Cs: Polynomial;

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

FilterKnobs: TypeFilterKnobs;

Order: INTEGER;

Done: BOOLEAN;

aa : REAL;

i i : INTEGER;

PROCEDURE I n i t i a l i s e ;

VAR

i , j : INTEGER;

BEGIN { I n i t i a l i s e }

WITH C ontro lS tate DO

BEGIN

FOR i := 0 TO MaxState DO S t a t e [i] := 0 .0 ;

Old := 0 .0 ;

END;

WITH OutputState DO

BEGIN

FOR i := 0 TO MaxState DO S t a t e [i] := 0 .0 ;

Old := 0 .0 ;

END;

WITH XX DO

BEGIN

Rows := NumberParameters;

Columns := NumberParameters;

FOR i := 1 TO NumberParameters DO

t r n D •; . — -i t t i — ~ x . r\n
X U l b J . — X X U XM U 1 U U C 1 X" C L X C U 1 1 C O C X © UU

E lem ent[i, j] := 0 .0 ;

END;

FOR i := 1 TO NumberParameters DO X P si[i] := 0 .0 ;

WITH Cs DO

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

BEGIN

Deg := 2;

C o e f f [0] := 0.01;

C o e f f [1] := 0 .2 ;

C o e f f [2] := 1;

END;

WITH FilterKnobs DO

BEGIN

Sam plelnterval := 1 / 121;

ApproximationOrder := 5;

ConstantBetweenSamples := FALSE;

END;

END { I n i t i a l i s e } ;

PROCEDURE F ilterD ata;

PROCEDURE S ta te V a r ia b leF ilter

(u {S ign a l to be f i l t e r e d } : REAL;

C: Polynomial;

FilterKnobs: TypeFilterKnobs;

VAR F i l t e r S t a t e : T y p eF ilterS ta te) ;

VAR

k, Index: INTEGER;

Sum, hk: REAL;

Increment: StateVector;

c r n T i i f —t? .: i j . — \
jjijuxn i ua. oc ¥ clx xau j.c i J.a. iici J

WITH FilterKnobs DO

BEGIN

IF ConstantBetweenSamples THEN

F i l te r S ta te .O ld := u;

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

IF C.Deg = 0 THEN

F i l t e r S t a t e . S t a t e [0] := u / C .C o eff[0]

ELSE

BEGIN

F i l t e r S t a t e .S t a t e [0] := 0 .0 ;

FOR Index := 0 TO C.Deg DO

Increment[Index] := F i l t e r S t a t e .S t a t e [I n d e x] ;

FOR k := 1 TO ApproximationOrder DO

BEGIN

Sum := 0 .0 ;

hk := Sam pleInterval / k;

FOR Index := 1 TO C.Deg DO

Sum := Sum - C .Coeff[Index] *

Increm ent[Index];

FOR Index := C.Deg DOWNTO 2 DO

Increment[Index] : = hk * Increment[Index -

l];
Increment[0] := Sum / C .C oeff[0];

IF k * 1 THEN

Increment [0] := Increment [0] +

F i l t e r S t a t e . Old /

C.Coeff [0];

IF k = 2 THEN

Increment [0] := Increment [0] + (u -

F i l t e r S t a t e . Old) !

C.Coeff [0];

Increment[1] := hk * Increment[0];

FOR Index := 0 TO C.Deg DO

F i l t e r S ta te .S ta t e [I n d e x] := F i l t e r S t a t e .

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING 257

S tate[In d ex] +

Increment[Index]

END;

END;

F i l t e r S t a t e . Old := u;

END {WITH FilterK nobs}

END { o f S ta te V a r ia b leF ilte r } ;

BEGIN {F ilterD a ta }

i i := 1;

WHILE i i < 901 DO

BEGIN

_ c f i l t i (S y s te m O u tp u t) ;

S tateV ariab leF ilter(System O utput, Cs, F ilterK nobs,

O utputState);

X[l]

X[2]

X [3]

= O u tp u tS ta te .S ta te [0] ;

= O utputState. S t a t e [1];

= O utputState. S t a t e [2];

_ c f i l t o (X [l]) ;

_ c f i l t o (X [2]);

_ cf i l t o (X [3]);

i i := i i + 1;

END;

END {F ilter D a ta } ;

BEGIN { F i l t e r }

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING 258

I n i t i a l i s e ;

BEGIN

F ilterD ata ;

END;

END.

TH E O CCAM SC

{ { { SC filter(CHAN OF ANY i n i , o u t l)

{ { { filter(CHAN OF ANY i n i , o u t l)

PROC filter(CHAN OF ANY i n i , o u t l)

CHAN OF ANY Aang, Bang, Cang, f i l A , f i l B , f i lC :

{ { { fil(CHAN OF ANY Ain, Aout)

PROC fil(CHAN OF ANY Ain, Aout)

#USE g l o b a l s . l i b

#USE s tr e a m s . l ib

PROC foccam([2] CHAN OF ANY chans)

#USE u s e r i o . l i b

REAL32 fan g , f v e l , f a c e , angle:

in IS chans [0] :

out IS chans[1] :

INT s i z e , i , noOFtrajectoryPOINTS:

SEQ

i := 0

noOFtrajectoryPOINTS := 901

WHILE i < noOFtrajectoryPOINTS

SEQ

Ain ? angle

out ! angle

in ? face'

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

in ? f v e l

in ? fang

Aout ! fang ; f v e l ; fa ce

i := i + 1

VAL bufS ize IS 256 :

[bufSize]BYTE args :

INT r e s u l t :

[1]BYTE fS tack :

[20 * 1024]BYTE heap :

[2]CHAN OF ANY chans :

CHAN OF ANY debug, toFSys, fromFSys:

CHAN OF ANY screen , keyboard:

— s i z e of s t r in g b u ffe r s

— arguments to PASCAL

— r e s u l t from PASCAL

— dummy f a s t s tack arrays

— heap space

— dummy in te r -p r o c e ss channels

#USE " te r in g . l iS "

SEQ

args[0] := '*#00'

PAR

tering(from F Sys, toFSys,

keyboard, screen ,

debug, args,

r e s u l t , chans,

fS ta ck , heap)

foccam(chans)

}}}
PAR

SEQ

REAL32 a n g le l , fa n g l , f v e l l , f a c c l

APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING 260

REAL32 angle2 , fang2, f v e l 2 , fa cc2 :

REAL32 angle3 , fang3, f v e l 3 , fa cc3 :

INT i i i :

SEQ

i i i := 0

WHILE i i i < 901

SEQ

in i ? a n g le1 ; angle2 ; angle3

Aang ! a n g le l

Bang ! ang le2

Cang ! angle3

f i l A ? fan g l ; f v e l l ; f a c c l

f i l B ? fang2 ; f v e l2 ; facc2

f i l C ? fang3 ; f v e l3 ; facc3

o u t l ! f a n g l ;f v e l l ;f a c c l ; f a n g 2 ; fv e l2 ; fa c c 2 ;

fan g3;f v e l 3 ;facc3

i i i := i i i + 1

SEQ

fi l (A a n g , f i lA)

SEQ

f i l (B a n g , f i l B)

SEQ

f i l (C a n g , f i lC)

>»
}>}

A ppendix C

Param eters and two procs for

M B V SST

Values of param eters needed in th e in itia l stage

{ ======== Assumed system ========} { S y s t e m ln i t ia l i s e }

A.Deg := 2;

A .C o eff[0] := 1.000000;

A .C o eff[1] := 2.000000;

A .C o eff[2] := 1.000000;

B.Deg := 0;

B .C o e f f [0] := 1.000000;

Numberlnteractions := 0;

D.Deg := 0;

D .C o eff[0] := 0.000000;

Delay := 0.000000 ;

T u n in g ln itia lC on d ition s := FALSE ;

APPENDIX C. PARAM ETERS AND TWO PROCS FOR M BV SST

{======== Emulator d es ign ======== } { D e s i g n l n i t i a l i s e }

ZHasFactorB := FALSE;

ZMinusPlus := 1.000000;

ZPlus := 1.000000;

LQ := FALSE;

{= = = 5 = = =S= == = ==a=============:===== >

P.Deg := 1;

P .C o e f f [0] := 1 .0 ;

P .C o e f f [1] : = 1 .0 ;

C.Deg := 1;

C.Coeff [0] := 1 .0 ;

C .C oeff[1] := 1 .0;

PadeOrder := 0;

Small := 0.000100;

{ ======== F i l t e r s ========} { In itF ilterK n o b s}

Sam plelnterval := 0.008251;

ApproximationOrder := 5;

ContinuousTime := TRUE;

{ ======== I d e n t i f i c a t io n ======== } { T u n e r ln i t ia l i s e }

In it ia lV a r ia n ce := 100000.000000 ;

ForgetTime := 1000.000000;

DeadBand := 0.000000;

On := TRUE ;

Tunelnterval := 1;

{ } { I d e n t i f y l n i t i a l i s e }

APPEND IX C. PARAM ETERS AND TW O PROCS FOR M BVSST

Cs.Deg :=* 1;

C s .C o e f f [0] := 1.000000;

C s .C o e ff [1] := 1.000000;

Id en tify in g R a tio n a l := TRUE;

Id en tify in gD elay := FALSE;

{======== C on tro ller ======== } { C o n t r o l ln i t i a l i s e }

qNumerator.Deg := 0;

qNumerator.Coeff[0] := 0 .0 ;

qDenominator.Deg := 0;

qDenominator.Coeff[0] := 1 .0 ;

rNumerator.Deg := 0;

rNumerator.Coeff[0] := 1 .0 ;

rDenominator.Deg := 0;

rDenominator.Coeff[0] := 1 .0 ;

{ ======== PutD ataln it ======== } { P u t D a ta ln i t ia l i s e }

Max := 10.0 ;

Min := -1 0 .0 ;

Switched TRUE;

{======== STC type ======== } { K n o b s ln i t ia l i s e }

E x p l ic i t := FALSE;

UsingLambda := TRUE;

Identify ingSystem '= TP.UE;

{ ======== Control a c tio n

Auto := TRUE;

In tegra lA ction := TRUE;

} { S T C In it ia l is e }

APPENDIX C. PARAM ETERS AND TWO PROCS FOR M B V SST

{ ======== Data Source ========} { R e i n i t i a l i s e }

ExternalData := FALSE;

LastTime := 0.016502;

P r in t ln te r v a l := 1;

{ ======== Actual system ======== } { t S y s t e m ln i t ia l i s e }

A.Deg := 2;

A .C o eff[0] := 1.000000;

A .C o eff[1] := 2.000000;

A .C o eff[2] := 1.000000;

B.Deg := 0;

B .C o e f f [0] := 1.000000;

D.Deg := 0;

D .C o eff[0] := 0.000000;

Delay := 0.000000 ;

C onveyD ata and D eliverD ata

PROCEDURE ConveyData(VAR ThisLoopVAR: TypeLoopVAR;

VAR LoopVAR: LoopVARs;

VAR Time: REAL;

RunKnobs: TypeRunKnobs;

FilterK nobs: TypeFilterK nobs);

PROCEDURE Receive;

VAR

uD: REAL;

APPENDIX C. PARAM ETERS AND TWO PROCS FOR M BV SST 265

j , Loop: INTEGER;

Time, u, y , w : REAL;

aa, bb, cc : REAL;

BEGIN {R eceive}

WITH ThisLoopVAR, RunKnobs DO

BEGIN

_crec3(aa , bb, cc) ;

u := aa;

IF NOT Cascade OR (ThisLoop = 1) THEN uD := u

ELSE uD := LoopVAR[ThisLoop - 1] .y;

WITH tSystemKnobs, tSystem State DO

uD := MultiLag(uD, Lags, LagTimeConstant,

I n te r a c t iv e , F ilterK nobs,

L a g S ta te);

y := bb;

j := 0;

FOR Loop := 1 TO Loops DO

IF NOT (Loop = ThisLoop) THEN

WITH tSystemKnobs DO

BEGIN

j *•* j +

y := y + F i l t e r (I n t e r a c t i o n [j] ,

B I n t e r a c t io n [j] , A,

F ilterK n ob s,

I n te r a c t io n S t a te [j + l j) ;

END;

IF NOT Cascade OR (ThisLoop = Loops) THEN

BEGIN

w := cc;

APPENDIX C. PARAM ETERS AND TW O PROCS FOR M BV SST

END

ELSE w := LoopVAR[ThisLoop + 1] .u;

END;

END {R eceive} ;

BEGIN {ConveyData}

Receive;

END {ConveyData} ;

PROCEDURE DeliverData(VAR u: REAL;

PutDataKnobs: TypePutDataKnobs);

BEGIN {D eliverData}

WITH PutDataKnobs DO

BEGIN

IF u > Max THEN u := Max

ELSE IF u < Min THEN u := Min;

IF Switched THEN

IF Abs(u - Min) < Abs(u - Max) THEN u := Min

ELSE u := Max;

_ csen d (u);

END;

END {D eliverD ata} ;

A ppendix D

M ass M atrix (M), and (Q)

Vector

Definition of Symbols

(a) and (d) represent Denavit-Hartenberg parameters, (w) represents the waist

(linkl), (s) represents shoulder (link2), (e) represents elbow (link3). (cm) stands

for centre of mass, (z) is inertia, and (m), mass, x , y , and 2; are directions, q

represents angle and v angular velocity.

For example w xcm is the distance of center of mass associated with the waist in x

direction.

T he Equations

M (1,1) := - ((m 4 • (- (cos (2 • q2 + 2 • q3) • a fj - 2 • cos (2 • q2 + £3) ' a2 - a3

— 4 • cos (q2 + q3) • ax • a3 - cos (2 • q2) • a\

— 4 • cos (q2) • • a2 — 2 • cos (#3) • a2 • a3

— 2 ' a \ — a22 — a\ — 2 - d \ — ^ ' d 2 ' d3 — 2 ' d ^

+ 2 • sin (2 • q2 + 2 • 4 3) • m3 • a3 • eycm + 2 • sin (2 • q2 + 2 • q3) •

APPENDIX D. M ASS M ATRIX (M), AND (Q) VECTOR 268

m 3 • excm • eycm + 2 • sin (2 • q2 + q3) • m3 • a2 • eycm

+ 4 • sin (tf2 + £3) • m3 • ai • ez/cm + 2 • sin (2 • #2) -m 2 -a2 - s y ^

+ 2 • sin (2 • 22) • m 2 • • sycm + 4 • sin (q2) • m2 • ax •

+ 2 • sin (?3) • m3 • a2 • eycm - cos (2 • q2 -f 2 • g3) • m3 • 03 - 2-

cos (2 • q2 + 2 • tf3) • m 3 • a3 • excm - cos (2 • q2 + 2 • g3) • m 3 • ea^m

+ cos (2 • q2 + 2 • g3) • m3 • ey2m + cos (2 • q2 + 2 • q3) • ezxx

— cos (2 • q2 + 2 • q3) • ezyy - 2 • cos (2 • q2 + #3) -m 3 - a2 - a3

— 2 • cos (2 • q2 + #3) • m3 • a2 • ezcm - 4 • cos (q2 + #3) • m3 • • a3

— 4 • cos (tf2 + ^3) • m3 • ai • - cos (2 • #2) • m 2 • «2

— 2 • cos (2 • ^2) • m 2 • a2 • s r cm — cos (2 • g2) * ”22 •

+ cos (2 • 52) • rn2 • 33^ - cos (2 • q2) ■m 3 'a \

+ cos (2 • q2) • sixx - cos (2 • q2) • siyy - 4 • cos (q2) • m2 • «i • a2

— 4 • cos (<?2) • m2 • ai • szCm — 4 • cos (<72) • m 3 • aj. • a2

— 2 • cos (#3) • m3 • a2 • a3 — 2 • cos (#3) • m3 • a2 • ezcm — 2 • m r

aj — 4 • m! • • wxcm — 2 • mi • — 2 • m x • — 2 • m 2 • a?

— m 2 'a \ — 2 -m 2 -a2 - sxcm — 2 • m 2 • d% — A • m 2 • d2 • szcm

— m 2 • - m2 ‘ sy2m - 2 • m2 • - 2 • m3 • a? - m3 •

— m 3 • 03 — 2 • m3 • a3 • e rcm — 2 • m3 • d2 — 4 • m3 • d2 • d3

— 4 • m3 • d2 • ezcm - 2 • m3 • - 4 • m3 • d3 • ezcm - m3 • ea^m

— m3 • CZ/cm ^ * e2cm ^ * ^*2/2/ SZyy CZx;r e ŷŷ j

M (l, 2) := - (m4 • (sin (#2 + Vz) '<Lz'd2 + sin (q2 + q3) - a3 • d3

+ sin (g2) * «2 * d2 + sin (#2) • a2 • d3)

+ sin (^2 + #3) • m3 • a3 • d2 + sin (g2 + <Lz) • m3 • a3 • d3

■j- sin (<72 "I- Qz)' mz * *23 * & Z cm 4“ sin (<72 d- ^3) * Z7i3 * d2 • c X q ^

+ sin (#2 + 93) ’ m 3 ' ^3 * ea:cm + sin (q2 + #3) * m 3 * ea; cm ’

APPENDIX D. MASS M ATRIX (M), AND (Q) VECTOR

+ sin (q2) • m2 • a2 • d2 + sin (q2) • m 2 • a2 • szcm

+ sin (g2) • m 2 - d2 • sx cm + sin (q2) • m2 • sx cm ' S^crn

4- sin (<?2) • rn3 • a2 • d2 + sin (g2) • m3 • a2 • d3

+ sin (g2) • m3 • a2 • e2rcm + cos (g2 + g3) • m3 • d2 • ez/cm

4 - cos (<72 + #3) • m3 • d3 • ez/c™ + cos (#2 + g3) • m3 • • ezcm

+ cos (g2) • m 2 • d2 • sycm + cos (g2) • m 2 • s?/cm • szcm)

M (l, 3) := - (m4 • sin (q2 + q3) • a3 • (d2 + d3) + m3-

(sin (<72 4* q3) • a3 • d2 + sin (<72 4~ #3) * a3 * d3 + sin (q2 + q3) - a3 •

+ sin (<72 + 43) • d2 • excm + sin (q2 + q3) • d3 • excm

+ sin (q2 + q3) • ezcm • ezcm + cos (q2 + q3) • d2 • e?/cm

+ cos (#2 + #3) * d3 • eycm + cos (q2 + qz) • ez/Cm • e^cm))

M (2 ,1) := - (m4 • (sin (g2 + 93) • «3 • d2 + sin (q2 4* q3) • a3 • d3

+ sin (^2) - a2 - d2 + s'n (ft) * «2 * d3)

+ sin (^2 + #3) • zn3 • a3 • d2 + sin (g2 + #3) * zn3 • a3 • d3

+ sin (tf2 + #3) • m3 • a3 • + sin (g2 + qz) • m3 • c?2 • e a ^

+ sin (q2 + q3) • m3 • d3 • ezcm + sin (q2 + g3) • m 3 • ear cm ' Ĉ cttj

+ sin (<72) • m 2 • « 2 • d2 4- sin (q2) • m 2 • a2 - szcm

4- sin (<72) - m 2 ' d2 - sx cm 4- sin (q2) - m 2 - sx cm ' S^cm

4- sin (q2) • m3 • a2 • d2 4- sin (q2) -m 3 - a2 - d3

4- sin (q2) • m 3 • a2 • ezcm 4- cos (?2 + qz) • m3 • c?2 • ei/cm

4- cos (q2 4- $3) * zn3 * d3 • ez/C7n 4- cos (q2 4- <73) * "z3 • eycm • ezcm

4* cos (<72) ‘ Z722 ■ d2 • sycm 4* cos (^2) * zn2 • sycm • szcm)

M (2 ,2) := - (m4 • (- (2 • cos (q3) • a2 • a3) - ~ <*3)

4- 2 • sin (<73) • m 3 • a2 • ez/cm — 2 • cos (^3) • ra3 • a2 • a3

269

cm

APPENDIX D. M ASS M ATRIX (M), AND (Q) VECTOR 270

— 2 • cos (q3) • m3 • a2 - excm — m 2 • a\ — 2 • m 2 • o2-

~ rn2 • s z L - m2 • st/L - m3 • a\ - m3 • a\

2 * m 3 • <Z3 • €Xcm 7723 * €Xcm 7723 • Cycm 5 2 ^ e%zz^

M (2,3) := - (- ((m4 • a3) • (cos (q3) • a2 + o3)) + sin (g3) • m3-

o2 ' eycm - cos (q3) • m3 • a2 • a3 - cos (#3) •m 3 -a2 • ezcm

- m3 • ag - 2 • m3 • a3 • excm - m3 • ex2cm - m 3 • ey2cm - eiz^j

M (3,1) := - (m4 • sin (q2 + q3) • a3 • (d2 + d3) -f m3-

(sin (q2 + tf3) • a3 • d2 + sin (q2 + q3) • a3 • d3 + sin (g2 + £3) * o3 • ezcm

+ sin (q2 + g3) • d2 • ezcm + sin (q2 + ?3) • d3 • e a ^

+ sin (q2 + q3) • excm • + cos (q2 + q3) • d2 • e?/cm

-f cos (q2 + ^3) • d3 • e?/^ + cos (q2 + q3) • e7/cm • ezcm))

M (3,2) := - (- ((m4 • a3) • (cos (q3) • a2 + a3)) + sin (^3) • m 3-

«2 * eycm - cos (#3) • m3 • a2 • a3 - cos (q3) • m 3 • a2 • e a ^

7723 • (Z3 2 • 7713 * (Z3 * CXcm 7723 • CXcm 772.3 • 67/cm

M(3, 3) := 7?74 • a\ + m 3 • a\ + 2 • 7723 • a3 • excm + m 3 • ea^m + m 3 • e7/̂ m + eizz

Q(1,1) := - (m4 • (sin (2 • q2 + 2 • q3) • t;i • v2 • Gtg + sin (2 • q2 + 2 • q3) • ui • t;3 • ag

+ 2 • sin (2 • q2 + q3) • i>i • v2 • a2 • a3 + sin (2 • q2 + g3) • Vi • t;3 • a2 • a3

+ 2 • sin (q2 + q3) • 77i • t;2 • o4 • a3 + 2 • sin (#2 + ^3) • ui • u3 • • a3

+ sin { 2 • q2) • v1 • v2 ' a\-\- 2 • sin (q2) • 2̂ • v2 • a4 • a2

+ sin (</3) • vi • v3 • a2 • a3 -f cos (q2 + #3) - v \ ‘ (i3 'd 2

+ COS (g2 + ^3) * 772 • 03 • C?3 + 2 • COS (tf2 + tf3) • V2 • 773 • a3 • d2

+ 2 • cos (^2 + q3) • u2 • t;3 • a3 • d3 -f cos (^2 + ^3) *773 • o3 • c?2

APPENDIX D. MASS M ATRIX (M), AND (Q) VECTOR 271

+ C O S (q 2 + # 3) • ‘ 0 3 • d 3 + c o s (q 2) • v \ • o 2 ’ d 2

+ c o s (q 2) • v \ • a 2 • d 3) + s i n (2 • q 2 - f 2 • # 3) • m 3 • V i • v 2 • a 2z

+ 2 • s i n (2 • q 2 + 2 • g 3) • m 3 • V i • v 2 • a 3 • e z c m

+ s i n (2 • 2̂ + 2 • q3) • m 3 • u 1 • u 2 • e a ^ m - s i n (2 • g 2 + 2 • g 3) •

m 3 - v 1 • u 2 • e z / ^ + s i n (2 • q 2 + 2 • g 3) • m 3 • v x • v 3 •

+ 2 • sin (2 • q2 + 2 • g3) • m3 • • v3 • a3 • excm

+ sin (2 • q2 + 2 • g3) • m3 • Ui • u3 • ea^m - sin (2 • q2 -f 2 • q3) • m 3 • v 1 • z;3-

ei/cm - sin (2 • q2 + 2 • #3) • eixx • «i • v2 - sin (2 • q2 + 2 • g3) • eixx •v 1 -v 3

-f sin (2 • q2 + 2 • g3) • ezyy • ui • v2 + sin (2 • q2 + 2 • q3) • eiyy • vx • v3

+ 2 • sin (2 • q2 + q3) • m3 • vx • n2 • a2 • a3 + 2 • sin (2 • q2 + g3) •

m3 • Vi - v2 • a2 • excm + sin (2 • q2 + g3) • m3 • ui • v3 • a2 • a3

+ sin (2 • q2 + 93) • m3 • Vi • v3 • a2 • excm + 2 • sin (g2 + q3) •

m3 • vi • v2 • ai • a3 + 2 • sin (q2 + q3) • m3 • ui • w2 • ai • ezcm

+ 2 • sin (</2 + ^3) • m3 • Vi • v3 • • a3 + 2 • sin (q2 + q3) • m3 • t v

v3 • ai • excm - sin (g2 + q3) -m 3 - v l - d 2 - eycm - sin (q2 + q3) • m3-

v \ - d 3 - eycm ~ sin (q2 + q3) • m3 • v 2 • eycm • e;zcm - 2 • sin (g2 + #3) •

m3 • v2 • v3 • d2 • ez/^ - 2 • sin (g2 + #3) • m3 • v2 • z;3 • d3 • eycm - 2*

sin (g2 + ?3) • ra3 • v2 • v3 • ez/cm • e^cm - sin (g2 + #3) • m3 • • d2 • ez/cm

- sin (#2 + t?3) • m3 • v\ • 4 • e y ^ - sin (#2 + q3) • m3 • v | • ez/cm • e2cm

+ sin (2 • q2) • m2 • t;i • v2 • + 2 • sin (2 • q2) • m2 • Vi • z;2 • a2 • sz cm

+ sin (2 • q2) • m 2 - v 1 • u2 • - sin (2 • gr2) • m2 • i7i • u2 • 57/̂ m

+ sin (2 • q2) • m3 • t;i • u2 • a2 - sin (2 • q2) • 52^ • Vi • v2

+ sin (2 • q2) • siyy • • u2 + 2 • sin (q2) • m 2 • Vi • v2 • ax • a2

-|- 2 • sin (^2) * tt22 • V\ ’ v2 ' d\ ' s x cm sin (<72) * m 2 * T72 • d2 • sycm

— sin (#2) • m2 • u2 * 52/cm * szcm + 2 • sin (q2) • m3 • Vi • v2 • ai • a2

APPENDIX D. M ASS M ATRIX (M), AND (Q) VECTOR 272

4- sin (q3) • m3 • vx • v3 • a2 • a3 + sin (q3) • m3 • vx • v3 • a2 • excm

+ 2 • cos (2 • q2 + 2 • q3) • m3 • z;i • v2 • a3 • eycm

4- 2 • cos (2 • <72 + 2 • q3) • m 3 • • z;2 * cm ’ eycm

+ 2 • cos (2 • q2 + 2 • q3) • m 3 • vj. • n3 • a3 • ez/cm

4- 2 • cos (2 • q2 + 2 • g3) • m3 • Vi • v3 • excm ' eyCm

+ 2 • cos (2 • q2 + #3) • m3 • Ui • u2 • a2 • ez/cm + cos (2 • q2 + qz) •

m 3 • ui • u3 • a2 • ez/cm + 2 • cos (g2 + g3) • m3 • v\ • v2 • «i • ez/cm

4- 2 • cos (q2 + q3) • m 3 • Vi • v3 • ai - eycm + cos (q2 + q3) • m 3 • v% • a3 - d2

4- cos (q2 + q3) • m 3 • v\ • a3 • d3 + cos (q2 + q3) • m 3 • v\ • a3 • ezcm

+ cos (q2 + q3) -m 3 - v l - d2 - excm + cos (q2 + q3) • m3 • z;̂ • d3 • excm

+ cos (</2 + #3) • m 3 • z;2 • excm • ezcm + 2 • cos (g2 + q3) • m3-

v2 • z;3 • a3 • c?2 + 2 • cos (q2 + q3) - m 3 - v2 • v3 - a3 • d3

+ 2 • cos (#2 + 93) 'm 3 -v 2 'V 3 -a3 - ezcm + 2 • cos (?2 + q3) •

m 3 -v 2 -v 3 -d2 - excm + 2 • cos (q2 + g3) • m3 • z;2 • v3 • d3 • excm

+ 2 • cos (g2 + q3) • m3 • v2 -v3 - excm * C2cm + cos (g2 + q3) • m3 • v\ • a3 • d2

+ cos (g2 + g3) • m 3 • • a3 • d3 + cos (g2 + g3) • m3 • z;̂ • a3 • e2cm

+ cos (g2 + g3) • m3 • v\ • d2 * e x ^ + cos (q2 + q3) • m3 • z;̂ • d3 • excm

4- cos (#2 + £3) • m3 • i>| ■ e x ^ • e-zcm + 2 • cos (2 • q2) • m 2 - vx - v2 • a2 • sycm

+ 2 • cos (2 • q2) • m 2 • v \ - v 2 - s x cm * -sz/cm + 2 • cos (g2) - m 2 -v 1 • v2 • ai • sz/cm

+ cos (</2) • m 2 • zaj • a2 • d2 + cos (g2) • m 2 • v\ • a2 • szcm

4“ COS (z/2) " Z7l2 • U2 * d2 * SXCm H- COS (z/2) * T7l2 • Ẑ2 " SXcm ' szcm

4- cos (q2) - m 3 ' v \ ' a2 - d2 -\- cos (q2) 'm 3 ' v \ - a 2 ' d 3

4- cos (q2) -m 3 - v \ - a2 - e z ^ 4- cos (q3) • m3 • u 1 • u3 • a2 • ez/cm)

Q (2,1) := (m4 • (sin (2 • + 2 • g3) • uj • a\ 4- 2 • sin (2 • q2 4- g3) • v? • a2 • «3

4- 2 • sin (^2 4- qz) • u? * «i * a3 + sin (2 • ?2) • vj • a\

APPENDIX D. M ASS M ATRIX (M), AND (Q) VECTOR 273

+ 2 • s i n (q2) • v\ • ax • a2 - 4 • s i n (q3) • v2 • u 3 • a 2 • « 3

- 2 • s i n (9 3) • U 3 • a2 • a 3 + 2 • c o s (q2 + q3) • g • a 3

+ 2 • c o s (9 2) • g • a 2) 4- s i n (2 • q2 4- 2 • 9 3) • m 3 • u j • a g

4- 2 • s i n (2 • q2 4- 2 • q3) • m 3 • • a3 • e x c m 4- s i n (2 • q2 4- 2 • 9 3) • m 3 • v \ •

e x * m - s i n (2 • ? 2 4- 2 • 9 3) - m 3 • v 2 • ey2cm - s i n (2 • 9 2 4- 2 • 9 3) . - e z * * • v *

4- sin (2 • 92 4- 2 • 93) • eiyy • 4- 2 • sin (2 • q2 4- 93) • m3 • • a2 • a3

4- 2 • sin (2 • 92 4- 93) ■ m3 • wj • a2 * excm - 2 • sin (92 4- 93) • g * rn3 • ez/cm

4- 2 • sin (92 4- 93) * zn3 • • ai • a3 4- 2 • sin (92 4- 93) * m 3 • uj • ax • excm

4- sin (2 • 92) • m2 • Vi • a2 + 2 ‘ sin (2 * #2) • m 2 • v? • <z2 * sxcm

4- sin (2 • 92) • m 2 • v2 • - sin (2 • q2) • m 2 • v 2 •

4- sin (2 • 92) • m 3 • “ sin (2 * #2) * sixx • uj

4- sin (2 • 92) • siyy • u? - 2 • sin (92) • g • m 2 • s?/cm

4- 2 • sin (92) • m 2 • Vi • a4 • a2 + 2 • sin (92) • m 2 • uj • ai • sxcm

4- 2 • sin (92) • m3 • vj • ax • a2 - 4 • sin (q3) • m 3 • v2 • v3 • a2 • a3

- 4 • sin (q3) - m 3 -v 2 - v3 - a2 ‘ excm - 2 • sin (q3) • m 3 ♦ • a2 • a3

- 2 • sin (93) • ra3 • u3 • a2 • ex,™ 4- 2 • cos (2 • 92 4- 2 • 93) • m3 • vj • a3 • eycm

4- 2 • cos (2 • 92 4- 2 • 93) • m3 • v 2 • excm • ez/CTO 4- 2 • cos (2 • q2 4- 93) • m 3 • • a2 • ez/cm

4- 2 • cos (92 4- 93) * 9 ' m 3 • a3 4- 2 • cos (q2 + q3) ■ g - m 3 • excm

4- 2 • cos (92 4- 93) • m3 • uj • ai • ez/cm 4- 2 • cos (2 ■ 92) • m2 • v\ • a2 • sz/cm

4- 2 • cos (2 • 92) -m 2 ' v \ ‘ sxcm • s?/cm 4- 2 • cos (q2) • g • ra2 • a2

4- 2 • cos (92) • g • m 2 • sZcm 4- 2 • cos (92) • g • m3 • a2

4- 2 • cos (92) • m 2 • v? • ai • s?/cm - 4 • cos (93) • ra3-

v2 -v3 - a2 - eycm — 2 • cos (93) • m 3 • v3 • a2 • e?/cm) /2

<3(3,1) := (ra4 • a3 • (sin (2 • 92 4- 2 • 93) • v 2 • a3 4- sin (2 • q2 4- q3) - ■ a2

4- 2 • sin (92 4- 93) • w? • + sin (93) • uj • a2

APPENDIX D. MASS M ATRIX (M), AND (Q) VECTOR

4- 2 • sin (9 3) • v \ • a2 4- 2 • cos (9 2 + 9 3) • g)

+ sin (2 • 92 4- 2 • 93) • m3 • nj • a\ + 2 • sin (2 • 92 4 - 2 • 93) • m3 • v% • a3 •

4- sin (2 • 92 + 2 • 93) • m3 • vj • ex2̂ - sin (2 • 92 + 2 • 93) •

m 3 • vj • ez/̂ m - sin (2 • 92 + 2 • 93) • ei** • uj

+ sin (2 • 92 + 2 • 93) • ezyy • v\ 4- sin (2 • 92 4- 93) * m 3 • v\ • a2 • a3

4- sin (2 • 92 + 93) -m 3 • w? • a2 • excm - 2 • sin (92 4- 93) • 9 • m3 * ez/Cm

4- 2 • sin (92 4* 93) • Z7i3 * T7? • «i • a3 4- 2 • sin (92 4- 93) • m3 • uj • ai • excm

4- sin (93) • m 3 • • a2 • a3 4- sin (93) • m3 • v\ • a2 * exOT

4- 2 • sin (93) • m 3 • v\ • a2 • a3 4- 2 • sin (93) • m3 • ^ • a2 • excm

4- 2 • cos (2 • 92 4- 2 • 93) • m 3 • nj • a3 • eycm

4- 2 • cos (2 • 92 4- 2 • 93) • m 3 • v 2 • excm • e?/cm

4- cos (2 • 92 4- 93) • m3 • vj • a2 • 4- 2 • cos (92 + q3) - g ■ m 3 • a3

4- 2 • cos (92 4- 93) * 9 • ™ 3 ' excm 4- 2 • cos (92 4- 93) * m 3 • v\ • ax • e?/cm

4- cos (93) • m3 • 17J • <z2 • eycm 4- 2 • cos (93) • m 3 • • a2 • ez/cm) / 2

274

excm

Bibliography

[1] A.P. Ambler. Rapt: An object level robot programming language. In Collo­

quium on “Languages For Industrial Robots”. IEE Computing and Control

Division, Feb 1982.

[2] G.M. Amdahl. Validity of the single processor approach to achieving large-

scale computing capabilities. Proc. AFIPS , 30, 1967.

[3] C. H. An, C. G. Atkeson, and J. M. Hollerbach. Experimental determination

of the effect of feedforward control on trajectory tracking errors. In Proc.

IEEE conf. on Robotics and Automation, pages 55-60, San Francisco, 1986.

[4] C.H. An, C.G. Atkeson, and J.M. Hollerbach. Model-Based Control of Robot

Manipulators. The MIT Press, 1988.

[5] R.P. Anex and M. Hubbard. Modelling and adaptive control of a mechanical

manipulator. Journal of Dynamic Systems, Measurement and Control., 106,

September 1984.

[6] K. J. Astrom and B. Wittenmark. On self-tuning regulators. Automatica,

9, 1973.

[7] E. Bailey and A. Arapostathis. Simple sliding mode control scheme applied

to robot manipulators. Int. J. Control, 45(4): 1197-1209, 1987.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation-

Numerical Methods. Prentice-Hall Inc., 1989.

BIBLIOGRAPHY 276

[9] C. Blume. Implicit robot programming based on a high-level explicit system.

In Prof. Keith Rathmill, editor, Int. Trends in Manufacturing Tech (Robotic

Assembly). IFS (Publications) Ltd, U.K., 1985.

[10] S. Bonner and K.G. Shin. A comparative study of robot languages. In

Computer, pages 82-96, December 1982.

[11] Booze-Allen and Hamilton Inc. Review of the state-of-the-art of assembly

technologies and programming languages for robotic applications. Technical

report, For U.S. Air Force, Arlington, VA., 1982.

[12] J.W. Burdick. An algorithm for generation of efficient manipulator dynamic

equations. In Proceedings IEEE International Conference on Robotics and

Automation. IEEE Computer Society Press, 1986.

[13] C. Canudas, K.J. Astrom, and K. Braun. Adaptive friction compensation

in dc-motor drives. IEEE Journal of Robotics and Automation, RA-3(6),

December 1987.

[14] D. W. Clarke and P. J. Gawthrop. A self-tuning controller. IEE proc.,

122:929-934, 1975.

[15] K. Collins, A.J. Palmer, and K. Rathmill. Development of a european

benchmark for the comparison of assembly robot programming systems. In

Prof. Keith Rathmill, editor, Int. Trends in Manufacturing Tech (Robotic

Assembly). IFS (Publications) Ltd, U.K., 1985.

[16] J. J. Craig, P. Hsu, and S. Sastry. Adaptive control of mechanical manip­

ulators. In IEEE Int. Conf. on Robotics and Automation, San Francisco,

California, 1986.

[17] C.W. de Silva and A.G.J. MacFarlane. Knowledge-Based Control with Ap­

plication to Robots. Lecture Notes in Control and Info. Sciences. Springer-

Verlag, 1989.

BIBLIOGRAPHY 277

[18] H. Demircioglu and P. J. Gawthrop. Continuous-time relay self-tuning con­

trol. Int. J. Control, 47(4), 1988.

[19] S. Dubowsky and D.T. DesForges. The application of model referenced

adaptive control to robot manipulators. Trans. ASM E , 101, 1979.

[20] D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup versus efficiency in

parallel systems. IEEE Transactions on Computers, 38(3), March 1989.

[21] R. Featherstone. Robot Dynamics Algorithms. Ph.d. thesis, Edinburgh,

1984.

[22] A. F. Filippov. Am. math Soc. Transactions, 62, 1960.

[23] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee. Robotics Control, Sensing, Vision,

and Intelligence. McGraw-Hill, Inc., 1987.

[24] P. J. Gawthrop. Continuous-Time Self-Tuning Control : Design, volume 1

of Engineering Control. Research Studies Press Ltd, Letchworth, Herts.,

England, 1987.

[25] P. J. Gawthrop. Robust stability of a continuous time self-tuning controller.

Int. J. Adaptive Control Signal Processing, pages 31-84, 1987.

[26] P. J. Gawthrop. Continuous-Time Self-Tuning Control, volume 2. Research

Studies Press, 1990.

[27] P.J. Gawthrop. Parametric identification of transient signals. IMA Journal

of Mathematical Control & Information, 1984.

[28] W.A. Gruver, B.I. Soroka, J.J. Craig, and T.L. Turner. Industrial robot

programming languages: A comparative evaluation. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-14(4):565-570, July-August 1984.

BIBLIOGRAPHY 278

[29] J.Y. Han, H. Hemami, and S. Yurkovich. Nonlinear adaptive control of

an n-link robot with unknown load. The International Journal o f Robotic

Research, 6(3), Fall 1987.

[30] K. Hashimoto and H. Kimura. A new parallel algorithm for inverse dynam­

ics. The International Journal of Robotics Research, 8(1), February 1989.

[31] H D E/G P/PLG. The GBUS96 User Manual. Sension Ltd, Denton Drive,

Northwich, Cheshire, U.K., November 1988.

[32] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dy­

namics and a comparative study of dynamic formulation complexity. IEEE

Trans, on Systems, Man And Cybernetics, 10, 1980.

[33] W. G. Holzbock. Robotic Technology, Principles and Practice. Van Nostrand

Reinhold Co., 1986.

[34] R. Horowitz and M. Tomizuka. An adaptive control scheme for mechani­

cal manipulators — compensation of nonlinearity and decoupling control.

Journal o f Dynamic Systems, Measurement and Control, 108, June 1986.

[35] Inmos Ltd. Transputer Architecture.

[36] Inmos Ltd. Occam Programming Manual, 1984.

[37] A. Izaguirre and R. Paul. Automatic generation of the dynamic equations

of the robot manipulators using a lisp program. In Proceedings IEEE Inter­

national Conference on Robotics and Automation. IEEE Computer Society

Press, 1986.

[38] D.I. Jones and P.M. Entwistle. Parallel computation of an algorithm in

robotic control. In International Conference on Control 88, 13-15 April

1988.

BIBLIOGRAPHY 279

[39] A.M. Karnik and N.K. Sinha. Adaptive control of an industrial robot. Robot-

ica, 4, 1986.

[40] H. Kasahara and S. Narita. Parallel processing of robot-arm control com­

putation on a multimicroprocessor system. IEEE Journal of Robotics and

Automation, RA-1(2), June 1985.

[41] S. Kawamura, F. Miyazaki, and S. Arimoto. Bettering operations of robots

by learning. Journal o f Robotic Systems, 1984.

[42] Haruhisha Kawasaki and Kunitoshi Nishimura. Terminal-link parameter

estimation of robotic manipulators. IEEE Journal of Robotics and Automa­

tion, 4(5), 1988.

[43] P. K. Khosla and T. Kanade. Real-time implementation and evaluation of

computed-torque scheme. IEEE Transactions on Robotics and Automation,

5(2), April 1989.

[44] M. Kinnaert and R. Hanus. Adaptive pole-placement with predictive action

for robotic manipulator control. In Proc. 16th International Symposium on

Industrial Robots, Brussels, Belgium, October 1986.

[45] D. E. Koditscheck. Natural motion for robot arms. In IEEE procs of the

23th conf. on Decision and Control, pages 733-735, Las Vegas, 1984.

[46] D. Koditschek. Robot control systems. In S. C. Shapiro, editor, Encyclopedia

of Artificial Intelligence. John Wiley and Sons, 1987.

[47] A.J. Koivo. Self-tuning manipulator control in cartesian base coordinate

system. Trans, o f the ASM E Journal o f Dynamic Systems, Measurement

and Control, 107, December 1985.

[48] A.J. Koivo and T. Guo. Adaptive linear controller for robotic manipulators.

IEEE Transactions on Automatic Control, AC-28(2), February 1983.

BIBLIOGRAPHY 280

[49] Antti J. Koivo. Fundamentals For Control of Robotic Manipulators. John

Wiley and Sons, 1989.

[50] Y. D. Landau. Adaptive control-robustness and performance enhancement.

In Adaptive Systems in Control and Signal Processing, Glasgow, U.K., April

1989. IFAC.

[51] R.H. Lathrop. Parallelism in manipulator dynamics. Int. Journal o f Robotics

Research, 4(2), 1985.

[52] C. S. G. Lee and M. J. Chung. An adaptive control strategy for computer

based manipulators. In Proc. 2 1 st Conf. on Decision and Control, pages

95-100, 1982.

[53] C.S.G. Lee, B.H. Lee, and R. Nigam. Development of the generalized

d’alembert equations of motion for mechanical manipulators. In Proceed­

ings of the 22nd Conference on Decision and Control, December 1983.

[54] G. G. Leininger. Adaptive control of manipulators using self-tuning m eth­

ods. In M IT Robotics Research 1 st Int. Symp., NH, Sept. 1983.

[55] G. G. Leininger. Self-tuning adaptive control of manipulators. In Adavanced

Software in Robotics Int. Symp., 1983.

[56] W. Li and J. J. E. Slotine. Parameter estimation strategies for robotic

applications. In A.S.M .E. Winter Annual Meeting, Boston, Massachusetts,

1987.

[57] K.Y. Lim and M. Eslami. New controller designs for robot manipulator

systems. In Proc. ACC, Boston USA, 1985.

[58] J.P. Linde, H.H. Ven, and F.H.R. Lucassen. Adaptive robot control with an

inverse model. In Proc. 16th International Symposium on Industrial Robots,

Brussels, Belgium, October 1986.

BIBLIO G RAPH Y 281

[59] Mai-Hua Liu, L. Wei, and Y. Huang. Pole-assignment self-tuning control of

robotic manipulators. In Proc. 16th International Symposium on Industrial

Robots, Brussels, Belgium, October 1986.

[60] Mei-Hua Liu. An adaptive control strategy for robotic manipulators. In

Proc. 15th ISIR , 1985.

[61] J. Y.S. Lull and C.S. Lin. Scheduling of parallel computation for a computer-

controlled mechanical manipulator. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-12(2), March/April 1982.

[62] G. Luo and G. N. Saridis. Robust compensation for a robotic manipulator.

IEEE Transactions on Automatic Control, AC-29(6), June 1984.

[63] A. K. Mahalanabis and S. Galou. On the state and parameter estimation

of a robotic system. In Proceedings of IFAC 8 8 , 1988.

[64] David May. Occam 2 Language Definition. Inmos Ltd.

[65] H. Mayeda, K. Osuka, and A. Kangawa. A new identification method for

serial manipulator arms. In The 9th IFAC Congr., 1984.

[66] Meiko Ltd, 650 Aztec West, Bristol, U.K. Hardware Reference Manual,

December 1988.

[67] R. H. Middleton and G. C. Goodwin. Adaptive computed torque control

for rigid link manipulators. In Proceedings of 25th Conference on Decision

and Control, Athens, Greece, December 1986.

[68] R. G. Morgan and U. 0 . Ozguner. A decentralised variable structure control

algorithm for robotic manipulators. IEEE J. Robotics Automat., RA-1:57-

65, 1985.

BIBLIO G RAPH Y 282

[69] J.J. Murray and C.P. Newman. Organizing customized robot dynamics

algorithms for efficient numerical evaluation. IEEE Trans, on Systems, Man,

and Cybernetics, 18, 1988.

[70] R. Nigam and C.S.G. Lee. A multiprocessor-based controller for the control

of mechanical manipulators. IEEE Journal o f Robotics and Automation,

RA-1(4), December 1985.

[71] R. Ortega and M. W. Spong. Adaptive motion control of rigid robots: a

tutorial. Automatica, 25(26):877—888, 1989.

[72] R. Ortega and Y. Tang. Robustness of adaptive controllers-a survey. Auto­

matica, 25(5):651—677, 1989.

[73] P. V. Osburn, H. P. Whitaker, and A. Kezer. New developments in the design

of adaptive control systems. Technical Report 61-39, Inst. Aeronautical

Sciences, 1961.

[74] K. H. Park and L. W. Dowdy. Dynamic partitioning of multiprocessor

systems. International J. o f Parallel Programming, 18(2), April 1989.

[75] R.P. Paul. Robor Manipulators: Mathematics, Programming, and Control.

The MIT Press series in artificial intelligence, Cambridge, MA., 1981.

[76] B. Raucent, G. Campton, G. Bastin, and J. C. Samin. Identification

of barycentric parameters of robotic manipulators from external measure­

ments. In Proceedings of IFAC 8 8 , 1988.

[77] N. Sadegh and R. Horowitz. Stability analysis of an adaptive controller for

robotic manipulators. In IEEE Int. Conf. on Robotics and Automationb,

Raligh, North Carolina, 1987.

[78] H. Seraji. Direct adaptive control of manipulators in cartesian space. Journal

of Robotic Systems, pages 157-178, 1987.

BIBLIOGRAPHY 283

[79] P.N. Sheth. A Digital Computer Based Simulation Procedure For Multiple

Degree Of Freedom Mechanical Systems With Geometric Constraints. Ph.d.

thesis, The University of Wisconsin, 1972.

[80] S.N. Singh and A.A. Schy. Robust trajectory following control of robotic

systems. Trans, o f the ASM E Journal o f Dynamic Systems, Measurement

and Control, 107, December 1985.

[81] J. E. Slotine and S. S. Sastry. Tracking control of nonlinear systems using

sliding surfaces, with application to robot manipulators. Int. J. Control,

1983.

[82] J. J. E. Slotine. Sliding controller design for nonlinear systems. Int. J.

Control, 40:421, 1984.

[83] J. J. E. Slotine and W. Li. On the adaptive control of robot manipula­

tors. In F. W. Paul and K. Youcef-Toumi, editors, Robotics: Theory and

Applications. California, 1986. ASME winter annual meeting.

[84] J. J. E. Slotine and W. Li. Adaptive robot control-a new perspective. In

IEEE Conf. on Decision and Control, LA, California, 1987.

[85] J. J. E. Slotine and W. Li. Composite adaptive control of robot manipula­

tors. Automatica, 25(4):509-519, 1989.

[86] Jean-Jacques E. Slotine and Weiping Li. On the adaptive control of robot

manipulators. The Int. Journal of Robotics Research, 6(3):49-59, Fall 1987.

[87] Mark W. Spong and M. Vidyasagar. Robot Dynamics and Control. John

Wiley and Sons, 1989.

[88] SYNTEL Microsystems, Queens Mill Road Huddersfield U.K. S Y N AD C f

A /D Converter Module, User Manual, 1985.

BIBLIOGRAPHY 284

[89] SYNTEL Microsystems, Queens Mill Road Huddersfield U.K. S Y N DAC8

Digital to Analog Converter, User Manual, 1985.

[90] M. Takeyaki and S. Arimoto. A new feedback method for dynamic control

of manipulators. Trans. ASM E J. Dyn. Syst. Meas. Control, 102, June 1981.

[91] V. D. Tourassis. In Proc. Conf. on Applied Moition Control, page 239, 1986.

[92] V. D. Tourassis and C. P. Neuman. Robust nonlinear feedback control for

robotic manipulators. IEE Proceedings, 132(4), July 1985.

[93] H. Unbehauen and G.P. Rao. Identification of Continuous Systems, vol­

ume 10. North Holland Systems and Control Series, 1988.

[94] V. Utkin. Variable structure systems with sliding modes. IEEE Transactions

on Automatic Control, AC-22(2), April 1977.

[95] VDI. Industrial robot data (irdata), general structure record types and

transmission. Technical Report 2863, VEREIN DEUTSCHER INGE-

NIEURE (German Engineers Association), July 1986.

[96] M. Vukobratovic and N. Kircanski. Decoupled control of robots via asymp­

totic regulators. IEEE Transactions on Automatic Control, AC-28(10), Oc­

tober 1983.

[97] Micheal W. Walker. Estimating manipulator load mass properties. In Pre-

ceedings IEEE International Symposium on Intelligent Control, Philadel­

phia, Pennsylvania, January 1987.

[98] M.W. Walker and D.E. Orin. Efficient dynamic computer simulation of

robotic mechanisms. Transactions of ASME, Journal o f Dynamic Systems,

Measurement, and Control, 104, September 1982.

BIBLIOGRAPHY 285

[99] J.P. Wander and D. Tesar. Pipelined computation of manipulator modeling

matrices. IEEE Journal o f Robotics and Automation, RA-3(6), December

1987.

[100] J. Wieslander and B. W ittenmark. An approach to adaptive control using

real time identification. Automatica, 7, 1971.

[101] C. Wu and P. Paul. Manipulator compliance based on joint torque control.

In Proc. 9th IEEE Conf. Decision and Control, 1980.

[102] J. Xu, H. Harhimoto, J. E. Slotine, Y. Arai, and F. Harashima. Implemen­

tation of vss control to robotic manipulators- smoothing modification. IEEE

Transactions on Industrial Electronics, 1989.

[103] K. S. Yeung and Y. P. Chen. A new controller design for manipulators

using the theory of variable structure systems. IEEE Trans, on Automatic

Control, 33(2), Feb 1988.

[104] S. Yin and J. Yuh. An efficient algorithm for automatic generation of ma­

nipulator dynamic equations. In Proceedings IEEE International Conference

on Robotics and Automation. IEEE Computer Society Press, May 1989.

[105] Y.F. Yong, J. A. Gleave, J.L. Green, and M.C. Bonney. Off-line programming

of robots. In Y. Shimon, editor, Handbook of Industrial Robotics. John Wiley

and Sons, 1985.

[106] Bu Yonghong and Wang Yi. An identification method for geometric param­

eter estimation of robot manipulators. In Proceedings o f IFAC 8 8 , 1988.

[107] K.D. Young. Controller design for a manipulator using theory of variable

structure systems. IEEE Transactions on Systems, Man and Cybernetics,

SMC-8(2), February 1978.

