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A bstract

Model-based control of robot manipulators has been gaining momentum in recent 

years. Unfortunately there are very few experimental validations to accompany 

simulation results and as such majority of conclusions drawn lack the credibility 

associated with the real control implementation.

In this thesis the main theme is to demonstrate the potential enhancements that 

are brought about by way of implementing this class of controllers as far as manip­

ulator trajectory tracking is concerned. Particular emphasis is on experimental 

evaluation to render valid conclusions and to give through appreciation of the 

merits of various controllers.

The approach taken is to recognise that the realistic role of model based controllers 

at the initial stage is to reduce rather than eliminate the nonlinear and coupling 

effects inherent in manipulator dynamics. The level of reduction of these effects 

is obviously dependent on the modelling effort and the accuracy of the developed 

model.

Model inaccuracies have two forms: parameter uncertainties that arise from limi­

tations in specification of numerical values for the kinematic and dynamic robot 

parameters or payload variations; and unmodeled dynamics possibly arising from 

simplified models.

In particular, two aspects of such controllers are presented and experimentally 

verified: firstly estimating the mass of the load carried by the gripper to overcome 

performance degradation due to payload variations and secondly incorporating a 

suitable self-tuning method in the control system to account for other modelling



inaccuracies.

Consideration is given to the requirements regarding computational powers for 

real-time implementation of the controllers. These suggest that, to achieve the 

sampling rates needed, parallel processing and the use of fast processors such as 

the INMOS TRANSPUTER are appealing. Such processors are used for the ex­

perimental implementation of the control algorithms reported here.

The suitability of multiprocessing approach for a robot programming system is 

also discussed.

In the context of the modelling, the importance of including drive system dy­

namics in the system model is emphasised and use of CAD-based modelling is 

addressed.

The use of symbolic algebraic manipulation for obtaining efficient and/or cus­

tomised dynamic equations for reducing the amount of computational effort and/or 

formulating the model in a certain manner such as linear in the parameter (for 

estimation purposes) is presented. Experimental validation of an obtained model 

and a load mass estimation method developed are included.
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C hapter 1

Introduction

The interdisciplinary field of robotics entails the interaction of various subject 

areas. From an engineering research viewpoint, in addition to each discipline re­

quiring an indepth study, the effect of other areas also need to be considered.

An important issue in this context is the need for the robots to interact with their 

environment as well as other systems. As a result treating the robot as an isolated 

unit is simplistic and ignores the importance of communication and coordination. 

The determining factors in the operational requirements of a robot are the tasks 

and applications that the robot is employed to carry out (e.g. assembly, materials 

handling, welding ) which in turn specify the required capabilities such as trajec­

tory tracking, obstacle avoidance, compliant motion etc.

Once these specifications are available, all constituents of what is referred to as 

robotics are combined, each with a certain level of complexity depending on the 

specified requirements, to perform the task.

The manipulator type is chosen so that its configuration, basic motion capabilities, 

degrees of freedom, and other physical characteristics match the specifications. 

Also the measure of performance of the manipulator in terms of load carrying 

capacity, precision movement (spatial resolution, accuracy, repeatability), speed 

of movement, environmental requirements (e.g. temperature), operating envelope 

etc. are suitable for the application.



CHAPTER 1. INTRODUCTION 2

The power unit which also includes the actuators then needs to produce the re­

quired movements according to the specifications of the robot controller in terms 

of accuracy, smoothness, speed through command signals that are produced using 

the informations from sensors in regular intervals.

It should be mentioned that the controller itself usually has to be synchronised 

and coordinated with other systems by a higher level supervisory controller. 

Large elements of research interest are directed towards each aforementioned 

stages and individual areas with the kind and depth of the research being dic­

tated by the needs of the future market.

1.1 O bjectives

Although intelligent, mobile, autonomous, and human like robots that are capable 

of operating in space have their attractions, for more down to earth applications 

one emphasis seems to be on the production of light weight fast and accurate 

manipulators that can be used in flexible manufacturing environments with the 

ability to utilise sensory data of various kinds.

One of the implications of this is the need to further investigate the following:

• Programming and languages for robots with capabilities that extend to cater 

for the demands of flexible manufacturing systems and complex applications.

• Kinematics and dynamics of manipulators with considerations given to re­

dundancies and flexibility of joints and linkages.

• Real-time novel control schemes for smoother, accurate and fast motions 

and better performance.

• Sensor technology and how sensors can be effectively utilised for robotic 

applications.
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• Faster data processing schemes and utilisation of mutiprocessor environ­

ments for reduction of computation time.

Having identified the above as being potentially high priority research areas, the 

objectives of the work presented here are: with the resources and time available, 

first of all, study some of these in detail, secondly after gaining insight, propose, 

describe, and suggest ways of getting round the problems or introduce new ap­

proaches that overcome the difficulties faced, and finally by way of simulation 

and/or implementation verify the credibility of the schemes and methods.

The approach favours use of a real robot where possible for validation and veri­

fication, as attem pts to do this in the literature are very few, although it is very 

valuable to move away from mere simulation and consider and observe factors 

that can only be studied by actual implementation.

1.2 M otivations

Programming systems and languages in the field of robotics are still far from 

ideal. Despite the improvements that have been made by robot manufacturers 

and research organisations to accommodate the demands imposed by the nature 

of robotics as opposed to applications that general purpose programming lan­

guages cater for, there remains much to be desired.

Communications, standards, user friendliness, appropriate semantics, suitable 

front ends, application specific extensions, use of computer graphics and anima­

tion, integration with other systems and finally the question of “a cell language” 

all need careful detailed examination.

These are the subject of one area presented here.

Moving on from robot languages and programming, both kinematics and dynamic 

modelling of manipulators are of great interest for research purposes. The dynamic 

equations of the manipulator are a set of highly nonlinear coupled second order 

deferential equations.
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The need for fast, accurate and versatile manipulators has brought about research 

challenges into the dynamic effects.

Kinematic and inertial parameters of robot manipulators that are part of the dy­

namic equations, can be obtained by various methods. Although the accuracy 

of these parameters is of paramount importance in schemes that utilise dynamic 

equations of the manipulator, comparisons of the methods used have not been ef­

fectively carried out and in particular the benefits of employing CAD approaches, 

have been greatly undermined. This approach will be employed to see its effec­

tiveness.

Efficiency of robot dynamic equations have been looked at and symbolic manip­

ulation has specifically been used to achieve efficiency, but it can be used to gain 

additional benefits. This will also be addressed in the work presented.

Usually the effects of the mechanical transmission systems, friction, and actuation 

dynamics are not included in robot dynamic equations for simplicity, however it 

has been shown that they can be significant. These effects are considered and 

taken into account in this study.

Only a few research studies have presented model validation using real data ex­

tracted form an actual manipulator, this is done in this work by comparing the 

behaviour of the model obtained with the actual robot.

Research into manipulator controllers in majority of cases have been based on the 

available theory in the field of control systems engineering with no accounts of 

requirements specific to robots, and the familiarity of the designers with a partic­

ular method has been the only factor in the employment of a scheme in a great 

number of occasions. Above all, most of the results are based on simulation and 

very rarely actual implementation has been successfully attempted.

The controller operates at various levels of hierarchy. At the top level it per­

forms planning and coordination, communicates with other devices, and carries 

out transformation of sensory information. A programming system, sometimes 

with a degree of intelligence is used to initialise and carry out the commands.
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- The second level is motion and/or force control. Information from sensors is used 

in order to carry out the control with a prespecified performance criteria in either 

joint or cartesian space.

Majority, if not all industrial robot manipulators at this point are controlled by 

conventional fixed gain controllers based on single-input single-output models for 

each joint.

These controllers usually provide an acceptable level of performance, as the de­

mand on their speed and accuracy is not high and in addition they are driven 

indirectly through a gear mechanism by a DC motor, which means that the effect 

of inertial variations are reduced by the square of the gear ratio.

The adequacy of these schemes is challenged by the emergence of light weight 

manipulators as well as increased demand on speed and high performance.

A number of dynamic control schemes have been proposed, but non has been suc­

cessfully implemented on a general purpose industrial robot. The main reasons 

behind this are

• High level of computational requirements makes the real-time implementa­

tion on a present day reasonably priced single processor impossible (with 

one or two exceptions).

o In practice obtaining an accurate dynamic model of the manipulator is not 

easy.

The measures for responding to the computational demands are, to utilise the 

specific and usually simple geometric structure of present day manipulators, re­

sulting in simplified dynamic models, and/or enhance the computational efficiency 

by exploiting the parallelism of the algorithm. In the work presented here both 

of these issues have been taken into consideration. Multiprocessing powers of the 

Transputer is utilised as well as its capabilities as a fast single processing unit at 

a low cost, to implement model based control algorithms that have high computa­

tional requirements, and their real-time implementation would have been unlikely
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otherwise.

1.3 Structure o f the thesis

In chapter 2 Robot Control Programming Systems, a comprehensive definition of 

robot control programming systems is given and a way of evaluating manipulator 

languages based on this is suggested.

The requirements of the next generation of robot programming systems and 

proposing that the Transputers, being a fast processor and ideal for multipro­

cessor implementation of algorithms, and OCCAM as its natural programming 

system, form a suitable combination for fulfilling these requirements, are also cov­

ered in this chapter.

In chapter 3 Robot Modelling and Validation, direct and inverse kinematics, and 

dynamic modelling of an MA3000 robot is presented. The emphasis is on the 

inclusion of the actuation system (DC motors) models in the modelling process. 

A CAD approach is taken to obtain kinematic and inertial parameters, and a 

symbolic manipulation scheme is used to simplify the dynamic equations of the 

robot.

The behaviour of the model obtained is then compared to that of the real robot, 

based on real input/output measurements, hence validating the model.

In chapter 4 Model-Based Identification of Robots, following a literature review 

of dynamic parameter estimation of robot manipultors, a method of estimating 

the mass of the load held by the gripper of the manipulator, based on the state 

variable filter approach for estimation of continuous time transfer functions is pro­

posed.

Symbolic manipulation is used to obtain a linear in the parameters and compu­

tationally efficient form of the dynamic equations of the robot and, least squares 

is used for estimation.

In addition to simulation, experimental results on the MA3000 robot are obtained
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- which verify the effectiveness of the method.

Chapter 5 Transputer-Robot Interface, describes the transputer systems, the elec­

tronic interface units (both voltage and current driven) between these systems 

and the robot, and the low level interface software.

The interface was made to enable transputer implementation of the controllers 

that are introduced in chapter 6 on a real robot, as well as for data acquisition 

for validation of the model of the robot developed and to show the effectiveness 

of the load mass estimation method proposed earlier.

The fact that the literature contains very few results based on the data obtained 

from a real robot as opposed to simulation, and the importance of additional 

factors introduced when a controller is actually implemented on robots, were the 

main motivations behind taking the approach of carrying out experiments on the 

MA3000 robot and hence the need to interface it to a fast computer system which 

allows real time implementation of the controller cost effectively.

In chapter 6 Control of Robot manipulators, the methods used for manipulator 

control both in the commercial scene and the research circles are reviewed and 

their short-comings as well as strengths are highlighted. Against this background, 

two new model-based adaptive schemes are proposed, one based on estimation of 

the load mass and the other a model based variable structure continuous time self 

tuning controller.

Chapter 7 Control Implementation, using Transputers, points out the advantages 

of using transputers for manipulator control implementation and gives a brief in­

troduction to parallel computation before presenting a detailed account of how 

a controller based on the computed torque method, and the two new adaptive 

controllers proposed in chapter 6, are implemented on the MA3000 robot, using 

a network of transputers. Then a discussion which includes a comparative evalu­

ation of these methods concluded this chapter.

Finally chapter 8 draws some conclusions from the entire work and includes sug­

gestions for future research.
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One area that has not been looked at in addition to flexibility of joints and link­

ages and redundancy issues of robot manipulators in the work here, is sensory 

devices and their functions in robotics. Due to its importance and the fact that 

multiprocessing can play a substantial role in alleviating the problems of com­

putationally intensive data processing in three dimensional vision and even its 

suitability for modular nature of data extraction from various sensors to combine 

(sensor fusion), a brief outline is given in the next section.

1.4 Sensory devices

A distinction ought to be made between sensors that are employed for manipula­

tor control such as position sensors, and the ones used for object identification and 

robot guidance such as vision systems. The research into the former is usually in 

the form of finding ways to improve the accuracy of devices as well as lowering the 

cost. In the latter case however, the issue is interaction with three dimensional 

objects and as such to fully capture the information from the workspace, a sen­

sory system capable of sensing and processing large amounts of three dimensional 

data is required. As a result the computational requirements to process this in­

formation in small time scales become prohibitive. A great deal of research effort 

has been directed towards the use of parallel processing and in particular use of 

Transputers for their power and cost-effectiveness, to achieve fast processing of 

vast amounts of data.

Often though, in the context of robot vision for example, the nature of the part 

or novel illumination or constraints on the part and sensor placement combine to 

allow a two dimensional rendition to suffice.

In addition for many applications that only require discrimination of similar or 

nonsimilar objects or information about planar orientation of objects, two dimen­

sional vision based on visible band luminance data is effective enough.

Another interesting area of research is in the field of tactile perception in the study
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_ of different materials and techniques.

For material handling for instance, determination of the position and orientation 

of objects is essential, plus monitoring of this information possibly requiring incre­

mental analysis and verification of delivery being necessary, and in some assembly 

operations the requirements go even further including the information about sur­

face features, texture, frictional characteristics and temperature, hence in addition 

to vision, tactile sensors are needed to cope with these complex applications. Tac­

tile sensors consisting of pressure sensor arrays can provide information about 

grasped objects and can locate surface features.

The ultimate aim in these studies is to enable the implementation of a closed loop 

control system for assembly and other applications that includes vision and tactile 

sensory information.

A whole new area of research known as sensor fusion, deals with combining these 

sensor information. Applicability of parallel processing and multiprocessor based 

data acquisition seems natural in this field.

1.5 Contributions o f this work

The contributions of the work presented in this thesis are as follow

• Presentation of a comprehensive definition of Robot Control Programming 

Systems which provide suitable grounds for both evaluation and comparison 

of robot programming languages. In addition, justification as to why the 

Transputer/OCCAM combination is suitable for the next generation of robot 

programming systems.

• Use of CAD modelling and a Symbolic Manipulation scheme to obtain the 

kinematic and inertial parameters, and develop a dynamic model for a robot. 

Also validation of the model, based on real data extracted from the actual 

robot.
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• Proposition of a new computationally efficient load mass estimation method 

and verification of its effectiveness by means of experimental data extracted 

from a real robot manipulator.

• Interfacing an MA3000 robot to a network of transputers, requiring elec­

tronic units and low level software. As a result, real time implementation of 

control, and data acquisition from the robot were made possible.

• Introduction of two new control schemes for robot manipulators, namely: a 

model-based adaptive controller with load mass estimation, and a model- 

based variable structure self tuning controller in a continuous-time frame­

work.

• Transputer implementation of manipulator controllers on a real robot and 

comparison and evaluation of the results.



C hapter 2 

R obot Control Program m ing  

System s

SU M M A R Y

A robot control programming system is defined in a comprehen­

sive manner. This is useful fo r evaluation purposes and also for  

requirement specification of robotic applications. A combination 

of the Transputer and OCCAM is proposed as being ideal for the 

next generation of robot programming systems after considering 

their requirements.

2.1 Introduction

Generally there are two types of approach to Robot Programming, teach pendant 

and off-line. Teach pendant programming in which the motion of the robot is 

controlled with a series of push buttons on a hand held device (pendant) is easy 

to learn. It is also easy to program the robot in more complex geometric situa­

tions and when the robot needs to perform a task under load. However the robot 

remains unproductive while it is being programmed, modular program develop­

ment is not possible, general purpose library of subroutines cannot be used and 

the operator is in danger during development phase of the program. As a result
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for a highly automated and flexible factory environment, off-line programming 

seems more suitable. There are also additional advantages in using off-line pro­

gramming methods, sensors such as vision and force can easily be incorporated, 

efficient handling of synchronization with external equipment is achieved, repeti­

tive tasks such as palletizing can be programmed with less effort using macros. In 

off-line programming, the program is developed based on a simulated environment 

and robots. This results in a number of disadvantages, firstly visualizing a robot 

path in a three-dimensional space is quite difficult and reachability, collision-free 

paths and correct orientation are not easy to determine. Also the affect of con­

figuration, controller action, dynamics and inaccuracies need to be anticipated. 

These drawbacks can be compensated by robot calibration, use of teach pendants 

to fine tune the programs, run-time sensing and “adaptive” programs, plus use 

of CAD/Graphics techniques. The problem of learning these languages, being 

considerably more complex still remains, although attem pts have been made to 

design user friendly front ends, having menu driven commands.

Most of the current robot programming systems are based on a dedicated 

programming language and consist of a high priority trajectory generator which 

computes the sequence of joint variables and a language interpreter. The flow 

of the robot program is synchronized with the actual motion of the manipulator. 

Three major categories form the basis on which current approaches to robot pro­

gramming can be classified, although other categories have also been specified. 

These are:

• Servo Level consisting of a series of end points, represented as a group of 

joint coordinates, speeds and input/output commands.

• Robot Level in which a sequence of robot motions are described. Each state­

ment of the program roughly corresponds to one action of the robot.

• Object Oriented where a sequence of positional goals of the object to be 

manipulated or sequence of tasks to be performed are programmed. A task
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planner consults a database (world models) and transforms the task speci­

fication into a robot-level program.

Three schools of thought have influenced the way in which off-line robot pro-
tV \e

gramming languages have evolved overvyears. One which argues that for various 

reasons, it is more appropriate to extend an already existing general purpose pro­

gramming language and include the constructs needed specifically by robots, the 

second which favours using an APT-like language used for Numerical Control ma­

chine tools. And finally a totally new language which is purpose designed for 

Robotic Applications. Essentially the issue lies on the emphasis as to the level 

of experience that the robot programmer ought to possess. Whichever approach 

taken, it is widely accepted that the progran? need to be

1. capable of allowing computation from sensors and interacting with other 

devices.

2. able to work in a real-time environment and check conditions to synchronize 

events or obtain data when it is needed.

3. general purpose and independent of the physical configuration and kinematic 

features of a particular arm.

4. capable of easy expression of manipulator positions in space and support 

debugging and testing.

Furthermore the application for which the programming language is to be used, 

determines the type of attributes that it should have. As robot tasks become 

more complex and more expensive to implement, the cost effectiveness of inter­

active graphic simulation and assisted programming will become apparent. The 

evolution of CAD/ CAM integration with robotics and incorporation of ever larger 

data bases will lead to more advanced systems. The simulation of sensors and gen­

eration of sensor programs should be included in the graphical simulation. Also
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program utilities should allow planning of such variables as camera angles, posi­

tion and orientation constraints on objects to be located by vision and timing of 

vision in relation to robot motion. Most efforts today involving the development 

of dynamic models are motivated by improving the control or structural perfor­

mance of the actual robot. However, there is no reason why this could not be 

included in an interactive graphic simulation to generate robot programs.

In this chapter a description is given as to what constitutes a Robot Program­

ming System  and based on this, existing languages are evaluated. Then the re­

quirements of the next generation of languages are outlined. Finally a Transputer 

approach is suggested as a step towards meeting these requirements.

2.2 D escription o f a R obot Program m ing Sys­

tem

A Robot Programming System essentially consists of a number of different inter­

acting elements. Each element’s position in levels of hierarchy depends on how it 

can affect and be affected by other elements. In general every robot application 

requires certain capabilities to be handled by the robot language. Each of these, 

together with the nature of the robot application will influence the type of pro­

gramming and operating environment, as well as implementation and language
a
\ z

features required. These are the issues addressed in this section. After descrip­

tion of individual levels of robot programming systen?and the elements that form 

them, evaluation of existing languages become meaningful. Also this is useful for 

establishing the requirements for the next generation of robot languages. At the 

top-level the Characteristics of the programming system are considered.
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~ 2.2.1 Characteristics o f th e  Program m ing System

There are certain issues which come under this category and each one provides 

certain capabilities suitable for various robot applications. Hierarchical decom­

position of tasks and modular program development, for example necessitate the 

ability of a programming system to create abstract data structures which repre­

sent elements of the problem. This is usually referred to as Extensibility. The 

syntactic issues and semantic power which is available to the programmer to rep­

resent his application reflects the Flexibility of the programming system. This is 

a measure of the range of applications for which a language can be used. Another 

characteristic ties in with the depth to which alternative run-time conditions are 

handled, for example since syntactic and semantic errors can potentially be iden­

tified and corrected prior to execution by the controller in compiled programs 

as opposed to interpreted ones, they are said to be more Reliable in some ways. 

To cope with the nondeterministic nature of physical interactions with the real 

world, conditional branching facilities or Decision Making can be used. Faster ex­

ecution speeds can be achieved in some applications, when robot language is able 

to represent frequently used robotic functions which results in better Efficiency. 

A robot language which is not dependent on a particular hardware has many ad­

vantages, as developed programs could be used for different robots. This issue 

represents the Portability of a programming system and can be at odds with the 

naturalness of a language to express the problem using language features which 

are specific to the application area. Other characteristics of robot programming 

systems are: Usability of a language in terms of whether the development meets 

the guidelines with respect to cost and Maintainability, and finally how Sensor 

Support is catered for. These are but some of the characteristics that in the view 

of the author, seem to be important in areas of robot application. Any applica­

tion requiring some or all of the above, will also put demands on the rest of the 

elements in the lower levels of the system. The next level is the Programming and
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Operating Surfaces.

2.2.2 Program m ing and O perating Surfaces

This refers to the hardware and software for generation of a robot Program, and 

also the Operating environment for its execution. As was mentioned in the intro­

duction to this chapter, an important ingredient of off-line program development

is the Simulation of the robot behaviour. In a larger scale, other parts of a workcell
be.

that interact with the robot should alsovsimulated. Load kinematics, tolerances, 

sensor delays and flexibility should ideally be represented, as well as analysis of 

data and material flow within the cell. A graphics system can be used for collision 

detection, reach testing and reconfiguration of the workcell and task planning so 

as to reduce the cycle time of a particular operation. Information necessary for 

the modelling of robots and parts for simulation can be held in a CAD Database. 

Another issue in the programming environment is the level of Programmer Expe­

rience. That is, whether due to the complexity of programming, a well trained 

programmer should be employed so that the programming tools and techniques 

available can be effectively used, or have a simple, easy to use language that an 

ordinary machine operator can program in. Alternatively a special Editor can be 

used that simplifies the task of the programmer by means of introducing templates 

of a particular construct or introducing generic commands for a particular opera­

tion. In order to solve frequently occurring programming problems, a Library of 

subroutines can be used. Also a Pre-processor can be used to convert an extended 

syntax front end to the normal output language. Off-line debugging and various 

Programming Techniques also are elements of the Programming surface. Once the 

program is generated, it is the responsibility of the Operating Surface to execute 

it. Different elements can be identified within this level. The scheduling of the 

Tobot program statements is mainly provided by the architecture of the hardware 

and the program itself only partially controls the implementation. The Sequence
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of Execution of the program is an attribute of the Operating environment. One 

example of this is Parallel Processing in which different layers of control such 

as supervisory, trajectory processors, I/O  handlers etc. act in parallel, or when 

two or more program statements or procedures are executed simultaneously ie. 

Concurrent Execution. Unplanned events that might occur during the execution 

of the program, and need immediate attention, such as exceeding the limit of a 

joint movement, signaled by a sensor can be handled by Interrupts. The program 

itself may up to a point specify Process Synchronization. For data transmission, a 

standard Networking system can be used such as Ethernet or MAP, which can be 

transparent to the robot language. Other elements of this category are Diagnostics 

and Peripheral Support.

2.2.3 Im plem entation  o f th e  Language

One of the key issues which is classed in this level is the Type of Language used. 

This is to distinguish between various ways of implementation, and also different 

representations based on . distinctive syntactic and semantic features. Inter­

preted, compiled or a combination of these. When an Interpreter is used, it runs 

on the target controller and program statements at source level are read one by 

one and executed directly. The greatest benefits of the languages that can be run 

with an Interpreter are their power and ease of debugging. Much of the power 

comes from the notion of delayed binding and dynamic scoping. However, syntac­

tic errors may be encountered at run time, as there is no off-line translation. Also 

they are slower compared with compiled programs, due to the fact that before 

execution, interpretation of a program statement requires significant overhead in 

contrast with when a Compiler is used that reads in the higher order language 

and puts out an object code. Other issues are, whether the language is procedu- 

rally oriented or like AML/X and LISP, expression oriented, object oriented (like 

SMALL TALK) or goal driven (like PROLOG), which are suitable for Task-level
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programming approach for Robotic Applications. After issues related to how the 

language is processed, questions as to how the actual configuration enables cer­

tain kinds of Run-time Debugging and System Access become important. Then 

the remaining semantic and process synchronization errors can be pin pointed 

using for example tracing, single stepping, breaking and run-time editor. In work­

cell controllers that orchestrate the communication and control of robots, sensors 

and other devices, access to the system supervisor program is essential. When 

programming Multi-Robots, coordination of the control becomes complicated due 

to the extra degrees of freedom introduced, as well as timing constraints and in 

some applications, simultaneous control of force due to contact of two robots. It 

is important that an accurate simulation of these kinds of operations are carried 

out before hand, based on complex models incorporating forces and sensors.

2.2.4 Language A ttributes

This is at the bottom level of the Robot Programming System and represents a 

good measure of comparison for Robot Programming Languages. The important 

elements of this category are shown in the following tables. Individual elements of 

each feature represented in the tables can influence the elements of the previous 

levels discussed. As an example, whether static or dynamic scoping (in Declara­

tions and Variables) in table 2.1, is used can affect the reliability of a programming 

language, ie. static scoping tends to create optimizable and more reliable execu­

tion. The need for these elements in a Robot Programming Language is primarily 

determined by the type of application used. Generally there is a need for rep­

resenting angles, coordinates, forces, velocities represented in a vector form (in 

Array) and hence vector operations ie. dot product and cross product etc. In­

put/O utput feature elements are also shown in table 2.1 . In some applications 

where coordinated control of motion and sensors is necessary, Timers are needed 

to make this possible. Control Structures are shown in table 2.2 , again empha-
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Declarations and Variables Array Input/Output
variable type vector binary

variable frame analogue
identifier matrix vision

label coordinate system compliance
constant guarded motion

declaration timers
scope wait

assignment text i/o
file i/o

Table 2.1: Some language attributes

sizing the application dependence of the elements. When more than one robot is 

involved in an operation, a structure for controlling multiple robot arms is needed 

and perhaps need for parallel processing and parallel execution. Another feature 

shown in the table is Sub-Programs. Macros can be utilized by means of viewing 

a large piece of detailed code, as a template with slots that can be filled in accord­

ing to the invocation for example in palletizing applications. Subroutines can be 

useful for various activities such as motion, sensing, transformation calculations, 

or specified actions such as move, rotate, change speed, grab camera image. When 

large programs are to be executed or the program uses a given subroutine for more 

than one purpose, Parameter passing becomes a prerequisite. In table2.3 , One of

Sub-Programs Control Structures Operators
macro branching arithmetic operators

subroutines looping boolean operators
nesting iteration relational operators

parameters multiple arm control transformation m atrix
frame affixment

Table 2.2: Some language attributes

the features shown is Data Types. In Robotic applications Geometric data types 

are very important for referencing part features such as holes and so on. There­

fore a data type to represent points, lines, planes, curves and surfaces is necessary. 

Also shown in the table is Motion in terms of move (grasp, stop) with parameters 

specifying speeds, acceleration, forces etc. and path (straight line, circular, or
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along some other geometric curve) possibly in more than one coordinate system. 

Tool Statements include Effector Command which references grasping, open and 

closure with defined force for example and Tool Command which specifies a move 

relative to the gripper held tool frame of reference.

Data Types Motion Tool Statement
elementary move effector command
structured path tool command
geometric

Table 2.3: Some language attributes

The elements of a Robot Programming System described above, form a com­

prehensive representation of the entities, which are important, for evaluation of 

individual systems, as well as comparative studies of different ones. These will be 

dealt with, in the next section.

2.3 A com parative study o f R obot Program ­

m ing System s

Detailed comparison of Robot Programming Systems is a complex task. There are 

numerous different ways that this comparison can be carried out. In the literature, 

usually comparisons are either inadequate or unfair. Inadequacy stems from lack 

of a comprehensive measure and unfairness is a result of comparing systems which 

are meant to be used for different applications. To overcome the former, all ele­

ments of a Robot Control Programming System described in the previous section 

ought to be used, not just some and also the interaction of different levels should 

be taken into account. One way of tackling the latter problem is establishing a 

benchmark for a particular application and then the systems which are designed 

for the operation can be compared. There has been some effort in this direction, 

for example the development of a European Benchmark for the comparison of 

assembly robot programming systems [15] . An insight to the whole issue can be
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gained by looking at how off-line languages for robots evolved over time.

First Generation:

The early robot programming systems were created by extending BASIC to 

provide for robot motion which was usually straight-line or circular or along some 

arbitrary curve, elementary sensor usage (binary), basic coordination and a min­

imal operating system which were designed to be self contained. Also they were 

designed to be usable by operators without computer science training. VAL is an 

example of this generation. Due to their limitations, they are restricted to certain 

applications which do not need complex computations or interface to complex 

sensors. Communication with other computers and controllers are limited and 

they are not extensible in a way that allows one to add commands and build 

capabilities into the language. Although these languages remove the rigidity of 

augmented teach box software, they provide very little new capabilities.

Second Generation:

To overcome the limitations of the first generation, computational complexity 

of a modern structured computer language were built into the second generation 

Robot Programming Systems. RAIL for example looks very much like its parent 

PASCAL, while AML embody new concepts. They have extensions for motion, 

sensor communication, improved control and operating systems with more power­

ful editors and file handling capabilities. Nevertheless many of them are supplied 

as closed systems which restricts their capabilities for computer communication 

and coordination. The main advantage lies in their extensibility. Through the use 

of subroutines and functions, new commands can be added to the language that 

give capabilities transparent to the user, which then means operators can easily 

use them. The second generation languages also have some weakness. They can­

not yet deal with part or cell geometry as is necessary in the work environment 

(with the exception of APT-like robot languages). There is still no way to safely 

debug a robot program. Robotic applications should be able to access the data
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that resides in a CAD data base, but so far very few can handle the communi­

cations, the different data structures, or the interpretation of geometrical data. 

Similarly vast majority of them do not facilitate the integration of robots into 

Flexible Manufacturing Systems (FMS) which use computer control to coordinate 

combination of NC tools, robots, inspection stations, material handling systems. 

In addition significant improvements are needed in the use of robotic software.

Third Generation:

These are usually referred to as task-level or object level languages. Instead

of step-by-step specification, simulation and graphics are combined to direct a

robot to perform a series of tasks, which the software would then determine how

to carry out in detail. The statements correspond to high-level tasks which the

program decomposes into executable actions. Although desirable, they have not

yet matured. There are two fundamentally different theoretical approaches to the

development of task-level programming. One relies on the artificial intelligence for

an expert system solution that will perform tasks according to formal rules gained

from human experts. In the other approach, the task is analyzed from the top

down and is hierarchically decomposed into subtasks that the system knows how
m

to perform. The above classification can at least helpvthe choice of languages with 

similar capabilities for the purpose of comparison. The usual comparisons which 

have been carried out are based on the features of the programming system, for 

example [105]. These features usually include: Type of Geometric Modeler (Solid 

etc.), Robot Modeler (kinematic etc.), Programming Language(Manipulator level, 

textual ...), Other Features (Reach Testing, Cycle-time etc.) and Graphic Simu­

lation. It should be noted that comparisons based on language features can easily 

be done by referring to language manuals, where as when we move further to 

include all levels of the programming system for example operating environments, 

it is somewhat dependent on the actual implementation. Detailed comparisons 

of fourteen languages were made by means of developing a sample program and 

using different languages by [10]. The intention was to derive some measure of
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programmability. They included a number of elements of what we defined as 

Programming System in the previous section, but not all. One of the measures 

of programmability was the number of instructions in the program, excluding 

comments, which is quantitative. Other measures were quantified against defined 

scales, These measures were: Development time, Readability, Understandability 

of Instructions, Structured Format, Flexibility of choosing variables, Ease of ex­

tension, Range of users, Programming complex tasks, Necessary support facilities, 

Computer power, Sensing ability, Availability. A different work which again in­

cluded a portion of the categories which form a Programming System were carried 

out by [28]. A study to define the characteristics of a good programming system 

was carried out by [11]. They came up with a list of quality attributes almost 

identical to language capabilities (explained in the previous section) that affect 

the life cycle cost of a robot program. For assembly applications in particular 

[15] developed an assembly application which they executed on different robots 

and concluded what types of entities are desirable to support such applications. 

One outstanding result was that different levels of programming system can not 

be considered in isolation. They also made a remark that comparison should not 

be made in conjunction with a representative range of manipulators.

After studying the literature, and seeing the shortcomings of the comparisons, 

an effective evaluation of Robot Programming Systems, in author’s opinion is 

that, once an application is specified, its requirements in terms of sensors, decision 

making, communications, motion, world modeling etc. ought to be detailed, and 

then a class of systems with the inherent required features, capabilities e tc ., should 

be selected for comparison. A comprehensive pseudo code which entails all the 

requirements should be prepared and then used for programming the application. 

A scaled quantitative measure against each of the elements of the Robot Control 

Programming System (RCPS), will then be indicative of the suitability of each 

system. As an example, consider a typical assembly operation, such as assembly of 

a flange. The components which should be provided, to obtain a fast and flexible
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programming system for the above operation are pointed out in [9]. These are:

• Installation of sensors for vision, force-torque, slip, proximity, etc., into the 

robot.

• Control of the robot by a run-time system which is able to adapt itself to 

on-line changes during assembly.

• The compiler to translate the programmed workcycle should have a compo­

nent which can automatically generate missing information.

The tasks that have to be explicitly programmed, which require the above com­

ponents, can easily be identified, by noting what instructions is carried out, if a 

human operator were to assemble the flange. Firstly, dimensions are transferred 

from the drawing to the actual assembly object, using vision, and translating the 

information. Secondly, past experience is used to supplement missing information, 

such as information about the position of the insertion holes. Thirdly, a sensor 

controlled positioning operation is performed, for example, to insert a screw into 

a hole, vision is used for coarse positioning, and touch for guidance and fine po­

sitioning, hence corrective action, if the thread of the screw does not engage with 

that of the hole. Fourthly, missing assembly element tasks are supplemented, for 

example, use of a screw driver for insertion of screws. Finally, fixturing which is 

needed during assembly may automatically be done without explicit instructions 

from the drawing. Now the requirements are known, robots and their associated 

programming systems that are suitable to fulfill the requirements are chosen for 

comparison. For simplicity in this case, take only two programming systems, 

VAL II and AML/X. Unimation Inc.’s VAL II is used for operation of UNIMATE 

and PUMA robots and is referred to by Unimation, as a robot language and 

control system with expanded computer logic and advanced communication ca­

pabilities. Three levels of robot control systems exist within VAL II: First level 

offers manual teaching capabilities and front-panel programming, second, allows
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development of robot programs written in simple robot programming languages, 

and third, allows modification of the arm ’s path from data transm itted through 

external sensing devices. VAL II can be interfaced to a supervisory system through 

the Digital Data Communications Message Protocol (DDCMP) used by DEC in 

its network communication. This protocol provides error checking and automatic 

message transmission, as needed for factory communications. VAL II also allows 

a second application program to run concurrently with the main robot control 

program for the purpose of process control. AML/X is a major revision of AML 

and is a general purpose programming language for manufacturing and computer 

aided design, by IBM. It has features for conventional data processing and also 

object-oriented. An AML/X program is a series of textual expressions evaluated 

by an interpreter at run-time according to specific rules. Programming languages 

such as LISP and SMALLTALK have influenced its design. Various application 

layers can be developed residing on top of AML/X, as well as each other, hence 

the end user only sees a very small application specific language. Both of the 

above languages should now be compared on the basis of individual elements of 

the Robot Control Programming System (RCPS) shown in table 2.4. This could 

be done, both by looking at the documentations available for each system and also 

programming the assembly operation. An order of preference can then be used 

to describe the merits, for example ranging from non-existent ( x ) ,  available ( a / ) ,  

poor, acceptable, good, very good to excellent. This is shown for some elements 

in table 2.4. As far as Flexibility is concerned, although VAL II has considerable 

flexibility in motion control with guarded moves, real-time trajectory updating, 

and watchdog monitors over sensors, AML/X seems superior. This is due to its 

unique data abstraction, and its debugging procedures for handling exceptions, 

which result from unplanned events at run-time, e tc .. Also lack of built-in mo­

tion or sensor primitives, means that it can conveniently work for a great range of 

robots and sensors. These primitives can be defined according to the robot appli­

cation and there are some developed definition and implementations, for example
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RCPS elements______________ VAL II________________A M L /X
Extensibility good very good

Flexibility acceptable excellent
Reliability good very good

Decision Making good very good
Efficiency acceptable poor

Portability poor very good
Usability acceptable very good

Maintainability very good very good
Sensor Support good good

Simulation X X

CAD Database X V
Programmer Experience implementation needed implementation needed

Editor good good
Subroutines Library acceptable very good

Pre-Processor X X

Off-line Debugging good poor
Programming Techniques implementation needed implementation needed

Parallel Processing X X

Concurrent Execution X X

Process Synchronization y/ V
Networking acceptable acceptable
Interrupts V V

Diagnostics V V
Peripheral Support V V

Interpreter X V
Compiler V X

Run-time Debugging poor very good
System Access V V
Multi-Robots ? ?

Variables implementation needed implementation needed
Data Types implementation needed implementation needed

Input/O utput implementation needed implementation needed
Sub-programs implementation needed implementation needed

Control Structures implementation needed implementation needed
Operators implementation needed implementation needed

Motion implementation needed implementation needed
Tool Statement implementation needed implementation needed

Table 2.4: Comparison of AML/X and VAL II
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AML/2 for IBM 7575 and 7576 robots. For this element, VAL II is acceptable, 

but AML/X seems to be Excellent. In the case of Extensibility, in AML/X, user- 

oriented front-ends can be used to extend the capabilities, due to the freedom 

for data abstraction. VAL II is capable of controlling various robots from ones 

used for clean-room applications and ones for harsh environments, and with the 

introduction of VAL DATA Products, CATVAL postprocessor for interface to 

CATIA and PCVAL supervisor in 1987, its extensibility was demonstrated. In 

this case AML/X can be said to be very good and VAL II, good. For Reliabil­

ity comparison, VAL II’s combination of teach mode and textual programming, 

makes run-time debugging more precise, but the extremely sophisticated excep­

tion handling capabilities of AML/X makes it much more reliable. The lack of 

sophisticated conditional branching, makes explicit error handling difficult and for 

VAL II, run-time failures, will cause problems, considering Efficiency, VAL II is 

reasonably fast and allows for multiprocessing. The limitation of AML/X is that 

having to go through an interpreter, time-critical applications need to be written 

in C and called through its C interface. Regarding Maintainability, they both 

score well, AML/X with its data abstraction and self documenting style and VAL 

II with its motion sequencing being kept away from the location and trajectory 

data. In terms of Portability, AML is very good since the interpreter is written in 

the general purpose C language, whereas VAL II is not portable as such.

Similar type of evaluation can also be applied to other elements. It should 

however be noted that, language attributes and some elements of other levels, are 

best assessed, if programs are actually implemented, so that aspects like ease of 

programming can be taken account of.

Other languages can also be compared, in the same sprit, based on the re­

quirements of the application, or even a universal application characterized by a 

benchmark, and evaluation of individual elements of RCPS. Now an effective ap­

proach for comparison of programming systems, has been suggested, specification 

of requirements and future trends will be dealt with in the next section.
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2.4 Requirem ents, Future Trends

It will be too simplistic to assume that a generalization can be made as to the 

requirements of Robot Programming Systems. Some applications may essentially 

require certain capabilities and attributes, that might only be desirable or ad­

ditional to others. For example for a complex assembly automation, the robot 

system must be equipped with sensors and interfaces to other machines or tools. 

Therefore the robot language should include facilities to define data structures 

and input/output actions. However, assembly work covers a wide range of tasks, 

varying from relatively easy tasks such as transfer of a part which do not neces­

sarily require sensors and interfaces, to precision work such as tasks that involve 

interaction of more than one robot with different parts at the same time. Deci­

sion making, Sensing, Communication, World modelling are some of the categories 

that make up application features. The increasing complexity of robot applica­

tions, and as a result, the need to include complex sensors and integration with 

CAD/CAM systems, plus the move towards Flexible Manufacturing Systems for 

small and medium batch productions, make off-line programming as opposed to 

lead-through programming essential. The off-line programming system requires 

the existence of a theoretical 3-D model of the robot and its environment, so that 

real-life behaviour of the robot can be simulated. In addition to this, knowledge 

of the task or process to be programmed and verification of it is necessary. A 

user friendly programming interface is also needed to allow efficient development 

of the programs. Although application is really the driving force behind the lan­

guage requirements that need to be met, sometimes cost effective versatility can 

be achieved by inclusion of extra features that improve the performance of the 

system. It is generally agreed that a robot which is capable of Straight line mo­

tion in one direction, controlling the gripper, responding to external signals and 

originating output signal is able to perform basic assembly operations [15]. The 

robot assembly performance can significantly be improved in terms of being able
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to perform a range of assembly operations, by addition of some desirable fea­

tures, such as tactile sensing, servo control of the gripper e tc .. Other features can 

also be added to assist the programmer in making full use of the machine, such 

as diagnostics, computational ability, software maintenance, CAM compatibility. 

There are three main areas that are worth considering when a needs analysis for 

a programming system has been carried out and requirements for a particular 

application have been specified. These are : Interfaces and Standards, Simulation 

and Data Bases.

Interfaces and Standards

Both issues of a Robot Independent programming system and the Communication 

between the robots, sensors and other constituents of a manufacturing cell, make 

standardization desirable for the sake of efficiency. The main problem that robot 

industry has faced, is one of deciding at what point the language instructions are 

to be translated from robot independent instructions to movement instructions, 

required for execution by a particular robot. In addition, robots of different con­

figurations and geometries that are employed in non-similar workplaces, will need 

programs that are specifically written for them, even though the commands might 

be the same. Complex and subtle geometrical reasoning is demanded by any robot 

independent programming scheme to take into account the location of different 

parts of the arm, fixtures, permanent parts of the workcell and the temporary 

locations of the parts in process. One suggested approach to deal with this, is 

to capture the geometry of the robot and the workspace in tables which the task 

program can then access at compilation. The solution to the interface problem 

has also been hindered, due to lack of agreement for definition and format of 

data elements (such as commands, feedback variables, sensory data parameters) 

that need to flow between computing modules. A great deal can be learned from 

the standards that already exist in the field of Manufacturing and CAD/CAM, 

although they are not directly suitable for robotics. MAP and Initial Graphics
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- Exchange Specification (IGES) are but to name two. The specification estab­

lished by IGES, permits the compatible exchange of product definition data used 

by various CAD/CAM systems. The methodology for representing the data is 

extensible and independent of the geometric modeling methods used. Geometric, 

topological and non-geometric (e.g. data organization) product definition data 

are represented in file structure and language formats. An IGES file contains five 

subsections which must appear in order. These are: start section, global section, 

directory entry, parameter data and terminate section. In this standard, the com­

munications file structure and format are defined, but the specific -features and 

protocols for communications media are not included. There has been some in­

vestigations into the implementations and requirements of Programming System 

standards, by a European effort and also a Japanese proposal working within the 

Computer Aided Manufacturing - International (CAM-I) framework with some 

initial agreements.

Benefits can also be gained by standardizing Control Systems, but again to 

what levels of control this should be applied to, is still to be agreed upon. For 

sophisticated control implementations, feedback data is needed at a variety of 

abstraction levels. Control loops can have variety of loop delays and predictive 

intervals, so for example force and velocity data used in servo loops for high speed 

or high precision motions can be processed and introduced into the control system 

very fast, whereas decisions at higher levels (based on vision data for example) 

need to be made less frequently, and therefore the greater amount of sensory pro­

cessing can be tolerated. The control level dependence of decision making and 

the uniqueness of procedures executed at each level by the computing modules, 

necessitates separate subsets of a programming language at each level which could 

well have the same logical structures. For Program Format Standards, a view held 

by many working in this field is that the useful precedence set by designers of 

Cutter Tool DATA (CLDATA) in Numerical Control (NC) ought to be followed,
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as the standard will be based on existing NC technology with which manufactur­

ing engineers are familiar. However, there are vast differences between machine 

tools and robots, which have made the expansion of CLDATA a formidable task. 

A proposal by the working committee of the German Engineering Association 

VDI seems to be the only applicable standard based on CLDATA. It is called 

Industrial Robot DATA (IRDATA) and its general structure, record types and 

transmission definitions are documented in [95]. The idea is that a user pro­

gram can be compiled and translated into IRDATA-code and after transferring 

the program as an IRDATA-text to the robot controller, it will be executed by an 

IRDATA-interpreter. Therefore the language can be used for any robot control 

which is supported by an IRDATA interpreter. This is illustrated in Figure 2.1 

. It allows for description of workspace, coordinate types, position, velocity, ac-

PROGRAM
< >

PROGRAMMING
SYSTEM

TEST INFORMATION 
VDI 2863, IRDATA

APPLICATION 
PROGRAM '

TEACH INCONTROLLER

CONTROLLING DATA

Figure 2.1: IRDATA within a Robot Programming System

celeration, limits, time of motion, guarded motion, synchronization, and modular 

activities. Parallelism which reflects the predicted change from the use of tradi­

tional Von Neumann Computer architecture is also supported.

The general consensus seems to be that experience must be gained over more 

applications, and technology should be more mature in order to be able to incor­

porate appropriate requirements into any standard, being at task level or servo



CHAPTER 2. RO BO T CONTROL PROGRAMMING SYSTEM S  32

level. One point to note is that attem pts to create a standard programming sys­

tem which is independent of both robot and applications, can end up being so 

complex that might inhibit the functional use of the system.

Sim ulation

When programs are developed off-line, in effect models of robots and the workcell 

environment are assumed, in order to be able to input location values, and move­

ment commands. A graphic simulation support which includes animation, can 

be a valuable tool for the programmer that provides robot program development, 

program editing and debugging. In this way, danger to the operator is minimized, 

while the robot can carry on.performing a task during program development. It is 

obvious that, the more capabilities built in to the system, the more realistic and 

closer to the real life it will be. There are a number of additional benefits that 

could be gained, by using a graphic support with the relevant features, some of 

these are:

• Collision prevention

• Checking for motion constraints and reach testing

• Shortening of an operation’s cycle time by utilizing the position of parts and 

equipment within the workspace

• Analysing the effect of employing different types of grippers

There are graphic simulation packages that include the above capabilities.

GRASP (Graphical Robot Applications Simulation Package by BYG SYSTEMS 

LTD. Nottingham, UK) for example is a computer graphics simulator designed 

for robotic cells, with wide variety of robots working in many different situations. 

Kinematic behaviour of individual robots can be analysed, as well as their inter­

action with each other and the environment. A high level GRASP program can 

be created by defining the joint structures, constraints and other data associated
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with the robot, as well as the tool path, and then be converted to a robot control 

language (e.g. VAL II) using a postprocessor.

The Robotics module of CATIA (by Dassault systemes, Suresnes, France) is 

also an interactive graphics tool for robotic workcell designing and off-line robot 

programming, with similar capabilities. Although using these graphic simulators, 

Robot Performance can be studied on the basis of workcell characteristics, for a 

more realistic model of the robots and the environment as a whole, to allow a 

more practical simulation to be carried out, the following need to be included:

• complex models of different types of sensors (tactile, vision, e tc .)

• complex robot dynamic models which vary even with each copy of the same 

robot and include coupling, gravitational and inertial effects

• models of joint actuators and control systems used

• non-infinite acceleration and deceleration (to show overshoot errors)

• models of backlash and slop in joints and compliance of links

• model of deformation due to collision etc.

There are simulation packages that include some of the above. I-DEAS Mech­

anism Design and Excitation Definition Module (by SDRC), allows inclusion of 

inertia properties and auxiliary functions with motion definition of other joints as 

a function of one joint, as well as obtaining and inputing load data. It is based 

on Mechanism Design Theory [79] and the mechanism is described by a set of 

algebraic equations which must be satisfied during all phases of motion and are 

based on the identification of all independent loops in the system. Qualitative 

data is generated in the form of function response (XY) plots and forces within 

individual joints can be calculated.

ROSI(RObot dynamic Simulator by Cambridge Control Ltd. England) in­

cludes simulation of actuators and control. Its Dynamic engine uses Walker-Orin
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and recursive Newton-Euler algorithms to perform its dynamic computations. 

Both the above have limited graphics capabilities, no inverse kinematics and they 

produce no output code for use by another user written program. -

Academic research has also been active in this field, Robot Arm Dynamic 

Simulation Package (RADSP) by Mech. Eng. Dept. Surrey University is an 

example of such activity. This is a simulation program for static and dynamic 

analysis of the performance of a multi-arm robot. Free body method is used for 

generating the dynamic equations for the manipulator system. Inverse kinematic, 

path profile planning of the load and torque generation are included as different 

modules. Either lumped or distributed parameter, mo dels of the robot structure 

may be accommodated as well as linear or non-linear friction effects at the joints. 

Using this package, steady state characteristics of robots can be assessed. Another 

academic oriented robot programming system, which includes graphical simulation 

is RAPT by University of Edinburgh, which is outlined in [1].

Although these are first steps towards creation of a comprehensive graphics 

simulation package, there is still a lot to be done, before this can be a reality. Even 

when all the shortcomings pointed out above are dealt with, for the simulated code 

to be used as a control program, a great deal of sensory information is needed 

to compensate for the errors. It is however true that the direction is towards 

creation of an object level programming environment, which graphics simulation 

and animation play an important role.

D ata Bases

The type of information that the robot controller can use to enhance its capabili­

ties and also allow it to be efficiently included within an integrated manufacturing 

control system, are: Three Dimensional CAD data, information about parts’ ma­

terials, weight and density, flexibility or rigidity, the forces they can withstand, 

sensitivity e tc .. A part data base can be created to withhold these information 

and from there, data can be ported to the robot software system, when required.
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Artificial Intelligence methods can be used to describe objects, structures and 

action sequences, in order to prevent time consuming definition of every robot 

movement with the attributes and attribute values. The working sphere of the 

robot, the obstacles and other features of the robot environment can be included in 

a Knowledge base implementation, based on a special relational database. These 

data bases can be updated at run time with the help of sensors. Therefore struc­

ture and data manipulation, evaluation, error monitoring and correction can be 

achieved.

2.4.1 Future Trends

To discuss the Future Trends for programming systems, it is valuable to look at 

the demands of likely future applications, the deficiencies in the existing off-line 

programming methods and the feasibility of further enhancements. As the demand 

for employing robots in more complex applications grows, attention must be paid 

to increasing the capabilities of robots in terms of sensory information, decision 

making and more accurate control strategies. As a result, within the programming 

system context, provisions must be made to accommodate complex sensory data 

processing, use of artificial intelligence techniques, and control algorithms that 

are capable of utilising the sensory data to achieve an improved implementation 

of complex tasks. Off-line programming becomes essential, especially for small or 

medium batch production and when emphasis is on flexible manufacturing, hence 

complex geometric and robot modelers ought to be used for benefits discussed 

earlier.

A general representation of various modules, and their interactions within 

a robotic manufacturing cell in Figure 2.2, illustrates the layout of the future 

cells, in terms of programming system needs (e.g. on-line world model etc.) and 

employment of multi-robots, complex sensory devices, various machine tools, and 

means of transportation. It seems that the emphasis is towards more autonomy
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Figure 2.2: Robotic Flexible Manufacturing Cell
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with the aid of AI techniques, and improvement of individual modules. In essence 

improvements can be made in data capturing methods of Geometric modelers, 

away from the error prone and time consuming manual approaches. Existing data 

stored within a CAD system can be utilised more efficiently and algorithms used 

by the robot modeler can be incorporated.

It is difficult to make a general decision as to what kind of approach is most 

appropriate for the Robot modeler. A robot specific approach, leads to a simple 

implementation, but limits the scope of application. Alternatively, if the approach 

is extended to a limited class of structures or even further, to more general complex 

manipulator types, the complexity resulted specially when manipulator dynamics 

and other desirable capabilities outlined earlier is incorporated, certainly makes 

the issue of likely applications, a relevant one. The same dilemma applies in 

the case of programming methods, but due to the differences in the functional 

requirements and robot techniques for various applications (compare arc welding, 

spray painting, and assembly). Modularization can be a possible answer to allow 

for the efficiency of the whole system.

Logical movement sequence definition (incorporating robot commands, robot 

functions, and cycle logic) and storage within a programming method framework, 

can be based on the robot control data within a world model provided by the geo­

metric and robot modeler. An important issue which is worthy of much attention, 

is dealing with the implicit differences between an idealized theoretical model and 

the real world. Although incorporation of sensor technology to an extent alleviates 

the discrepancies, these differences which stem from various sources, ought to be 

minimized. The robot manipulators should be constructed with tight tolerances 

and where appropriate rigid structures or allow for compliance within the model. 

Controllers need to have sufficient resolution and numerical accuracy which can be 

achieved by efficient algorithms and long word length microprocessors. Numerical 

accuracy of the modelling and programming system and high quality of real-world 

model data should also be ensured. Furthermore, the environmental effects within
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the workspace such as tem perature variations should be taken into account. Fi­

nally, multi-robot support, time-based programming with communication between 

different program modules and system elements, improved human interface, are 

also some enhancements foreseen for future robot programming systems.

2.5 A Transputer Approach

In an integrated manufacturing system, with multiple robots, complex sensors, 

machine tools, AG Vs etc. interacting and communicating with various computing 

modules which carry out task scheduling, data processing, complex computations, 

and so on, the inherent system parallelism can easily be seen at various levels. As 

with any other parallel system, issues of modular software development, synchro­

nization, communication, efficient data transmission need to be addressed. Within 

the context robot programming languages, three levels of concurrency can be de­

fined:

1. High level synchronization of both manipulators and programs

2. Response to asynchronous events from the environment

3. Monitoring of sensors

In a wider approach, within the computational hierarchy of a robotic cell, while 

on the one hand, task decomposition is being carried out at various levels in a 

top-down fashion, on the other hand sensory data needs to be processed at the 

same levels, but from bottom to the top. Meanwhile, both of these tasks need to 

exchange data with the no-line world model. Therefore a minimum of three par­

allel tasks exist, which can then be further divided into subtasks according to the 

levels of control hierarchy. There are three control levels, task level, manipulator 

level and servo level. At the top of the hierarchy, functional and object oriented 

programs can be used to input robot commands to the plan generator. Then at 

the manipulator level, a good approach has been to use procedural programms
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for calculation of inverse kinematics and dynamics, plus trajectory generation. 

Finally assembly programs at the hardware interface level, have normally been 

used for servo control. At this low-level, sensory data processing consists of filter­

ing and scaling joint variables, which are then combined to give data, in required 

frames and relative to the desired trajectories at manipulator level. At the task 

level, sensory data tend to hold information about surfaces, volumes, and position 

and orientation of objects. Once all the subtasks of sensory processing, on-line 

world model and task decomposition at various levels, are specified in a parallel 

manner, they need to be coordinated and relevant subtasks need to communicate 

with each other and other modules to perform motion planning, factory level co­

ordination, task monitoring, error recovery, e tc .. To implement this parallel set 

up, in a cost effective way, the use of INMOS Transputers with their general pur­

pose architecture for multi processing environment, and OCCAM language that 

makes use of the power of the transputers in a multi processor systems, seem very 

appropriate. The current top of the range T800 Transputer is a 32 bit proces­

sor, designed with a RISC-like architecture. At peak, it can operate at 20MIP 

instruction rate. The overall throughput is however quoted at 10MIP, due to the 

fact that some instructions can take longer than a single cycle (50ns) to execute. 

There is 4K bytes of on chip memory which is matched to the speed of the pro­

cessor and can be accessed in 50ns. An external memory interface allows access 

to up to 4G bytes of addressable off-chip RAM. There are 4 serial links which 

allow data from one transputer either in internal or external memory be DMA’ed 

into another transputer’s memory, in parallel with program execution. OCCAM 

allows, parallel link communications, using channels, and both parallel and se­

quential process execution. The existence of natural constructs, such as input (?) 

and output (!), on the synchronous unbuffered channels, means that there is no 

need for constructs such as semaphores, and process synchronisation and mutual 

exclusion. The processing power, the memory and the communication links, plus
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the on chip floating point unit, internal timers, support for run-time error diag­

nostics, high performance graphics support, and external event interrupts, as well 

as its superior cost/performance characteristic, make the Transputer particularly 

attractive. The computational speeds achievable, allow the possibility of more 

time-critical, demanding advanced control algorithms to be implemented too, as 

will be illustrated later in the thesis. All computational needs of a workcell could 

be fulfilled, both in areas where large volumes of data need to be processed very 

fast (e.g. CAD, where independent sets of data are processed), and also where 

communication, monitoring and synchronisation is required (e.g. sensors). Device 

interfaces can be implemented, using the event pin of the Transputer and memory 

mapping. Definition of communication with memory mapped devices is provided 

by OCCAM through the use of PORT which is used as a channel. Signals can 

be sent from devices, using the EVENT channel of the Transputer. Transputer 

Graphics Systems, are available in the market and they can be utilized for sim­

ulation, modelling and user friendly front ends for program development. All 

the robot programming system requirements outlined in the previous section, can 

suitably be met, by employing a Transputer based system. W ithin the comparison 

scheme framework suggested, including all the elements of RCPS, the benefits of 

a Transputer approach can also be seen easily. For instance, Programmability of 

the system is improved compared to sequential approaches, and generally other 

systems, for the following reasons: Using the Transputer and OCCAM, gives the 

benefit of modularity, and can reduce the relative complexity of the software and 

cost of production. OCCAM is a very expressive language and with its features 

designed for concurrent systems, is very suitable for expressions of control. Exten­

sibility is also improved, as it is easy to add processes, using high-level OCCAM 

constructs, and extend the processor power, by adding more Transputers. The 

ease of changing the topology of a Transputer network contributes to Flexibility of 

the system. The existence of powerful debuggers, means that detection of faults 

are easy, which helps Maintainability. In an overall comparison, regarding other
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elements such as Efficiency, Process Synchronization, Networking, Subroutines 

Library, Peripheral Support, e tc ., the Tranputer OCCAM combination will also 

score higher.

Further discussion on the Transputer and occam is presented in chapters 5 and 7.
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R obot M odelling and V alidation

SU M M A R Y

An efficient and reasonably accurate dynamic model is devel­

oped for an MAS000 robot that includes the actuation systems.

A CAD system is used to obtain the kinematic and inertial pa­

rameters of the model accurately. Using data extracted from the 

actual robot, the behaviour o f the model is compared to that of 

the robot and results show a close match between the two.

3.1 Introduction

A series of links connected together by joints, form the building blocks of Robot 

Manipulators. Link movements are caused by actuation systems, under the robot’s 

controller command, using transmission elements from the actuators to individual 

joints. There are various types of robots, classified on the basis of their anatomy, 

arm geometry, actuation types, etc. A Robot model, if created accurately enough, 

can help minimise the trajectory errors that might occur in executing a desired 

motion. This can be achieved by predicting the actuator commands from the 

robot model, given a particular trajectory, and then feeding the information for­

ward in a control loop.

The model of the robot includes the characteristics of the actuation system, the
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kinematic parameters, the inertial parameters and finally the dynamic equations 

of the robot which includes the joint interactions and all the forces (torques) in­

volved.

Although there are various ways to carry out the modelling for each component, 

using different techniques, it is not always clear which method is the most suit­

able. To a certain extent, it depends on the availability of resources, and the level 

of accuracy required. The kinematic parameters, can easily be found from the 

blueprints of the robot manipulator. For finding the inertial parameters however, 

either manual methods, parameter estimation, using appropriate sensors for ac­

quiring measurements, or CAD approaches, are the alternative methods.

The dynamic equations can be based upon Newtonian mechanics or Energy ap­

proaches. The formulation of these equations will have the same final results; 

but the representation of these equations and their structures will vary, making 

them suitable for different applications. Derivation of these equations by hand, 

when the number of linkage elements exceeds two, is time consuming and prone 

to human error. Computer assisted formulation of these equations make the task 

substantially easier and the equations more accurate. Symbolic manipulation 

programs can be used, together with simplification techniques, to create efficient 

formulation of manipulator dynamics. These equations are very appropriate for 

use , in real-time.

The final component which needs to be modeled is dynamics of the actuation 

system. This is not as complicated as the link dynamics modelling, due to the 

fact that there is no cross couplings between actuation systems; but it is just 

as important. The actuation is either by means of electric motors, hydraulic, 

or pneumatic drives. Although data from the manufactures that can be used in 

parameterised models which have been developed for various actuation systems 

make it possible to model them fairly accurately, this data is not always available. 

Hence different techniques are used to obtain the parameters, usually based on the 

input and output of the actuation system. Frictional effects, gear backlash and
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other nonlinearities associated with the actuation and transmission drive train, 

complicate the task of creating an accurate model.

Once the model of a robot is created, it needs to be validated before it can be 

used for simulation or control purposes. The process of model validation, is not 

only an iterative one, but it always helps to originally divide the complete task of
\rv

validationvto components, which can then be combined to get the total result. By 

doing this, errors can be pin pointed to a: , specific area, and as a result, it speeds 

up the elimination process.

In this chapter, both direct and inverse kinematics, will be discussed, and then 

manipulator dynamics are considered. Since for the experimental work, a rigid, se­

rial open-chained rotational manipulator, namely a TecQuipment MA3000 Robot 

is used, the kinematics and dynamics aspects considered, will mainly concentrate 

on this type of manipulator . Kinematic and inertial parameters of the MA3000 

robot are obtained, for the first three links, using a CAD system. A Symbolic 

manipulation approach is used to generate the dynamic equations of the robot. 

Based on the particular geometry of the manipulator, algebraic simplifications, 

and eliminating repetitive computations, make these equations efficient. Then 

permanent magnet dc motors are looked at, and a model of each joint’s motor 

is developed. The value for the torque constants, not available in the manufac­

turers catalogue, was found, using steady speed characteristics of the motors and 

the joint angle data acquired from the robot, as a result of step voltage inputs. 

Although, models of friction and backlash are not included, a number of methods 

that can be used for compensation of these nonlinearities, are discussed and the 

appropriate method can be used when model-based control is implemented. 

Finally behaviour comparisons of the model developed and the real robot is in­

cluded in the final section ( Model Validation ), and a close match for the waist 

and the elbow of the robot is shown. Some explanations are offered, for the 

discrepancies in the case of the shoulder.
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3.2 R obot K inem atics

45

3.2.1 D irect K inem atics

Direct kinematics constitutes the problem of finding the position and orientation 

of the end effector of a robot manipulator, given the joint variables. The following 

approach is taken in order to define the kinematic and inertial parameters for the 

MA3000 and also find their values. First of all, a fixed reference coordinate frame 

is assumed at the base of the manipulator and then individual body-attached 

coordinate frames are established. A convention is used for the principal axes, 

whereby the z,_i axis is positioned such that it goes through the rotational axis of 

the ith joint, the X{ axis pointing away along the length of the 2r,_!, axis and the y,- 

axis is located so that, a right-handed coordinate system is formed. The relative 

translation and rotation between the coordinate systems attached to each link is 

described by a 4 x 4 matrix which combines a 3 x 3 rotation m atrix (RM), a 3 

x 1 position vector (PV) and a 1 x 3 perspective transformation (PT), plus an 

element for global scaling factor (E).

R M  |' P V  

P T  | E

In this case P T  =  0 and E  =  1. This represents the relative position of one link 

with respect to an adjacent one. The position and orientation of any of the links 

including the gripper can then be described in the three-dimensional space of the 

manipulator’s work envelope with respect to the base coordinate system, using 

matrix products. Using the Denavit-Hartenberg (D-H) notation, four geometric 

parameters, (a, d, a, 9) describe the kinematic relationship between two bodies in 

a serial chain mechanism connected by uniaxial joints:

• The twist angle, a,-_i, is defined as the angle between the projection of the 

Zi and Z{_i about X{ axis. This is constant for rotary joint robots.
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• The length parameter, <Zj_i, is defined as the mutually orthogonal distance 

between Z{ and z ^  . This is also constant in the case of MA3000.

• d{ is the distance from the origin of the (i — 1)<A coordinate frame to the 

intersection of the z ^ i  axis with the X{ axis along ^•_1 axis. Also constant.

• The joint variable 0,- about from Xi-i to xi.

Now a homogeneous transformation matrix A;, that represents a rotation of (a) 

angle about followed by a translation of (a) units along the same axis, followed 

by a further translation of (d) units along Z{ and a rotation of (0) angle about z,-, 

will give the D-H transformation matrix for adjacent coordinate frames i and i-1.

Ai =

cos ${ — sin 9{ cos a  sin 0,- sin a  a cos 0,-

sin $i cos Oi cos a  — cos 0; sin a a sin 0t-

0 sin a  cos a  d

0 0 0 1

(3.1)

To specify the position of the center of the gripper P, three degrees of freedom are 

required, and three more, to specify the orientation of it. The components of P in 

the principal axes are px->Py>Pz• Figure 3.1 shows the coordinate frames, the D-H 

parameters and the vectors representing the gripper orientation for the MA3000 

robot.

The transformation from base to the gripper will then be:

Qrp _-Ln —

Hx Sx @>x Px

T l y  S y  C l y  P y

Tlz &z &Z Pz

0 0 0 1

(3.2)

Vectors a, 5 , n represent the approach vector, sliding vector in the direction of 

finger closure, and normal vector to form a right handed system, respectively. 

These vectors describe the gripper orientation. nyy nz are the components 

of the n. The MA3000 arm link D-H coordinate parameters for the first three
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Joint i-M

Joint i

Link i - 1
Link i

I—

gripper

base

Figure 3.1: Link coordinate system and orientation vectors for an MA3000 Robot

Joint i Oi (deg.) a,i (m) d{ (m) Joint range {deg.)
1 0 i -90 105 x l0 ~ 3 304.5 xlO-3 0 - 2 7 0
2 $2 0 402 xlO-3 0 0 - 2 7 0
3 $3 0 352.5 xlO-3 0 0 - 270

Table 3.1: Robot Arm link coord, parameters
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links are tabulated in table 3.1. The values of a* and d;, along with other link 

parameters were obtained using a CAD approach, which will be explained in the 

next section. Note that values for d2 and d3  are both zero due to the fact that 

the origin of the coordinate frames for shoulder, elbow and pitch are assumed to 

be on the same line, to satisfy the sufficient condition of, 3 adjacent joint axes 

intersecting, for a closed form solution of the inverse kinematics, which will be 

discussed later.

K inem atic and Inertial Param eters of the M A3000

The kinematic and inertial parameters of even identical robots are very rarely 

the same, due to errors which occur during the manufacturing process. Even if 

this was the case, manufacturers are reluctant to measure the inertial parameters, 

as presently this is of no benefit to them, for the type of controllers that they 

employ. An experimental way of determining these parameters, would be to take 

the components apart, measure them to obtain the mass, counter balance to get 

the center of mass and swing the pieces to find the inertias.

Parameter estimation has been used to find both kinematic and inertial param­

eters, treating them as different and independent parameter sets that are to be 

identified. To estimate the kinematic set, coordinate frames are assigned to each 

link of the manipulator and using homogeneous transformations relating the co­

ordinate frames, then linear equations are formed, in terms of the joint variables, 

unknown parameters ( eg. length of each link ) and the position and orienta­

tion of the end effector. Assuming the joint variable values and the position and 

orientation of the end effector are known, least squares is used to estimate the 

unknown parameters. For the inertial parameters, nonlinear kinematic equations 

of the manipulator, are linearized about the unknown parameters by ignoring the 

higher order differential changes and then again least squares is used to estimate 

the unknown parameters. Yonghong et al [106] present these methods.

Another Parameter identification approach for inertial parameters is presented in
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[4]. In their approach, each link is seen as a load by the adjacent joint. Measure­

ments of the joint torques about the joint axis are made and inertial parameters 

that appear linearly in the parameters in the dynamic equations are estimated. 

They point out that, since joint torques are not influenced by all the inertial 

parameters, they can not all be identified, and the ones that can be identified, 

can only be determined in linear coefficients. Nevertheless they conclude that the 

parameters that can not be estimated, are unimportant for control, because they 

do not effect the torques necessary to drive the robot.

The approach taken here is a CAD approach. As the advantages of using CAD/ CAM 

become apparent to manufacturers of various robot components, it can in the very 

near future, be the case, whereby the geometric model of individual components 

become available in a standard CAD specific data format. Then these can be used 

for ; very accurate geometric modelling. In the case of MA3000, unfortunately 

this is not the case. Although a bit of effort is required to build the 3-D model 

from blue prints, there are many advantages in employing this method. One 

advantage is that, as model validation is an iterative process, once the model is 

created, alterations can easily be accommodated. Another advantage is that there 

is no need to employ force or other type of sensors. However one disadvantage can 

be the problem with accuracy, but inaccuracies also exist when sensors are used. 

The approximations made were mainly in the inertias of some components, for 

example motors. The weight and the volume of the motors were known and an 

appropriate density is attached to the whole motor, which means that it assumes 

that mass is evenly distributed. However the resulting inaccuracies are not that 

great, as the volume to weight ratio is quite small, compared to the overall ratio.

The CAD approach, U sing CAM -X to calculate the param eters

CAM-X, the Ferranti Infographics integrated CAD/CAM system, consists primar­

ily of InfoCAD which is an interactive, computer aided 2D Design/Draughting 

system for defining engineering drawings, storage, and output to other systems.
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InfoCAD enables the user to interactively communicate with the CAM-X 3D Mod­

eller program and to generate data, either directly from InfoCAD or via the 3D 

Modeller. The 3D geometry of mechanical components and assemblies can be 

defined using InfoSOLID which is a computer aided 3D design program. The 

stages in creating a solid model and extraction of relative parameters from it are 

as follows:

• The geometry of the face boundaries and profiles of the parts which consti­

tute a body, are defined in 2D, by digitising the points that form them, or 

typing the coordinates.

• Then the 3D models are constructed from 2D face boundaries and profile 

data.

• These are then combined, using what is known as boolean operations ( unite, 

subtract, intersect, . . . )  to model the main body in 3D.

• Model data is then available for manipulation and different -views of the 

body can be generated for visualisation.

• Finally design related information such as surface areas, columns, and mo­

ments of inertia, position of center of gravity can be extracted.

When dealing with 3D models, accuracy becomes an issue. Depending on how 

the model is to be used and the nature of its use, emphasis is put on the trade off 

between speed of the processing and accuracy. For example, the calculation of the 

properties of a body which contains blended surfaces, is carried out by taking a 

user specified number of slices through the body and summing the results obtained 

for each slice. Now if the number of slices specified is high, then the model will 

be more accurate at the expense of increased computation time. In general the 

factors affecting the accuracy of the 3D model include:

• The accuracy to which the model represents the real world.
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• The accuracy associated with the interpretation of the real world.

• The precision of the computer.

The 2D model representation was carried out, by digitising the blue print of 

different sections. The only significant approximation made, was for modelling 

the motors. However, as the weight and volume of the motors were known, the 

value of density was fixed, so as to give the correct result for the inertia. As 

far as the computer precision is concerned, although the the system uses double 

precision, the points can not be defined separately, closer than the distance that 

the model resolution dictates. However this resolution was quite satisfactory for 

the Robot model. The properties that can be calculated are as follows:

• The area of a specified face or faces of the body (mm2)

• The total surface area of the body (mm2)

• The volume and centre of gravity of the body (mm3)

• The mass properties of a the body or sections of the main body for defined 

axis of inertia (The results take into account the specified density of different 

sections)

Views of the 3-D model of the waist, shoulder and elbow of MA3000 robot can 

be seen in figures 3.2, 3.3, 3.4. And the results are tabulated in tables 3.2, 3.3, 

3.4. In the tables, note that the position of center of masses, are measured with 

respect to each link’s own coordinate frame. Also only three diagonal elements of 

the inertia matrix
IXX I x y I x z

l y x lyy l y z

I z x 1 zy ^ z z

are non zero, because, for example in
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Figure 3.2: Four views from the 3-D model of waist

x comp, position of cent, of mass for waist (m) 32.2461 xlO "3
y  comp, position of cent, of mass for waist (m) -57.1215 x lO '3
z comp, position of cent, of mass for waist (m) 211.881 xlO-3

Inertia Ixx for waist (kg.m2) 4.80973 xlO-1
Inertia Iyy for waist (kg.m2) 5.53040 x lO "1
Inertia / „  for waist (kg.m2) 2.24603 xlO "1

Mass of waist (kg) 29543.8 xlO "3

Table 3.2: MA3000 link parameters obtained from CAM-X (waist)
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Figure 3.3: Four views from the 3-D model of shoulder

x comp, position of cent, of mass for shoulder (m) 190.587 xlO "3
y comp, position of cent, of mass for shoulder (m) -1.32364 xlO”3
z comp, position of cent, of mass for shoulder (m) 27.5711 xlO-3

Inertia 1XT for shoulder (kg.m2) 7.34089 xlO -2
Inertia Iyy for shoulder (kg.m2) 7.94399 xlO-1
Inertia Izz for shoulder (kg.m2) 8.75983 xlO-1

Mass of shoulder (kg) 2847.45 xlO "3

Table 3.3: MA3000 link parameters obtained from CAM-X (shoulder)
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Figure 3.4: Four views from the 3-D model of elbow

x comp, position of cent, of mass for elbow (m) 18.6629 xlO "3
y comp, position of cent, of mass for elbow (m) -0.439201 xlO "3
z comp, position of cent, of mass for elbow (m) -86.6715 xlO "3

Inertia Ixx for elbow (kg.m2) 1.35227 xlO-3
Inertia Iyy for elbow (kg.m,2) 1.43033 xlO-2
Inertia l zz for elbow (kg.m2) 2.03530 xlO "2

Mass of elbow (kg) 5384.46 xlO "3

Table 3.4: MA3000 link parameters obtained from CAM-X (elbow)
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the limits will go from negative to positive along the length, having equal 

values at each extreme and hence cancel out one another. This cancellation does 

not occur in the case of Ixx, I yy and Izz. In other words, the symmetry of the links 

means that the inertial principal axes coincide with the links coordinate system 

transfered to the centre of mass.

3.2.2 Inverse K inem atics

This deals with the problem of calculating the joint angles, given the position 

and orientation of the end effector. There are various approaches to the inverse 

kinematic problem, with individual merits and shortcomings. The main two are, 

the inverse transform technique of Paul [75], and a geometric approach, which is 

considered more appropriate for selecting a solution from several alternatives, for 

a particular arm configuration. In this section, an inverse transform technique is 

used, based on the use of the 4 x 4  homogeneous transformation matrices for the 

MA3000 Robot. The D-H transformation matrix for adjacent coordinate frames 

was discussed in the previous section. Using equation 3.1, in the case of the 

MA3000, cos oq =  —90, cos 0:2 =  0, and cos 0:3 =  0, therefore:

A 1 =

cos 9\ 0 — sin 9i a\ cos 9\ COS 02 — sin 0 2 0 C*2 COS 02

sin 0 i 0 cos 9\ sin 0 i 11<N

sin 0 2 cos 0 2 0 a2 sin 0 2

0 - 1 0 4 0 0 1 4

0 0 0 1 0 0 0 1

A3 —

cos #3 —sin 6 3  0 as cos 6 3  

sin 6 3  cos O3  0 a3 sin 03

0 0 1 4

0 0 0 1 

However, a three link transformation matrix from the base to the end of the elbow 

is:

°T3  = AjXjAa (3.3)
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Now, the transformation 1713 can be obtained in two ways:

1T3 =  A 1~1 x ° T 3

56

and

but

c o s

a , - 1 x° t3 =

which means:

^ 3  =

The second way :

c o s  9i 
i2 8i  - f  s in 2 6i

0
— s in  01

1T3 — An X A?

s in  9i 
i2 Q\ + s i n 2 0\co s

0
_______— Pill ______

c o s 2 6\  -J-sin '2 6\  c o s  

0

COS 01
>2 0 i  + s i n 2 6\

0

0 ~ al nx sx Q>x Px

- 1 di
X

ny sy—ay Py

0 0 nz Sz az Pz

0 1 0 0 0 1

COS

n.

0\Tix A  sin 6 \n y • • cos 9ipx +  sin 9\py — a\

-P z  +  di 

• • — sin 9\px +  cos 9\py

1

(3.4)

COS 02 — sin 0 2 0 «2 COS 02 cos03 — sin 0 3 0 a3  cos 0 3

x A3 =
sin 0 2 COS 02 0 a2 sin $2 sin03 cos 0 3 0 a3  sin 0 3

X
0 0 1 d2 0 0 1 d3

0 0 0 1 0 0 0 1

will give :

1r 3 =

cos 0 2  cos 0 3  — sin 0 2 sin 0 3 • a2 cos 92 +  a3  cos 0 2 cos 0 3  — a3  sin 0 2 sin 0 3  

cos 0 2 sin 0 3  +  sin 0 2 cos 0 3  • • a3  cos 0 2 sin 93  +  a2 sin 0 2 +  a3  sin 0 2 cos 0 3

d3  +  d2

. . 1

Now equating member (3,4) of equations 3.4 and 3.5 will give:

-  sin 9ipx +  cos 9xpy =  d3  +  d2

(3.5)

(3.6)
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Let px = r cos $ and py =  r sin <j> , for </> on the xy plane passing through the base 

frame.

4> =  tan "1

r =  +l/j>*2 +  Py2 

substituting for px and py in equation 3.6 , we get:

sin 4> cos 0i — cos sin 0 1 = (3.7)
r

with 0 < d2-̂ r L <  1, equation 3.7 reduces to

• ( jl n \ d2 +  d3sin (0 — ui) =  ---------
r

with 0 < (<t> — 0i) < 7r. The Cosine can also be obtained:

cos ((f> — $i) = =h

then

A
-j _  f  d>2 A d3\

dj+h. J i J
tan(0 — #i) =

± y j i _  2 ± \ / r 2 -  (d2 +  d3)'

hence

(^ — =  tan '
± \ / r 2 — (d2 +  d3)i 

and as a result

d2 4* d3
0 i =  tan 1 [ — j — tan 1 j.

\ P J  ±yfr
(3.8)

'r 2 -  (d2 +  d3 ) 2

therefore, since all the parameters in this equation is known, 6 \ can be calculated. 

Now equating members (1,1), (2,1), (1,4) and (2,4) from equations 3.4 and 3.5

cos0inx +  sin0i72y =  cos 0 2 cos 0 3  — sin 0 2 sin 0 3  (3-9)

—nz =  cos 02 sin 03  +  sin 02 cos 03  (3.10)

cos 6 ipx H- sin $ipy — cq =  a2 cos02 +  a3cos02cos03 — a3 sin#2 sin03(3.11)

—pz +  di =  a3cos^2 sin^3 +  «2 sin^2 +  «3sin^2 cos^3 (3.12)
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now equation 3.9 gives

C O s ( 0 2 +  # 3 ) =  COS 0 !  72* — S m u t t y

as values of $i, nx and ny are available at this stage, the right hand of the equation 

is known. Let us call it R.

cos($2 d- $3) =  R  (3.13)

Similarly from equation 3.10

sin(02 03) = T  (3.14)

where T is a known value. From equation 3.11, we have

a2 cos-02 4- 0 ,3  cos(02 4- 03) =  cos 0\px 4- sin 0\py — a\

or
. cos Qxpx 4- sin 0 xpy - a x - a 3  cos(0 2 4- 0 3)

cos 02 = ---------------------- -------------------------------a2

again at this stage all the parameters of the right hand side are known, so call the 

value M. Therefore

cos 02 = M

Similarly from equation 3.12

sin 02 =  N

where N is a known value. And hence dividing and then inverting the function:

02 =  tan-1 ( j L )  (3.15)

Dividing equation 3.14 by 3.13, and taking the inverse of the tan, we get

( 0 2  4- 0 3) — tan 1

Finally

03= tan_15 )  - tan_1 (f
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So all the three angles are found.

It should be noted that the problem of being faced with multiple options of joint 

angles for a particular end effector position, which results in different configura­

tions is not discussed. A routine can be written that makes the choice. In the 

literature, a number of works have been reported to carry this out.

The problem of singularity has also been extensively discussed elsewhere in the 

literature.

3.3 R obot M anipulator D ynam ics

Dealing with robot dynamics, two basic problems can be formulated, one of find­

ing the instantaneous joint accelerations, given the joint torques and forces, and 

second, determining the required joint torques or forces, given the joint variables 

and their derivatives. The former is referred to as forward or direct dynamics, 

and is useful for simulation purposes, where the latter is mainly of use in control, 

when estimates of the joint forces are required for a particular trajectory, which 

might be prespecified, this is known as inverse dynamics.

There are various approaches available for formulating the robot arm dynamics. 

Basically the dynamic model for a robot arm can be obtained from known physical 

laws such as the laws of Newtonian Mechanics, the Lagrangian formulation, and 

from physical measurements.

Lagrangian equation can be used to represent the dynamic behaviour of a system 

of rigid bodies. In the Lagrangian approach, the manipulator’s Lagrangian is ex­

pressed in terms of generalized coordinates and their derivatives, which is then 

substituted into the Euler-Lagrange equation. This equation is expanded by sym­

bolic differentiation, to give the generalized joint forces in terms of the generalized 

coordinates, velocities and accelerations. The Lagrangian is defined as :

L =  ( Kinetic energy of the system ) - ( potential energy of the system )
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and the Lagrangian equation has the form : 

d f d L \ _ d L _ _
(ft U / J  %  1, 2 , . . . ,  n

where qi is the generalized coordinated and is equal to angular displacement 6 { for 

rotary joints. And r; is the generalized forcing function.

By application of the Lagrangian equation to a rotary robot with n joints, the 

equations of motion can be written in the following matrix form :

M[9(t)]S(t) +  Q [0 (t) ,m ]  +  G[6 (t)] = T (3.16)

where M(0) is the N x N inertial coefficient matrix, which is symmetric and 

positive definite. Its elements are computed by :

 n

To3 is the D-H transformation matrix from the reference coordinate frame to the 

j th coordinate frame.

Q(0,$) is the N x 1 Coriolis and centrifugal force vector, elements of which are 

computed by :

N N
= QikmOkOm ^  i =  1, . . . , N

k=1 771=1

elements Qikm afe obtained by :

' - ‘. ‘ . “ - I  nj=max(i1k,m) t '  J

G(6 ) is the N x 1 gravitational force vector. Its elements are computed by :

Gi = n j  for i =  1 , . . . ,  N

where g is the gravity vector expressed in the base coordinate frame, rrij is the 

mass of j th link, and ¥j is the mass center vector of the j th link.

Although these equations are structured, they are unfortunately, computation­

ally inefficient. To increase the efficiency, Hollerbach [32] developed a Recursive
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method of Lagrangian formulation, which reduced the computational time taken. 

An approach which has the advantage of speed and accuracy is based on the New­

ton - Euler vector formulation. The resulting dynamic equations, excluding the 

dynamics of the control device, gear friction, and backlash, are a set of forward 

and backward recursive equations. These equations are documented in many text 

books, eg. [75] and [23].

For the case when the links are rotational these equations are :

Forward equations:

ft =  f t- i  +  *,*-ift. (3.17)

ft =  f t-1 +  zi-lQi +  ft-1 X (Zi-lQi) (3.18)

Vi = $i X Pi* +  Bi x (6 i x Pi*) +  Vi- 1  (3.19)

d{ =  6 i x Si +  0i x (6 { x si) +  V{-1 (3.20)

Backward equations:

Fi =  niiSi (3.21)

Ni =  i A  +  Bi x (IiBi). (3.22)

f i  = Fi + f i+1:  (3.23)

rii =  rii+ i +  pi* x /,q.i +  (p i* +  5j) x F i -f N i. (3.24)

r  =  riiTZi-i -j- biqi. (3.25)

Where

6  =  angle of rotation

qi= the magnitude of angular velocity of link i w.r.t. the coordinate system

(*£{—1,2/i—1 fZi—1 )

rrii =  total mass of link i

fi — position of the center of mass of link i from the origin of the base reference 

frame

Si =  position of the center of mass of link i from the origin of the coordinate 

system (x{, y{,Zi )
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p*  =  the origin of the ith coordinate frame with respect to the (i - l) th  coor­

dinate system

=  dfi/dt , linear velocity of the center of mass of link i 

a,i =  dvi /  dt , linear acceleration of the center of mass of link i 

Fi =  total external force exerted on link i at the center of mass 

Ni =  total external moment exerted on link i at the center of mass 

Ii =  inertia matrix of link i about its center of mass with ref. to the coordinate 

system ( x 0  ,y0, z0  )

f i  =  force exerted on link i by link i-1 at the coordinate frame ( ?/;_!

,Zi„i) to support link i and the links above it

rii =  moment exerted on link i by link i-1 at the coordinate frame y%-\,

Zi-l)

bi = the viscous damping coefficient for joint i 

Also
•  rj%

Oq =  Oq =  u0 =  0 and u0 =  (gXi g y , g z )

If we choose a 3x3 rotation matrix which transforms any vector with reference 

to coordinate frame (#*-, yt*, zf) to the coordinate system y*_i, z*-i), it

is possible to write the recursive equations of motion of a link about its own 

coordinate frame.

One of the disadvantages associated with N - E equations is the lack of struc­

ture which is needed for deriving advanced control laws. [53] on the basis of 

the Generalized d’Alembert principle, was able to utilise the vector and rotation 

matrix representation to describe each link’s kinematic information, obtain the 

kinetic and potential energies of the robot arm to form the Lagrangian function, 

and apply the E - l i  formulation to obtain the equations of motion. This formula­

tion retains the ’’structure” of the problem with a moderate computing penalty. 

Another well known method is Kane’s method, where for a system with n degrees 

of freedom, Kanes dynamic equations can be written as:

Fr +  Fr* =  0, r =  1 , . . . ,  n
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where Fr is the generalized force and Fr*, the generalized inertia forces.

To enhance the efficiency some use notations which cut down on computation, 

for example Featherstone [21] used “Spatial Notation”, to represent velocity, ac­

celeration, etc. by a pair of vectors (one linear and one angular) to describe a 

number of methods for calculating robot dynamics efficiently, and for algebraic 

and notational convenience. Special vectors are similar to quantities called screws 

and motors.

In general, it is well established that a closed form of dynamic equations is ap­

pealing for both dynamic modelling and control applications. However deriving 

the closed form of these equations, is a tedious task and a very error prone pro­

cess. Developing a computer program that generates the robot dynamics in a 

symbolic form, can alleviate the effort of deriving these equations. In fact several 

researchers have taken this approach, using various methods. REDUCE, which is 

a symbolic manipulation system, C Sz LISP, FORTRAN and MACSYMA are the 

systems and languages which have been used.

In the next sub section, different approaches for obtaining efficient robot dynamic 

equations will be discussed.

3.3.1 C ustom ized R obot D ynam ics

To enhance computational efficiency for dynamic simulation and real-time con­

trol, it is possible to generate a simplified symbolic model on the basis of both 

the manipulator structure and algebraic simplification, which remove repetitive 

calculations. The above two principles were exploited, as will be explained later, 

in obtaining the dynamic equations for the MA3000 robot.

Observations made by Hollerbach [32] about the computational efficiency of ma­

nipulator dynamics namely:
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• Particular kinematic and dynamic structures of manipulators can be utilised, 

for improving the computational efficiency of dynamic algorithms, (eg. reg­

ularity of manipulator configuration)

• Fundamental physical principles of formulations, can be used to achieve 

efficiency, (simplification based on structure of the equations)

form the basis of simplifications achievable for manipulator dynamic equations. 

In addition to these, general simplification procedures that apply to all algebraic 

systems can be used. A number of research works have been dedicated to devel­

oping methods that contribute to the simplification of dynamic equations, both 

for simulation purposes and control.

Efficient methods for simulating a robotic mechanism is considered in [98], and 

efficient solution of the dynamic equations for a general N  degree of freedom, 

single open chain robotic mechanism is discussed. As in the general form of equa­

tions of motion for a manipulator, the joint torques are linear functions of joint 

accelerations, the equations of motion are written in the form

H(q)q =  (r  — 6) (3.26)

where q is the vector of joint variables, H  is the inertia matrix, r  is the vector of 

torques of each joint actuator, and b represents the torques (forces) due to gravity, 

centrifugal and coriolis accelerations, and external forces and moments on link N. 

Accelerations can then be found by solving this linear equation. By setting q, q 

and the vector of external moments (k ) to their current state, but letting q =  0, 

b can be computed.

Four techniques are then described to find elements of the inertia matrix. In the 

first method, elements of the matrix are evaluated by setting q to its current state, 

and computing the matrix one column at the time, when joint velocities are zero, 

there are no gravitational effects and the joint accelerations are all zero apart from 

one corresponding to the column being computed which is 1, and then solve the
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linear equations for acceleration.

The second method they suggested is the same as above, but symmetry of matrix 

H  is used to only calculate the diagonal and the bottom  half of the off-diagonal 

terms. The third method is again the same as the first, but a different procedure 

is used for computing the inertia matrix.

In the fourth method, an iterative process is used to solve for the joint accel­

erations. In this method, an initial estimate for the joint accelerations is made 

and this is followed by successive adjustments until they converge to the correct 

solution.

They found that the third method was the most efficient one, due to the fact that 

it takes into account the symmetrical form of moment of the inertia matrix, and 

also utilises a recursive procedure for computing the mass, the center or mass and 

the moment of inertia matrix of the composite system of links.

An efficient algorithm for generating the dynamic equations of open chain ma­

nipulators is presented in [104]. Their method is based on a modified Lagrange- 

Christoffel formulation and they include generalized pseudo-inertia matrices of 

manipulators. The use of Christoffel expression of the Coriolis and centrifugal 

coefficients:
_  1 (dM ij dM ik dMjk\

^ ijk 2 \ d q k ^  dq5 dqi )

leads to substantial simplification for symbolic derviation of these coefficients. 

This is due to the fact that the obtained inertial coefficients are used.

Calculation of generalized forces is suggested to be divided into two parts by [37], 

dynamic coefficients in the background and generalized forces in real-time. They 

created a LISP program capable of symbolic manipulation, to generate the dy­

namic coefficients automatically, with D-H parameters, masses, center of gravity, 

and moments of inertia of the links as input, and a C program that calculates the 

coefficients as output. One of the limitations of their work is that the capability 

is limited to only the inertial and gravitational coefficients and does not include 

the centrifugal and coriolis coefficients. This is only suitable for low speed robot
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manipulators.

An efficient form of symbolic generation of manipulator equations is presented in 

[12], where the amount of real time computation required to compute the complete 

set of configuration dependant dynamic parameters is reduced. They base their 

simplification upon two stages: firstly factorization of the equations of motion 

using a set of rules to guide the factorization and simplification, and secondly, 

segregation of the computations into configuration dependant and configuration 

independent portions, where possible. The configuration independent portion is 

computed once and stored as constants.

A detailed description of systematic organisation of, symbolic dynamic robot 

models, which are generated by the computer program Algebraic Robot Mod­

eler (ARM) is given in [69]. The performance of the systematic organisation 

procedure is compared with other organisations documented, and its superiority 

is shown. The systematic organisation procedure, is applicable to both closed- 

form and recursive dynamic robot models. It consists of removing unnecessary 

calculations, identifying constant expressions, ordering the calculations, eliminat­

ing redundant transcendental function calls and removing repetitive calculations 

within and across the equations.

The important aspects in the selection of a method for simplification of dynamic 

equations can be : the complexity of the method, complexity of the equations, cost 

of computation, possibility of interpretation and possibility of reduction, possibil­

ity of integration of the code into an existing code and so on. Recursive numerical 

methods are known to be faster, with the penalty that structural information 

about the model can not be obtained.

Since the equations in the case of the MA3000, need only be generated once ( as 

its configuration is not likely to change ) and the relatively long computational 

time for generation of a symbolic code is not really problematic, it was decided 

to use a software package (REDUCE) for symbolic manipulation of equations. 

One further point to note is that, the simulations were to be carried out using
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MATLAB 1 and it is possible to write a reasonably short code to create outputs 

in a MATLAB readable format. Also the control programs that make use of the 

dynamic equations, are written in OCCAM, and creation of OCCAM readable 

files from REDUCE is not very difficult. The equations used, were the recursive 

N-E about each links coordinate frame. The steps in the REDUCE code, to carry 

out the symbolic simplifications and arrangement of the results in a closed-form 

are :

1. Get the number of degrees of freedom (N)

2. Define the kinematic parameters including D-H parameters, and inertial 

parameters

3. Define all the vectors and matrices including the homogenous transformation 

matrix

4. Define the initial value processes

5. Generate the forward dynamic equations for 1 to N

6. Generate the backward dynamic equations for N  to 1

7. Define all trigonometric simplifications

8. Output the Inertia matrix M  and the vector of coriolis and cetrifugal torques 

Q, in a required format

The the joint torques from actuators are calculated from:

t = M9 + Q (3.27)

where 6  is the vector of joint accelerations.

It should be noted that M  is symmetric, positive definite and bounded above and

1i.e. Matrix Laboratory, is an interactive program for scientific calculations.
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below. It is also nonsingular and its inverse is positive definite and bounded. The 

Kinetic energy of the manipulator has the form

l & TM e
2

where 0  is the vector of angular velocities, and its derivative is equal to the 

power input by the actuators and gravitational torque. The correctness of these 

equations were tested against equations generated by the Lagrange-Euler method, 

using REDUCE. The resulting equations are of the form:

t  = M(0)Q + Q(0,9) + G(9) (3.28)

where G(0) is the vector of gravity torques. Both approaches, resulted in the same 

set of equations.

3.4 A ctuation M odel

In general the actuation systems for industrial robots, are either hydraulic, pneu­

matic, or electrical. The MA3000 robot, has permanent magnet dc motors for the 

five main degrees of freedom, and a pneumatic drive for the gripper. Since we 

only concentrate on the first three links, namely waist, shoulder and elbow, only 

the relevant motors will be considered.

The motors are equipped with gear systems, to achieve the high torques required, 

from relatively high rotational velocities and low torque produced. Pulleys and 

belts are then used to deliver even higher torques to the joint bearings. Figure

3.5 shows a representation of a dc motor with gears and pulley- belt arrangement, 

together with the load.

The Subscripts a represent the associated parameters of the actuator (motor), 

m, the manipulator (fixtures and so on) at the motor side, and /, the load param­

eters. Subscript g is for gravity. The inertias are represented by J , B  represents 

the damping coefficient, r ,  torque and 9, angular displacement. 0 S is the angular
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Figure 3.5: Schematic of a dc motor with gears -pulley h  belt - load assembly

displacement at the load side.

Now the gear ratio n which in our case will also include the pulley-belt system 

ratio, is defined as

n =

or

0 S — m (3.29)

The inertial load torque can be found using D’Alembert’s principle to obtain:

Ti — Bi$s = Jibs 

Similarly at the motor shaft, we get

Tm — nTi — B m6 m = (Ja +  Jm)0T 

From equations 3.29, 3.30, and 3.31, we obtain

Tm -  n(Bi0s) -  B m0m =  (Ja +  Jm)0r
A..

(3.30)

(3.31)
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or

T m  — ( J a +  J m  +  n 2 J l )  Qm +  ( B m  +  n 2 B i )  9 r (3.32)

ef f B <=//

Jef f  and B ef f  are the effective inertia and effective damping coefficient at the 

motor shaft. The Laplace equivalence of 3.32 is

Tm(s) — (JeffS2 +  B ef f s ) 0 m(s) (3.33)

An electro-mechanical model of a permanent magnet dc motor can be seen in 

figure 3.6.

A r m a t u r e  w i n d i n g

ef f

7777777777777

Figure 3.6: Model of an Armature driven dc motor

Resistance and Inductance are represented by R  and L  respectively. V(t)  is 

the drive voltage and Vb(t), the back emf. Vb(i) is proportional to the angular 

velocity 6m, which means:

Vb(t) = K b6m(t) (3.34)
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where K b is a constant. The following frequency domain relation can be obtained 

by applying Kirchhoff’s voltage law to the circuit and noting that the inductance 

is negligible.

V(s) -  I<bsOm(s) = (Ls +  R)I(s)  £  RI{s)  (3.35)

The torque generated will be proportional to the armature current, when the 

motor is operated in its linear range and hence:

Tm(s) = K II{s) (3.36)

Kj  is usually referred to as the torque constant of the motor. Combining equa­

tions 3.35 and 3.36, we get

Tm(s) =  j f / W  ~ (3. 37)

Replacing Tm in 3.37 with the right hand side of equation 3.33, we get:

/  7 „2 , D  „ \ /2 \  ( „ \    TS K b s ® m { s )\JeffS "I* BeffSjOmyS) —

Rearranging, the following transfer function from the applied voltage to the an­

gular displacement of the motor shaft is obtained:

 _______________ ^■I_________________________  (q  3g \

V{s) slRJeffS + i RB ' f f  + KjKb)) K }

The block diagram of this transfer function can be seen in Figure 3.7.

The effect of other joints are: inertia couplings, centrifugal and coriolis terms 

which also contribute to the overall forces (torques). These are shown in the fig­

ure, as well as the quantities that represent the reaction from the physical burden 

to the robot, i.e. the external load torque T}, and gravitational torque Tg. 

Between the angular dispacements at load side and motor shaft, there is a dead 

zone representation for free play (backlash) between the two gears, where no 

output is produced while the input changes. Compensation for backlash is not 

included here, and the above is only included to highlight the nonlinearities that 

exist. There are various approaches for dealing with backlash. The usual way is
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Figure 3.7: Block diagram for one joint of the robot arm

to consider them as unknown high frequency disturbances, when their frequency 

is higher than the control bandwidth. One approach for dealing with low fre­

quency backlash is suggested by de Silva [17] whereby gear stages are included 

in the dynamic formulation of the manipulator and using Newton-Euler recursive 

formulation, drive torques are calculated for each gear stage. Then if drive torque 

changes sign at a gear stage, it means backlash exists and that stage is disen­

gaged and zero transmitted torque is assumed. By applying the N-E recursion 

to the final section which is disengaged up to the gripper, the drive torques for 

the specified gripper trajectory should then be computed. Finally the motion of 

the remaining sections are computed, using drive torques which were calculated 

at the start, then disengagement of the sections can be checked.

Calculation of Kj  and Kb

At a steady speed, the electrical power of the motor converted to mechanical form, 

i.e. Vbl or Kt,0I, should equal the power at the shaft in mechanical form i.e. Tm0
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or KiIO , which means Kb =  Ki. An approximation can be made at maximum 

speed, where speed has reached a constant value and there is no acceleration, by 

ignoring the frictional effects. This means that, as torque Tm =  Jef j9  and 9 is 

zero, then there will be no torque. And as Tm = Kj l ,  there will be no current. 

However the drive voltage

V  = I R  + I<b9

and having zero current means :

V  = K b9

or

Hence from a graph of angular velocity against time, with the knowledge of the 

input voltage, the back emf constant K b can be calculated.

This can also be seen from equation 3.7, when the friction term He/ /  is neglected, 

and K i  =  K b, the equation reduces to:

6m(s) _  K b 
V(s) ~  R J cils +  K l

which at steady state will reduce to:

Or„ =  J _
V  K b

To find the value of K b for the first three joints of MA3000, namely, waist, 

shoulder and elbow, a step voltage input was applied to each joint and the angular 

displacements were recorded, from which the angular velocities were obtained. 

Plots of these can be seen in Figures 3.8, 3.9 and 3.10. As can be seen from the 

plots, the steady state value for 9 is (10.5) for waist, (9.25) for shoulder and (35.5) 

for elbow. Hence:

For waist
64
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Figure 3.8: WAIST joint data for finding motor constant (64V step input)
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Figure 3.9: SHOULDER joint data for finding motor constant (64V step input)
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Figure 3.10: ELBOW joint data for finding motor constant (64V step input) 

For shoulder

I<b =  = 6.92
9.25

For elbow

K h =
64

38.0
=  1.684

Strictly speaking, the value of K j , the motor torque constant, for many motors 

depends on the relative oscillation of the rotor and stator at high frequencies. This 

is referred to as ripple torque.

3.4.1 Friction

Frictional effects can at times be considerable and neglecting them may not be 

realistic. There are two basic types of friction: static, which is also referred to as 

stiction, is the required force for initiating motion ( rolling or sliding ) between 

two contacting surfaces, and dynamic which applies to the bodies in motion, can 

be in the form of coulomb friction which is caused by irregularities of contact­

ing bodies engaging or viscous friction due to viscosity of a lubricant, or both. 

Coulomb friction depends on the force with which the two surfaces are pressed 

together and Viscous friction is considered to be a force proportional to velocity,
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or higher powers of velocity at high speeds. But a suitable description is that, 

viscous friction is a nonlinear function of angular velocity.

There is a great deal of disagreement as to the structure of the friction model. 

The characteristic functions of models vary from only a constant coulomb friction 

torque, when the angular velocity is zero, to symmetric models where both static 

(direction dependent) and dynamic (usually ramps) are represented. Various tech­

niques also have been suggested to compensate for frictional effects. For example 

Wu and Paul [101] introduced a high gain feed back, which is not suitable for 

when there is a need for linear compensation of small errors, de Silva [17] used an 

experimental friction model developed by Shibley, in which the frictional torque 

for a joint is obtained by

Tf  =  f { 6)  x  t

where /  is the friction coefficient as ,a  function of angular velocity, and r  is the 

reaction torque of the joint. He approximates the relationship between /  and 6  

by two straight line segments. Joint reaction torques and angular velocities are 

then calculated by Recursive Newton-Euler equations. Velocities are used to find 

the relevant coefficient of friction from the approximated relationship, and this 

value is multiplied by r  to get Tf .  He also points out that, as reaction torques 

could change due to the presence of friction, one cycle of computation might not 

be enough for convergence of the values.

An interesting approach for nonlinear compensation of friction is presented by 

Canudas et al [13] in which, based on experiments on a servo, a model which is 

asymmetric and includes both Coulomb friction and viscous friction is suggested 

and an adaptive compensation scheme is developed, so as to cope with the de­

pendency of friction on operation conditions. This model includes variations and 

asymmetried of the friction torque which are not dealt with in other models. The
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model used is:
a i $  +  / ? i ,  9  >  0

t , ( s ) =  ;
£*2 9  0 2 ,  9  <  0

Figure 3.11: Friction model 

Then a l ,  01, a 2 , 02 are estimated. One way of doing this as the^suggest, is 

applying standard linear parameter estimation to the following equation:

JQ
J —  = K I ( t ) - a i9 - 0 i

where J  and K  are assumed known, and the current I  needs to be measured. 

Symbol tilde, represents the filtered values. Although they use a tachometer, the 

values of 9, can be found from angular measurements.

This approach seems quite appropriate, and suitable for friction compensation. 

It should be noted that the method of compensation depends very much on the 

model chosen.

3.5 M odel Validation

So far Kinematics, dynamics and actuation models, particularly relevant to the 

MA3000 robot, have been discussed. The next step is to make sure tha t the 

models developed are accurate enough for the purpose of model based controllers 

which will be considered in a different chapter. The model validation approach 

taken is an iterative process in which the behaviour of the model developed, is
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compared with the behaviour of the actual robot, and in case of discrepancies, 

various possibilities, as to the source of errors are considered. Then attem pts are 

made to eliminate these errors, or at least reduce them to an acceptable level. 

This loop is then repeated a number of times, and if the model does not match 

the real system, either a different model is employed or the assumptions made 

about the real system are altered.

A program was written in MATLAB that includes the model and also reads data 

captured from the real robot, and then by means of exciting the model with the 

same inputs as the captured data from the robot is based upon, the outputs are 

graphically compared. The implementation steps are as follows:

1 . Read the data file of the first three joint angles of the robot, corresponding 

to particular voltage inputs.

2. Use a third order filter to filter the data.

3. Define and input values of the motor related parameters, such as the torque 

constant found in the previous section, resistance of the motors, gear ratios 

including the pulleys, and so on.

4. Include the kinematic parameters, found using CAM-X and D-H parameters.

5. Input initial values for angle 0, angular velocity 0,and angular acceleration 9 

and calculate the inertia matrix M and the vector of centrifugal, coriolis and 

gravity torques Q. These are calculated based on the customised dynamics 

developed in a previous section and with the kinematic parameters of the 

previous step.

6 . calculate the torque vector r  from

i  ( K v  -  kA \ '
T% GearRatio \  1  R{ )  

where R{ is the resistance of motor z,and V is a voltage input, the same as 

filtered real values for joints.
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7. Then calculate angular accelerations from:

0  = M - \ t - Q )

8 . Integrate 0 to get 0 and integrate again to get 6 , and save the value of the 

angles.

9. Return to step 5 and put the values of the previous step in place of initial val­

ues and follow on repeating the process for a duration of time, including the 

same sampling for the integration, as the sampling rate of data acquisition 

of the real angles.

10 . Once the specified duration is over, plot the real angles against the angles 

obtained from the model.

Figures 3.12, 3.13, show the comparison of the real and the generated data for 

waist. The first figure is for a pulse-width-modulated voltage input and the
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Figure 3.12: Model behaviour and the real robot, WAIST (PWM voltage)

second one is for a constant voltage and current input. The solid line is the real 

data, dashed line is the data from the model based on the filtered voltage input, 

and the dotted line is the filtered real data. It can be seen that the model output
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Figure 3.13: Model behaviour and the real robot, WAIST (const, current)

closely matches that of the real data. The small distance between the filtered and 

real data is due to the data line representing an integrator. Figures 3.14, 3.15, 

show a similar comparison for the Elbow. Again a close match of the model
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Figure 3.14: Model behaviour and the real robot,ELBOW (PWM voltage)

output with the real data can be seen.

In the case of the shoulder, for a short duration the match is reasonably close, 

and then it starts to show an oscillatory behaviour. One possible explanation for
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Figure 3.15: Model behaviour and the real robot, ELBOW (const, current)

this is that the kinematic parameters, might not be accurate. As it was explained 

earlier, the process of model validation is an iterative one. In fact at the beginning, 

the models for the other links were not so close either, and CAD modelling had to 

be repeated, a number of times, and each time more details had to be included. 

The attachment of densities to various parts had to be carefully arranged, so that 

assumptions of uniform density in some cases could be accurate enough. As the 

shoulder seems to be the least complex of the three links considered, and the 

other two give a reasonably correct answer, it is very unlikely that the cause of 

the mismatch is errors in kinematic parameters. Errors due to incorrectness of 

dynamic equations is also unlikely, as two approaches, Lagrangian and Newtonian 

approach, resulted in the same equations of motion. The motor used for shoulder 

is the same as the one for waist, and the possibility of the motor model or the 

parameters being wrong is very slim. Ignoring frictional effects and backlash also 

apply to the waist. The only explanation can be that, as mass of the waist is 

much greater and inertias are different, whatever effect causes the inaccuracy of
tVvot

the model lies within the factvthey do not dominate the equations for the waist, 

but do in the case of the shoulder. Even numerical errors can be a possibility.



C hapter 4 

M odel-B ased Identification o f  

R obots

SUM M ARY

Some work in parameter estimation of robot manipulator dynam­

ics is reviewed and a new method developed for estimating the 

mass of any load the manipulator might be holding is presented.

The effectiveness of the method is backed by both simulation re­

sults and experimental means.

4.1 Introduction

Accurate robot models can be used in the context of adaptive control of robot ma­

nipulators, for improving their dynamic accuracy. The parameters of these models 

need to be fairly accurately obtained for the control schemes based upon them 

to yield effective results. Mass distribution parameters of a rigid body, namely 

mass, position of the centre of mass and moments of inertias, are the constituent 

dynamic parameters and can be obtained by various methods. This was discussed 

in the previous chapter. One method for finding the values of these parameters, 

is to employ estimation techniques, following a suitable parameterisation of the 

dynamic equations of manipulators.
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The techniques vary in how the dynamic equations are formulated, and the esti­

mation methods used, as well as what variables need to be measured. The main 

approach used here is to obtain a linear in the parameters form of the estimation 

equations, although the dynamic equations of the manipulator are non-linear, and 

then apply linear estimation methods to estimate the unknown parameters. 

Generally, the inertial parameters of the manipulator links need only be obtained 

once and do not vary. Hence an off-line method for obtaining these parameters is - 

sufficient. However, in various applications, the mass of the load which the robot 

needs to manipulate might change, or the robot might have to deal with compo­

nents that have different mass properties. This will affect the inertial parameters 

of the final link of the manipulator. In this case, an on-line method of estimating 

the load inertial parameters is needed, to allow compensation of the affect. 

Following a literature review of the techniques used for estimation of the load in­

ertial parameters, a new method will be presented for estimation of the load mass, 

based on developing a linear in the parameter model of a manipulator using sym­

bolic manipulation approach for computational efficiency, and linear estimation 

techniques. Both simulation and experimental results for the MA3000 robot will 

then be presented to show the effectiveness of this method. An adaptive controller 

could be designed to enhance the accuracy of the robot motion based on the de­

veloped model with estimation of the load mass. This will be addressed in the 

next chapter. The load estimator and the controller could operate concurrently, 

which means that computational speeds can be improved, if parallel processing is 

utilised. This will be discussed in the chapter on parallel implementation.

4.2 Literature review

Dynamic parameter estimation of Robot manipulators have been the subject of 

investigation by a number of researchers. Nearly all of these methods rely on sim­

ulation to show the convergence of the estimated parameters to their true values.
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ck
Invmajority of these approaches, the computational requirements are the main 

reason for not being able to implement them on-line.

Similar to their link inertial parameter estimation, which was discussed in the 

previous chapter, Atkeson et al [4] presented a method of estimating the inertial 

parameters of a rigid body load using, instead of joint torque, wrist force/torque 

sensing. In their approach the parameter equation is derived, by relating 3 coordi­

nate systems, ( base or inertial coordinate, force reference coordinate system of a 

wrist force/torque sensor, and principle axis of the rigid body load attached at the 

centre of mass) and expressing the inertial parameters of the load in terms of the 

motion of the load and the forces and torques exerted on it, using Newton-Euler 

equations.

The force and torque measurements by the wrist sensor are obtained and are 

expressed in terms of the product of known geometric parameters and unknown 

inertial parameters. Then some notations and quantities are used to formulate 

these as a system of linear equations with unknown inertial parameters. In addi­

tion, measurements or estimates of the position, velocity, acceleration, orientation, 

angular velocity, and angular acceleration of the force sensing coordinate system 

are needed to estimate the inertial parameters using Least Squares estimation 

algorithm. The location of the load’s centre of mass, its orientation, and its prin­

cipal moments of inertia can be recovered from the sensor referenced estimated 

parameters. These can be used for object recognition and verification. Some other 

work which utilise joint torque or wrist force/torque sensing to estimate inertial 

parameters of the load, (mostly simulation) are also discussed in the above refer­

ence.

By effective exploitation of the structure of manipulator dynamics, and employing 

the approach of Atkeson et al, that the dependence of the system dynamics on 

the unknown parameters can be made linear in terms of a suitably selected set of 

robot and load parameters, Slotine and Li [86] estimated the unknown manipula­

tor and payload parameters on-line in a full dynamics feedforward compensation
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routine for an adaptive robot control algorithm.

Equivalent parameterisation was introduced by Goodwin et al [67] to obtain dy­

namic equations that are linear in the unknown parameters for a general rigid 

body. In their method, noting that there are ten free parameters in a general 3D 

body, suitably chosen fixed position vectors are used and the rigid body is parame- 

terised by ten point masses. These parameters are related to the mass of the body, 

centre of mass vector times mass and inertia matrix, by a linear transformation. 

This transformation can be made non-singular by a suitable choice of position 

vectors. Measurements of the motor torques, and joint position and velocities are 

required for obtaining the unknown parameters. The significant advantage of the 

method is that acceleration of the manipulator need not be measured.

Employing this approach, Walker [97] investigated the on-line estimation of the 

load-mass and its moments based on measurements of the manipulator joint posi­

tion, velocities and the force exerted by the end-effector on the load. The simu­

lation results presented, show that their algorithm performs reasonably well, but 

the computational load is fairly high.

A manipulator terminal-link parameter estimation method is presented by [42] in 

which an Instrument Variable Method (IVM) is used to estimate the unknown 

parameters.

They use IVM to overcome inaccuracies which result from random noise involved 

in joint acceleration and joint torque measurements associated with algorithms 

such as [65] that is based on the least squares method, and uses measure­

ments of the joint position, velocity, acceleration and joint torque.

In their approach, the dynamic equation of a serial-rigid link manipulator is writ­

ten in terms of the unknown composite dynamic parameter vector which consists 

of the mass, center of mass, inertia tensor, viscous damping, friction coefficient 

and the Coulomb friction torque for each link. Since this equation is non-linear, 

they use Denavit-Hartenberg Convention of coordinate systems (body attached 

frame) to formulate the linear equations in unknown dynamic parameters from
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the Newton-Euler formulation. Based on the assumptions that : the geometric 

and the actuator parameters are known exactly, the joint position and velocity 

measurement noises are negligible, the joint acceleration measurement noise is 

white noise which has a zero mean, and the joint torques are calculated from the 

actuator equation which are linear with respect to joint acceleration, the compos­

ite dynamic parameters are estimated by IVM.

The criterion to be minimized has a weighting matrix. In the case of least squares 

method, all the elements of the weighting matrix are one. Due to the correlation 

of two members of the estimation equation, least squares does not yield the true 

values of the unknown parameters. Simulation results show this. However ex­

perimentally least squares and IVM converge to the same value. They conclude 

that this is due to the acceleration measurement noises being small. Also their 

experimental results show that if the magnitude of variation of desired trajectory 

is small, the estimated values show better agreement with the theory. The in­

strument variable which is correlative to acceleration of joints is obtained from 

the instrument model, by assuming the dynamic equation of each link motion is 

linear and time-invariant. In addition to the terminal link parameter variation, 

some parts of the nominal composite parameter errors must also be estimated in 

some situations. Real-time estimation calculations need a dedicated VLSI chip. 

To do away with the fact that most commercial robots do not provide for inter­

nal measurements of torque, velocity or acceleration; and even when they do, the 

measurements are in most cases inaccurate and noisy, Raucent et al [76] presented 

an external measurement approach to identify the mass distribution parameters 

of robotic manipulators.

The method is based on an auxiliary base reaction model which is linear with 

respect to the mass distribution parameters and completely independent of joint 

forces and torques, including friction effects. Six generalized coordinates repre­

senting three angular and three linear displacements of the base of the robot are 

added and hence the degrees of freedom become (n -f 6 ). The robot is placed on a
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force sensing platform, and six components of reaction torques and forces between 

the bedplate and the robot are measured. A high precision vision device is also 

used to accurately determine the motion of the robot i.e. position, velocity, and 

acceleration.

The method allowed most of the mass distribution parameters to be estimated, 

as long as persistently exciting trajectories existed.

For simulation of weightless conditions on space emulators, similar methods for 

estimating some combination of mass properties of manipulators by measuring 

the reaction moments of their base, have been used. In these methods the mass 

properties identified are not sufficiently complete for dynamic control techniques, 

but allow compensation for the gravitational load on the links of the manipula­

tors.

There has not been any published material to the best knowledge of the author, 

as to any work based on this method to estimate the load mass.

A method consisting of three types of tests performed without decomposing the 

manipulator into parts, was introduced by Mayeda et al [65] in which first of all 

static tests are performed, where the manipulator is made to stand still in var­

ious configurations, then constant angular velocity for one joint at a time and 

accelerated motions are carried out. The data which is acquired from the motion 

is then used to estimate the coefficients of the dynamic equations. This method 

is only applicable to manipulators with any two adjacent joint axes, parallel or 

orthogonal. They make the assumption that Coulomb friction force is constant 

during the test motion, which is critical to the accuracy of the identification. This 

only applies to a class of manipulators.

One difficulty with the method itself is to find suitable accelerated motion tests 

such that the whole essential coefficients of the non-linear dynamic model of the 

manipulator can be determined from the estimated coefficients of the tests. 

There is no reference to load mass estimation in this work.
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The state variable model of a robot manipulator is linearised around a chosen tra­

jectory, assuming small perturbations, and the discretised version of the steady 

state innovation of the linearised manipulator is considered by Mahalanabis and 

Galou [63] for recursive parameter estimation. An observer form of the model is 

used for the development of an on-line algorithm for the estimation of the model 

parameters and for subsequent state estimation. In this work the results are il­

lustrated through simulation studies of a three link manipulator, and there is no 

mention of load mass estimation.

The estimation of unknown payload mass has been addressed in the context of 

non-linear adaptive control too. Hemami et al[29] developed an adaptive control 

algorithm with a non-linear reference model for an N-link planar robot with an 

unknown load. The trajectory error in the vertical direction which represents the 

potential energy dilference between the actual motion and the desired motion, is 

used to estimate the mass of the load. Computation times need to be reduced, 

before this algorithm can be implemented in a real-time environment.

4.3 Load M ass E stim ation

Parameter estimation can be used in the case of incomplete a priori specification 

of the dynamics of the manipulator. We specifically consider the case where the 

load mass is unknown. The idea is to provide the load mass estimates which could 

be used by a controller to maintain a desired response. This is achieved by using 

an on-line estimator to provide periodic updates of the estimates of the mass of 

the unknown load that the gripper holds.

The load can be considered as having the effect of an unknown, possibly time- 

varying, gravitational force applied to the arm end, as well as inertia effects. This 

can be extended to the case where the force can be applied in other directions, 

apart from the vertical. So that we are able to track a slowly varying force applied 

to the end effector. This method of estimation contrasts with the methods based
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on the learning theory of for example [41] which typically requires several cycles 

of operation.

Here a new method is presented in which a software package for symbolic manip­

ulation of equations (REDUCE) is used to generate the n x n  generalized inertia 

matrix and the vector, containing the centrifugal, coriolis, gravitational torques 

in symbolic terms, from the forward and backward equations of the recursive N- 

E dynamic equation for serial-rigid manipulators or from Lagrangian approach, 

similar to the way discussed in the previous chapter.

An extra link of zero length, but of finite mass is included in the definition of 

the links which represents the load mass carried by the gripper. This will be the 

unknown parameter which will be estimated. The equations are linear in the un­

known parameter and least-squares is used for estimation.

Simulation and experimental results show that the estimated parameter converges 

to its true value of the load mass in a short period.

4.3.1 On-line adaptive estim ation  o f load mass

In the context of Self-Tuning Adaptive Control, it is recognised that there are two 

stages of parameter estimation [93]. In the first stage, from the dynamic model 

of the system, parameter estimation equations are derived and then in the second 

stage, an estimation method is used to estimate the parameters of the model. 

Method of linear Filters, where the linear dynamic operator is a low-pass fil­

ter is one approach for deriving the parameter estimation equations. Using the 

state-variable filter approach for estimating parameters of continuous-time trans­

fer functions is described in [27] etc.
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E stim ation Procedure

Based on the state-variable filter approach for estimating parameters of continuous­

time transfer functions, the dynamic equation of the Robot Manipulator is formu­

lated in a way that, although nonlinear, the parameter estimation equations are 

linear-in the-parameters. Then a standard least-squares estimation can be used 

to estimate the load mass.

Using the customised robot dynamic algorithm based on the recursive N-E equa­

tions of motion, the dynamic equations for a four link manipulator, with the final 

link represented as a link of zero length and finite mass say m 4 is obtained. The 

explicit expressions for the inertia matrix M  and the torque vector Q are shown 

in Appendix D.

As the centrifugal, coriolis and gravity torque associated with the final link, as 

well as the corresponding inertia matrix member and joint acceleration are zero, 

the equations are linear in the parameter m4:

£  =  M 1 {6)rriA9 4 - M 2 {9)9 +  Q1 ( $ J )m 4  +  Q2 (9,9) (4.1)

where

r  is a 3 x 3 vector of torques

M 1(0,m 4) is a 3 x 3 inertia matrix which is a function of joint angle 9 and 

load mass m4 . It is linear in m4 .

M o(9) is a 3 x 3 inertia matrix, not a function of m4

Qt {9,9, m4) is a 3 x 1 vector of centrifugal, coriolis and gravity torques. It is 

linear in m4

Q2 (9,9) is a 3 x 1 centrifugal, coriolis and gravity torques, not dependent on

m4

9 is a 3 x 1 joint acceleration vector.

If the load mass is represented as added mass on the third link, then the 

customised robot dynamic equations are no longer linear in the parameter. This 

is due to the fact that, as load mass varies, so does the position of the center of
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mass of the third link. And this means that the estimation method will not apply.

Hence using the linear in the parameter equations and taking the terms that 

depend on m 4 to one side, equation 4.1 becomes:

z  -  (MdL +  <?2) =  (M il. +  Q_1 )mA (4.2)

Now let

L ~  ( M 2 I +  Q0) =

(t)

M * )

M l )

and

M i£ + < 2 i

^a(^) 

X b{ t )  

X c ( t )

Then

M * ) Xa(i)

M i ) = M i ) 7714

. M i )  _ m M i )  .

(4.3)

There are a number of ways to estimate the value of ra4 from equation 4.3. One 

way would be to take one component of the equation for example

M i )  = x a{i)m4

and based on this obtain the data and output vectors with members corresponding 

to each sample interval. The following equation is formed

M M •̂ a (i 1) e(ii)

M f 2 )
=

M M m 4 -f
e{t2)

$ c(in) c{in) c{in)

(4.4)

where e(/i) 

or

e(tn) represent the errors.

.2. =  X rrid  4" E_ (4.5)
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note that 7724 is a scalar.

Then using the least squares method, the criterion function to be minimised

is

R  = E t E  =  (5Lr  -  X Tm 4)(}$ -  X m 4) (4.6)

multiplying

R = S l ± - S j X m 4 - X ^ m 4'S + X jm 4Xm4 

as 2. and X_ axe both vectors, then W X  =  X Ti$. therefore

R  = 4<_T -  2<$_TX m 4  + X TX m 4 2

The value m4 which minimises R makes the gradient of R with respect to X zero:

d R  n
d X ~

using a standard result for derivatives of vector expressions, i.e.

d B TA
OA

=  B

we have

or

—2*km 4 +  2X772 \ =  0

= Xm<

pre multiplying by X

therefore

X T<1 =  X TX m 4  (4.7)

m 4 = ( X TX )  ' ( X Ty )  (4.8)

and hence 7724 which is the estimated value of 7724 can be found using least squares 

estimation.

Another way of estimating 7724 from equations 4.3 is to take all, as opposed to
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one component of the equations and obtain the data and output vectors for each 

sample interval to form

V>a(*l) *Ea(̂ l) ^a(^l)

1pb(t l) X6(fl) e&(*i)

c ( t l )
=

Xc( t i )

m 4 -f

ec(^l)

^a(^n) ^ai^n) ^a(^n)

b(tn) 'Ebitn)

^bi^n) ^c(^n)

and proceed similarly to the previous approach. The results in both cases are 

similar and this can be verified by simulation.

In the case of a real robot, position sensors can be used to obtain joint positions. 

After filtering these, joint velocities and accelerations are calculated by differen­

tiation. The corresponding input torques applied to joints are also filtered using 

a third order filter

( 7 ( s )  =  3 3  - j -  C i S 2  - f  C 2 <S - f  C3

Then the values of filtered torque, filtered angle, angular velocity and acceleration 

are used in the customised dynamic formulation to obtain the output and data 

vectors. Least squares is then used to estimate the load mass ie. 7714. Recursive 

Least Squares can also be used for estimation, making use of the solutions of 

previous equations and hence reducing the computational time. In situations 

where position data is obtained and processed in parallel in order to increase 

computational speed, the Recursive LS can still be used, as the data and output 

vectors have to be formed sequentially. The need for sequential formation of these 

vectors are due to the fact that, interaction of the joints are taken into account 

and as a result, information about other joints is needed in order to calculate 

inertias and other quantities due to one joint. In the case of recursive LS, one
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component of equation 4.3 i.e.

$a{t) =  x a(t) x ra4

is used at each sampling interval. Hence the recursive equations will be :

m 4(N  +  1) =  m 4 (N) +  k(N)  x [î a{N  +  1) — x a(N  +  1) x m4(iV)] (4.10)

k(N)  =  P( N)  x x a( N +  1) x [l + xa(N  + l )  x P ( N ) x ^ (A f +  l)]-1 (4.11)

P (N  +  1) =  [1 -  k(N)  x xa(N  +  1)] x P( N)  (4.12)

And for time varying load mass, a loss function with exponential weighting is used 

i.e.,
N

R  = J 2  V '-1 X  0>a{t) -  x a(t) x m 4]2 (4.13)
t = 1

where A is the “forgetting factor” . The least squares estimate is then given by 

replacing equations 4.11 and 4.12 by the following two equations respectively.

k(t) = P(t)  x x a(t +  1) x [A +  x a(t +  1) x P(t)  x x a(t +  l)]-1 (4.14)

P(t +  1) =  [1 — k(t) x x a(t +  1)] x P ( t )A (4-15)

where A is less than one. Usually about 0.98 .

4.4 Sim ulation

The simulation is based on the first method of estimating the load mass described 

in the previous section. It consists of five parts:

First, the definition of desired trajectory for each joint and calculation of the cor­

responding torques, based on the dynamic equation of the robot.

Then in the second part, the values of torque are used in a robot simulator, in 

order to obtain the position, velocity and acceleration of each joint. Although in 

the first part, the torque values were based on one value of load mass, here the 

load mass is varied. In the third part, the torques, angles, velocities and accel­

erations are filtered using a third order filter. To implement the state variable
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approach, the filter transfer function is represented in state space and then the 

discrete forms of A, B, C, D are found. Then states ( filtered position, velocity

ROBOT 

- o  DYNAMIC 

- o  MODEL

ROBOT■o

C(s)C(s)

LINEAR IN THE PARAMETER 
DYNAMIC EQUATIONS

OUTPUT VECTORDATA VECTOR

LEAST
SQUARES

ESTIMATED 
LOAD MASS

Figure 4.1: Load Mass Estimation 

and acceleration) are updated L

Then customised dynamic equations which are linear in the parameter, as ex­

plained earlier are used to form the data and output vectors.

Finally, least-squares estimation is used to estimate the load mass.

A block diagram representing this procedure is shown in Figure 4.1.

4.5 Im plem entation

A REDUCE program that takes as input the number of links and the definitions 

of kinematic and inertial parameters of a manipulator, was written to symbolically 

^ h e  details of the state variable approach can be found in reference [24] etc.
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manipulate the N-E equations of motion for robot manipulators and perform all 

algebraic simplifications possible.

Four links were defined, the final being of finite mass and zero length, representing 

the load mass held by the gripper of the manipulator (strictly speaking, the load 

mass also includes the mass of the wrist).

The outputs of the program were the elements of the inertia matrix as well as the 

vector of centrifugal, coriolis, and gravitational torques.

A factorisation was then performed to separate the terms that depend on the load 

mass, hence the following were obtained:

• M 1 ( e ) , M 2 (0 )

• q ^ A q ^ A

The terms with subscript 1 are dependent on the load mass. These correspond to 

equation 4.1.

The explicit expressions for these terms were then modified to a MATLAB read­

able format.

A function was then written in MATLAB that uses these expressions together 

with the values of kinematic and inertia parameters of the MA3000 robot, with 

external input of the joint angles and angular velocities, to output the actual val­

ues of the above terms.

This function was used in a MATLAB program to obtain the joint torques corre­

sponding to a' defined trajectory (angular displacement, velocity and acceleration 

of each joint) according to equation 4.1. A known load mass (e.g. 5 Kg) was used 

in the calculations.

Figures 4.2 and 4.3 show the defined trajectory, as well as the resultant torques 

for a 5 Kg load mass.

Then, using the first set of values of joint torques obtained from the previous 

stage, and some initial values for angular position and velocity of the joints, in 

the MATLAB function described above, the first values of angular accelerations
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Figure 4.2: Angular position and velocity, against time
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Figure 4.3: Angular accelerations and Resultant Torques
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are calculated according to

I  =  (M 2 +  M i ^ 4)_1[l -  (Q2 +  Q^m^]  (4.16)

By integration, values of angular position and velocity are,found from angular ac­

celerations, which are then used in the next time step, and the process is repeated 

for all the values of joint torques.

This implements a robot simulator to which, joint torques are input and form it 

angular acceleration, velocity and position is obtained. However, the load mass 

7724 is varied-from 0Kg  to 5Kg  in 0.5K g  increments as the process is repeated, 

this is despite the fact that the values of the joint torques correspond to a 5 kg 

load mass. This introduces perturbations from the original joint torques.

The values of the torques, angular position, velocity, and acceleration are then fil­

tered using the Lsim function in matlab toolbox for simulation of continuous-time 

systems.(a third order filter is used).

Then the data vector and the output vector is found and the equations of motion 

are written in the standard form of least squares to estimate the unknown param­

eter, namely the load mass.

Figure 4.4 shows the values of Load Mass and their estimation. As can be seen 

the estimated values that are shown as dashed lines are very close to the actual 

values. One point to note is that the original value of the load mass on the basis of 

which the torques were generated, are important not to be too large or too small 

compared to the estimated values, otherwise the estimation will not be accurate. 

Simulation results of when recursive LS is used for estimation, also show that the 

values of the estimated load mass converge to their true value after a few samples. 

Having been able to show that, it is possible to estimate the varying load mass 

that a gripper carries, control algorithms that utilise this can be implemented for 

various applications. The algorithm can also be extended to the case of varying 

reaction forces on the gripper, when the equations are formulated to include three 

components of force/torque, as opposed to just gravity torque.
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Figure 4.4: Comparison of Load Mass and estimation values

The next step is to verify these results experimentally, using the MA3000 robot 

manipulator.

4.6 Experim ental R esults

Step voltage inputs were applied to the waist joint motor of the robot, and angular 

position 9  of each joint was obtained from plastic film potentiometers with linearity 

of ±  0.25 % measured to 12 bit resolution, and saved in data files. The operation 

was repeated for various load masses, attached to the gripper of the robot.

A third order filter was chosen

 1 _ ________

d o <S3  "I* d i S 2 +  < 2 2s  4 ” a 3

and this representation was changed to state-space and discretized to get

1 — AdX{ -{- BdU (4.17)
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After including the initial values, at each sampling interval, the input u =  9 is 

used to get

where x\  is filtered acceleration, x 2, filtered velocity and £3 filtered angular po­

sition. This is repeated for each sample of 100 HZ. In the implementation, 

a0 = 0.001, a\ =  0.03, a2 = 0.3, and a3 =  1 were chosen empirically, to give 

good results.

Figure 4.5 shows a block diagram representation of the above procedure. Once 

these filtered values were obtained, motor torques were calculated, using

V  -  k 'LT  =-L m. —
R

where k' corresponds to the motor torque constant which is equal to the back emf 

constant, at steady speeds (the values of these were found to be 0.01, 0.17, and 

0.009 for waist, shoulder and elbow respectively), 9m is the angular velocity of the 

motor, R, the motor resistance, and V the voltages applied.

Then the contribution of the load torques are included (i.e. \ T l , where n rep­

resents the combination of gear and pulley-belt system ratios) in the equation of 

motion:

T m  T l  =  J e f f  9mn

However to calculate Tl , the value of load mass say 7714 need to be known, and as 

this is the value to be estimated, the torque is divided into two parts, one which 

depends on the load mass, Ti, and another that does not, T 2. Then

letting

J e f f 9 m +  —T\  — T m — T 2rri4n

X  =  T*

(4.18)

=  Je f fO H Tln
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where ^  is the output vector, and X_ the data vector. Least squares estimation is 

used to find m 4 .

A number of different voltages were applied, both pulse width modulated, and 

constant step inputs, to individual joint motors for various load masses and an­

gular outputs were used in the above algorithm to estimate the load masses.

The results show that, the best estimates are obtained when the waist data is 

used for estimation, this is probably due to the fact that the rotation of this joint 

is about the vertical axis, which means that the affect of variation of gravitational 

torques is less, compared with other joints.

Also it was found that applying higher voltages which effectively meant higher 

accelerations, resulted in better estimates. Also PWM signals, caused the angular

O

Figure 4.5: filtered values of accn., vel., and angle from angle input 

position data obtained to be noisier, compared to constant voltage which, using
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Voltage applied Real Load Mass (kg) Estimated Load Mass (kg)
88.5v constant 0 0.0319
88.5v constant 0.908 0.9457

64v PWM 0 0.4401
64v PWM 0.908 1.247

Table 4.1: Comparison of Real and Estimated Load Mass

a different amplification hardware that will be explained in a future chapter, pro­

vides constant current input.

The noisier data also contributed to the estimates, being less accurate. Table 4.1 

shows as an example that higher voltage of 88.5 volts and constant current, gave 

better estimated results for both 0 kg and 0.908 kg, compared to 64v PWM volt­

age input.

However even the less accurate estimates were quite reasonable considering the 

sources of errors which will be discussed in the next section.

4.7 D iscussion

It is certainly true that identification of the link parameters of robots tends to be 

a on-off task in general, as their value do not change greatly, to have to calibrate 

them frequently. And there are other methods other than estimation, which at 

times are more convenient and serve the purpose, to produce accurate enough 

results, such as the CAD approach discussed in the previous chapter. 

Nevertheless the load mass that the robot carries can vary considerably during 

operations, and it is useful to be able to estimate the value of the load mass and 

hence the affect of its variation on the terminal link of the manipulator.

Some work was discussed, where by the parameters of the mass distribution of 

the load are estimated. Amongst these, the work of Atkeson et al [4] seem to be 

one in which, there are reasonable implementation results to be able to see the 

effectiveness of their approach.
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In the new method introduced above, only the value of the load mass are es­

timated, as opposed to the cases where moments of inertia and centre of mass 

parameters are also estimated. It should be noted that it is possible to formulate 

the equations in such a way that they are linear in one of the unknown parameters. 

The use of symbolic manipulation to derive these equations, is important. 

Attention should also be drawn to the fact that from the findings of Atkeson et 

al, the estimation of moments of inertia parameters, despite the requirement of 

extensive computational efforts, does not lead to accurate estimates, and even in 

some cases, for example its application to the PUMA robot, needs special test 

movements, as the torque due to gravity for example is about 40 times greater 

than the torque due to the maximum angular acceleration. Acceleration capacity 

requirements for the algorithm to yield reasonable results, were higher than the 

acceleration capability of the PUMA. Loads specifically designed to produce large 

moments of inertia, had to be used, for testing the estimation algorithm. And 

slight noise in the data resulted in poor estimates.

They finally concluded that for control purposes, even poor estimation of the mo­

ment of inertia parameters, will allow good estimates of the total force and torque 

necessary to achieve a trajectory.

Although their algorithm worked better for the case of their Direct Drive Arm 

to estimate the moment of inertia parameters, it raises the question that in large 

majority of industrial robots the impracticality and inconvenience of using di­

rect drive arms, together with having to set up force sensors and providing large 

computational means of implementing the algorithm, justifies the ability to inac­

curately estimate the moment of inertia parameters, which even if their estimates 

are not accurate, will not affect the performance of their controller anyway.

The semiconductor strain gauges used for force sensing are prone to drift and 

frequent calibration of them is necessary to prevent additional sources of error in 

the estimation.

The algorithm introduced, that estimates the load mass, only requires angular



CHAPTER 4. MODEL-BASED IDENTIFICATION OF RO BOTS  104

position sensing, it is not computationally intensive, and it gives reasonable esti­

mates, that can be improved when

• A smooth high order polynomial trajectory is used to minimize the mechan­

ical vibrations and not excite unmodelled dynamics

• The kinematic and dynamic parameters obtained are as close to their true 

values as possible

• Noise of the data obtained are reduced

• A smooth voltage input is used

• Data for the waist is used in the algorithm, so that the estimated values are 

closer to the true value of the load mass

In addition, there is a possibility that other parameters of the load can also be 

estimated, one at the time, using symbolic manipulation of the equations.



Chapter 5

Transputer-R obot Interface

SUM M ARY

A description of the hardware units which were build in order 

to operate an MA3000 robot using a network of transputers, in­

dependent of its standard controller is given. The correspond­

ing interface software developed is also presented. The trans­

puter network consists of a Parallax system which includes an 

AD C and a DAC, and a Meiko computing surface runing OPS,

MeikOS and CS Tools.

5.1 Introduction

When a high speed operation is required in a robotic application, increased joint 

velocities imposed on the manipulators result in an increase in the effects of cou­

pling between the joints.

More joint interaction certainly brings about a need for employment of advanced 

controllers that are able to compensate for the effects that can cause loss of per­

formance and accuracy.

Model-based controllers that incorporate a complete dynamic model of the ma­

nipulator including joint interactions, are seen as ideal schemes to achieve high 

performance. However a combination of high computational requirements of these
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methods and lack of accurate manipulator models, has made their real-time im­

plementation prohibitive.

The motivation behind building an interface between the MA3000 robot and the 

transputer network which is described in this chapter is to be able to exploit the 

capabilities of the transputer as a fast processing unit and as part of a network 

for implementing advanced control algorithms in real-time.

Although simulation results can give a lot of insight as to the suitability and ef­

fectiveness of a particular algorithm, there are various factors that only practical 

implementation can truly incorporate.

In this chapter, following a description of the standard interface unit of the 

MA3000 to a host computer and outlining its limitations, a brief overview of 

the transputer and, the occam language with its unique features for programming 

concurrent systems, designed for implementation on the transputer, is given to 

justify their choice. Then, the three components which form the controller of the 

robot, , namely a Parallax System, a Meiko Computing Surface with provisions 

to communicate with the parallax, and an electronic interface unit between the 

ADC and DAC of the parallax, and the joint motors of the robot, are dealt with.

5.2 Standard interface

The controller of the MA3000 TecQuipment Robot is connected to an IBM PS/2 

host computer, via an interface unit, which provides communication, using the 

8255 Peripheral Interface Adaptor (PIA) and associated circuitry, resident in the 

backplane assembly.

It is possible to develop basic PID (Proportional, Integral, Derivative) algorithms 

to control individual joints. The operating software of the controller, and the 

default values for the PID control parameters are held in ROM.

The controller, as well as the host computer can access areas of RAM used as a 

work space and shared memory, which is used to relay control information to the
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controller CPU (a 6502 microprocessor is used).

A 256 byte memory slot is required for memory mapping, which is generated as 

a pseudo memory expansion bus, using programmable input/output ports. This 

is slower than direct memory mapping and restricts the maximum speed of the 

robot joints. The host computer addresses the area with the interface card.

The interface unit is also used for host communication with two sets of read write 

latches, used for process inputs and outputs, also for keyboard and front panel 

controls

One limiting factor in using this set up to implement novel real-time controllers, 

which are capable of taking the interaction of the joints into account and allow 

tuning of the controller parameters, is the computational speed. Considerably 

higher processor speeds are required to deal with the computational burden that 

this class of controllers impose.

A choice which can help achieve the speeds required, is the Inmos Transputer, 

which is a high performance single chip computer, with its capabilities as a fast 

single processing unit and whose architecture facilitates the construction of par­

allel processing systems. Different parallel architectures could be devised to suit 

various control algorithms, hence making the real-time implementation possible.

5.3 The Transputer and Occam

The Inmos Transputer, is a general purpose, very high speed processor, designed 

as a processing element which can be connected to other transputers, to provide 

a concurrent processing environment with extensive capabilities.

In addition to the high processing speeds attainable, either as a single unit or 

part of a network, it has a number of unique features. Figure 5.1 shows a block 

diagram of the T800 Transputer. The processor is 32 bit wide and it occupies 

25 % of the total silicon area [35]. The following are some special features of the 

Transputer:
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Figure 5.1: Block Diagram of IMS T800 Transputer

• Eight 20 Mbits/S on chip serial communication links (DMA engines), four 

IN and four OUT

• Communication being autonomous from the processor, which only issues 

authorisation, that takes 1 y/s  per message, regardless of the length of the 

message.

• 4 kbytes of static on chip RAM to allow high speed I/O  and computation, 

matched to the speed of the processor and can be accessed and cycled in 50 

nS
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• Minimal Instruction Set, few registers, and can operate at a peak 20 MIP 

rate, although the overall throughput is quoted as 10 MIP, as some instruc­

tions take longer than a single cycle

• Extra external memory of up to 4 Gbytes can be fitted

• The hardware scheduler of the Transputer allows, even a single transputer, 

handling multiple jobs at the same time

To utilise these features of the Transputer, Occam has been designed, as a software 

support that is capable of expressing systems level requirements of concurrency 

and communication.

Any number of parallel processes can be specified in an occam program, and these 

can run on one or more transputers. Multiple processes are supported by means 

of task switching mechanism provided by the instruction set of the transputer. 

Communication between processes is via point to point links known as channels. 

Occam channels between parallel processes in the same machine are implemented 

by locations in memory.

Communication provided by the occam model of concurrency is synchronised and 

unbuffered [36]. This avoids the overheads of organising message queues, data 

buffer and so on , while giving advantages in terms of simplicity of programming 

and avoidance of many of the simple causes of deadlocks.

The occam process, is a procedural unit, defined by the P R O C  statement. Chan­

nel declaration C H A N , defines the interface through which the process commu­

nicates with the rest of the program.

Processes are built from 3 primitive processes (assignment, input, output SKIP, 

and STOP). SKIP is a process that does nothing and terminates, used for com­

pleting the syntax of constructs. STOP is a process that does nothing, but does 

not terminate. These primitive processes are combined to form constructs:

SEQ sequential, P A R  parallel, IF  conditional,

W H IL E  iteration, ALT, alternative.



CHAPTER 5. TRANSPUTER-ROBOT INTERFACE 110

A construct itself is a process and may be used as a component of another con­

struct, suitable for hierarchical decomposition of complex tasks. This is unlike 

conventional sequential programs, expressed with variables, and assignments com­

bined to form sequential, conditional and iterative constructs.

Real-Time programming in occam is possible, by using Timers. A channel like 

type T IM E R  which is only capable of input, is used to declare named objects 

which can input the current time represented as a value of type IN T . The operator 

A F T E R  can be used followed by an expression representing time, to introduce 

delays.

P R I  can be used in real-time programming, to signify priority among processes. 

Prioritized PAR, has the effect of assigning a priority to the parallel processes, the 

level of which is determined by the textual order of the processes. In prioritized 

ALT, when two inputs become ready simultaneously, the process with the higher 

priority will be executed.

A powerful feature of occam is that it allows the use of a device called the replica­

tor to be used with one of the constructs, for construction of arrays of processes, 

in addition to data and channel arrays.

A process can communicate with external devices which are connected to the 

processor’s memory system [64], using memory mapped interfaces, provided by 

occam. A port specification which is similar to a channel specification, is used. 

A port input, inputs a value from the port, assigns it to the variable and then 

terminates. A port output evaluates the expression and outputs the result to the 

port. Occam also provides bitwise operators, to allow low level operations on the 

individual bits in a value.

5.4 The Parallax System

The Parallax system, consists of four JD 002s (each providing two T800 Trans­

puter based systems) and two single T800 transputer based GBUS96 systems
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(providing G64 and G96 bus interfaces to application boards). A 12bit resolution 

ADC and a 12bit DAC board were connected to the GBUS96s.

5.4.1 Hardware

The ADC and DAC boards are interfaced to the network of transputers via G64 

busses provided by GBUS96 10 Motherboards.

G BU S96 (Transputer based I /O  M otherboard)

On this board as well as a T800 transputer chip, there is half a megabyte of con­

figuration EPROM and half a megabyte of RAM .Therefore it could be used as a 

stand alone system or be part of a network [31]. The edge connector allows ac­

cess to four transputer links, as well as the up, down ports which enable external 

control of transputer Reset and Analyse signals and the system port , which in 

a parallax system containing a special system management card can be used to 

control and monitor the transputer systems environment.

The board provides an interface to application boards such as ADC or DAC via a 

G64/G96 bus. It supports asynchronous and synchronous modes for data transfer, 

interrupt and bus request handling in bus master mode, as well as direct memory 

access requester mode.

The G64/G96 interface is mapped into the upper half of the transputer memory 

addressing space. Five ports are available for synchronous(2) and asynchronous(2) 

addressing of cards as well as managing the I/O  bus control signals(l). It should 

be noted that the port addressing space for synchronous and asynchronous ports 

overlap and application cards must be placed at different addresses to avoid con­

flict.
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Address Read Write
BASE Data most sig. byte Init. 12-bit conv.

BASE +  1 Data least sig. byte Init. 8-bit conv.
BASE +  2 STS word Clears EOC latch
BASE +  3 (unused) Multx. chan, latch

Table 5.1: Register Accessed

bit in OCCAM function
7 STS AND with #  80 converter STS line (high during conv.)
6 STS AND with #  40 latched end of conv. (active high)

0 - 4 STS AND with #  IF multx. chan, address latch cont.

Table 5.2: 8 bit Status Word

SY N -D A C 8 D igital to analogue converter (B y Syntel m icrosystem s)

This is a G64 bus compatible analogue output module with eight 12bit resolution 

channels [89]. A set of dip switches are used for selecting the board base address 

within the system Valid Peripheral Address (VPA).The base address set is relative 

to the system VPA base address.

DAC8 occupies 16 bytes of VPA space (two bytes per channel).The base address 

offset is set to zero. Updating the DACs are done by writing the correctly formated 

data to the appropriate address. The data format was chosen to be left justified 

and the jumpers were connected so that the output range was between -10V and 

+10V.

SY N C -A D C 4 A /D  converter m odule

This is a 32(single ended) or 16(differential) channel, 12bit resolution (left justi­

fied) G64 bus compatible board which occupies 4 bytes of system VPA space [88]. 

Voltage range of -10V to +  10V was chosen by connecting the appropriate links 

on the board. The base address is selected using a number of dip switches. This 

address was set to 800 to be different from the address of DAC8. Accessing the 

registers for the board are summerised in table 5.1 The status word is made up
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of 8 bits and the function of single bits are described in table 5.2.

5.4.2 Driver software

Transputer Development Systems (TDS), was used to develop the Occam driver 

software. This is a complete interface for Occam, combining a folding editor with 

configuration and compilation utilities. SYN-ADC4 and SYN-DAC8 are both ad­

dressed synchronously. Thus the synchronous port of the I/O  motherboard is 

used to address them. Control, port is defined as PORT OF INT in the occam 

program and is placed at #38000000 which is the OCCAM MAP word offset. The 

diagram of the memory map, which specifies the machine map byte address and 

the occam map word offset can be seen in Table 5.3.

To access 10 memory space in synchronous mode Synnc.IO.Space are declared as 

memory INT arrays (INT =  4 bytes), covering all the length of G64 bus address­

ing space (16 data bit bus with 2x64 kbyte addressing space). Sync.IO.Space is 

placed at #34000000 (look at the memory map ).

Three jumpers LK8, LK9 and LK10 were configured on the motherboard to select 

the operation of the board as G64 bus-master mode as opposed to Direct Memory 

Access (I/O device).

Addressing the ADC and DAC and arbitrating between bus request and/or inter­

rupts are the responsibility of bus management port. This port consists of a single 

register to which a control word can be written and the status read back. This 

is done during initialisation, where configuration data is written to the control 

register to define the operating mode of the card. Once this is done the G64 bus 

must be enabled by deasserting the G64 Reset.

To drive the converter boards bus master board, Procedure Init.Interface (BOOL 

Bus.Master.Mode, PORT OF INT Ctrl.Port) is used with bus.master.mode set to 

TRUE . This initialises the interface such that the I/O  motherboard is operating 

in bus-master mode and the bus activity is enabled.
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The declarations of control and status values required to drive the I/O  mother­

board bus interface via the control port and declarations of maximum page length 

is included in a library. Example of these declarations are:

P O R T  O F IN T  Control.Port :

P L A C E  Control.Port AT #  38000000 :

[ G96.max.page.length ] IN T  Sync.IO.Space :

P L A C E  Sync.IO.Space AT #  34000000 :

The procedures for the interface are also in a library These include Initialising the 

Interface, Bus Master Event handeler, Direct Memory Access on and off.

The initialisation of the interface PROC looks like this

P R O C  Init.Interface ( BO O L Bus.Master.Mode,

P O R T  O F IN T  Ctrl.Port )

VAL IN T  Set.BM IS #0A000000

VAL IN T  Clr.BM IS #0A010000

VAL IN T  Enable.Interface IS #0A060000

VAL IN T  G64.max.page.length IS #10000

SEQ 

IF

Bus.Master

Ctrl.Port ! Set.BM 

T R U E

Ctrl.Port ! CLr.BM 

Ctrl.Port ! Eriable.Interface

The library logical names are included in the Toolkit fold for when TDS is used. 

For ADC, a 12bit conversion is initiated and when bit 7 of the status word is low, 

8 relevant bits (data most sig. byte) are read to baseO, by masking off the other
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Machine Map. Occam Map.
Byte Address Hi Lo Word Offsets

#  7FFF FFFC #  3FFF FFFF
EPROM Code 
& Config data

#  7000 0000 #  3C00 0000
Control Word

#  6000 0000 #  3800 0000
Sync. I/O

#  5000 0000 #  3400 0000
Async. I/O

#  4000 0000 #  3000 0000
Sync Mem PI

#  3000 0000 #  2C00 0000
Sync Mem P0

#  2000 0000 #  2800 0000
Async Mem PI

#  1000 0000 #  2400 0000
Async Mem P0

#  0000 0000 #  2000 0000

Table 5.3: MEMORY MAP

bits of the BASE. Then the remaining 4 bits (data least sig. byte) is read to 

basel from BASE + 1. note that data is left justified. Then these are combined 

by shifting the most sig. byte of the data to the left and the least sig. byte of the 

data to the right by 4 bits and using bitwise OR.

In the case of DAC, the digital values are written to BASE address and BASE 

+1 in order to produce the converted voltage on channel 0. Note that there are 2 

bytes per channel and data is left justified.

A library was created which contains the procedures for driving individual links in 

a specified direction, as well as opening and closing of the gripper for the MA3000 

Robot. This library also contains a procedure that sets all the output channels of 

the DAC to zero.

As an example, the waist or link 1 is driven using channel 2 of the DAC i.e.

Sync.IO.Space[804]

Sync.IO.Space[805]
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and its direction is selected using channel 5.

The values for the direction correspond to the level of voltage required for the 

particular direction choice, as described earlier.

5.5 M eiko Com puting Surface

The idea behind using this system, was to extend the computing power of the 

Parallax, by addition of more processors. Another motivation was, utilisation of 

the provision of the facilities which allow cross-development compilers, offered by 

Meiko Computing Surface. This meant that control programs and routines in pas­

cal, did not have to be rewritten in OCCAM.

Using the electronically configurable link connections, was an added bonus.

The Meiko Computing Surface provides an architecture for building scalable con­

current computing systems [66]. The boards within the system, consist of different 

function blocks, Computing Elements, consist of a processor and some memory, 

Supervisor Bus Interface, provides a global communications route between the lo­

cal Host and the processors within the system, monitoring and diagnostics, Link 

Network Interface, allows manual or electronic routing of user determined link 

connectivity, and Event Control Logic, describes the sources, masking and en­

abling of events to the processors.

The surface can comprise of a number of modules, configuration of which and 

connection between them, depending on the requirements of the application, is 

decided by the user. The modules should be connected together by a control in­

terface and user links.

The processors in the system used are hosted by an MK050. In all, eight quad 

compute boards, MK060s which consist of 4 x T800 processors each, together with 

communications, DRAM, and an interface on to the supervisor bus, are included. 

In addition, there is a T800 based Frame Grabber (MK027) and a Graphics board 

(MK015), which were not used.
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Meiko Multiple Virtual Computing Surface (MMVCS) operating system was used 

to organise domains of processors in a variety of sizes and shapes, as required and . 

develop programs. It contains two other operating systems, MEiKOS, which is 

Meiko’s UNIX-based operating system, and OPS, which is the Occam Program­

ming System, similar to TDS, on Parallax.

Meiko Pascal Compiler and associated software tools can be used both within OPS 

and stand-alone compiler from MEiKOS. This allows parallel versions of pascal 

to run concurrently with Occam programs and communicate with them.

In this way, Occam, which is the native language of the Transputer, with control 

constructs such as (SEQ, PAR, ALT, IF, WHILE) closely modelling the control 

capabilities of the transputer hardware, while its communications primitives give 

effective access to the Transputer’s inter-process and inter-processor communica­

tion links, can be used, and at the same time communicating pascal routines could 

also run concurrently with them.

The possibility of being able to employ Communicating Sequential Tools (CS 

Tools), which is a program development toolset for multiprocessor computer sys­

tems on Meiko is also appealing.

. CS Tools supports the programming of multiprocessor applications using familiar 

development environments and standard languages. It consists of cross-development 

tools, compilers and configuration systems, as well as runtime facilities such as 

high level communication services and symbolic debuggers.

Parallel applications are expressed as multiple sequential code threads which co­

operate by message passing. One of the utilities CS Build, used for loading the 

sequential threads on to application processors, operating at load time, enables a 

parallel application to be re-targeted to different parallel machine configurations 

with no modification to the application itself.
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Com m unication w ith Parallax

To be able to communicate with the Prallax, from MCS, two hardware interfaces 

are needed, one link and the other control. The link interface can be implemented 

in a similar way to the inter-module link interface, which is described by a Meiko 

Technical Info, sheet.

Due to the inherent low tolerance of Inmos link protocol for data errors, a high 

quality connection technique, with good noise immunity, allowing for 20 Mbits/s 

link speed is needed and a moderate distance between the Meiko and the Parallax. 

The transputer links, use full CMOS output drivers and TTL threshold receivers, 

which are single ended, and when unbuffered, are unlikely to offer adequate per­

formance.

The best noise rejection and noise margin is provided by a differential buffering 

technique. To provide this and also allow for high bandwidth, an ECL driver 

receiver pair using differential signaling is used, which according to data sheets 

and experiments by Meiko, fall within the specifications.

By using TTL-ECL, ECL-TTL translators, typical bandwidths of 85 MHz can be 

achieved, with typical combined skews of around 2.5 nS

Resistors are used to form a series termination network into a cable made up of 

twisted pairs, insulated and individually screened. This way the maximum output 

current of the translators are limited, under short circuit conditions. A distorted 

waveform at the transmit end of the cable, but a clean signal at the received end 

is generated.

Resistors are also used to provide pull down for the output of the driver, provide 

a small bias current to the output of the differential receiver, when the cable is 

disconnected, and to limit the potential current that flows between driver and 

receiver pairs during power up.

Control Interface to provide remote reset, analyse, software and hardware error 

connections and a link for supervisor type communication, are also needed. The
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control signals are buffered on input and output and daisy chained between the 

Meiko and Parallax. They use RS423 signaling levels and active low signals. The 

rise and fall time of the drivers are set to approximately 100 fi,S to minimise 

crosstalk.

A driver software which allows addressing of the free Ports on the CS is included 

with the MMVCS (To Slave Port is used for control, and for links, Inter-Cabinet 

Link interface is used)

5.6 Electronic Interface U nits

Two interface units were designed, one current driven for computed torque control, 

as in the type of motors used, torque is proportional to current T  oc z, and one 

voltage driven for position and velocity control, as velocity is proportional to 

voltage 9 on V. Also the current profile under the voltage controlled scheme, 

was observed not to be smooth enough for one of the controller implementation, 

namely adaptive computed torque with load mass estimated on-line, hence the 

current controlled approach was employed.

5.6.1 Voltage Controlled O utput, D river Circuit

The motor drive amplifiers, as well as the feedback circuitry in the controller 

unit of the MA3000, were used in their original form and the Test of the hardware 

needed was built. A schematic representation of the interface board built is shown 

in Figure 5.2.

Analogue voltage signals from the DAC provide both direction and speed control of 

individual joint motors. The motors for base and shoulder are Bodine 32D3BEPM- 

W permanent magnet D-C motors, for elbow Bodine NPM-13 permanent magnet 

D-C motor and a Portescap 34L11-224E5 is used for pitch motion. For all the 

motors except the last, amplified Pulse W idth Modulated (PWM) signals are used 

to drive them. As can be seen from Figure 5.2, a comparator is used to produce
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a PWM signal from the analogue voltage from DAC together with a repetitive 

ramp waveform (sawtooth) signal obtained a tap point on the controller board of 

the MA3000.

SIGNAL
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LOGIC

CWSIGNAL
FROM PWM

CCW
DAC SIGNAL'

SIGNAL

JOINT
MOTOR
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MOTOR
DRIVE
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Figure 5.2: Schematic of the Interface Board

DAC voltages on different channels are decoded and passed through some initial 

logic gates before going to direction router logic with the PWM signal in order to 

establish the direction of movement. The resulting signals are sent to the motor 

joints via motor drive amplifiers for the first three motors.

The interface board provides arrangements for the interface of the fifth joint motor 

(ie. roll movement) as well as the gripper , but roll movement motor is not used 

at present. The circuit diagram of the interface board is shown in Figure 5.3. The 

assignment of DAC channels and the pin numbers corresponding to individual 

joints are shown in the Figure.

Since there are only 8 DAC channels, a decision had to be made as to either build
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a circuit that allows the direction selection by providing positive or negative drive 

voltage corresponding to cw or ccw, or if direction signal had to be provided from 

a different DAC channel, one channel was capable of providing direction signals 

for two joints. These two options are represented in Figures 5.4 and 5.5. As
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Figure 5.3: Interface Board Circuit Diagram

can be seen the first option involves having a DAC channel that provides four 

distinct voltage levels namely -10...-5, -5...0, 0...+5, +5...+10 in order to supply 

+5V or -5V for two of the joints, according to the tru th  table shown. In the second 

option, both direction and speed signals for a motor is provided from one DAC 

channel, by means of positioning two diodes with operational amplifiers, hence
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Figure 5.4: First option for drive and direction signals using DAC chans

10M

+ 10V 10K
OR

-10V

LM339

LM339

Figure 5.5: Second option for drive and direction signals using DAC chans
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restricting the flow of current in either sense depending on whether the voltage 

signal is negative or positive.

Although the second option would have decreased the programming effort, but 

due to its complexity and extra hardware needed ,for example a large number 

of resistors around the opamps to prevent bias problems which could arise when 

voltages of around OV are provided, option one was chosen. A power supply to 

give -f 5V and -5V was included on the interface board to give the required voltages 

of this option.

The Overall Circuit

It was decided to leave the circuit which provide the emergency stop signal and 

the signal which indicates whether any of the joints are out of their limits or not 

(info, by means of LEDs on the front panel of the controller).Also it was decided 

to leave the circuit for ROLL movement, so that it could be operated manually 

from the front panel. The overall connections could be seen in Figure 5.6. Voltage 

signal from DAC is provided through a 20 way socket-plug arrangement to the 

interface board. The eight channels available provide both direction and drive 

signals. In the case of direction these pass through LM348 opamps which will 

output either +5V or -5V for each motor depending on the level of the input 

voltage. These were grounded via 22K resistors to prevent floating. For the logic 

gates 7428LS single ended nor gates and 7432LS or gates were used.

A sawtooth signal is supplied from TP6 of the controller board. This signal 

together with the DAC drive voltage signals are input to LM339 single-ended 

comparators which output PWM signals and these go through direction router 

logic 7404 NOT gates with direction signals.

These are then connected to a 26 way socket-plug (not all of the 26 pins are 

connected (only the ones shown in Figure 5.3 are )) and are further connected via 

a ribbon cable to a junction, where another ribbon cable from the 26 way socket- 

plug of the controller board joins. From this junction all the wires of the first
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ribbon cable and the wires from the second cable that correspond to the missing 

ones of the first are combined and sent to the 26 way socket of the power amplifier 

board. There is also a 20 way socket on the controller board which provides the
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POWER
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TO JOINT MOTORS

INTERFACE BOARD 26  WAY SOCKET

AMPLIFIER
JUNCTION

BOARD

CONTROLLER BOARD
TP6

28 WAY SOCKET

2 0  WAY S O C K E T
FB VOLTAGE FROM POTENTIOMETERS 

TO ADC _

Figure 5.6: Overall connections of the Interface

Feed Back Voltage from potentiometers mounted on individual joints. This is 

connected to the ADC. The designation of ADC and DAC channels are shown in 

section 4.

5.6.2 Current Controlled O utput, D river C ircuit

In this circuit, PWM is not used, as current control is not possible without, sig­

nificant additional hardware, and due to rapid switching of the current through 

-an  inductor (the armature), electrical electrical noise is created.

In addition when direct control of torque is required, as is the case for model-based 

control algorithms of robots, then linear operation with an amplifier is preferable
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to PWM.

To be able to control the amount of current that is supplied to individual motors, 

by varying the input voltage, n-channel enhancement type power MOSFETs are 

used.

In this type of MOSFET, when gate is made positive with respect to source, the 

field of the positive gate repels holes in the p-type substrate away from the in­

sulating layer, leaving behind a narrow channel of n-type silicon. This narrow
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Figure 5.7: Typical Transfer Characteristic od IRF610

channel provides a conducting path from source to drain. In this way, given a 

certain positive voltage on the gate to make the device conduct, the drain current 

is under the -control of the gate voltage.

There are advantages in using MOSFETs, as opposed to bipolar transistors. They 

operate at much higher speeds, and have a positive temperature coefficient, that 

means their resistance increases with temperature, so that the MOSFET is inher­

ently stable in response to temperature changes and protected against thermal 

run-away.

They can also be operated in parallel with other MOSFETs without “current 

hogging”, which means if any device overheats, its resistance increases, and the
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current is rerouted to the cooler chip [33]. A typical transfer characteristic of the
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Figure 5.8: Description of current drive circuit

IRF610, which was used after considering various types of MOSFETs is shown 

in figure 5.7. As can be seen the linear region of the graph, spans for about two 

volts, which in practice due to high currents resulting at the top end of the scale, 

saturation occurs before reaching the maximum. Hence input variation of one volt 

can be used to linearly vary the current.

The circuit diagram description for implementing the current drive is shown in 

Figure 5.8. It shows that the control voltage which is output from DAC (between 

0-10 V) is fed through a scaling circuit and a level converter, so that the voltage 

range is scaled down and added to the threshold voltage value specified by the



CHAPTER 5. TRANSPUTER-ROBO T INTERFACE 127

- transfer characteristics of the MOSFET. This is then passed to the power MOS­

FET, after a buffer amplifier LM324.

DAC channel outputs (0-5) are also passed through direction logic (7405) and a 

relay driver to operate a relay for direction change of the motor when required. 

A relay is also used to prevent the output plug pins of the circuit which can carry
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Figure 5.9: Current drive circuit diagram

up to 88.5 volts, to have any voltage present, unless the plug is coupled with the 

robot socket, as a safety measure.

The circuit diagram of the above is shown in Figure5.9 A current lim iter' is also 

added to the circuit, in order to prevent excessive currents to the motor. This is 

not shown in the diagram.
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The overall representation of the system connections , including, the Meiko, Par­

allax Interface Unit, and the MA3000 is shown in Figure 5.10.
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C hapter 6 

Control of R obot M anipulators

SU M M A R Y

After a brief introduction which points out the difficulties with 

PID controllers that a great majority of robot manufacturers em­

ploy for manipulator control, a review and discussion of major 

control schemes that have been proposed to improve the perfor­

mance and capabilities of manipulators for mainly trajectory fol­

lowing tasks is presented. Two new adaptive schemes that utilise 

a priori knowledge of robot dynamics are introduced in sections 

6.7 and 6 .8 . Implementation of these methods to control an 

MA3000 robot will be explained and discussed in the next chap­

ter. One of the control shemes is model based control with load 

mass estimation, and the other is model based continuous time 

variable structure self tuning.

6.1 Introduction

The robot manipulation problem is basically defined as dynamic control under 

kinematic constraints. To control the manipulator to follow a desired path, one 

needs to servo the manipulator’s joint actuators.

Prior to this, path planning ought to be carried out to ensure a particular type of
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movement, obstacle avoidance etc.

Therefore robot manipulation is done in two stages. First the trajectory planning, 

where the desired path is usually specified by a class of polynomial functions which 

generate a sequence of time-based control set points. And secondly the motion 

control, where on the basis of the knowledge of kinematics and dynamics, a con­

trol strategy is employed to achieve a desired response and performance. 

Kinematics and dynamics of manipulators were discussed in a previous chapter. 

As stated dynamic equations of robots can be represented by a set of highly cou­

pled nonlinear second order differential equations.

Industrial robot controllers, mainly operate on joint basis and ignore the dynamic 

interaction of the joints, and as a result accurate trajectory following and high 

speed operations are not catered for. Simplicity and low price of implementation 

associated with the PID (Proportional, Integral, and Derivative) control method 

has led the majority of industrial robot manufacturers to employ this approach. 

Each joint of the robot is taken to be a second order system with inertia and fric­

tional damping, and usually gravitational loading as well. By careful choice of the 

controller gains to suit system inertia and damping, a satisfactory transient re­

sponse with little overshoot can be achieved but only if the inertias were constant. 

Configuration dependant inertias can vary largely during an operation cycle. In 

addition, although steady state errors due to gravitational loading can be reduced 

to acceptable values by gain adjustment, handling different load masses, results 

in inertia changes.

This means that one PID setting can result in transient responses which are over, 

under, or critically damped, depending on the position of the robot and the load 

mass that it carries. The usual design procedure is to predict the worst case of 

inertia that each joint actuator is likely to encounter and then choose the PID 

parameters that give a critically damped transient. As a result the system will be 

overdamped most of the time during an operation.

Depending on the kind of application that the robot is meant to be used for, this
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type of control strategy is quite frequently appropriate and the results are accept­

able. For example for low speed point to point operations it gives good accuracy. 

For trajectory tracking, the accumulation of errors resulted from individual joints 

can be quite significant at times, and at high speeds the centrifugal and coriolis 

forces which create mechanical coupling between the joints can be large enough, 

to require some kind of dynamic compensation for good performance.

There have been a number of attempts to calculate the robot dynamics on-line 

and use the information within a control scheme, which will be discussed. The 

general view point in this chapter will be that in addition to this, there is a need 

for an adaptive control scheme to allow for parametric and structural uncertain­

ties that are invariably present, as well as neglected dynamics in the modelling 

process and existence of variety of disturbances.

6.1.1 R obot Control Strategies

For a six degree of freedom robot arm, there are two type of movements, one that 

involves the first three joints and presents the first phase of the control objective 

to move the arm from initial position and orientation to the vicinity of the desired 

final position and orientation, and the second is the fine adjustments to get to 

the desired location as close as possible, which requires control of the end effector 

degrees of freedom.

In the former motion also referred to as gross motion the dynamic coupling be­

tween the joints and the configuration dependent inertias are significant, and 

majority of the control strategies in the literature address the control strategies 

for this type of motion.

In addition to path trajectory tracking, there are various other control schemes 

that are presented within the context of manipulator control, for example impedance 

and force control, coordinated control of multi robot systems, or incorporation of 

control schemes within learning algorithms.
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The path trajectory tracking can be joint motion control, cartesian space control 

where the motion of various joint motors are combined and resolved into sepa­

rately controllable hand motions along a specified coordinate system by means of 

simultaneously running the joint motors at different time-varying rates.

Adaptive controllers are in general employed to deal with inaccurate modelling 

and uncertainties.

They are designed to achieve objectives such as insensitivity to parameter uncer­

tainties and unknown payload variations and to obtain decoupled joint response. 

There are various ways of classifying adaptive controllers. It could be on the ba­

sis of the control objective which results in a particular controller structure, or 

whether the update of the parameters is done according to the error between the 

estimated parameters and the true parameters (prediction error), or the difference 

between the actual and the desired output (tracking error).

Another approach can be based on whether there is any approximation involved or 

not. The non-approximation methods generally consider the nonlinear dynamics 

of the manipulators fully, which are time varying and reflect their coupled nature. 

The main bulk of recent work in this area utilise the idea of being able to select 

a set of parameters that the manipulator dynamics depend linearly upon and as 

a result the restrictive assumptions such as slow variation of inertia m atrix or de­

coupled motion of the joints can be lifted. This certainly also gets round having 

to linearly approximate the dynamics around a desired trajectory too.

Finally the type of measurements required can form the basis for classifying adap­

tive controllers.

In the following sections first of all nonlinear feedback control algorithms for ma­

nipulators, and some methods that have been developed to take advantage of the 

possibility of linear parameterisation of manipulator dynamics are discussed.

As classification of the form stated above might confuse the issue, some main 

schemes are discussed on the basis of the authors that presented them. They
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basically cover most of the variations. In all cases global convergence of the algo­

rithms have been shown.

Then linear perturbation adaptive control, model reference and self-tuning adap-- 

tive controls, robust control and in particular variable structure control applied 

to robot manipulators and an adaptive controller based on the idea of estimat­

ing the load mass that the robot carries are discussed. Finally a new method 

namely a model-based variable structure self tuning adaptive control is presented 

which decouples the dynamics and accounts for nonlinearities before applying a 

variable structure self tuning controller to each joint of the manipulator. This 

is usually implemented by first designing a non-linear feedback to transform the 

robot model into an equivalent linear system, and then use a linear controller for 

achieving desired closed loop response of the joints.

Although the above does not include all the approaches in adaptive control of 

robot manipulators, it represents a reasonable cross section which other methods 

are slight variation of. In the last section, miscellaneous methods which are of 

importance will be mentioned.

Where necessary issues of convergence and robustness will be included.

6.2 Some non-linear feedback control algorithm s 

for R obots

In this class of controllers, the dynamic robot model is utilised to control the robot 

joints.

There are three main points to note, firstly the exact knowledge of the robot 

dynamic model is needed, second, the calculations of the equations need to be 

performed on line in real-time when implementing the scheme, so speed of compu­

tation ought to be considered, and finally the scheme is not robust in the presence
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of modelling and parameter errors. In this section the general methodology be­

hind this model-based approach will be given and then the work which has been 

done will be looked at.

The dynamics of the robot manipulators was discussed in a previous chapter. The 

structured closed form dynamic robot model for rotary joints can be represented 

as

M ( 0 ) 8  +  Q(O,6)  =  t  (6.1)

where 0 represents the joint angles, M  the inertia matrix, and Q the vector of 

centrifugal and coriolis forces.

This provides physical insight into the nonlinear system. It should be noted 

that the inertia matrix can be shown to be positive definite over the entire work 

space as well as bounded from above since it contains only polynomials involving 

transcendental functions of 0 .

The equation can be brought to the state-space form by letting

A  / n  A
x  =  ( 0 , 0 )  ; u  =  r

to get

Xx =  x 2
(6.2)

x 2 =  - M  1( x 1) [ Q ( x 1, x 2) - u ]

Actuator (motor) dynamics should be included in the dynamic equations of the 

manipulator to give a realistic model of the robot behaviour, the way which was 

stated earlier, or similar to the method of Tourassis [91], in which the dynamic 

model of the actuator of joint i is represented by a second-order differential equa­

tion

JAitii +  FAidi +  ^ ^ K A i U i i t ) ,  for i =  1,2, • ■ ■, jV (6.3)
1VAi

where Ja% is the motor inertia, Fjxi the motor damping coefficient, N&i the gear 

ratio, K ai the gain, n( t )  the the actuating joint torque, and Ui(t) is the input 

voltage.
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Also
JP D  . K tI<B 1 j r  K tFAi =. B  H------- - — and K Ai =

R  M N AiR

B  being the motor damping constant, K t , the torque constant, R  the armature 

resistance, and K b , the back e.m.f constant.

Then the constant actuator inertias scaled by the squares of the gear ratio are 

superimposed on the diagonal elements of the inertia matrix, and the reflected 

motor torques are directly added to the Q vector.

Sometimes the dynamic equations are represented in the form

M(0)0 +  C(0, 0)0 +  G(0) = r  (6.4)

where compared to equation 6.1 (7,the gravity dependent terms are represented 

separately.

The adaptive control implementation of Craig et al. [16] etc. suggest replacing 

M , C, and G by their estimates. In other words, based on the representation of 

equation 6.1 the actuating torque signals required to control the robot model are 

calculated from

r(t)  =  M(0)u(t) +  Q(0, 0) (6.5)

where circumflex represents the estimated values, and u{t) is the control signal, 

which is designed to be the superposition of a nominal feed-forward signal r(t) 

and a linear state-variable feedback control signal.

Equating the torques in 6.1 and 6.5:

M{0)0 +  Q(0,0) =  M{0)u(t) +  Q(6>, 0) (6.6)

and adding M0  to both sides and then rearranging, the following equation is

obtained:

£ =  « (* )+  ‘ ~1{ [ M{ O) - M{ O) ] $  +  [ Q( 0 , 0 ) - Q( e , 8 ] }  (6.7)

This can be written in a simple form:

0 = u(t) +  s(t) (6.8)

92
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Figure 6.1: Nonlinear feedback

The block diagram representation of this strategy is shown in figure 6.1.

The control signal is equal to

u(t) = r(t) -  K v(0 -  v) -  K P(Q - v )

where u(t) represents the measurement noise vector, and I{v and K v are the 

velocity and position feedback gain matrices respectively.

Substituting u(t) into equation 6.8, we get
+

9 -f K v '(9) +  I<p9 = r ( t ) -f s(t )Kvi) +  K pv

This is the closed loop system including modeling errors and measurement noise. 

The dynamic equations of the manipulator, in addition to being used in control 

schemes that will be discussed, can also used to study asymptotic tracking of 

desired joint positions. For example it can be shown that a PD controller of the 

form

u = K PS -  K d 9 (6.9)
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where 6  =  0d — 0 and K v and K v are diagonal matrices of positive proportional 

and derivative gains, achieves zero steady state error [87] in the absence of gravity. 

As described in [87], considering the Lyapunov function candidate

V =  10t (M(0))9 + 1 9t Kp9 (6.10)

where V  is positive except at 6  = 6 <i, 0 — 0  where it is zero.

It can be shown that along any motion of the robot V  decreases to zero. Since Oj 

is constant

V  = 9t (M (0))0 + \ e TM{6)0 -  BTK„e (6.11)

Solving for M0  in the dynamic equation of the form

r(t) =  M(0)0 +  C(0,0)0 + B0 + G(0) (6.12)

where B  represents damping coefficients, with gravity terms equal to zero and sub­

stituting the results in the above equation and using the skew symmetric property 

of the dynamic equations M  — 2C, with the PD control law substituted it can be 

shown that

V  = - 0 t [Kd  +  B]0 <  0 (6.13)

as long as 0 is not zero, V  is decreasing.

The possibility of the angles not being equal to their desired values when the 

angular velocity is zero is ruled out by assuming V =  0, then equation 6.13 

implies that 0 = 0 and hence 0 = 0. From equations of motion with PD control

M0  +  Q(0,0 =  —K P0 -  K d 9

—K p0 must equal zero, so 0 =  0, 0 =  0. Using LaSalle’s Theorem that states: 

Given the nonlinear system x =  f{x)  on supposing a Lyapunov function 

candidate V  is found such that, along solution trajectories V  <  0 then the system 

is asymptotically stable if the only solution of the system satisfying V  = 0 is the 

null solution, the system must be asymptotically stable.

This study further shows that in the presence of the gravity term in the dynamic
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equations, the PD controller alone cannot guarantee asymptotic tracking and 

modifications to cancel the effect of the gravity need to be included.

For the purpose of control, the methods which are discussed in the next section 

utilise some properties of the equation of motion of manipulators.

Three main properties are

• Symmetric, positive definitness of the inertia m atrix and for revolute joints 

the boundedness of it and its inverse.

• Ability to write the dynamic equations in a form that is linear in some 

parameters of interest such as masses, moments of inertia etc.

• If we represent the dynamic equations in the form 6.4 then M(0)  — 2C(0, 0) 

is skew symmetric

Using these, global asymptotic stability can be established. In cases where filtered 

acceleration is used in methods the third property is not needed.

6.2.1 M ethod o f G oodw in and M iddleton

This method is described in [67]. Presenting the dynamic equations of manipu­

lators in the form of equation 6.4, linear parameterisation is used to obtain the

model in the form

t  =  Ti(0,0,0)a (6.14)

where Yi is a non-linear matrix function of the angles, and their first and second 

derivatives, and a is a vector of equivalent parameters

Then the acceleration terms are eliminated from the above equation by filtering 

both sides of the equation through an exponentially stable and strictly proper 

filter shaped to effectively filter out high and low frequency disturbances. 

Convolving both side of the equation by w(t), the impulse response of the filter, 

and eliminating 0  by integrating by parts the following equation is obtained

y(t) =  W(0,0)a  (6.15)
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where y is the filtered torque and W  the filtered non-linear matrix function Yi . 

Then a prediction of the filtered torque and a prediction error can be generated 

based on the estimated parameters a from the adaptation law

y(t) =  W(9,0)a(t)e  =  y — y =  Wa  (6.16)

with a = a — a being the estimation error.

6.2.2 M ethod o f S lotine and Li

The method is introduced in [83]. Again representing the dynamic equations of 

the manipulator in the form 6.4, the estimated parameters a(t) are substituted in 

M (0 ), C(9,9) and G(0) to obtain M, C and G. The control law is written as

r  =  M{0)0r +  C(0,9 ,9r) +  G(9) -  I<Ds (6.17)

This equation represents an adaptive feedforward action to adaptively cancel the 

robot dynamic forces, and a PD action regulating the tracking error to zero.

And the adaptation law is

h(t) = - p 0 Y T(9,e,er,er)s (6.18)

where K d thqt can be time-varying is a uniformly positive definite matrix, the 

adaptation gain P0 is a constant symmetric positive definite matrix, and

0r = 0d -  A0

which is introduce d to guarantee convergence of the tracking errors, rather than 

just the velocity errors.

s = 0 - 0 r = 9 + A0 (6.19)

where 0 = 9(t) — 0d(t), and A is a constant positive definite matrix.

This is a measure of tracking accuracy and is used to drive the parameter adap­

tation.
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Matrix Y  of equation 6.18 is defined by

M(0)0r +  C(0,9)9r +  G(0) = Y ( 0 ,0 , 6 r, 9r)a

Y  can be calculated from measurements of only 9 and 9, as

0 r = 0 d - A O

Global tracking convergence of the adaptive controller, is shown by first of all 

substituting the control law into the manipulator dynamics and obtain the closed- 

loop dynamics

M s  +  (Kd +  C)s =  Ya  (6.20)

And considering the Lyapunov function candidate

V(t) = \ [ s t M s  +  ar P0- 1a] (6.21)
oA 'A

V , >/ *
as well taking to account the skew-symmetry of (M  — 2(7), the following - resulted

V(t) = - s T K D s <  0 (6.22)

As a result boundedness of s and a and convergence to zero of both position error 

and velocity error is shown. However exponential convergence of the tracking 

errors in the presence of persistent excitation has not been shown.

6.2.3 A nother m ethod of S lotine and Li

An approach that uses both tracking error and prediction error for their adaptation 

law was presented in [84]. Using the same symbols as the previous method, in 

this method the adaptation law has the form

h(t) = —P(t) (YTs +  W TR(t)e) (6.23)

W  being the filtered value of a nonlinear matrix function of 9, and 9. R(t)  

is a uniformly positive definite weighting matrix, and P(t)  is uniformly positive 

definite gain matrix.
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The form of the control law and the closed loop dynamics are the same as the 

previous method.

In [85] they show the global asymptotic and exponential convergence of the track­

ing errors and parameter errors for the above adaptation law. The convergence 

analysis uses the Lyapunov function candidate

V(t)  =  s t M s  +  aT P~x a] (6.24)

They also show that the method has faster parameter convergence and better 

tracking performance compared to the previous method, by simulation.

P  can be generated using the gain update technique of various parameter estima­

tors. Slow convergence of the gradient method and unsuitability of the standard 

least squares for time varying parameters led them to study parameter estimation 

methods such as bounded gain forgetting and cushioned-floor method [56] with 

desirable robustness and convergence properties.

In this method like the previous one discussed, there is no need for measurement 

of joint acceleration or for inverting the estimated inertia matrix. In fact it is 

an extension of the previous method in the sense that the tracking error in this 

method is essential to the Lyapunov convergence analysis.

6.2.4 M ethod o f Craig

A description of this method can be found in [16]. In this proposed control law in

the ideal case of perfect knowledge of parameter values and no disturbances, the

gains of the closed loop dynamics may be chosen to place the poles of the system, 

and is of the form

T = M(0)6* + Q( 6 , 6 ) (6.25)

where circumflex represents the estimates and

0* = §d +  K VE  +  K PE  (6.26)
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E  representing the difference between the desired and true values of the angles. 

Including the control law in the dynamic equation of the form

t = M{0)0 + Q(0,0)  -  (6.27)'

the following error equation is obtained

E  + K VE  + K PE  = M -\0 )[M (9 )0  + Q(6,0)] (6.28)

where t i l d e  represents errors in the dynamic model used in the controller, i.e. the

difference between the estimated values and the actual values.

The error equation is written in the form

E  +  K VE  +  K PE  = M ~ 1(0)W(0,6,0)$  (6.29)

$  being the r  x 1 vector of parameter errors and W  an n x r  matrix of functions.

The filtered servo error

Ei = E  +  ^ E  

where =  diagfyi fa  ” m ?/>; > 0

is used, so that parameter estimates can be changes as a function of this. This is 

the adaptation law.

The criterion for choosing is that the transfer function

s +  ipj
S “f" l^vi & 4 "  kpi

is strictly positive real.

In the state space form the filtered error equation is given by

X  = A X  +  B M ~ 1W $ E 1 =  C X  (6.30)

where A,f?, and C are block diagonal with the matrices of a minimal state space

realisation of the filtered error equation on the diagonal, and X  is the collection 

of state vectors.

Then Lyapunov theory is used to derive the following adaptation law

P = T W t M - 1E 1 (6.31)
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Also the parameter update law is augmented to restrict the parameter estimates 

within the bounds defined.

In this method stability of the adaptive system in the sense that all the signals 

remain bounded is shown. Also convergence of the servo errors to zero is shown. 

A condition on the desired trajectory such that all parameters will be identified 

after a sufficient learning interval was derived in this work.

Practical applicability of the above method is questioned for two reasons, firstly 

the requirement to measure joint acceleration is noise prone and secondly the 

inversion of the estimated inertia matrix which is assumed to remain uniformly 

positive definite in the course of adaptation is computationally expensive.

6.2.5 M ethod o f Sadegh and H orowitz

As explained in [77], this method exploits the skew symmetry property of the 

manipulator dynamic equations. When the dynamic equation is written in the 

form of linear in the parameters, the matrix of known functions is independent of 

the joint acceleration, which is an advantage.

The method can be easier analysed if its presentation is based on a theorem 

considered in [71].

The theorem is as follows with different notations:

Let t —> 6 d(t) be a given twice differentiable function and define e(t) =  0(t) — 0d(t). 

Consider the differential equation

M(0)r  +  C{0, 0)r +  K vr = (6.32)

where M  and C are as in 6.4, K v =  I(% > 0, r is given by

r =  F(s)~1e (6.33)

where F(s)  is strictly proper, stable, and the mapping — r —> ^  is passive, i.e.

Tf  — rT(t)^( t)dt > —/3 (6.34)
Jo
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for all T  and for some (I >  0. Then e E L% C\ L 3, e € TJ, e is continuous and

e —► 0 as t —* oo. In addition, if is bounded, then r —> 0 as t —* oo and as a

result, e —̂ 0.

Given the system dynamics 6.4, the control law is chosen as

r  = ,M(0)a +  <7(0,9)v +  G{0) -  K vr (6.35)

where r  is defined as r = 9 — v,

v = $d — sK(s)e; a = v — 9 — K(s)e

for I<(s) — K p +  KdS +  K i /s ,  an outer loop PID control law.

Substitution into 6.4, gives

M4 + C 6  + G = Ma + Cv + G -  K vr (6.36)

Since 9 = r +  a and 9 =  r +  u,

M r  +  Cr  +  K vr =  Ma  +  Cv +  G (6.37)

The left hand side of this equation is identical to equation 6.32 and if the right 

hand side is arranged in the form of a matrix of known functions (being a function 

of angle, angular velocity, v and a, which depend on the velocity and acceleration 

of the reference trajectory) multiplyed by a parameter vector.

Y ( 0 j , v , a ) $  = V

Parameter update law

$ = - r - ^ r

for some symmetric positive definite matrix T, is used such that the mapping 

—r —► $  is passive.

3Standard Lebesgue spaces Loo and ■ I 2 are defined as L^0(R+) =  { f ’R+ —■y
R n such that /  is Labesgue measurable and ||/||oo <  00} and ^5(-^+) =  { f :R+
Rn such that /  is Labesgue measurable and ||/||2  <  00} respectively.
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6.2.6 C om m ents

The above methods take full consideration of the nonlinear and coupled nature of 

robot dynamics and can be regarded as globally convergent.

However they do not give any account of the transient performance or any discus­

sion on nonuniformity of asymptotic stability that can lead to instability in the 

presence of small changes in the dynamics.

These issues were recently discussed in [71], where they propose possible modifi­

cations to alleviate the problems. They discuss persistency of excitation, update 

laws, and robustness, but not the effect of unmodeled dynamics or bounded dis­

turbances on these methods.

6.3 Linear Perturbation A daptive Control

This method involves the use of perturbation feedback control to control the 

manipulator in the vicinity of a desired trajectory. The formulation reduces the 

nonlinear control law to a linear one.

A nominal trajectory is used to obtain nominal torques using N-E equations of 

motion. Then nominal states from the planned trajectory and the nominal torques 

are used in the manipulator dynamic equation to get

xn(t) =  / K W ,  un{t), t) (6.38)

where n denotes nominal.

Then dynamic equation is linearised about the nominal trajectory using Taylor 

series expansion and 6.38 is subtracted from it to obtain

Sx(t) = V xf \ n8 x(t) +  V uf \ n6 u(t) (6.39)

where V a,/|nandVu/ | n are the gradients of f ( x , u , t ) ,  evaluated at x n and un re­

spectively, and 8  represents the difference between the actual and nominal values. 

The control problem is then to determine 8 u(t) that drives 8 x(t) to zero and the
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system remains asymptotically stable.

The gradient functions above are complex and are not known exactly, so an adap­

tive approach is needed.

Lee and Chung [52], discretise the model and by assuming the parameters of the 

system are slowly time varying, all state variables are measurable, and measure­

ment noise is negligible, use recursive least squares for identification and employ 

a coupled linear quadratic controller.

Their scheme presents a heavy computational burden that slows down the adap­

tation rate in real time, as Qn2  parameters need to be estimated on line, n being 

the number of links.

Takeyaki and Arimoto [90] by using an approximated robot model investigated 

an adaptive control law for 8 u based on MRAC Lyapunov design technique, and 

by simulation demonstrated the effectiveness of their method.

Vokobratovic and Kircanski [96] presented a method based on asymptotic regula­

tor properties that relied on linearisation of the dynamic manipulator model along 

a given nominal trajectory. It also involved an algorithm for synthesis of a robust 

linear regulator to ensure the decoupled control of the system.

The resulting equation of the linear perturbation method is in general time vary­

ing because of nonconstant nominal trajectories, and hence determination of the 

stability of the system is difficult.

Bounds on the error terms can be imposed and then the stability of the linear 

system can be investigated.

6.4 M odel Reference A daptive Control

This method was originally introduced by Whitaker in 1958, basic ideas of which 

are given in [73]. This method was applied to robotics by Dubowsky et al [19]. In 

this method a model which gives a desired performance response is chosen, and the 

the difference between this and the system’s response is the basis for adjustment
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of the controller’s parameters in order to provide a suitable control input to the
s

plant. Usually the desired reponse is chosen to be a stable linear time invariant 

decoupled system.

The adaptation algorithm is designed based on asymptotic stability requirements 

of the MRAC. Lyapunov, hyperstability criteria etc. have been used to ensure 

stability. There are various ways of implementation, a continuous-time direct 

method could be summarised as follows 

Defining the plant as

v(t) =  ^ “ (0  (6-40)

where u is the control input, y the plant output, and A  and B  are polynomials in 

the differential operator. We assume that the system is proper (i.e. degA > degi? 

) and A  is monic (its first coefficient is unity).

Let the model which gives the desired response be represented by

Vm(t) =  ~ u c(t) (6.41)
A-m

where uc is the command signal and A m and B m are polynomials in the differential 

operator.

A general control law

Ru = T u c — Sy  (6.42)

where R, S, and T  are polynomials, can be used.

Eliminating u between equations 6.40 and 6.42,

(AR  +  B S )y  =  B T u c (6.43)

Factorising B

B  = B +B~  (6.44)

where B~  represents the factors that contain poorly damped or unstable zeros 

that can’t be cancelled. The assumption that B + is monic, assures the uniqueness 

of the factorisation.
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Now equating the closed loop system’s response and the desired response:

B T  B m
A R  T  B S  A m

But A R  -f- B S  must have A mB + as a factor to obtain the desired closed loop 

response i.e.

A R  + B S  = A mB +A 0  (6.45)

Therefore
B + B - T  B m
B ^  AQAm A m

where A q is interpreted as observer polynomial. Hence

B - T  _  B m 
A qA jji A m

which means

B jrA q = B  T  

But B + divides B m and as a result

B m = B  B,m
(6.46)

T  = B'mA 0  

In Diophantine equation 6.45 B + divides R

R  =  B +Rx (6A7)

Now if we divide 6.45 by B +, we get

ARi  +  B  S  = A QA m - (6.48)

Equations 6.46, 6.47, and 6.48 give the controller polynomials.

In the case of a minimum phase system, a controller that cancels all the system

zeros can be used, then AoAm = AR\  + boS then if we multiply by y and use the

model equation

AoAmy =  b0(Ru  +  Sy)  (6.49)
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The polynomials on the left-hand side are known and can be used to estimate the 

unknown controller parameters on the right.

For pole placement design for example, A 0  is specified and R  and T  are found 

from equations 6.47 and 6.46 and substituted in the controller of equation 6.42. Ri  

and S  should satisfy equation 6.48. In addition pole excess of the model cannot

be smaller than the pole excess of the system and the degree of the observer

polynomial should be sufficiently large.

Once a suitable structure is chosen, then an error model is derived. The error 

model should be linear in the parameters, except if the Gradient method is used. 

Tricks such as filtering and error augmentation is used to to derive the error 

equation.

Following the derivation of the error model, parameters can be updated using a 

law such as
dO , x
£  = TV® (6-50)

where, when using the Lyapunov stability

<p =  [“ Mc y ] T

where uc represents the command input and ?/, the plant output, e is the error. 

Representation of a model reference adaptive control is shown in figure 6.2.

In general although the method of MRAC is not computationally demanding, 

it is difficult to implement it and adaptation to disturbances is less than satisfac­

tory.

The method of [19], is entirely based on the Model Reference Adaptive Controller, 

and the adaptation algorithm is based on the steepest descent, followed by a sep­

arate stability analysis using linearisation.

The adaptation is based on acceleration error which requires measurement of the 

acceleration. The controller functions on joint basis and the coupling terms be­

tween joints are ignored. The computation of the torques requires the inversion
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Figure 6.2: Model Reference Adaptive Control

of the generalised inertia matrix which introduces difficulties for real-time imple­

mentation.

Later Tomizuka and Horowitz [34], improved on Dubowsky and DesForges ap­

proach and based their overall control strategy on MRAC in an inner loop, but 

included a PID fixed gain controller in the outer loop. Their design method is 

based on the hyperstability approach, and they explicitly consider the coupling 

among joints and the nonlinear terms in the manipulator equations of motion. 

They however, only presented simulation results to show that their control sys­

tem was insensitive to variations of manipulator configuration and payload.

Anex and Hubbard [5] implemented and evaluated the adaptive control of Tomizuka 

and Horowitz, giving insight into practical problems associated with implemen­

tation, although the structure of the manipulator that they used (Rhino XR-2) 

does not allow full evaluation of the algorithm as they suggested due to speed 

limitations.

They addressed disturbances due to Coulomb friction, gravitational loading, and
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actuator saturation.

They also developed a bond graph model of the manipulator which is simpler than 

usual models and allows all manipulator subsystems to be included in a uniform 

way.

They found that the manipulator has significant amount of Coulomb friction which 

is a nonlinear disturbance, that unless cancelled degrades the performance of the 

controller and had to include it in the model.

They also found that the motors saturated easily due to an integral gain term 

in the inner loop of the adaptive controller, which was not really needed for the 

elimination of the steady state error. This elimination was already being provided 

by the integral nature of the parameter adaptation of the feedback loop.

They suggested that due to the fact that a system can never be modelled exactly, 

the adaptive scheme should be modified slightly to make the reference model 

independent of the plant output.

6.5 Self-Tuning A daptive Control

In this type of adaptive control strategy, a set of desired controller parameters 

are found according to a design procedure for example minimum variance, lin­

ear quadratic, pole-placement, model-following etc., and an estimation method is 

used to estimate the unknown parameters. The estimation method can be least 

squares, stochastic approximation, etc. .

The starting point for self-tuning control was when Kalman in 1958 introduced 

a deadbeat controller combined with least squares estimation. However at that 

stage an analysis of the closed loop system was not given. Then it was Wies- 

lander and W ittenmark [100] who based their design on minimum-variance and 

least-squares and some consideration was given to uncertainties of the estimates. 

Astrom and Wittenmark [6] presented analysis of the asymptotic properties of a 

direct self-tuning control whereby controller parameters can be estimated directly.
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In the minimum variance design, a prediction model that allows prediction of the 

output d steps ahead is estimated, and this model is used to determine a control 

signal that brings the predicted value to a desired value.

A similar type of controller was also developed by Clarke and Gawthrop [14] known 

as generalised minimum variance, which unlike the minimum variance method 

does not result in large control signals. It decreases the variation of the control 

signal by generalising the loss function to contain a penalty of the control sig­

nal. It resembles Linear Quadratic self tuning, but with a reduced computational 

burden due to simplification of the problem on the basis of one-step ahead loss 

function.

The idea of self-tuning adaptive control can be seen by the block diagram repre­

sentation of figure 6.3.

disturbances

SYSTEM■ o

PARAMETER
ESTIMATIONO

CONTROL
SYNTHESIS

CONTROL
ACTION

Figure 6.3: Self-Tuning Adaptive Control

As Landau [50] points out the limitations of the first generation of self-tuning 

controllers based on minimum variance, such as lack of robustness with respect to 

noise, unmodelled dynamics, and disturbances, lead to the development of pole
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placement, linear quadratic control and generalised predictive control.

Self-tuning controllers were originally developed using a discrete-time design ap­

proach, and a brief description of the operation of pole placement and model 

following self tuning in this context is as follows 

Defining the SIS0  plant as

=  B(q)u(t) +  C(q)e(t) (6.51)

where y is the output of the system, u, the input to the system, e(t) is a sequence

of independent equally distributed Gaussian variables, and A, B , and C are poly­

nomials in the forward shift operator q.

For pole-placement and model following, the desired closed loop response can be 

specified by the following with notation similar to MRAC.

A m(q)y(t) =  B m(q)uc(t) (6.52)

and the controller of the form

R{q)u(t) = T(q)uc(t) -  S(q)y(t) (6.53)

The Diophantine equation is

ARi + B ~ S  = A 0 A m (6.54)

variables in paranthesis are not shown for simplicity where

B  = B +B~  (6.55)

B m =  B~B'm

T  = AoB'm (6.56)

R  =  B +Ri  (6.57)

These equations are the basis for various design problems, once causality of the 

controller is ensured.



CHAPTER 6. CONTROL OF RO BO T MANIPULATORS  155

6.5.1 Indirect design

The closed loop transfer function B m/ A m and a desired observer polynomial A 0  is 

specified and then the coefficients of A , B , and C  are replaced by their estimates 

in equation 6.51 and then equation 6.54 is solved to obtain Ri  and S. T  and R  are 

then found from 6.56 and 6.57. The control signal is then calculated from 6.53.

6.5.2 D irect design

The model of equation 6.51 is reparameterised in i?, and S.  One way of 

reparametrisation is by multiplying equation 6.54 by y(t) and using equation 6.51 

to get

R\Ay( t)  +  B~Sy( t)  =  A QA my(t) 

R 1 B u ( t ) A B ~ S y ( t ) A R i C e ( t )  =  A 0 A my(t) (6.58)

B~(Ru(t)  +  Sy(t))  +  RiCe(t)  =  A 0 A my(t)

Estimating B ~, R,  and S  means that the controller polynomials S  and R  can be

found directly. Following this, using equation 6.56 control signal can be obtained 

from 6.53.

6.5.3 C ontinuous-Tim e approach

This approach was developed by Gawthrop, for details see [24], in which controller 

design is carried out in continuous-time based on a continuous-time representation 

of the system, and after a continuous to discrete transformation, a discrete-time 

control is implemented.

A observation made by Landau [50] is probably a good starting point for justifying 

a continuous-time approach to the design of self-tuning control. He explains that 

experience with various applications show that the assumption of the plant being 

represented by a discrete-time model with a stable inverse and a fixed delay is not 

realistic except for special applications. He then goes on to point out that even 

successful applications have required a careful selection of the sampling frequency
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which is a lengthy process..

The advantages of employing a continuous time approach are listed in [24]. Briefly 

these are that system characteristics such as relative degree, and zero location 

can be directly addressed, control engineers find interpretation of continuous time 

results easier, and there is no need for considerations given to controller sampling 

interval before and during the design.

The SISO system is represented by the Laplace transform equation

y(s) = (6‘59)

where y is the system output, u, the system input, and u, the disturbance input. 

The polynomial A(s) is the system denominator, B (s ), system numerator (con­

trol signal), and C(s) is the system numerator (disturbance) and is regarded as a 

design parameter. The choice of C(s) does not affect the dynamics of the system, 

as far as the control signal is concerned, and it only affects the interpretation of 

the disturbance term v. The choice of C(s) should ensure its stability and its 

degree should be equal or less than one to the system denominator. A constant or 

stepped disturbance term can be included in the system model by letting initial 

values of B  and A  be zero, while initial value of C is non zero.

Extending the idea of Smith’s Predictor, which uses an inverse delay (unrealis- 

able) to remove a delay from the loop gain of the system by means of emulating 

the unrealisable component (inverse delay) through realisable transfer functions 

operating on the system input and output, to also cancel out a high relative degree 

and zeros with positive real parts.

The unrealisable transfer function that cancels the aforementioned undesirable 

components, generates quantity <j> from the system output as:

<f> = eSTj ^ y ( s  ̂ (6-6°)

and as a result the net delay should be reduced to zero through esT, the net relative 

degree should be reduced to zero when deg(P) — deg(Z) =  deg(A) — deg(B),  and
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the net number of unstable zeros should be reduced to zero when the denominator 

of the unrealisable transfer function contains all the unwanted factors of the system 

numerator.

An emulator can be designed to equal the unrealisable quantity (f> in the absence 

of disturbances:

substituting for y in equation 6.60 from 6.59, and for simplicity not including (s), 

we get
- P B _  ,TP C _  , x
't> = Z A jl + e A Z 5 (6'61)

By construction the transfer function that multiplies u is realisable, but the one 

multiplying v is not. Now dividing the later transfer function into realisable and 

unrealisable, that is :

e n -  u  +  ^  (6-62)
unrealisable realisable 

where deg(F) ‘/^deg(A). Substitution of this decomposed transfer function into 

6.61, gives
t  P B _  F _  ~ E _
<t> = y x u + A v + e z v 6̂'63^

Now (j)* can be defined as
P B  _ F_

4> =  j j u  +  - V  (6.64)

v can be eliminated from the above equation by using the system equation 6.59

7, E B  _ F  _ -
<j> =  Y q u + q V (6 -65)

We can also define e* as

So that

e*  =  e s T ^ - v  ( 6 . 6 6 )
/j

(f> = (f>* --f e* (6.67)

This emulator can be incorporated in a feedback loop, replacing the output in 

a conventional control law. In other words if 1 /Q(s)  represents the controller, the
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feedback control strategy will be 

where u)(,s) represents the set point.

A block diagram illustrating the above can be seen figure 6.4.

EB /  CZ

Figure 6.4: Feed back loop representing the emulator

It is easier to analyse the emulator, by replacing the explicit expression for the 

emulator represented in equation 6.65 by 6.67 in an equivalent feedback loop. 

The expressions for the properties of the closed loop system are:

Notational loop gain

l = 1q™ a  ^

Closed loop system output

y = ----------------[e~sTw +  e*l -f- Q  — v (6.70)
y P B  +  Q Z A  1 v  P B  + Q ZA K }

Closed loop system input
L Z A _ f ^

u =   ------~=— z  (6*71)
1 +  L P B  v '
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where z is the equivalent set point equal to

F _z =  w  -v
A

A block diagram representation of the equivalent feedback loop is shown in figure

6.5.

C (s)
A(s)

B(s)-s T
o A(s)Q(s)

Z(s)

Figure 6.5: The equivalent feedback loop

By selecting particular values of P , Q , C and Z , particular control laws can 

be chosen, for example

• Smith’s method by selecting P  =  1, Z  =  1, and C = A

• Model reference control by selecting Z  — 1, and Q — 0

• Pole placement control by selecting Z  =  B,  and Q — 0

• Weighted pole placement and model reference control by selecting Q to be 

non zero in both cases, typically small at low frequencies to give exact model 

matching, and large at high frequencies.
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When the system is not exactly known, the emulator does not emulate the de­

sired unrealisable transfer function directly, hence poor and unstable closed loop 

performance v results ■.

In this case, the emulator is combined with a parameter identification algorithm 

to give a self tuning emulator. To do this the emulator equation is rewritten in 

the linear-in-the-parameter form:

-  FB F
^ " z o n+cg = - [s)i ( 6 - 7 2 )

where data vector X_ and the parameter vector 0 are given by

2C." '  L
x  = X, ; fi = fir

.£<  . Si
where

sn 

s"_1 . y  _  1u j —y q

sn
sn- i

V _  1y j £

S n  

sn- i

1--
---

-

I—*
i ■ i 1

H
__

i

and 0_ is given by

9o ' fo ' io

9i f l h
Hu = 5 (Ly — ; =

*.

9n J n in

Issues arising from the above approach including robustness, stability etc. can 

be found in detail in [24].

This method will be used in a later section in order to introduce a model based 

variable structure continuous time self tuning controller, in which the model of 

the manipulator is used in a feedback-feedforward linearisation method of the 

nonlinear system and then a continuous time variable structure self-tuning control 

is applied to each joint of the manipulator.
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6.5.4 Som e approaches based on th e self-tuning m ethod

In self tuning control, the controller gains are adjusted at the sampling instances 

on the basis of current measurements, and sensory information which is available 

at a sampling time in a suitable form can be utilised in the control strategy, hence 

the controller can adapt to environmental variations.

Its past performance on a task can be used to improve the present response and 

performance.

As far as robot manipulators are concerned, the task cycle and as a result the 

duration of robot’s motion is usually finite which is not quite the same as usual 

self tuner notion. This affects the stability studies, where in self tuning control 

usually the asymptotic behaviour of the system as the time approaches infinity is 

studied and these are local in nature.

The stability of a manipulator system with self-tuning controller has not been 

addressed and for a general six joint manipulator the determination of the global 

stability in the sense of Lyapunov for example is not within the realm of the 

designer, at least at present [49].

When the manipulator contains a self tuning controller as a sole controller with no 

cancellation of nonlinear terms, the stability of the system can hardly be proven. 

A self-tuning control scheme for manipulators was proposed by Koivo et al [48] 

in which coupling between the joints are expressed by a forcing term. These 

interactions are not fully compensated. In this controller, R and Q in the cost 

function are restricted to be constant. Desired joint positions and velocities are 

used, but no systematic computation of the feedback gains is given.

In this approach, an autoregressive model is proposed to model the motion of a 

manipulator and to design a controller for the system, motivated by the form of 

the multivariable discrete time model which can be obtained if the mathematical 

model of the robot is properly linearised about a nominal trajectory and then 

discretised by Euler’s method.
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The performance criterion to be minimised is

/*(«.) =  E{\\y(k + d ) ~  y \ K  +  d) +  || u (k ) fR/ ^ k  -  1)} (6.73)

where || • \\r  indicates the norm with weight R  ( ||if||fj =  uTRu  ), and R  is a 

positive semidefinite symmetric matrix, Q is a positive definite symmetric matrix, 

and yd(-) describes the desired path vector as a sequence of discrete points, relative 

to the admissible controls while satisfying the constraint equation

y (k) =  0T{k)(f){k -  1) +  e(k) (6.74)

Least squares is used for parameter estimation.

An adaptive controller for interacting joints (MIMO) was also presented, but they 

showed by simulation that when trajectories are compared, in the cases in which 

most estimated parameters had reached the steady state values, with the SISO 

case no relative improvements were observed, indicating that adaptive feature of 

the closed loop single variable model accounts at least partly for interacting ef­

fects.

Koivo [47] also introduced a MIMO discrete-time stochastic model to represent 

the motion of a robot gripper in cartesian coordinates. It is important to note 

that planning the manipulator trajectories in cartesian coordinates is preferred to 

joint interpolated trajectory planning. Amongst other reasons, this is due to the 

fact that in various applications, the trajectory is specified in terms of the end 

effector movement.

The R and Q of the cost function were extended to polynomials by Liu [60] and 

the parameters of these polynomials were adjusted on-line to achieve a closed loop 

pole assignment scheme with better performance. This scheme was then modified 

[59] by minimising the variance of a generalised cost function and estimating the 

parameters directly. The weighting factor in the cost is adjusted on-line to assign 

closed-loop poles. This was further improved, by introducing the nominal torque 

feedforward compensation of non-linear coupling among the joints along the de­

sired trajectory.
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A pole/zero placement approach was suggested by Linde et al [58] in which the 

inverse model of the manipulator is also incorporated and the robot plus the in­

verse show an almost linear behaviour. The resulting system is second order and 

system parameters are estimated and used to tune a pole/zero placement. It is 

noted that if B polynomial has a non-minimum phase character, the system be­

comes unstable.

Another pole placement STR was described in which a ‘black box’ approach for 

modelling a robot arm was used [39] and a third order model was considered 

appropriate. The model was then discretised. The resulting model is of non­

minimum phase. In this approach no knowledge of the components of the robot 

is requires and the model accounts for system elasticity and other system charac­

teristics. However the couplings between the joints are neglected.

Trajectory control is dealt with in [80] based on invertibility and functional repro­

ducibility results. Both joint angle and position trajectory controls are applied. 

In the latter case it is noticed that, the control has singularities on the boundary 

of the reachable zone. Robustness issues for small deviations is considered. 

Anticipatory action in the form of including subsequent desired joint positions 

(two step ahead) was introduced by [44]. This adaptive pole-assignment control 

scheme for robotic manipulators was deduced from the well established computed 

torque method. In computed-torque, the cross couplings and non-linearities are 

compensated for by a non-linear feedback law and the residual is controlled by 

state feedback. It should be noted that desired velocities and accelerations are 

also needed. The model is recursively identified to allow for the imperfections in 

the cross couplings and non-linearities.

Leininger [55] adapted Wellstead’s pole placement self-tuning algorithm to the 

closed loop control of multi degree of freedom manipulators, claiming that, as for 

non-minimum phase systems, the self tuners are very sensitive to system changes 

and pole shifting controllers developed by Wellstead do not attem pt pole/zero 

cancellation and are thus “more robust” than the methods of Astrom and Clarke
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and Gawthrop.

Koivo had used the self-tuning method of Clark and Gawthrop [14] which can be 

shown to be more robust than the model reference methods discussed earlier, and 

applied it successfully to joint control of the Stanford manipulator, but Leininger 

suggests that it is not appropriate for control of flexible manipulators or low mass 

(inertia) manipulators which may exhibit open loop unstable characteristics (Lya­

punov sense).

He used a modified version of the autoregressive model

(̂<Z-1)2/W =  ~  k) +  h(t — k) (6.75)

where all the symbols are used in their usual representation, and h(t—k) represents 

all unmodeled effects related to gravity torque and other joint coupled interactions. 

Tben this term is included in the unknown parameter vector of the parameter 

identification to be estimated, and according to the estimate h(t — k) the joint 

torque input u(t) is modified to eliminate the effects as

u'(t) = u(t) — h(t — k)/b0  (6.76)

The method is claimed to be suitable for the control of non-linear continuous time 

systems.

He then extended the approach to task level [54], where the dynamic interaction 

among the coordinate directions in response to joint actuation are learned on line, 

hence is in theory capable of correcting for link flexibility, joint compliance, fric­

tion and other fundamental nonlinear coupled interactions.

The proposed method assumes that error measurements in tool position, orienta­

tion, force and/or moment are available as required.
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6.6 R obust Control
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Generally when there is a need for faster response in the course of variation of 

preferably known range of parameters, a robust control design as opposed to adap­

tive control is sought. This seems quite a useful method to handle the problem of 

robot control.

There are various approaches for different applications, varying from robust high 

gain feedback control in which process uncertainties are explicitly dealt with, 

based on Horowitz’s observation that a system in which the Nyquist curve is close 

to a straight line through the origin can tolerate a significant change of gain, to 

variable structure systems, with discontinuous feedback, and the salient feature of 

occurrence of the so-called sliding mode on a switching surface where the system 

remains insensitive to parameter variations and disturbances.

In the case of high gain feedback control, it is impossible to know the attain­

ability of the desired closed-loop specifications before hand, and it leads to a 

trial-and-error method. This robust technique and others such as adjustment of 

gain matrices in the LQG scheme (keeping the loop gain less than one at high fre­

quencies), either have not been thought suitable or simply have not been applied 

to control robot manipulators.

However a number of authors have reported quite reasonable results based on the 

application of Variable Structure Systems.

6.6.1 Variable Structure Control

Control algorithms based on the theory of Variable Structure Systems (VSS) are 

designed in such a way that all trajectories in the state space are directed toward 

some switching surfaces, and once there, slide along them. The system response 

then only depends on the gradient of the switching surfaces and remains insensitive 

to parameter variations and disturbances. This property is important in rejecting 

effects due to Coulomb and viscous friction.
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The method consists of a non-linear feedback control that switches discontinuously 

on a specified surface, not allowing deviation of the natural trajectory of the open- 

loop system from this surface.

The VSC method is referred to as robust since it requires complete knowledge 

only of the terms in the existing dynamics that may become unbounded. In other 

words, the design of a variable structure control which includes sliding mode 

doesn’t require accurate modelling and it is sufficient to know only the bounds of 

the model parameters.

For a variable structure control system of the form

£(£) =  F (t, x, u); z € 7£n, u € (6.77)

control u is piecewise-continuous and is given by

u{(t, x) = ► i =  1,2, • • •, m  (6.78)
Ui+(t,x )  for 3;(a:) > 0,

U{ ~( t , x )  for sz(:r) <  0,

where s is the switching function, that can also be time dependent. Discontinuity 

surfaces are defined as Si =  {x : S{(x) — 0} and the intersection of an arbitrary 

number of them is the sliding surface when it attracts all motions originating in 

a neighbourhood (locally asymptotically stable with respect to the dynamics) [7]. 

If we consider each joint of a manipulator actuated by permanent magnet DG 

motors as a second order linear time invariant system and ignore the coupling of 

the joints, joint i will be represented by

x T =  (^1,^ 2) is angle, x 2 velocity

Xi =  x 2
(6.79)

x 2 =  ax2 — bu, a ,  b > 0 

The control law is of the form u =  U{Xi j ,  where ut- is defined by 6.78. As it is a 

second order system the switching line is defined as

s =  cx 1 +  x 2 =  0, c > 0 (6.80)
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where c is a design parameter, determining the response speed in sliding mode. 

The phase trajectories of the two linear time-invariant systems with iq- =  tq+ and 

with Ui =  u r  are combined to form the phase plane trajectories of 6.79 under the 

feedback control law.

As Utkin [94] points out, a property of variable structure systems is that an 

asymptotically stable system may consist of two structures, neither of which is 

asymptotically stable.

In the case of the above system, the phase plane trajectories are shown in figure

6.6, and as can be seen, one of the structures is marginally stable and the other 

is unstable.

REGION B

REGION A

REGION A

REGION B

Figure 6.6: Phase plane trajectory of a 2nd order VSS

If U{ is selected such that s and s have opposite signs in the neighbourhood 

of s =  0, motion constrained on the sliding line (sliding motion) occurs on s =  0, 

which is not part of trajectories of either linear structures.

The equation of the sliding mode then can be got from 6.80

X \  =  —c x  i

Robot dynamic equations are highly nonlinear, and to design a variable structure 

system systematic use of the rigid body model has to be made.
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For nonlinear systems, there is an additional factor to consider, and that is to 

ensure in the design that the system trajectories reach the switching line. This 

can be achieved by including the condition

ss < 0 (6.81)

A number of applications of sliding mode control to robot manipulators have been 

reported in the literature.

Young [107] applied what is known as the hierarchical approach, whereby sliding 

mode occurs on the switching planes that are higher in the hierarchy. That is to 

say initially sliding mode occurs on the switching plane Si =  0, and then on the 

intersection of the switching planes si =  0 and s 2 =  0 and so on until switching 

mode occurs on the intersection of all the switching planes. This method was pro­

vided in [94], to give robustness for VSS with multiple input, as in such systems 

the existence of sliding mode on the intersection of the switching planes can not 

easily be guaranteed. The hierarchy of control method replaces the multi-input 

problem by a sequence of single input problems.

The equation of the sliding mode that is derived is in terms of position errors 

and derivatives, and not position and velocity. It consists of six uncoupled first 

order linear systems, each representing the dynamics of a single degree of freedom 

when system is in sliding mode. The nonlinear interactions are eliminated when 

in sliding mode.

Young concluded that despite the discontinuous nature of the control signal, the 

manipulator filtered out some of the high-frequency behaviour caused by delay. 

One shortcoming of this method is that when hierarchical control is used, and it 

is assumed the trajectory lies in the intersection of all preceding sliding surfaces, 

there is a possibility that convergence to each sliding surface may only be asymp­

totic which renders the assumption invalid as pointed out by Slotine et al. [81]. 

Also the resulting control torques are excessive.
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The problem of excessive torque can also be seen in the work of Morgan and Oz- 

guner [68] who employed a dynamic coupling compensation.

Slotine and Sastry [81] introduced the concept of time varying sliding surfaces, 

by defining a solution concept for piecewise continuous dynamical systems with 

the surface of discontinuity varying with time, based on the results of Fillipov 

[22] on solution concepts of discontinuous differential equations. They used this 

to address tracking rather than stabilisation problems.

An undesirable characteristic of the behaviour of systems under sliding mode con­

trol is chattering which is attributed to non-idealities in control such as time delay, 

hysteresis etc. This can excite high-freqency unmodelled dynamics.

Slotine et al. modified their method by approximating the discontinuous control 

laws to obtain continuous control laws with smaller component of high frequency 

signal and lower control activity, at the expense of lower accuracy in tracking. 

This method was also faced with the problem of excessive torques.

Later Xu et al. [102] simplified the balance conditioning of Slotine [82] which 

varies the boundary of the control input interpolation, that smooths out the con­

trol discontinuity in a thin boundary layer neighbouring the switching surface, 

hence removing the chattering, according to the balance condition, to cut down 

the heavy computational requirements.

Bailey and Arapostathis [7], introduced a simple control law to ensure the stability 

of the intersection of the surfaces without necessarily stabilising each individual 

one, hence avoiding the high computational power and speed requirements of the 

methods above that attem pt to make each surface attracting in order to guar­

antee the asymptotic stability of their intersection. In their method Lyapunov’s 

second method applied to differential equations with a discontinuous right hand 

side is utilised in establishing asymptotic stability. They also utilise the structure 

of the manipulator dynamics to establish a sliding surface on the intersection of 

the switching surfaces.

Briefly, similar to the state space representation of the robot dynamic equation
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6.2, the state vector of the dynamics is taken to be

x=[ 0  o f

Letting 0di(t) and 0di(t) represent the desired position and velocity of the ith joint 

of the manipulator respectively, assumed continuously differentiable functions of 

time, the objective is to make the actual position and velocity track these values. 

The switching surface is chosen to be

Si(t, x) =  Si(t, 0, 0) =  Ci(0(t) -  0di(t)) +  (0(t) -  0di(t)) ; i =  1,2, • • •, n (6.82)

where ct- > 0 are constants.

Then introducing a Lyapunov-function candidate to be

V( t ,x )  =  \ s t M s  
z

where M  is the inertia matrix of the manipulator model

and using Koditschek’s identity [45] and the norm-equivalence property of the eu­

clidean space, both asymptotic stability of the switching surface and the property 

that every trajectory reaches the sliding surface in finite time is shown.

Yeung and Chen [103] proposed a scheme that takes advantage of the symmetric 

positive-definiteness of the inertia matrix to develop a control law that does not 

need taking the inverse of the inertia matrix.

They used the Lyapunov function V  =  sTM s  and not the condition 6.81 in their 

VSS controller design. They introduces an auxiliary set of planes to prove that 

the switching planes were stable, and then transformed the coordinates to get the 

results.

They used Slotine’s approach discussed above to deal with chatterings about the 

set point, and during the transient phase they eliminated chattering by confining 

the trajectories within a sector of the phase plane.

The approach presented in the next section will include a model based controller 

which is augmented with a continuous-time variable structure self tuning control.
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6.7 M odel-Based A daptive Control w ith  Load 

M ass Estim ation

Unknown or varying masses of the payloads that the manipulator carries, render 

dynamic model of the robot highly inaccurate creating varying operating condi­

tions as the inertias vary.

A way of estimating the mass of any load held by a manipulator gripper was de­

veloped in chapter 4.

A dynamic model of the robot in the linear in the parameters form is obtained by 

considering the gross motion of the first three links and an additional finite mass of 

zero length representing the unknown load mass, and symbolically manipulating 

the N-E equations of motion

r  — (Mi'S +  Q2 ) =  {M\0 +  Qi)rni,oadMass (6.83)

the symbols represent the usual notation and suffix 1 shows dependence on the 

load mass of the elements of the equation, 

or

^ = XffljjOddMass

and then recursive least squares can be used to estimate the load mass on line. 

The method is based on the state-variable filter approach that is used to estimate 

the parameters of continuous-time transfer functions as described in [27] etc. 

Incorporating a varying load mass in the dynamic model of a robot and estimating 

the value of it on-line, results in a better representation of the behaviour of the 

dynamic system. This certainly means that when a model-based control strategy 

is implemented the resulting overall system is more accurately decoupled and 

linearised.

A block diagram representation of a model-based adaptive controller with load 

mass estimation is shown in figure 6.7

As can be seen from the figure, the dynamic model of the robot includes a
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LOAD MASS 
ESTIMATOR

ROBOT

1 k p |

Figure 6.7: Model-based adaptive control with load mass estimation

parameter representing the varying load mass mioad. The load mass estimator 

takes values of the joint angles as well as the desired values of joint positions, 

velocities, and accelerations at each sample and using the algorithm discussed 

in chapter 4 provides estimates for mioad which is then passed to the routines 

that compute the dynamic equations. The remaining steps are the same as the 

computed torque method.

It should be noted that the actuator dynamics are also included in the model and 

in the control implementation for an MA3000 robot which will be discussed in 

the next chapter, the value of input voltages that need to be applied to the power 

amplifiers and in turn to the DC motors are calculated.

In chapter 4 using data extracted from an MA3000 robot, it was shown that the 

estimated load masses were reasonably close to their actual values.

In the next chapter, the improvements of this method as compared with the 

computed torque without load mass estimation will be demonstrated by means 

of implementing both schemes on a robot and comparing the resulting trajectory 

tracking errors, using a network of transputers.
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6.8 M odel-Based C ontinuous-tim e Variable Struc­

ture Self-Tuning Control

In this section a control strategy which is thought appropriate for robotic manip­

ulators is developed and in the next chapter its implementation on an MA3000 

robot using a parallel architecture is described. Experimental results in the next 

chapter provide a valuable means of comparing this scheme with the computed 

torque and the adaptive model-based method with load mass estimation of the 

previous section.

First of all, a model based controller is used to cause the cancellation of nonlinear 

terms in the dynamic model of the robot manipulator. As a result the coupling 

between the joints will be allowed for and each joint can be considered as a linear 

system.

This statement would be valid only if the dynamic model of the robot was known 

very accurately, which due to various factors is not realistic. Consequently if we 

were to employ a linear controller for each joint, the resulting performance will 

not be satisfactory.

To cope with the uncertainties and modelling inaccuracies, employment of an 

adaptive controller is quite an appropriate choice.

In this way variations from the modelled behaviour can be noted via measurements 

and after the system performance relative to the desired objectives are evaluated, 

corrective action will be taken in the system.

Adaptive controllers and their application to robotics were discussed earlier, and 

the advantages of a continuous-time design approach were briefly stated. The 

adaptive controller that will be employed is the continuous-time self tuning con­

trol of Gawthrop.

Robust control and in particular variable structure control schemes for robot ma­

nipulators were-also looked at in the previous section, and as it has been shown 

that they are quite suitable schemes for coping with parameter uncertainties, it
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will be useful to evaluate their performance on a real robot.

One area in the VSS context that has not been considered in the robotics ap­

plications is when feed-back control law uses output feedback with observers as 

opposed to full state feedback. This was pointed out by Slotine et al. [81].

In the emulator-based control that was discussed previously, where an emulator 

(kind of observer) is used to overcome the unrealisability of output feedback, as 

is shown in [18], if we let the control weighting equal zero it has the effect of 

replacing it by a relay with the system operating in the sliding mode.

However robustness properties of the above can be improved by using the de­

tuned version of the algorithm, where control weighting is chosen to be nonzero 

[24]. This is also described in [18], where the control weighting is fed back around 

the relay, giving the control law 6.68. This is depicted in figure 6.8.

u=u
RELAY

EB /  CZ

Figure 6.8: Detuned relay control

Sliding mode is obtained when transfer function Q -f G /C Z  has unity relative 

order. A first order low pass filter is added in the relay loop if Q has zero relative 

order.
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The block diagram of the overall model based continuous-time VS self-tuning 

method is shown in figure 6.9.

MODEL BASED 
CONTROLLER

ROBOT

Variable Structure 
Self-Tuner 

(Continuous Time Design)

Figure 6.9: Model-Based CVS Self-Tuning Control

The continuous time self tuning part of the algorithm will be implicit off-line 

design, details of which is described in [24], due to its robustness properties and 

the fact that an off-line design approach is used for implementation.

In the next chapter, the steps for implementation of this method will be included.

R o b u stn ess  and  s tab ility

The affect of the model based part of the algorithm will hopefully be to allow us 

treat individual joints as linear second order subsystems, in which case standard 

linear system analysis can be carried out for robustness and stability of the con­

tinuous time variable structure self tuners.

Compared to model reference adaptive control which tries to match the model at 

high frequencies [25], the continuous time self tuner can be made robust by using
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control weighting at high frequencies, but not at low frequencies.

An input-output approach as opposed to the state space Lyapunov and Hypersta­

bility approaches to stability is presented in [24] for the continuous time self-tuning 

controller.

Gawthrop in this reference points out that the advantage of using this approach 

is the availability of standard textbook proofs.

More specifically complete robust stability results are given for the implicit off-line 

design when the realisability filter (see next chapter for definition) is equal to one, 

and partial results are given when this is not the case.

Under ideal conditions, the continuous time self tuning scheme is shown to be 

globally stable [72] and in the presence of unmodeled dynamics, stability is 

preserved if a transfer function which depends on the control weighting polyno­

mial, the system and other filters, satisfies a small gain condition.

6.9 Some other m ethods for control o f robot 

m anipulators

Lim and Eslami [57] proposed two adaptive controllers for robot manipulators 

by using the Lyapunov method first, and then by introducing an auxiliary input 

applied to the input stage, a new adaptive controller is proposed with better tran­

sient response and fast convergence speed as shown by simulation.

Seraji [78] developed a "control scheme, structure of which was derived from linear 

multivariable theory with a direct adaptation law of model reference adaptive con­

trol type based on the Lyapunov method. The approach is composed of a feedback 

controller to provide a stable closed loop system with poles at desired locations 

in the complex plane and, a feedforward controller to cause the position vector 

to track the reference trajectory, plus an auxiliary input. It is applied in Cartesian 

space and measurements of the end effector position and velocity vectors in the
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Cartesian space. In this method only simulation results are shown.

Han etal. [29] presented an adaptive algorithm with a nonlinear reference model 

for an N  link planar robot with an unknown load. The stability of the error dy­

namics resulting from the nonlinearity of the plant and the model, is shown using 

the extended Lyapunov second method for persistent disturbances. To implement 

the scheme, it will be computationally very demanding.

Luo and Saridis [62] proposed an additional feedback implementation as minor 

compensating loops built around individual joints in the form of derivatives of the 

state variables by analogue techniques. This they claim helps to obtain robust­

ness against variations in open-loop dynamics and decreases the effect of nonlinear 

terms due to couplings in suboptimal control systems with quadratic performance 

indexes.

Tourassis and Neuman [92] compared the computed torque and the direct-design 

methods in the context of nonlinear feedback control for robots.

They point out that, in the direct design the reference signal is proportional to the 

desired joint coordinate vector, which results in a system of uncoupled transfer 

functions, the gains of which are chosen to ensure that the characteristic polyno­

mials are stable and meet the specified performance.

In the computed torque method, the reference signal is defined to be a linear 

combination of the desired joint position, velocity and acceleration vectors, which 

introduces zeros to cancel the poles of the closed loop system and leads to a unity 

transfer function. The closed loop transfer function in the case of the computed 

torque indicates that the method is ideally suited for trajectory tracking applica­

tions. They showed the validity of this by simulation.

Then they showed that neither approach is robust in the presence of modelling 

inaccuracies, unmodelled dynamics and parameter errors, and introduced the a- 

computed-torque that is meant to reduce the driving vector of the linear computed 

torque error equation and diminish the tracking error, and as a result enhance the
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performance of the system, by adding a compensating control signal to the com­

manded acceleration.

The efficiency and applicability of the method for cylindrical robots was shown. 

Khosla and Kanade [43] compared the trajectory tracking performance of the 

computed torque and independent joint controls. This is one of the very few real­

time implementation of the computed torque method, or indeed any model based 

scheme for manipulators.

Outperformance of the computed torque over the conventional independent joint 

control scheme in which no acceleration feedforward is introduced, in the absence 

of torque saturation is demonstrated .

Their experiments also show that even at low speeds the effect of Coriolis and 

centrifugal forces introduce trajectory tracking errors.

An, Atkeson and Hollerbach [3], presented some experimental results using the 

three link MIT Serial Link Direct Drive Arm to evaluate trajectory tracking of 

various controllers.

They established that feedforward control can improve the trajectory following 

accuracy significantly, especially at high speed movements. They also found that 

for light links, the unmodelled dynamics including the motor dynamics and fric­

tion, become significant.

In addition to the above, numerous other methods have been proposed for con­

trolling robot manipulators. Some of these methods tend to address the specific 

requirements of robots whereas others only apply methods from the established 

control theory without specific references to robotics.

Three controllers namely the computed torque, the adaptive model-based con­

troller with load mass estimation, and the model-based variable structure self­

tuner, were presented in this chapter and their simulations and experimental eval­

uations are the subject of the next chapter. These serve to demonstrate:

• The effectiveness of using a model-based approach to decouple and linearise 

the manipulator dynamics.
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• Further enhancements resulting from estimating the payload and addition­

ally augmenting the model-based controller with a self-tuner.



C hapter 7 

Control Im plem entation using  

Transputers

SU M M ARY

In this chapter parallel computations will be considered with par­

ticular emphasis on robot dynamic calculations and model based 

robot control algorithms which utilise the dynamic equations of 

the robot.

Three robot control schemes are implemented on an MA3000 

robot using a network of transputers, and the results are com­

pared based on the trajectory errors produced.

7.1 Introduction

A great majority of Robot control schemes have not yet been tried on real Robots 

to verify their effectiveness. The true effectiveness of these design theories can only 

be determined by way of actual implementation and experimental evaluation. By 

so doing relative merits between many design approaches can be meaningfully 

established.

The functions of a robot controller can consist of planning, organisation, coordi­

nation and decision making at the top of control hierarchy and, joint angle control
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at the bottom end. In chapter 2 robot control languages were discussed and a 

new scheme for comparison of these languages and a method of choosing an ap­

propriate one possessing all the needed attributes for a particular application was 

presented. The combination of Transputers and OCCAM  was suggested as an 

ideal way of dealing with the parallel nature of controlling robot manipulators.

In roboticS, the computational needs for processing of the external data and imple­

mentation of complex control strategies for tasks involving precision path following 

at high speeds, high band-width compliance and adaptive control, are quite in­

tensive.

However, partitioning of the computational tasks between various independent 

processors, which can operate in parallel and communicate with each other when 

necessary, can help alleviate the burden and allow real-time implementation of a 

desired control algorithm.

For control problem decomposition in general, although some parts of the algo­

rithm  can be considered to be efficiently mapped to a standard parallel archi­

tecture, a "Better performance can be achieved, by exploiting the inherent paral­

lelism of the algorithm first and then devising a suitable processor topology, which 

matches the number of processes and has identical communication structures, in 

relation to the developed parallel algorithm.

Usually for robot control, the subtasks obtained from a decomposition tend to

be fewer in number, but more complex than those obtained in other context, for

example signal processing. As a result coarse-grained parallelism, in which there
rv

is a small number of processors, each faily powerful and loosely coupled seem more 

suitable.

The ability of different processors to execute different instructions at any given 

point in time i.e. MIMD (Multiple Instruction Multiple Data) is also desirable. 

The Transputer, being general purpose, capable of high speed processing with 

extensive capabilities is a relatively low cost processor which suitably fulfills the 

robot control computational requirements stated above.
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In a previous chapter, the Robot-Transputer Network Interface was described. 

Here the system is used to study the performance of the transputers, for robot 

control applications. Different parallel architectures are utilised, to achieve re­

quired system performance, with a reduced computational time.

Some potentials of the Transputer as a fast single processing unit and its capabil­

ities as part of a parallel network, for implementation of advanced robot control 

algorithms are presented.

As a result, the possibility of implementing advanced controllers at relatively low 

costs which are demanded by high precision applications, but robot manufacturers 

have not yet responded to, is demonstrated.

The superiority of the Transputer in terms of cost/performance compared to other 

processors has been shown extensively in the literature, however the decomposi­

tion of the computing load into tasks to be allocated to individual Transputers 

in a parallel network is application dependent. Even for a specific application 

different network architectures can result in variation in performance.

In this work, no complex task scheduling is involved, rather the parallelism inher­

ent in the task and regular network topology which is suitable for VLSI imple­

mentation is sought. Different parallel topologies for computation of some control 

algorithms are employed to investigate their suitabilities.

Following a brief look at parallel computations, a multiprocessing approach to 

calculation of dynamic equations of motion of manipulators including a review of 

the methods used is presented.

Most of these methods are based on N-E formulation for articulated chain dy­

namics, which yields a set of recursive equations for the dynamic components 

consisting of forward and backward phases.

The two basic approaches are dedicated multiprocessor approach, breaking the 

computation into a series of subtasks for execution on independent loosely cou­

pled processors, and the systolic architecture approach, where . tightly coupled 

processing produce the computations.
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Then a suitable parallel topology of a transputer network is presented for the 

computed torque of a 3 degree of freedom robot manipulator, taking into account 

the disadvantages of large processing times of complex scheduling schemes and 

looking at the combination of speed up and efficiency.

This architecture can be used for part of the controllers that use the dynamic 

model of the manipulator for decoupling the dynamics and allow for nonlineari­

ties, such as the model-based variable structure self-tuning controller discussed in 

the previous chapter.

Then the multi Transputer based control algorithms that are implemented on the 

MA3000 robot will be discussed and compared.

The control schemes considered are, the Computed Torque, the adaptive scheme 

in which the load mass carried by the Robot end effecter is estimated on line 

presented in chapter 4 and, the model based continuous time VS self tuning con­

troller.

7 .2  Parallel C om putations

Construction of multiprocessor systems with high concurrency is a way of dealing 

with computationally intensive tasks. This approach has been made more attrac­

tive, with the availability of high performance and inexpensive VLSI chips such 

as the Transputer.

Generally speaking when more processors are allocated to execution of a program, 

it runs faster. However the law of diminishing returns applies, which means that 

at a certain point the extra allocated processors can not be utilised efficiently.

A lot of research has concentrated on exploiting the concurrency of of multipro­

cessor systems in a variety of fields, ranging from numerical methods problems [8] 

where vector and matrix computations, parallelisation of iterative methods and 

algorithms for systems of linear equations are considered, to dynamic partitioning 

of multiprocessor systems [74].
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7.2.1 Parallel algorithm  representation

One way of representing the precedence relationships between tasks in a concurrent 

program that can also contain information about the length of time 1 that each 

task may take to process, is using graphs with directed links.

An example of such representation is shown in figure 7.1.

TASK l \  N0DE
X SEC.

TASK 2 TASK 3 TASK 4
Y SEC. Z SEC. W SEC.

TASK 7 \  ( TASK 8 \ ( TASK 9TASK 5 TASK 6

TASK 1 f TASK 12TASK 10'

Figure 7.1: An example of graph representation of parallel programs

The graph can be referred to by its set of nodes which represent operations of 

the program in the form of subtasks and the set of directed links which show data 

dependencies.

The type and size of subtasks can vary from elementary operations such as addi­

tion and multiplication to execution of part of a program.

It will be useful that after specifying the subtasks in a particular order within 

the constraints (i.e. a processor can only perform one subtask at a time and this 

is after the subtasks that it depends on have been executed and data from them

xThe time element is not usually included and simple task precedence graphs or Directed 
Acyclic Graphs (DAG) are used
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has been supplied) imposed, the time taken for each subtask should be measured 

individually and introduced to the graph, so that decisions can be made as to how 

effectively subtasks can be assigned to processors or when initially one processor 

per subtask is designated, the underutilised processors can be identified and their 

tasks combined.

For programs that need to be partitioned into elementary subtasks, the graph rep­

resentation might not be very appropriate as it is difficult to represent loops and 

conditional branches. However for programs that need only be divided to a small 

number of subtasks without the need for branching and loops, it is ideal as based 

on the precedence and time for each subtask, rearrangements can be made as to 

achieve maximum efficiency. In addition enhanced performance can be obtained 

by allocating the under utilised processors to another parallel subtask.

From the above argument it is obvious that a task is not specified by only one 

graph representation, but rather various graphs that can represent a task are com­

pared in order to decide which one is most appropriate, using the measures that 

^will be discussed in the next subsection.

7.2.2 Perform ance characterisation

To quantify the utilisation of computational resources which can be the basis for 

comparison of various architectures, various measures can be used.

These measure can be in the form of the complexity in terms of the number of 

processors used, the overall time taken for the algorithm to be executed and com­

munication aspects.

Two concepts that have been used in relation to algorithm comparisons are Speedup 

and Efficiency.

Supposing that a parallel algorithm uses n processors, and it takes Tp seconds 

to complete, where as the best possible algorithm that can run on one processor 

returning the same results takes Ts seconds, then one definition of speedup of the
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algorithm would be

S(n) =  p

Now dividing the speedup by the number of processors used gives the efficiency 

of the algorithm

E(n) =  M  
n

which measures the fraction of time that a typical processor is usefully employed. 

The ideal situation is that no processor does any work which is unnecessary or 

remains idle for any length of time and hence the value of efficiency is one and, 

speed up is equal to the number of processors. Realistically speaking however the 

aim should be to keep the efficiency bounded away from zero as we increase the 

number of processors.

It should be noted that there is always a trade-off between speedup and efficiency. 

An observation known as Amdahl’s law [2] can be used to obtain the quantification 

of parallel computational utilisation. It basically expresses that some sections of 

a program that are inherently sequential can create bottlenecks, when the rest of 

the program is able to utilise concurrency in a large scale and be executed fast, 

but having to wait for a long time for the sequential parts to terminate.

This means that, the ratio of the amount of time that is sequential to the total 

execution time is significant in bounding the execution time of a parallel algorithm. 

If we call this ratio / ,  then the speedup is limited by

5 ( n )  ~  /  +  (1 -  / ) / »  ~  1

where n is the number of processors as above.

The trade-off between efficiency and speedup can be quantified by introducing 

the average number of busy processors during the execution of a parallel program 

when an infinite number of processors is available. This is referred to as Average 

parallelism A  and can be used in determining the number of processors that 

should be allocated to a task in order to achieve an optimal trade-off.

Another definition, of average parallelism is the total service required by the
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computation to the length of the longest path in the subtask graph.

The upper and lower bounds on speedup in terms of A  are

nA
 ---- — <  S{n) < m in in .A )
n + ( A - l )  ~  v J ~  v ’ J

Useful as it might be, determination of average parallelism for a system that does

not have (as assumed) unlimited number of processors is difficult.

Average parallelism can also be obtained from histogram of the number of active 

processors over the execution time of a parallel program that is monitored. And 

consequently this can be used to estimate the appropriate number of processors 

to allocate.

Number of processors n to be allocated can be found from

” = A + M ' p) ~  4
where V,  M, and m  are variance in parallelism, maximum and minimum paral­

lelism for the program respectively.

The term in square brackets represents the amount of deviation of processor allo­

cation from A  when the parallelism variability is high, p is the average processor 

utilisation.

Eager et al [20] used average parallelism «•

In task allocations that is to follow, speedup and efficiency are considered as well 

as the average activity of each processor.

By monitoring individual processors and measuring the percentage of the time 

that they are busy (i.e. calculating their average activity), in the case of differ­

ent suitable architectures for a particular problem, one can modify the processor 

assignment so as to increase the overall average activity and hence efficiency.

7.2.3 D ynam ic program m ing

Although dynamic programming is not going to be applied in this work, a brief 

mention of it is not quite irrelevant.
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Dynamic programming deals with the issue of making optimal decisions sequen­

tially for data routing in a given network of processors.

If graph representations are used, once a decision is selected at a node then the 

next node is chosen according to a known probability distribution that depends on 

the selected decision. This leads to a model involving a finite-state Markov chain 

2, the transition probabilities of which are influenced by the choice of decision.

A special case of dynamic programming is what is known as the shortest path 

problem which is to find a desirable path (minimum cost path) for routing data. 

A cost is resulted from every decision made and each decision affects the options 

of subsequent decisions. Therefore future situations where high costs might result, 

should be avoided, while a low cost for the present decision is aimed for.

Unlike dynamic programming, there is no unpredictability of the next node being 

chosen, once a decision is made at a given node in the case of shortest path prob­

lem.

Another concept in parallel programming is the notion of dynamic partitioning. 

-This deals~with reconfiguration of multiprocessor systems to accommodate addi­

tional programms to the network by optimal partitioning of the system. Marko­

vian models can be used for dynamic partitioning.

2A  discrete time, finite state, homogeneous Markov chain is a sequence {Xk\k  =  0,1,2,  • • •} 
of random variables that take values in the finite set (state space) such that

P r ( X k+1 =  j \ X i , • • •, Xk =  i) =  Pij V* > 0

where each Pij is a given non negative scalar. In particular the probability distribution of the 
next state depends on the past only through the current state and since the coefficients pij 
do not depend on the time index k , the transition probabilities Pr(Xk+i  =  j \X k  =  i) are 
independent of k.
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7.3 M ultiprocessor im plem entation o f D ynam ic  

Equations o f M anipulators

To achieve better performance in task execution of Robot Manipulators, advanced 

real-time control algorithms are needed to deal with the non-linear system dynam­

ics and the uncertainties in the robot model.

When implementing robot control algorithms, simplifications are usually made, 

-tVe. most common form of which is to ignore the centrifugal and coriolis forces created 

by the coupling of the dynamics and each joint is treated as a decoupled system. 

The dynamic equations for robot manipulators which can be used in advanced 

control algorithms, to enhance their capability, are computational intensive, but 

by efficient formulation and exploiting the power of fast processors and paral­

lel processing, the on-line implementation of the control schemes based on these 

equations are possible.

7.3.1 R eview  of th e work in Parallel P rocessing for cal­

culating R obot D ynam ic Equations

There has been a number of publications that focus on the utilisation of parallel 

processing to alleviate the computational burden which is faced, when calculating 

the dynamic equations of Robots. In some specific instances , parallel algorithms 

are developed to deal with real-time calculation of the manipulator inertia matrix, 

where as in other cases concentration is on the time-optimum scheduling problem. 

Majority of these approaches are based on the Newton-Euler (N-E) formulation of 

Manipulator Dynamics. A parallel processing system (N-E based) was suggested 

by Luh et al[61] in which one CPU is utilised for each link of the manipulator. 

W ith this architecture, as a result of the precedence relations that appear among 

the subtasks to be executed due to the dynamic coupling between adjacent links 

and the large number of choices of alternative subtasks, the effort of searching
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for minimum-time schedule is complicated. To overcome this, they developed a 

’’variable” branch-and-bound method which discards the branches whose conser­

vatively estimated execution times are longer than the current established upper 

bound. Also to bring the total processing time to a manageable level, the sub­

tasks need to be arranged so that the precedence relations no longer exist. The 

usefulness of the scheduling problem was later demonstrated on an experimental 

processing system by Kasahara et al [40] They considered the optimal assignment 

of tasks to varying number of processors.

Two parallel algorithms executed on special-purpose processors were proposed by 

Lathrop [51], one a linear parallel N-E and another logarithmic parallel N-E. In 

this work inertial information via coordinate transformation between successive 

pairs of aggregate bodies are consolidated and as a result of this a reduction in the 

time requirement is accomplished by avoiding a serial recursion. Another multi­

processor system was proposed by Nigam and Lee [70] which consisted of available 

microprocessors arranged in such a way as to permit piplining at a macro level 

-with parallelism within each macro block. In this work there is no reference to 

the fact that the time requirement of a piplined algorithm is governed by the 

number of machine cycles rather than arithmetic operations. In spite of algorith­

mic constraints imposed by the pipelined computations Wander and Tesar [99] 

showed that the number of arithmetic operations can be reduced by expressing 

the time-varying inertia content of a manipulator in terms of kinematic influence 

coefficients which are represented by explicit functions of only the generalised co­

ordinates.

More recently with the availability of the Transputers which in terms of cost 

and performance have superiority over many other processors, being classed as 

one of the fastest 32-bit floating-point processors available, a few have attem pted 

to show their potential applicability in the Robot Control Applications. A new
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parallel algorithm for inverse dynamics based on Kane’s formulation 3 for manip­

ulator dynamics was introduced by Hashimoto and Kimura [30] which was said 

to be suitable for VLSI implementation. The algorithm was implemented using 

4 T800 Transputers with a good response time. Two architectures for parallel 

computation of N-E equations were simulated by Jones and Entwistle [38] using 

Transputers. First, one processor per link which results in loss of parallelism 

which was shown to be poor in terms of processor utilisation. And second, using 

a processor farm which has the advantage of being able to change the number 

of processors used, but the performance is not good due to the large scheduling 

times required. An interesting observation in this work is that they showed, the 

Transputer’s effective link transfer rate is slower than the quoted values and is 

dependent on the size of data block transferred. For example for T800-20, the 

quoted value is 20 Mbits/s, whereas they found it to be 6.5 M bits/s to pass blocks 

of 32 bit words, it should be noted that in the algorithms this is a small percent­

age compared to the time taken to compute the tasks.

7.3.2 Parallel calculation o f robot dynam ic equations us­

ing transputers

Three different Transputer network architectures for computing the torques that 

result from robot dynamic equations are shown in Figure7.2 for the case when 

three links of the manipulator are considered.

The OCCAM TIMER was used to calculate the overall time and in one case the 

time taken by individual processors. From this the performance of each is evalu­

ated in terms of speed-up and efficiency. The results are shown in the table 7 A* 

In the case where 3 Transputers are used plus 2 for communication, 

a speed up of 1.478 and an efficiency of 0.49 is achieved. Each row of the inertia

3Kane’s formulation describes the N-E in a different way, resolving the task of kinematic and 
dynamic computations into a set of subtasks
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Figure 7.2: Three Transp. Architectures

No. of Procs Time (ms) Speed up Efficiency Ave. activity
one EXE 6.797

3 plus 2 communication 4.6 1.478 0.49
(M il M12 M13 Ql) 95.65 %
(M21 M22 M23.Q2) 43.48 %
(M31 M32 M33 Q3) 21.72 %

13 plus 6 communication 2.832 2.4 0.18
10 plus 6 communication 0.24
4 plus 3 communication

(M il M12 M13 Ql) 2.75 1.47 0.37
(M21 M22 M33 Q2) 1.175 1.43 0.36
(M31 M32 M33 Q3) 0.733 1.24 0.31

Table 7.1: Table of comparison for diff. topologies
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m atrix plus one member of the force vector are assigned to one Transputer.

Looking at the average activity of individual processors, it can be seen that the 

computational intensity decreases from top to bottom. As a result perhaps a 

different architecture which combines two of the processors with lower average 

activity can be used to increase the efficiency. However as each row corresponds 

to a particular joint torque, having taken account of the coupling, the topology 

which was explained earlier (ie. one transputer dedicated to one joint which could 

further be replaced by a suitable number of processors to increase efficiency) is 

not suitable because of the communication overheads.

When 13 Transputers with an additional six for communication is used, the speed 

up does not really justify the loss of efficiency. Even when the symmetrical for­

m at of the inertia matrix is exploited in the 10 processor case, there is not much 

improvement. This architecture might be relevant when a 6 x 6 inertia m atrix is 

computed when six joints of the robot are modelled. The final set up shows the 

comparison of dividing the computation of each of the rows of the inertia matrix 

-and one member of the force vector between 4 Transputers. As can be seen ef­

ficiencies can be achieved with reasonable speed ups. Again this might be taken 

advantage of for larger inertia matrices.

7.4 Parallel Im plem entation o f som e Control 

Algorithm s on an M A3000 robot using Trans­

puters

Taking the bending mode frequencies of manipulators into account, sampling fre­

quencies of 100HZ and above are quite sufficient for manipulator control imple­

mentation. Employing one transputer is more than sufficient for implementing a 

PID controller. Model based controllers in general require more computation time
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and as a result, by utilising parallel architectures, the required sampling frequen­

cies can be achieved.

To implement the following control methods, a three segment trajectory planning 

scheme in joint coordinates is used for the gross motion (motion of the first three 

links) of the manipulator, to give a realistic representation of a real situation in 

robotic applications.

Usually trajectories are specified in cartesian coordinates in the form of straight 

line segments which when converted to joint coordinates are not straight line any 

longer. Having to convert individual points from cartesian to joint space, results 

in problems of large memory requirements etc., and as a result the usual practise 

is to approximate the joint movements by polynomial functions.

The specified path together with constraints imposed by the manipulator’s dy­

namics and the path constraints .sWould satisfy a set of boundary conditions to 

ensure continuity of position, velocity and acceleration of the joints, for a smooth 

movement.

depending on the specifications, a~ different order polynomial can be used and 

this is dependent on the type of task the manipulator is employed for, for ex­

ample when position and velocity of the joint is specified at the initial and final 

times, they provide boundary conditions that can be satisfied by a third order 

polynomial with four unknown parameters.

The resulting equations can be simplified considerably by introducing a normalised 

time.

The approximate function used for the first segment (i.e. when the movement 

starts) is a third order polynomial of the form

Pi(t) =  [<5i -  M i -  t3 +  [siM ]/2 +  (Mi)* +  Vo 

Vl =  ^  -  2 v0  -
„   6vg 9
“ i  -  7 ^ ~  i f  ~ ~ ao

(7.1)
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Then the second segment is represented by a fifth order polynomial of the following 

form
p2(f) =  [6<52 -  3t>i<2 -  3i>2i 2 -  ^  ^ ] i 5

+  [—15<52 +  8ui<2 "{■ 7t>2*2 "1" 3ai2*2----- «2*22]*4

+  [10 2̂ -  6t)!<2 -  4u2*2 -  +  22|2i]i3

+  [“‘~2 ]t2 +  (vit2)t +  Pi

V2 = St ~ 2vJ +  2
a f t ,

(7.2)

(7.3)

a2 — — 2in in v
And finally a third order polynomial is used for the last segment.

P n ( t )  =  [6n -  V f t n +  H h L -]t3 +  ( —3<5n +  3 Vf t n -  Clftn2) t 2 

+  [3£n — 2 V f t n +  — ]t  +  P2

In the above equations p represents position, v velocity, and a acceleration, t is 

normalised time, t G [0,1] and is equal to

t =  - - - I * - ; r  G [Ti_ 1? r .]

where t{ =  r t- — rt_! is the feal time required to travel through the ith segment, 

and r  represents the real time. 6  is the difference between successive positions.

A graph of combination of the three functions for arbitrary positions and durations 

can be seen in figure 7.3.

After set points are generated from the above trajectory planning method, 

the actual resulting trajectory of the joints under the controller commands are 

subtracted from the desired values and the resulting errors are graphically shown 

for each control scheme. This way the methods can be compared.

The first controller implemented is the Computed Torque method, then a model 

based controller based on load mass estimation and finally a model based contin­

uous time variable structure self tuning.
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Figure 7.3: A three segment (3-5-3) polynomial approx. joint trajectory 

7.4.1 Com puted Torque

Parallel implementation of the computed torque scheme is discussed here.

Based on the findings of the previous section the most appropriate architecture 

for the computed torque method when the dynamic equations correspond to three 

joints of the manipulator is option (A) of Figure 7.2. In other words by using one 

processor to calculate the three members of the inertia matrix and the member 

of the force vector that correspond to one joint, the sampling frequency needed 

can be achieved and it leaves room for extra calculations to be carried out when 

controllers with added demands on computing are to be implemented without 

going above the sampling frequency.

This is particularly useful since the next two control strategies to be implemented 

are model based and use the dynamic equations of the computed torque and as 

such having one processor dedicated to a joint cuts down the amount of alterations
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necessary and in turn reduces the complications that might arise when commu­

nication aspects are considered. Furthermore additional processors can be used 

with minimum effort for computationally demanding tasks as shall be seen. 

Figure 7.4 shows the basic set up for implementing the computed torque method.

TO
EXE

ADC

DAC

C2 C3

MX

Figure 7.4: Basic transputer topologoy for the computed torque

The EXE process which sits on the host processor is used to signal the start 

of the control operation. The MX process running on the root processor acts as 

a multiplexer, recieving set point trajectory data from the EXE and distributing 

it to the controller processors for individual joints C l. C2, and C3 and then after 

the controllers have completed their operations, it receives the trajectory errors 

from them and passes these to the EXE to be filed.

The control processes receive angular data at each sample from the ADC and 

using these calculate the voltages for each motor and pass the values on to the 

DAC which in turn sends the analogue signals to motor amplifiers.

The calculations are based on the customised dynamic equations which were de­

veloped as discussed in chapter 3. An occam library called robdy was created to
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implement these equations in occam and was used by the three controllers.

In Appendix A part of the occam code of the EXE and PROGRAM for the im­

plementation of the computed torque is shown.

As it was mentioned in chapter 5, due to the fact that ADC and DAC are only 

available on the Parallax, there is a need for the Meiko and the Parallax to com­

municate.

A Transputer Subsystem Interface (TSI) software allows a transputer domain on 

the Meiko to have an external dummy processor which can communicate with the 

rest of the transputers on the domain using the Inter-Module Control Interface 

provided on the TO SLAVE  9 way connector mounted on the rear panel and 

Inter-Module Link Interface of the same connector or a 37 inter cabinet link.

For convenience and as it did not increase the computation time drastically, it was 

decided to only use the TO SLAVE. As a result only one output and one input 

link exist for communication between the Meiko and the Parallax hence four extra 

processors are used for a smooth multiplexing.

-The transputer set up used, with extra processors is similar to the one shown in 

Figure 7.6 with the exception of the processor for filtering and connections for 

Load Mass Estimation (LME) processes.

A TSI hardware allows ECL-TTL and TTL-ECL translation to be performed as 

described in chapter 5, for Meiko - BOOS compatible board communication.

7.4.2 M odel-based control w ith  load m ass estim ation

The adaptive manipulator control schemes often ignore the effect of the payload 

mass on the inertia characteristics of the manipulators, in order to make simplifi­

cations.

What is clear is that, modelling of the payload can improve the accuracy of dy­

namic representation of the manipulator and hence the schemes that rely on the
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dynamic equations to decouple the model and allow for nonlinearities, can be im­

plemented more accurately.

The approach taken to include the load mass held by the gripper in the manipula­

tor dynamic model was described in the previous chapter. To implement this, in 

addition to the customised robot dynamic equations similar to those for the com­

puted torque method which are implemented in OCCAM, the numerical solution 

of the state variable filter given by the n th order differential equation

j t 2Lc{t) = A X ‘(t) +  Uu (7.4)

which is the controllable state-space form of the differential equation for a strictly 

proper subsystem, is required.

As explained in [24], if the subsystem is not strictly proper, an extended state 

vector can be used. The above differential equation is written as an n first order 

differential equations plus an algebraic equation. The Laplace transform of the 

extended state vector with zero initial conditions is:

(7-5)

In this formulation the states are all derivatives of the partial state x cn.

The above is fully explained in [24] and its implementation in Pascal is discussed in 

[26] as a procedure in an emulator-based self-tuning control program (CSTC). The 

program includes both continuous-time and discrete-time implementations of the 

state-variable filter. As the use of continuous-time version has more advantages 

[26], this is the one which is used.

Briefly, equation 7.4 is integrated between two consecutive time points and two of 

the terms are expanded in a truncated Maclaurin series and as a result a recursive 

scheme is obtained.

In a modified version of the continuous-time state variable filter that is compiled

2Lc(s) =

S ' "  

.71 — 1
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as a self contained program, Functions StateOutput, Delayed, DelayFilter, and 

Procedure TimeDelayInitialise are not included. In addition modifications are 

made to allow communication with the OCCAM programs that addresses the 

ADC and DAC and implements the customised dynamic equations of the robot. 

A listing of the program can be seen in Appendix B.

The communication between the Pascal and OCCAM is described shortly.

Using the Pascal program, a discrete-time approximation to a continuous-time 

transfer function is achieved, the accuracy of which can be changed by varying 

the sample interval and the approximation order.

The input to the Pascal program is the joint angles at each sample and the results 

for each angle input, assuming a second order filter are:

s~ *
Filter State. State[i] =  — — — x 9

C{s )

where $ represents the angle input.

In other words filtered angle, filtered angular velocity, and filtered angular accel- 

—eration are: _

Filter State. State[2]j Filter State. State[l]; Filter State. State[0]

respectively.

Simplifications on the basis of the sparseness of the A  matrix to reduce calculations 

is noticeable.

Com m unication betw een OCCAM  and Pascal (OCCAM  harness)

The Pascal program was compiled using a Prospero Pascal compiler designed for 

the Meiko Computing Surface. Both the compiler and the generated programs 

require the T800 transputer for execution. MeikOS, CS Tools, and occam oper­

ating environments are supported. The assembler and linker needed to produce 

an executable program form part of the operating system and as a result the ex­

ecutable programs produced run independently of the Pascal software.
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Besides the features of Standard Pascal, it contains a number of extensions such 

as an additional data type ‘channel’ which is a general channel type occupying 

one word.

One feature of Prospero Pascal which was utilised for communication with OC­

CAM programs is access to the operating system by calling routines using the C 

calling conventions. It has a language extension to allow C routines to be called 

directly. In this way, attributes of the transputer such as efficient execution of 

many concurrent processes and management of communication between them us­

ing its links and input/output facilities can be employed.

A C routine is declared as being a procedure or function by using the C directive 

provided and is used in a similar manner to an external Pascal procedure. The 

body of the procedure must not be given and it must be declared at the outer 

level. The procedure can not be passed as a procedural parameter. A procedure 

or function declared as a C function obeys the C calling convension, and in par­

ticular, the parameter list does not need to be reversed. When the C routine is 

-declared in- the Pascal program, an underscore must prefix the name of the rou­

tine.

A C library exists which provide routines that enable C procedures that are called 

from the Pascal to make use of the transputer features. Messages are sent and 

received on channels using two routines in particular that provide support for the 

transputer architecture, namely cwrite and cread respectively. The parameters of 

these routines are

• The channel for sending or recieving messages

• A message buffer

• The size of data to send or receive

As explained in a previous chapter, communication using channels is always point 

to point and synchronous.
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Channel access is provided in the C routine by including a header file chanio.h 

which defines the type CHAN and the C macro function CHAN *occam channel();. 

The macro indexes the channels which correspond to an OCCAM procedure’s ar­

ray parameter representing channels (chanArray). The elements of this array can 

be passed as parameters to functions within the C program, but chennels can only 

be accessed using cread and cwrite routines.

One undocumented point to note with Prospero Pascal is that a single astrix can 

not be included as a string character in for example comments, or this results in 

unexpected errors.

Although CS Tools could have been used to combine the OCCAM and the Pas-
<K

cal, asvmajority of the code was written in occam, an occam harness seemed 

more appropriate. The way this was implemented was to create a ‘shell’ proce­

dure in occam which does nothing except call the Pascal program and then an 

OCCAM harness was written which connects the shell to the computing surface. 

When the Pascal program and in turn the C procedures are called from occam, 

-^an array of channels is passes to it”in the chanArray parameter.

One way to implement the harness is to include it in a Seperately Compiled (SC) 

program and run it in parallel with other SCs. An EXE program then is needed 

to allow keyboard, screen, and filing system access. A terminal emulator EXE 

program is provided with the Meiko Occam Programming System (OPS) to per­

form communication with the SC programs in the network and supply a run-time 

environment including connection of the program to the Computing Surface su­

pervisor bus.

As using the terminal emulator EXE requires addition and running of a number of 

system routines in parallel with the shell in the created harness and it also means 

that there is no flexibility when the standard terminal emulator is used, an EXE 

was written for screen, keyboard and filing system access and also performing the 

trajectory planning stage of the control operation similar to that of the previous
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subsection. Messages to and from the harness were then routed through trans­

puter channels.

The SC program that performs the filtering is shown Appendix B. The Pascal 

program for carrying out the state-variable filter is called tering and after com­

pilation etc., the library created is tering.U8 , which is included in the occam by 

USE. For every trajectory point, three joint angles are input to the program 

through channel in i . Then the values of each angle are sent to the Pascal state- 

variable filter procedure and filtered values of the angle, velocity and acceleration 

is received and is output from the program on channel o u tl .

The function of various parameters are explained in the program by comments. 

It should be noted that arguments of the Pascal programs are standard and the 

value of heap space should not be less than what is indicated in the program or 

it halts. When compiling the Pascal program the amount of workspace, stacksize. 

and Freestore ought to be increased depending on the program requirements. 

There are three C procedures which should be linked with the Pascal. First 

there is a dummy program that returns -1 and 1 for standard checks that are 

made when a program needs to be run under OPS.

/*  dummy. c * /

# include <errno.h>

in t  f s t a t  ( in t  fd ,ch a r  *buffer)

{

errno = ENOTDIR; 

r etu rn ( - 1 );

}

in t  l in k (ch a r  *name,char *namel)

{

errno = EINVAL; 

retu rn ( - 1 ) ;
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in t  i s a t t y ( i n t  fd )

{

retu rn (1 );

}

Then it is the C program for reading from a channel:

/*  c f i l t i . c  * /

/*  To be used in  con. with te r in g .p a s  * /

# inc lu de  <std io .h>

#inclu de  <chanio.h>

#d efin e  chan .in  1 

c f i l t i ( f l o a t  *a)

{

cread (occam _channel(chan_in), a, s i z e o f ( f l o a t ) ) ;

>

And finally the C program for writing to a channel:

/*  c f i l t o . c  * /

/*  To be used in  con. w ith te r in g .p a s  * /

# inc lu de  <std io .h>

# inclu de  <chanio.h>

#d efin e  chan_out 0 

c f i l t o ( f l o a t  a)

{

cwrite(occam_channel(chan_out) ,  &a, s i z e o f ( f l o a t ) ) ;

}

Part of the basic transputer architecture for the adaptive model-based control 

method with load mass estimation is shown in Figure 7.5.

Filtering of angles is performed using the processor FILTER, and the results 

are passed to the processor which implements the Load Mass Estimation (LME)
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C3

ADC

C2

LME

FILTER

Figure 7.5: Part of the basic architecture for Adaptive MBC with LME

algorithm (discussed in chapter 4). In addition another filtering procedure for 

the value of the voltage is included in the controller C l. as the first joint or waist 

model is used for estimating the load mass, the filtered value of voltage for the first 

joint is passed to LME. After estimating the value of the load mass by LME, this 

value is sent to the three controller processors, so that the model can be updated. 

The LME process take5roughly the same length of time to calculate as the robot 

dynamic model. Although the structure is different, the computational times for 

the part of the equation that is suitable for allocation to separate processors is not 

a great percentage of the total. A higher speed up is achievable by allowing the 

linear in the parameter dynamic equations to be calculated on a separate Trans­

puter or even three, similar to the dynamic model calculations of the computed 

torque scheme discussed, but this is not necessary for the case of equations for 

only three joints.

The rest of the set up is the same as for the computed torque method.
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The discussion about extra processors to enable the use of the TO SLAVE con­

nector for communication between the Meiko and the Parallax applies here too. 

The topology used is shown in Figure 7.6.

C3 FILTERC2

EXTRA 1 EXTRA2

EXTRA3

DUMMY
PARALLAX

ADCDAC

Figure 7.6: Transputer Topology when TO SLAVE  is used 

7.4.3 M odel-Based VS Self-Tuning Control

Implementation of a VS self-tuning controller which will be combined with the 

model based control discussed above is explained here.

The proposed approach is a combination of a continuous time variable structure 

self tuning control, based on the idea of Variable Structure Systems and emulator 

based self tuning control of Gawthrop [24], and the model-based adaptive control 

with load mass estimation of the previous section. The method was discussed in 

chapter 6.

The objective of using the VSS approach is to achieve a performance that is ro­

bust with respect to disturbances and modelling errors, while it provides accurate
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tracking. This results in rejection of Coulomb and viscous friction effects.

The method presents a control law that forces every trajectory to eventually come 

in contact with and remain on the intersection of switching surfaces in the joint 

space of the manipulator, with each surface being described by a linear combina­

tion of a joint position error and joint velocity.

Physical implementations of the method have given rise to chattering, which is 

highly undesirable, as it results in excitation of underdamped unmodeled dynam­

ics. This problem is addressed in [102] where the discontinuous switching rule is 

replaced by a smooth version in which tracking precision is sacrificed for improved 

transient response. This was also discussed in chapter 6.

Koditschek [46] points out that the objective function in the Sliding Mode is ex­

plicitly time varying and as a result, natural control strategies cannot be applied 

with confidence so, instead the existing dynamics are cancelled or forced toward 

those desired by making systematic use of the rigid body model.

He. shows that all trajectories originating away from the objective surface tend 

-towards ilTasymptotically.

In the proposed method here, the non-linear terms in the dynamic equation of the 

robot manipulator

M(6)0 + Q(0,0) = t  (7.6)

where M  is the n x n inertia matrix, Q is the vector of centrifugal, coriolis and 

gravitational forces, and r  is applied torques for rotational joints, can be cancelled, 

thereby decoupling the plant.

Once the plant is decoupled, a VSS self tuning is then applied to individual joints. 

In the VSS self-tuning control, implementation of which is in Pascal (CSTC) and 

is documented in [26], only measurements of the system output <*re required as op­

posed to measurements of the system states. The implementation of the switching 

surface is achieved by employing a self tuning emulator in place of unrealisable 

derivatives.

The basic idea behind CSTC is to unify a number of self-tuning algorithms and
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with this in mind the major emphasis is on a continuous-time approach where 

controller design is carried out based on a continuous-time representation of the 

system.

A modified version of CSTC is used in the implementation of MBVSSTC. A brief 

description of CSTC’s operation will be given, as well as pointing out the modifi­

cations that are made to allow three programs to be used for three robot joints to 

run in parallel and allow communication of the programs with the OCCAM sec­

tions of the controller code. And finally transputer implementation is described. 

In CSTC transfer functions are represented as ratios of polynomials that are in 

turn defined by their degrees and corresponding coefficients. A large number of 

polynomial manipulation routines are provided which are used by various proce­

dures.

As it is stated in [26], the implementation of the self-tuning controller is in the 

form of a self tuning emulator in a feedback loop. It consists of a tunable feed­

back controller and a parameter identification phase. Employment of an adaptive 

controller as compared to its non-adaptive counterpart means that the system 

parameters ( coefficients of A(s), B(s)  and T)  need not be known in advance for 

achieving a desired performance. This is the main reason for replacing a fixed 

emulator by a self tuning one.

Emulators are used as is described in [24] for:

• Reducing the relative degree of the system.

• Reducing the number of non-minimum phase system zeros.

• Reducing system time delay.

In the first case Markov recursion is used for emulating linear combination of 

output derivatives.

To divide the Laplace transform of derivatives of impulse response of the system 

into proper and improper parts, Markov parameter representation is used. To
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do this, the transfer function is expressed in terms of s_1 and the relative order, 

then repeated algebraic long division is used to express the transfer function as 

a polynomial in s -1, the coefficients of which are the system Markov parameters. 

This process with some algebraic manipulation can be expressed in a recursive 

form.

In the second case, there is a need to detect common factors between the open-loop 

system denominator A(s) and the notationally non-realisable part of the design 

parameter Z (s ), i.e. Z~(s).  This is implemented using Euclid’s algorithm to find 

the Greatest Common Divisor (GCD) of two polynomials.

Then the Diophantine equation of the form

P(s)C{s)  =  E 2 (s)A(s)Z+(s) +  F 2 ( s ) Z - ( s ) (7.7)

are solved for E 2 (s) and F2 (s) by finding the GCD of Z~(s ) and A (s )Z +(s) and 

deducing E 2 and F2 by solving

l =  e(s)yl(3)Z+(Jj) +  /( s )Z - (s )  (7.8)

and using e(s) and f ( s )  to solve the equation recursively.

In the third case, Pade polynomial is used as an approximation to time delay. 

The emulator based control law is either in explicit form

“= -  ^
where is strictly proper and as can be seen the right hand side does not depend

on the control signal, and is implemented by feeding the error signal inside the 

square brackets into a filter implementing or it is in the implicit form

4>*(s)Q(s)u(s) — Rw(s) = 0 (7.10)

where the numerator and the denominator of have the same degree. In this 

case the value of the control signal is put equal to zero once and then unity

u =  0 => k0 = 4>q(s ) — Rw(s)  (7-11)
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it = 1 => /ci =  (j>i(s) — Rw(s)  (7.12)

If we draw /c against u, and try to find the value of u when /c is zero, similar 

triangles can be used to obtain the following equality:

—/Co —kq +  Ki
~ Q ~  “  I

Now replacing from 7.11 and 7.12 for Kq and /ci the value of it can be found from

-  $J(s)

To avoid saturation, the control action of the feedback controller is limited by 

including a non-linearity between the control signal and the ^ y  transfer function, 

hence an important factor emphasised in [24] of emulator operating on the control 

signal before the saturation as opposed to the signal before saturation is taken 

account of.

It is possible to implement variable structure control by setting the control signal 

to a minimum or a maximum whichever is closest to the value of the signal.

For self-tuning control the emulator equation needs to be represented in the linear- 

in-the parameters form

where in the Laplace transform

’ M e „

£ .(* )  = ; 0e =

0 ,

are data and parameter vectors respectively.

This is not explicitly implemented, instead, after generating the data vectors, 

inner product of the data vectors are formed from the coefficients of respective 

polynomials and in this way the emulator output is found.

The emulator output value is then estimated and this replaces the emulator out­

put.
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For parameter identification, CSTC uses the discrete-time algorithm for recursive 

least squares estimation which is regarded as an approximation to the continuous­

time algorithm discussed in [24]. It should be mentioned that with this algorithm, 

continuous time parameters are estimated.

In [24] it is shown that discrete-time estimation of continuous-time parameters 

does not introduce sampling errors which means estimation sample rate and con­

troller sample rate can be independent from one another.

The particular Self Tuning Control (STC) scheme used for the purpose of con­

trolling the robot joint movements is the Implicit control-weighted model-reference 

with off-line design as explained in [24]. It is shown in [26] that the control signal 

is reduced when control weighting is not zero, and although model following is 

not exact, but no steady-state offset is ensured by using the Q(s) design rule.

A detuned (control-weighted) version of this algorithm, where the control weight­

ing is finite is used for a robust control, with a moderate penalty that the algorithm 

will no longer be quite as exact.

The closed-loop transfer function generating the system input when there is no 

time delay, control weighting or setpoint filter is

- / x Z +(s)A(s) F(s)  N
“ W  =  P(s)B+(s){w(s) ~  W ) Z + i T f W

For model-reference control B~(s)  =  Z~(s) = 1. The control signal is stable if 

B(s)  is stable.

When we include a set point filter (i.e. R{s) ^  1), R(s)  has no effect on the 

feedback loop, but then it can affect the set point response the same way that 

■p̂ y can (i.e. it can be set equal to the desired model). However P(s)  alters 

the disturbance response and close-loop sensitivity. The requirement of a unity 

steady-state system gain from setpoint to output imposes R(s)  =  1 

In the Implicit STC, the emulator parameters are directly tuneA and the design 

phase is avoided. The off-line design means that the emulator design parameter,
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the control weighting and the set point filter are chosen off-line before the self­

tuning starts. There are two phases associated with the off-line design, one the 

a-priori design phase and the other on line tuning phase.

The steps to implement the off-line phase are to choose

• Emulator polynomials P(s),  Z +(s), Z~(s ), and C(s)

• Control Weighting filter Q(s)

• Set point filter R(s)

• System order

• Realisability filter A(s) 4, typically

Depending on the type of approach, the choice of emulator polynomials and the 

realisability filter might not be as above. For example if the Boolean variable 

UsingLambda is set to TRUE , then A(s) is chosen to be , otherwise it is

equal to unity.

In the on-line phase if using lambda filter :

• The quantity (}>̂ {t) is generated.

• The control signal u(t) and the system output y(t) are filtered by the real­

isability filter.

• Using the filtered signals of system output and control signal, and the fol­

lowing differential equation 5

4-X c = A X C + Uu
dt

also discussed in the previous subsection , generate the emulator data vector 

■£*(<)•
4Many emulators <f>(t) which are used in the continuous time approach to self tuning are not 

realisable and, a realisability filter A(s) is appended so as to obtain a realisable signal <f>\(t)
5The controllable state space representation of the filter is obtained and with 2L as input, 

the first state is the output, second the first derivative etc.
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• The emulator parameter estimate vector Oe(t) is updated using discrete least 

squares from the linear in the parameters model.

• The emulator signal <j>(t) is generated using

m = 2 g ( t ) L ( t )

• The control signal in the Laplace-transform terms is generated

Q(s)

In the step before the last, emulator signal is generated using a modified control 

signal which is the actual signal the plant receives and not the saturated value. 

This is due to a procedure that limits the value between a maximum and a mini­

mum and also allows implementation of variable structure control.

The emulated signal also updates the corresponding emulator states.

The value of the emulator design parameters chosen as well as other parameters 

such as the initial values A(s) and B(s)  etc. can be seen in Appendix C.

M odifications

A number of procedures were not included such as Input, output, Polynomial 

output, WriteLnData, W riteData etc. for simplicity; as they are not used in the 

transputer program. These procedures are basically used for prompting for and 

inputting the value of various parameters such as the ones shown in Appendix C 

in the initial interaction with CSTC before the self-tuning starts. This requires 

access to the keyboard, screen, and the filing system which if was to be done for 

three joints (three separate programs), the data routing can get a bit complicated, 

not to mention the time taken to input three lots of parameters some of which 

hardly need to be changed anyway. In addition it was decided beforehand as to 

what type of self-tuning algorithm was to be used. Therefore the initialisation 

stage was performed explicitly within the program.
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In addition the only data which was of interest was the trajectory error data which 

needed to be recorded and as a result the data recording in files of the emulator 

parameters, model output etc. that is possible in CSTC were not performed.

A procedures GetData and PutData in CSTC were modified to ConveyData and 

DeliverData that are shown in Appendix C.The , ' ; procedures take:

the values of the setpoint, system input, and system output from an occam pro­

gram using a C procedure crec, and after the self-tuning is performed deliver the 

new input to the occam program using the C procedure csend, so that it could 

be combined with the model-based input and then be passed to the DAC and in 

turn to the motor amplifiers.

Besides other modifications which were made to exclude writing to the screen or 

a file or reading from the keyboard and modifications which exclude unnecessary 

steps such as the ones involving External data etc. or functions and procedures 

such as procedure HighGainControl which were not necessary for the particular 

self-tuning implementation in mind for clarity and simplicity, the following modifi­

cations were also made: Limiting the chapters only to two (6, 7) and not including 

the function for selection of appropriate chapter, and repeating the modified pro­

cedure OneTimeStep as many times as there were trajectory points specified by 

the occam program so that self-tuning is performed at each sample for the speci­

fied trajectory until the run is finished based on one set of initial conditions. The 

value of real variable LastTime should be twice the value of Samplelnterval so 

that the number of runs would match the number of setpoints provided.

The occam harness for the Pascal was similar to the one described for the adaptive 

model-based control of the previous subsection. However the value of fast stack 

arrays and the heap space had to be increased to 1M bytes in the occam program 

and when compiling the same increase applied to workspace, stacksize, and the 

freestore.
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Transputer architecture

The transputer architecture for implementing the MBVSST algorithm is the same 

as the one used for the adaptive model-based control of the previous subsection. 

The variations in processes assigned to processors are: each controller processor 

C l, C2, C3, in addition to dynamic equation calculations carry out the self-tuning 

control for individual joints on one processor per joint basis. Measuring the time 

taken to carry out the whole process shows that by doing this the target sampling 

frequency is still achievable. In fact without introducing any delay, the sampling 

frequency was measured to be 125 HZ. It should be noted that for the adaptive 

model-based control of the previous section the the sampling frequency is 167 HZ 

and for the computed torque it is 217 HZ.

Another variation is that C l sends the value of the voltage to LME and the fil­

tering of this voltage is performed on LME processor.

Further speed up can be achieved by dividing the self tuning to Identification and 

Control and allowing each stage to be performed in parallel on separate transput­

ers.

Simple graph representation can be used, representing data dependencies of vari­

ous operations, allowing for input-output, communications and path sequences of 

subtasks. From this, complexity measures (both time and communication com­

plexity plus number of processors) can be analysed and as a result a suitable 

topology can be designed. In addition, speed up and efficiency considerations 

should be looked at and where possible subtasks should be allocated to the most 

lightly loaded processor to increase efficiency.

In the next section, the transputer network topologies and the programs that were 

discussed above are used to carry out a number of simulations and experiments, 

the results of these are presented and discussed.
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7.5 R esults and discussion

Prior to the actual implementation of the control algorithms on the robot, some 

simulations were performed to assess the suitability of these schemes as well as 

verifying how close the simulation results, which are based on the model of the 

robot, are to the experimental outcome using the robot itself.

One point should be made at this stage: the motor speeds of the MA3000 robot 

are slow. For the case of the waist and shoulder, the maximum speed is quoted 

as being 22.5 deg/sec and for the elbow the value is 45 deg/sec maximum.

All the experiments were started when the shoulder and elbow were at a vertically 

upright position which corresponds to absolute 140 degrees. Movement of each 

joint was from this initial position through 30 degrees according to the polynomial 

trajectory described earlier; shown in figure 7.3, or application of a square wave 

setpoint with time period of 4.9 s. Only the deviations of the measured trajecto­

ries from the desired ones (trajectory errors) are shown for clarity.

The input voltages to the joint motors at each sample could vary between 88.5V 

and -88.5V. These correspond to the preamplified values output from the DAC of 

10V and -10V respectively. As the voltages calculated from the model-based al­

gorithms that are presented can exceed the maximum value or are at times below 

the minimum or even are below the threshold voltage that can actually result in 

motion, the signals were restricted to either maximum or minimum.

An additional consideration is that, when the model-based controllers are com­

bined with variable structure self-tuners, the limitation of VS self tuners to have 

only maximum and minimum does not lead to domination of one signal over the 

other and both signals will have equal effects.

To perform the simulations in line with the experiments, the same conditions as 

for the experiments were applied.

For each controller simulation or experiment, in addition to the trajectory error 

profiles for each joint; individual control signals over the time duration will be
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graphically shown and in the adaptive cases, the graph of estimated values of the 

load mass against time will be displayed.

All the robot model parameters for the controllers are based on the model of the 

MA3000 robot developed in chapter 3 and the values are presented there.

7.5.1 Sim ulations

Using the same transputer topologies as for the real experimental implementa­

tions, the processes and the corresponding processors for Analog to Digital and 

Digital to Analog conversions (the communication routes between the circuit that 

drives the robot and the network of transputers) were replaced by a robot simula­

tor. The simulator was itself implemented in OCCAM on the transputer network. 

In the robot simulator, the model of the robot is used to calculate the resulting 

joint accelerations for given input voltages at each sample. Then the accelerations 

are integrated once to find the joint velocities and twice to find the joint angles. 

Values of joint velocities and angles are are then used in the next sample. The 

process includes a matrix inversion of the 3 x 3  mass matrix at each sample.

C om puted Torque

The first simulation performed involved Computed Torque control with a square 

wave set point. The torques were computed on the basis of a correct system 

model.

The diagonal elements of the gains I(p and K v of the characteristic equation which 

describes the suppression of errors in the control system:

e -f- R ve +  K pe — 0

were experimentally adjusted for the critically damping case to be

I<p = 1600 K v =  80

The trajectory errors for the waist, shoulder, and elbow can be seen in figures 7.7 

and 7.8.
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Figure 7.7: Computed Torque with SW setpoints

100

5 0

o

- 5 0  

■100
0  1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  1 0 0 0

100 

5 0  

0

- 5 0  

•100
0  1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  1 0 0 0

C o n tr o l  s ig n a l  f o r  E lb o w  
t -------------- 1--------------- 1—  °  i-------------- !-------------- r

C o n tr o l  s ig n a l  f o r  S h o u ld e r

j_________ i_________ i_________ i_________ i_________ i_________ l

C o n tr o l  s ig n a l  f o r  W a is t

T r a ie c to r y  erro rs  f o r  W .S .E1 ..  | " 1 " 1 r,"‘i-"l "i 1""’ 1 1 j

...... J-------- i-------- i-------- i--------L L — • -- ■ _____ 1 i

Figure 7.8: Computed Torque with SW setpoints
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As can be seen the errors are quite acceptable.

Next simulation was again the computed torque, but this time the setpoints were 

defined according to a polynomial trajectory.

The trajectory errors and the control signals are shown in figures 7.9 and 7.10.

T r a je c to r y  erro rs  f o r  W .S .E0.2

- 0 .4
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C o n tr o l  s ig n a l  f o r  W a is t

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  1 0 0 0

Figure 7.9: Computed Torque with Polynomial Traj.

The errors are slightly higher than the previous case but still quite reasonable. 

There is less switching in the control signals in comparison to the previous case.

M odel-Based A daptive Control w ith LME

The model-based adaptive controller with load mass estimation was simulated 

next. The initial estimate for the load mass was chosen to be 1.5kg (according 

to the results presented in chapter 4 regarding the load mass estimation method, 

the discrepancy between the initial and the actual value should not be too large). 

Firstly square wave setpoints were applied, the results of which can be seen in 

figures 7.11, 7.12, and 7.13 and then polynomial trajectory setpoints, results shown 

in figures 7.14, 7.15, and 7.16. In the latter case improvements in reducing the 

trajectory error for the waist is noticeable.
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Figure 7.10: Computed Torque with Polynomial Traj.
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Figure 7.11: Adaptive model-based with SW setpoints
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Figure 7.12: Adaptive model-based with SW setpoints
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Figure 7.13: Adaptive model-based with SW setpoints
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Figure 7.14: Adaptive model-based with Polynomial Traj.
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Figure 7.15: Adaptive model-based with Polynomial Traj.
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Figure 7.16: Adaptive model-based with Polynomial Traj. 

M odel-B ased  VS Self-T uner

Using the adaptive model-based controller with load mass estimation to linearise 

and decouple the system and then applying a variable structure self-tuner was 

a subject of discussion in the previous chapter. This combined controller was 

simulated and the results can be seen in figures 7.17, 7.18, and 7.19. The particular 

type of VSST used was implicit model reference with control weighting Q =  0. 

The trajectory errors for shoulder and elbow are reduced considerably, where the 

control signal switching for the model-based adaptive part is reduced.

The same controller was simulated this time with square wave setpoints. The 

results are shown in figures 7.20, 7.21, and 7.22. The errors compared to when 

only a model-based adaptive controller was used with square wave set points are 

considerably reduced.

When the control weighted version of the above self-tuner was applied with a 

polynomial trajectory and Q(s) = j* -, the errors increased as can be seen from 

the results shown in figure 7.23.

Addition of a setpoint filter R(s) =  did not improve the situation as

can be seen from figure 7.26
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Figure 7.17: Model-Based VSST with Polynomial Traj.
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Figure 7.18: Model-Based VSST with Polynomial Traj.
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Figure 7.19: Model-Based VSST with Polynomial Traj.
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Figure 7.20: Model-Based VSST with SW setpoints
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Figure 7.21: Model-Based VSST with SW setpoints
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Figure 7.22: Model-Based VSST with SW setpoints
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Figure 7.23: Model-Based Cont. Weigh. VSST with Polynomial Traj.
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Figure 7.24: Model-Based Cont. Weigh. VSST with Polynomial Traj.
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Figure 7.25: Model-Based Cont. Weigh. VSST with Polynomial Traj.
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Figure 7.26: MB Cont. Weigh, with setpoint filter VSST (Poly. Traj.)



v
o

lt
a

g
e

CHAPTER 7. CONTROL IMPLEMENTATION USING TRANSPUTERS  229
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Figure 7.27: MB Cont. Weigh, with setpoint F VSST with Poly. Traj.
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Figure 7.28: Model-Based Cont. Weigh. VSST with Polynomial Traj.
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7.5.2 Controller experim ents

The sampling frequency achievable to implement the computed torque on the 

transputer network topology discussed earlier is 215 HZ and the values for the 

model based adaptive controller with load mass estimation and the model based 

variable structure self-tuner are 167 HZ and 121 HZ respectively.

To keep all the conditions for the three controllers the same, delays were intro­

duced so that the lowest sampling frequency i.e. 121 was applied for all controllers. 

The overall duration for each control scheme to go through 900 points according 

to the polynomial trajectory discussed earlier was 7.4s.

C om puted Torque

Firstly the computed torque scheme was implemented. The trajectory errors and 

the corresponding control signals for all the three joints are shown in figures 7.29 

and 7.30.

The errors are certainly larger compared to the simulated results, but still quite 

reasonable since a polynomial trajectory setpoint is applied.
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Figure 7.29: Computed Torque (real implementation)
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Figure 7.30: Computed Torque real implementation 

M odel-B ased  A d ap tiv e  C o n tro l w ith  LM E

When the model-based adaptive controller with load mass estimation was applied 

the errors for the waist were reduced which is consistent with the simulated results. 

This can be seen in figure 7.31.

The graph of estimated load mass against time is shown in figure 7.33.

It can be that the eifect of the load mass on the waist is higher compared with 

the other joints and as a more accurate value of the load mass is included in the 

model, the model gets closer to the real representation of the actual robot (note 

that the gripper is part of the load in this case).

Furthermore as the load estimation routine only uses the dynamic equations of 

the waist (as its feasibility was discussed in chapter 4), this could also play a part

j - i ,  ___ 4- _________________ 4 . 1 , ----------------- u _iii luc uuu^umc ui luc icauiuo.

3
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Figure 7.31: Model-Based Adaptive Control with LME (real implementation)
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Figure 7.32: Model-Based Adaptive Control with LME (real implementation)
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Figure 7.33: Model-Based Adaptive Control with LME (real implementation) 

M odel-B ased  VS self-tun ing  con tro l

From simulation results and by carrying out a number of experiments, the most 

suitable (in terms of producing the least trajectory errors) type of variable struc­

ture self-tuner to combine with a model-based controller was found to be a model 

reference self-tuner with no control weighting.

When the self-tuner was applied by itself without linearising or decoupling the 

system first, the overall results were not acceptable due to trajectory errors pro­

duced being large. When the self-tuner was applied to individual joints with all 

other joints not moving, good performance was only exhibited in the case of the 

waist as can be seen from figure 7.34.

Combination of the VS self-tuner and the model-based adaptive control with 

load mass estimation produced the best results of all.

The trajectory errors are quite small as can be seen from figure 7.35 and in com­

parison with the other controllers, the results are much more improved.
r p i  „  i  „  j    „ __ ____ 4. ;  j .   i _______ : „  £  n nn
x n c  l e a n  m c i D o  c o l i i i i o l c o  e o n  uc o c c n  i l l  n g u ic  i . o i .

7.5.3 Conclusions

The conclusions drawn from the simulation and experimental results and also from 

what has been discussed so far can be summerised as follows:
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Figure 7.34: VS Self-Tuning applied to waist (real implementation)

o  T r a je c to r y  erro rs  f o r  W .S .E

2

1
0
1

■2
5 0 0 10000

10

5

0

- 5

-10

S T  c o n tr o l  s ig n a l  f o r  W a is t

0 5 0 0 1000

S T  c o n tr o l  s ig n a l  f o r  S h o u l .

5 0 0 1000

10

5

uoo
2  0

-10

S T  c o n tr o l  s ig n a l  f o r  E lb o w

5 0 0 1000

Figure 7.35: Model-Based VS Self-Tuner with LME (real implementation)
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Figure 7.36: Model-Based VS Self-Tuner with LME (real implementation)
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Figure 7.37: Model-Based VS Self-Tuner with LME (real implementation)
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• There is a need for using transputers and parallel processing to implement 

the type of controllers that were used, if required sampling frequencies is to 

be achieved.

• Experiments are needed in addition to simulations which are purely based 

on a model that might not be accurate enough.

• Experimental results help verify the validity of a developed model if they 

are consistent with simulation results.

• Model-based control is certainly effective if a good model is available.

• The load mass estimation method introduced in chapter 4, incorporated into 

a model based control scheme results in a more accurate model and hence 

the model can be used more effectively to decouple and linearise the system.

• Combining a model based controller with a suitable variable structure self­

tuner results in an excellent controller as far as trajectory following is con­

cerned.



C hapter 8

Conclusions

During the course of the research, a number of hypotheses and concepts regarding 

model-based control of robot manipulators for gross motion trajectory tracking 

have been brought under scrutiny and most of the relevant issues in the area have 

been considered.

The following are the issues considered:

• Kinematics and dynamics of manipulators.

• Modelling of manipulators including the actuation systems.

• Obtaining parameters of the overall model, using experimental data from 

the robot and using a CAD-based approach.

• Model validation.

• Load mass estimation.

• Computing requirements for real-time control implementation and choice of 

parallel processing as a suitable option to meet these requirements.

• Requirements of a robot control programming system.

• Hardware and software interfaces needed for experimental evaluation.
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• Comparison of various manipulator control methods.

• Realistic simulation and experimental evaluation of the control strategies.

Experimental evaluations provided some valuable insights for better understand­

ing of various aspects of robot control as well as giving credibility to the conclu­

sions drawn. For example

• The ability of model-based controllers to produce a reasonable trajectory 

tracking accuracy, provided that the robot dynamic model is sufficiently 

accurate.

• The importance of cancelling coriolis and centrifugal forces, even at low 

speeds, to reduce tracking errors.

• The improvements that can be achieved, as far as trajectory tracking is 

concerned, by estimating the mass of the payload carried by the manipulator 

gripper.

• The unsuitability of employing a linear self tuning controller for each joint 

of the manipulator without decoupling and linearising the system first (es­

pecially for trajectory tracking applications).

• The trajectory error reduction, resulting from addition of suitable self-tuners 

to decoupling and linearising model-based controllers, to reduce the effect 

of having an inexact dynamic model.

• The suitability of using a variable structure self-tuner which uses output 

feedback with observers as opposed to full state feedback in the self-tuning 

part of the control law.

• The increase in the trajectory errors, as a result of using a detuned version of 

the self-tuner (nonzero control weighting), although its robustness properties 

are desirable.
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Employment of model-based algorithms for robot control is essentially to com­

pensate the nonlinear dynamics of the manipulator at the initial stages especially 

at high speeds. Having this in mind, the limiting factor in the experimental evalu­

ations was the relatively low speeds of the MA3000 robot which was used. However 

this limitation served to provide a suitable ground for showing that compensation 

for coriolis and centrifugal forces and joint interactions led to improved trajectory 

tracking accuracy even at low speeds.

To achieve better tracking accuracy, some have embarked on development and use 

of direct-drive robots to overcome the domination of the motor and drive system 

dynamics over joint dynamics and to avoid the friction of the gear train. However 

there are two points to note: firstly that the former argument does not necessarily 

imply that joint dynamics may be neglected in the presence of large motor and 

drive dynamics as was experienced in this work; and secondly, by inclusion of a 

friction model in the dynamic equations, the later argument is no longer an im­

portant factor at least in the case of non compliant motion.

The modelling of the robot does not need to be extremely accurate, although a 

CAD approach proved to be quite acceptable, as long as finer adjustments are 

made at a later stage using self-tuning methods. In other words a dynamic model 

of the robot that includes the motor and drive system dynamics can be used to 

reduce the nonlinear and coupling effects and then a self-tuner is employed to pro­

vide enhanced accuracy in tracking. The most appropriate self-tuner in relation 

to the above was found to be a variable structure one with no control weighting 

as described in chapters 6 and 7. Both the simulation and experimental results 

show the effectiveness of this approach.

Any deviations from the set trajectory due to variations in the payload of the ma­

nipulator can be suppressed by using an estimation method which was introduced 

in chapter 4 to allow payload adaptation. The effectiveness of the method which 

is developed by symbolic algebraic manipulation of the dynamic equations and 

is based on the state-variable filter approach and least squares estimation, was
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demonstrated experimentally.

It should be noted that as the load mass estimation algorithm is based on the 

model of the robot, accuracy of this model is of prime importance for good re­

sults.

Use of symbolic algebraic manipulation also resulted in a more efficient set of 

dynamic equations which meant less computational effort in implementing the 

model-based controllers. However even with this reduced set of equations, inher­

ent coarse parallelism of the control algorithms had to be exploited and to carry 

out the computations in real-time and to achieve the required sampling rates, 

parallel processing and fast processors (transputers) had to be employed. 

Suitability of a transputer network for implementation of a robot programming 

system was also argued.

Suggestions for future research

It would be useful to pursue two areas as an extension to the work presented here; 

firstly an investigation into the cartesian space control along the same lines as the 

joint space approach that was dealt with in this work; and secondly look at the 

effects of adding a velocity self-tuner to the control system.

An interesting area of research in the field of robotic control is to develop suitable 

controllers for assembly operation applications. This entails considering multiple 

arm interactions, compliant motion and force control.
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Part o f th e O C C AM  code for 

com p, torque

TH E EXE

PROC C on tro ller  (CHAN OF INT keyboard, CHAN OF ANY screen ,  

[4 ]CHAN OF ANY f r o m .u s e r . f i l e r ,  t o . u s e r . f i l e r )

#USE u ser io

#USE in t e r f

#USE maths32.1ib

VAL lin k ou t IS [ 0 ,1 ,2 ,3 ]  :

VAL l in k in  IS [4 ,5 ,6 ,7 3  :

CHAN OF ANY t o . f i r s t ,  f r o m .f i r s t  :

PLACE t o . f i r s t  AT l in k o u t [1] :

PLACE f r o m .f i r s t  AT l i n k i n [1] :

SEQ

PROC datavalues (CHAN OF ANY screen)

INT i , j :

[1000]REAL32 data:
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[1000]REAL32 d ata l:

[1000]REAL32 data2:

[1000]REAL32 time:

[1000]REAL32 e rro r l:

[1000]REAL32 error2:

[1000]REAL32 error3:

[1000]REAL32 c o n t s ig l :

[1000]REAL32 con ts ig2 :

[1000]REAL32 con ts ig3 :

REAL32 pO, p i ,  p2, pn, t ,  t l ,  t 2 ,  t n ,  p2A, p2B:

REAL32 v l ,  a l ,  v2, a2:

REAL32 t p l ,  tp 2 , tp 3 , tp 4 , tp 5 ,  t l p 2 ,  t2p 2 , tnp2:

REAL32 d e l t a l ,  d e l ta 2 ,  d e ltan :

REAL32 ta u , s e g l ,  seg2 , segn:

REAL32 tauO, t a u l ,  tau 2 , taun:

REAL32 th e t a O ,t h e t a l , t h e t a 2 :

SEQ

w r i t e . t e x t . l i n e  (screen,"Program running . . . " )

s e g l := 2 . 0(REAL32)

s e g 2 := 7 . 0(REAL32)

segn:= 9.0(REAL32)

pO:=0. 0(REAL32)

p i : = 5 . 0(REAL32)

p 2 := 2 5 .0 (REAL32)

pji * — 3 0 .0 (REAL32)

d e lta l := p l -p 0

d e lta 2 := p 2 -p l

d e l t a n :=pn-p2

tl:=2.0(REAL32)
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t 2 := 5 .0 (REAL32) 

t n := 2 .0 (REAL32) 

tauO:= 0 .0 (REAL32) 

t a u l := 2 .0 (REAL32) 

ta u 2 := 7 .0 (REAL32) 

ta u n := 9 .0 (REAL32) 

i  :=0 

j:=0  

SEQ 

SEQ

tlp 2 :=  POWER ( t 1 , 2 . 0 (REAL32)) 

t2p2:=P0WER ( t 2 , 2 . 0 (REAL32)) 

tn p 2 :=P0WER (tn,2.0(REAL32))

t a u : - 0 . 0 (REAL32)

WHILE tau < s e g l  

SEQ

t: = ( t a u - t a u O ) / t l

tp2:=POWER (t,2.0(REAL32))

tp3:=POWER ( t , 3 . 0(REAL32))

tp4:=P0WER (t,4.0(REAL32))

t p 5 :-POWER ( t , 5 . 0 (REAL32))

p i  := ( d e l t a l  *tp3) + pO

v l ;= ( 3 . 0(REAL32) * d e l t a ! )  /  t i

a l  := ( 6 . 0(REAL32) * d e l t a l )  /  t lp 2

dataCi] := p i  

datalC i] := v l
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d a ta 2 [ i]  := al

t im e [ i ]  := tau

t a u :=tau+0.0 1 (REAL32)

i : = i + l

ta u :“ s e g l

WHILE (tau >= s e g l)  AND (tau  < seg2)

SEQ

t : = ( t a u - t a u l ) / t 2  

tp2:=P0WER (t,2.0(REAL32)) 

t p 3 :=P0WER (t,3.0(REAL32))  

tp4:=P0WER ( t , 4 . 0(REAL32)) 

tp5:=P0WER (t,5.0(REAL32)) 

p2A:= ( ( ( ( ( ( ( 6 . 0(REAL32) * d e lta 2 )  + 

(-(3.0(REAL32) * (v l  * t 2 ) ) ) ) +

(-(3.0(REAL32) * (v2 * t 2 ) ) ) )  +

( -  ( 0 . 5 (REAL32) * ( a l  * t2p2 ) ) ) )  +

( 0 . 5(REAL32) * (a2 * t 2 p 2 ) ) ) )  * tp5) +

( ( ( ( ( ( ( - ( 1 5 . 0(REAL32) * d e l ta 2 ) )  +

( 8 . 0(REAL32) * (v l  * t 2 ) ) )  +

( 7 . 0(REAL32) * (v2 * t 2 ) ) )  +

( 1 . 5(REAL32) * (a l  * t2 p 2 ) ) )  +

( - (a 2  * t2 p 2 ) ) ) )  * tp4)

)2B:—( ( ( ( ( ( ( ( 1 0 . 0 (REAL32) ♦ d e lta 2 )  + 

(-(6.0(REAL32) * (v l  * t 2 ) ) ) )  +

(-(4.0(REAL32) * (v2 * t 2 ) ) ) )  +

(-(1.5(REAL32) * (a l  * t 2 p 2 ) ) ) )  +

(0.5(REAL32) * (a2 * t 2 p 2 ) ) ) )  * tp 3) +
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((0.5(REAL32) * (a l  * t2p 2))  * tp 2 ) )  + 

( ( ( v l  * t2) * t )  + p i)  

p2 := p2A+p2B

v2 := 3.0(REAL32) * (d e lta n  /  tn )

a2 := (-(6.0(REAL32))) * (d e lta n  /  tnp2)

d a ta [ i ]  := p2 

d a t a l [ i ]  := v2 

d a ta 2 [ i]  := a2 

t irae[i]  := tau  

i : = i+ l

t a u :=tau+0.0 1 (REAL32) 

tau:= seg2

WHILE (tau >= seg2) AND (tau < segn)

SEQ

t  : = ( ta u - ta u 2 ) / tn  

tp2:=P0WER (t,2.0(REAL32))  

tp3:=P0WER (t,3.0(REAL32))  

tp4:=P0WER (t,4.0(REAL32))  

tp5:=P0WER (t,5.0(REAL32))  

pn := ( (d e lta n  * tp3) +

( ( -  (3.0(REAL32) * d e lta n ))  * tp 2 ) )+  

(((3.0(REAL32) * d e lta n  )*  t )  + p2)

d a ta [ i]  := pn 

d a t a l [ i ]  := 0.0(REAL32) 

d a ta 2 [ i]  := 0.0(REAL32) 

t im e [ i ]  := tau
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i : = i + l

tau:=tau+0.01(REAL32)

SEQ

t o . f i r s t  ! data

f r o m .f i r s t  ? e r r o r l ; c o n t s ig l  ; e rr o r2 ;co n ts ig 2  ; error3 ;con ts ig3

WHILE j<= 900 

SEQ

w r ite .r e a l3 2  (screen , e r r o r l [ j ] ,  6 , 4) 

w r ite .r e a l3 2  (screen , c o n t s i g l [ j ] ,  7 , 6) 

w r ite .r e a l3 2  (screen , e r r o r 2 [ j ] ,  6, 4) 

w r ite .r e a l3 2  (screen , c o n t s i g 2 [ j ] ,  7 , 6) 

w r ite .r e a l3 2  (screen , e r r o r 3 [ j ] ,  6 , 4) 

w r ite .r e a l3 2  (screen , c o n t s i g 3 [ j ] ,  7, 6)

INT pos:

[80]BYTE t e x t . l i n e :

SEQ

pos : = 0

w r i t e . t e x t . l i n e  (screen , [ t e x t . l i n e  FROM 0 FOR p os])

j - = j +l

INT kchar: 

INT error:

cm

w r ite ,  f u l l ,  s t r in g  (screen , "Do you want to  f i l e  th e  output? ") 

read . ech o . char (keyboard, screen , kchar) 

n ew line(screen)

— mask o f f  a lp h a b etic  case
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VAL bchar IS BYTE (kchar / \  # 5 F ):

IF

bchar = i Y >

CHAN OF ANY fromprog, t o f i l e :

INT foldnum:

PAR

SEQ

datavalues (fromprog) 

w rite .endstream  (fromprog)

SEQ

scrstream .fan .ou t (fromprog, t o f i l e ,  screen)  

w rite.endstream  ( t o f i l e )

SEQ

s c r s t r e a m . t o . f i l e  ( t o f i l e ,  f r o m .u s e r . f i l e r [0 ] ,

t o . u s e r . f i l e r [0 ] ,  " d a ta f i le " ,  foldnum, error)

IF

error = 0 

SKIP 

TRUE 

STOP

TRUE

datavalues (screen)  

w r i t e . f u l l . s tr in g (sc r e e n ,  "Type ANY to  return to  TDS")

INT any:

new lin e(screen )

C o n tro ller  (keyboard, screen , f r o m .u s e r . f i l e r , t o . u s e r . f i l e r )
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TH E PR O G R A M

VAL lin k ou t IS [ 0 ,1 ,2 ,3 ]  :

VAL l in k in  IS [ 4 ,5 ,6 ,7 ]  :

CHAN OF ANY fromROOT, toROOT :

[16 ]CHAN OF ANY l in k s :

{ { {  SC MX (CHAN OF ANY inn , o u t t ,  i n i , o u t 1, in 2 ,o u t2 ,  in 3 ,o u t3 )  

{ { {  MX (CHAN OF ANY inn , o u t t ,  i n i , o u t 1, in 2 ,o u t2 ,  in 3 ,o u t3 )  

PROC MX (CHAN OF ANY inn , o u t t ,  i n i , o u t 1, in 2 ,o u t2 ,  in 3 ,o u t3 )

[1000]REAL32 erro r1:

[1000]REAL32 error2:

[1000]REAL32 error3:

[1000]REAL32 c o n t s ig l :

[1000]REAL32 con ts ig2 :

[1000]REAL32 co n ts ig3 :

[1000]REAL32 TRAJdata:

SEQ

inn ? TRAJdata 

PAR 

SEQ

o u tl  ! TRAJdata 

SEQ

out2 ! TRAJdata 

SEQ

out3 ! TRAJdata 

SEQ

in i  ? erro r l  ; c o n t s ig l
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SEQ

in2 ? error2 ; con ts ig2  

SEQ

in3 ? error3 ; con ts ig3  

outt ! e r r o r l ;c o n t s ig l  ; e rro r2 ;co n ts ig 2  ; e rro r3 ;co n ts ig 3

>}}
}}}
. . .  SC position(CHAN OF ANY o u t l ,  out2, out3)

. . .  SC SIGNAL(CHAN OF ANY i n i ,  in 2 , in3)

. . .  SC Cl (CHAN OF ANY i n i ,  in 2 ,o u t2 ,  out )

. . .  SC C2 (CHAN OF ANY i n i ,  in 2 ,o u t2 ,  out )

. . .  SC C3 (CHAN OF ANY i n i ,  in 2 ,o u t2 ,  out )

PLACED PAR

PROCESSOR 0 T8

PLACE fromROOT AT l i n k i n [2] : 

PLACE toROOT AT l in k o u t [2] : 

PLACE l i n k s [11] AT l i n k i n [3] 

PLACE l in k s  [8] AT l in k o u t [3]

PLACE l i n k s [12] AT l i n k i n [0] 

PLACE l i n k s [9] AT lin kout [0]

PLACE l i n k s [13] AT l in k in  [1] :

PLACE l i n k s [10] AT l in k o u t [1]

MX(fromROOT,toROOT,links[ 1 1 ] , l i n k s [ 8 ] , l i n k s [12] ,  

l i n k s [ 9 ] , l in k s  [ 1 3 ] , l i n k s [10])

PLACED PAR
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PROCESSOR 1 T8

PLACE l i n k s [0] AT l in k o u t [0] :

PLACE l i n k s [1] AT l in k o u t [2] :

PLACE l i n k s [3] AT l in k o u t [3] :

p o s i t i o n ( l i n k s [0 ] ,  l i n k s [1 ] ,  l i n k s [3 ])

PLACED PAR

PROCESSOR 2 T8

PLACE l i n k s [4] AT l i n k i n [2] :

PLACE l i n k s [5] AT l i n k i n [0] :

PLACE l i n k s [6] AT l i n k i n [1] :

SIGNAL(links[4 ] ,  l i n k s [ 5 ] ,  l i n k s [6 ])

PLACED PAR

PROCESSOR 3 T8

PLACE l i n k s [0] AT l i n k i n [0] :

PLACE l in k s  [8] AT l in k in  [3] :

PLACE l i n k s [11] AT l in k ou t [3] :

PLACE l i n k s [4] AT l in k o u t [2] :

C l ( l i n k s [0 ] ,  l i n k s [8 ] ,  l i n k s [1 1 ] ,  l i n k s [4 ])

PLACED PAR

D D n P T T O O n D  A  T Q
A I b U V L j U U U A V  “X  I V

PLACE l i n k s [1] AT l in k in  [0] :

PLACE l in k s  [9] AT l i n k i n [3] :

PLACE l in k s  [12] AT l in k ou t [3] :

PLACE l in k s  [5] AT lin k o u t [2] :
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C 2 (l in k s [1 ] ,  l i n k s [9 ] ,  l i n k s [1 2 ] ,  l i n k s [5 ])

PLACED PAR

PROCESSOR 5 T8

PLACE l i n k s [3] AT l i n k i n [0] :

PLACE l i n k s [10] AT l i n k i n [3] :

PLACE l i n k s [13] AT lin k o u t [3] :

PLACE l i n k s [6] AT l in k o u t [2] :

C 3 ( l in k s [3 ] ,  l i n k s [1 0 ] ,  l i n k s [1 3 ] ,  l i n k s [6])



A ppendix B 

Pascal and O CCAM  SC progs 

for F iltering

TH E PASCAL

PROGRAM F i l t e r ( I n p u t ,  Output);

PROCEDURE _ c f i l t o  ( x : r e a l  ) ; c ;

PROCEDURE _ c f i l t i  ( var y : r e a l  ) ; c ;

CONST

Version = 'Version 1 .1 ' ;

NumberParameters = 3;

MaxDegree = 4;

MaxState = 2;

MaxDimension = 6;

C r iter io n  = 0 .01;

TYPE

Degree = -  1 . .MaxDegree;

Polynomial =

RECORD

Deg: Degree;
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Coeff: ARRAY [ 0 . .MaxDegree] OF REAL 

END;

StateV ector  = ARRAY [ 0 . .MaxState] OF REAL;

TypeFilterKnobs =

RECORD

Sam ple ln terva l: REAL;

ApproximateionOrder: INTEGER;

ConstantBetweenSamples: BOOLEAN;

END;

T yp eF ilterS ta te  =

RECORD

S tate :  StateVector;

Old: REAL;

END;

Dimension = 1 . .MaxDimension;

Vector = ARRAY [Dimension] OF REAL;

Matrix =

RECORD

Rows: Dimension;

Columns: Dimension;

Element: ARRAY [Dimension, Dimension] OF REAL;

END;

VAR

InData: TEXT;

D 01 P r t n  +  r r t l  C i  r r n  a l  C J*re»+ *  o t n r i n 4 , n i i 4 *  ♦ 1 5 1 7  A T ♦
A W J. } V  VAIi V X k / y  k/Jf M U Wi.lL W U  U ^ /U  W • JL h u n i i  y

C ontro lS ta te , OutputState: T yp eF ilterS ta te;

X, XPsi, Parameter: Vector;

XX: Matrix;

Cs: Polynomial;
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FilterKnobs: TypeFilterKnobs;

Order: INTEGER;

Done: BOOLEAN; 

aa : REAL; 

i i  : INTEGER;

PROCEDURE I n i t i a l i s e ;

VAR

i ,  j :  INTEGER;

BEGIN { I n i t i a l i s e }

WITH C ontro lS tate  DO 

BEGIN

FOR i  := 0 TO MaxState DO S t a t e [ i ]  := 0 .0 ;

Old := 0 .0 ;

END;

WITH OutputState DO 

BEGIN

FOR i  := 0 TO MaxState DO S t a t e [ i ]  := 0 .0 ;

Old := 0 .0 ;

END;

WITH XX DO 

BEGIN

Rows := NumberParameters;

Columns := NumberParameters;

FOR i  := 1 TO NumberParameters DO

t r n D  •; .  — -i t t i  — ~ x .  r\n
X U l b  J  . —  X  X U  XM U 1 U U C 1  X" C L X  C U 1 1 C  O C X  ©  UU

E lem ent[i,  j ]  := 0 .0 ;

END;

FOR i  := 1 TO NumberParameters DO X P si[ i]  := 0 .0 ;  

WITH Cs DO
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BEGIN 

Deg := 2;

C o e f f [0] := 0.01;

C o e f f [1] := 0 .2 ;

C o e f f [2] := 1;

END;

WITH FilterKnobs DO 

BEGIN

Sam plelnterval := 1 /  121; 

ApproximationOrder := 5; 

ConstantBetweenSamples := FALSE; 

END;

END { I n i t i a l i s e }  ;

PROCEDURE F ilterD ata;

PROCEDURE S ta te V a r ia b leF ilter

(u {S ign a l to  be f i l t e r e d }  : REAL; 

C: Polynomial;

FilterKnobs: TypeFilterKnobs;

VAR F i l t e r S t a t e :  T y p eF ilterS ta te ) ;

VAR

k, Index: INTEGER;

Sum, hk: REAL;

Increment: StateVector;

c r n T i i  f  —t? .:  i  j . —  \
jjijuxn i ua. oc ¥ clx xau j.c i J.a. iici J

WITH FilterKnobs DO 

BEGIN

IF ConstantBetweenSamples THEN 

F i l te r S ta te .O ld  := u;
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IF C.Deg = 0 THEN

F i l t e r S t a t e . S t a t e [0] := u /  C .C o eff[0]

ELSE

BEGIN

F i l t e r S t a t e .S t a t e [ 0 ]  := 0 .0 ;

FOR Index := 0 TO C.Deg DO

Increment[Index] := F i l t e r S t a t e .S t a t e [ I n d e x ] ; 

FOR k := 1 TO ApproximationOrder DO 

BEGIN

Sum := 0 .0 ;

hk := Sam pleInterval /  k;

FOR Index := 1 TO C.Deg DO

Sum := Sum -  C .Coeff[Index] *

Increm ent[Index];

FOR Index := C.Deg DOWNTO 2 DO

Increment[Index] : = hk * Increment[Index -

l];
Increment[0] := Sum /  C .C oeff[0 ];

IF k * 1 THEN

Increment [0] := Increment [0] +

F i l t e r S t a t e . Old /

C.Coeff [0];

IF k = 2 THEN

Increment [0] := Increment [0] + (u -  

F i l t e r S t a t e . Old) !

C.Coeff [0];

Increment[1] := hk * Increment[0];

FOR Index := 0 TO C.Deg DO

F i l t e r S ta te .S ta t e [ I n d e x ]  := F i l t e r S t a t e .
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S tate[In d ex] + 

Increment[Index]

END;

END;

F i l t e r S t a t e . Old := u;

END {WITH FilterK nobs}

END { o f  S ta te V a r ia b leF ilte r  } ;

BEGIN {F ilterD a ta }  

i i  := 1;

WHILE i i  < 901 DO 

BEGIN

_ c f i l t i (S y s te m O u tp u t) ;

S tateV ariab leF ilter(System O utput, Cs, F ilterK nobs,

O utputState);

X[l]  

X[2] 

X [3]

= O u tp u tS ta te .S ta te [0] ; 

= O utputState. S t a t e [1];  

= O utputState. S t a t e [2];

_ c f i l t o ( X [ l ] ) ;  

_ c f i l t o ( X [ 2 ] );  

_ cf  i l t o (X [3 ]  );  

i i  := i i  + 1; 

END;

END {F ilter D a ta }  ;

BEGIN { F i l t e r }
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I n i t i a l i s e ;

BEGIN

F ilterD ata ;

END;

END.

TH E O CCAM  SC

{ { {  SC filter(CHAN OF ANY i n i ,  o u t l)

{ { {  filter(CHAN OF ANY i n i ,  o u t l )

PROC filter(CHAN OF ANY i n i ,  o u t l )

CHAN OF ANY Aang, Bang, Cang, f i l A ,  f i l B ,  f i lC :  

{ { {  fil(CHAN OF ANY Ain, Aout)

PROC fil(CHAN OF ANY Ain, Aout)

#USE g l o b a l s . l i b  

#USE s tr e a m s . l ib

PROC foccam( [2] CHAN OF ANY chans )

#USE u s e r i o . l i b

REAL32 fan g , f v e l ,  f a c e ,  angle:  

in  IS chans [0] : 

out IS chans[1] :

INT s i z e ,  i ,  noOFtrajectoryPOINTS:

SEQ 

i  := 0

noOFtrajectoryPOINTS := 901 

WHILE i  < noOFtrajectoryPOINTS 

SEQ

Ain ? angle  

out ! angle  

in  ? face'



APPENDIX B. PASCAL AND OCCAM SC PROGS FOR FILTERING

in  ? f v e l  

in  ? fang

Aout ! fang ; f v e l  ; fa ce  

i  := i  + 1

VAL bufS ize  IS 256 :

[bufSize]BYTE args :

INT r e s u l t  :

[1]BYTE fS tack  :

[20 * 1024]BYTE heap :

[2 ]CHAN OF ANY chans :

CHAN OF ANY debug, toFSys, fromFSys: 

CHAN OF ANY screen , keyboard:

— s i z e  of s t r in g  b u ffe r s

— arguments to  PASCAL

— r e s u l t  from PASCAL

— dummy f a s t  s tack  arrays

— heap space

— dummy in te r -p r o c e ss  channels

#USE " te r in g . l iS "

SEQ

args[0] := '*#00'

PAR

tering(from F Sys, toFSys, 

keyboard, screen ,  

debug, args,

r e s u l t , chans,

fS ta ck , heap)

foccam(chans)

}}}
PAR

SEQ

REAL32 a n g le l ,  fa n g l ,  f v e l l ,  f a c c l
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REAL32 angle2 , fang2, f v e l 2 ,  fa cc2 :

REAL32 angle3 , fang3, f v e l 3 ,  fa cc3 :

INT i i i :

SEQ

i i i  := 0 

WHILE i i i  < 901 

SEQ

in i  ? a n g le1 ; angle2 ; angle3  

Aang ! a n g le l

Bang ! ang le2

Cang ! angle3

f i l A  ? fan g l ; f v e l l  ; f a c c l

f i l B  ? fang2 ; f v e l2  ; facc2

f i l C  ? fang3 ; f v e l3  ; facc3

o u t l  ! f a n g l ;f v e l l ;f a c c l  ; f a n g 2 ; fv e l2 ; fa c c 2  ;

fan g3;f v e l 3 ;facc3  

i i i  := i i i  + 1

SEQ

fi l (A a n g ,  f i lA )

SEQ

f i l (B a n g ,  f i l B )

SEQ

f i l (C a n g ,  f i lC )

>»
}>}



A ppendix C

Param eters and two procs for

M B V SST

Values of param eters needed in th e in itia l stage

{ ======== Assumed system ========} { S y s t e m ln i t ia l i s e }

A.Deg := 2;

A .C o eff[0] := 1.000000;

A .C o eff[1] := 2.000000;

A .C o eff[2] := 1.000000;

B.Deg := 0;

B .C o e f f [0] := 1.000000;

Numberlnteractions := 0;

D.Deg := 0;

D .C o eff[0] := 0.000000;

Delay := 0.000000 ;

T u n in g ln itia lC on d ition s  := FALSE ;
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{======== Emulator d es ign  ======== } { D e s i g n l n i t i a l i s e }

ZHasFactorB := FALSE;

ZMinusPlus := 1.000000;

ZPlus := 1.000000;

LQ := FALSE;

{= = = 5 = = =S= == = ==a=============:===== >

P.Deg := 1;

P .C o e f f [0] := 1 .0 ;

P .C o e f f [1] : = 1 .0 ;

C.Deg := 1;

C.Coeff [0] := 1 .0 ;

C .C oeff[1] := 1 .0;

PadeOrder := 0;

Small := 0.000100;

{ ======== F i l t e r s  ========} { In itF ilterK n o b s}

Sam plelnterval := 0.008251;

ApproximationOrder := 5;

ContinuousTime := TRUE;

{  ======== I d e n t i f i c a t io n  ======== } { T u n e r ln i t ia l i s e }

In it ia lV a r ia n ce  := 100000.000000 ;

ForgetTime := 1000.000000;

DeadBand := 0.000000;

On := TRUE ;

Tunelnterval := 1;

{ } { I d e n t i f y l n i t i a l i s e }
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Cs.Deg :=* 1;

C s .C o e f f [0] := 1.000000;

C s .C o e ff [1] := 1.000000;

Id en tify in g R a tio n a l := TRUE;

Id en tify in gD elay  := FALSE;

{======== C on tro ller  ======== } { C o n t r o l ln i t i a l i s e }

qNumerator.Deg := 0; 

qNumerator.Coeff[0] := 0 .0 ;  

qDenominator.Deg := 0; 

qDenominator.Coeff[0] := 1 .0 ;  

rNumerator.Deg := 0; 

rNumerator.Coeff[0] := 1 .0 ;  

rDenominator.Deg := 0; 

rDenominator.Coeff[0] := 1 .0 ;

{ ======== PutD ataln it  ======== } { P u t D a ta ln i t ia l i s e }

Max := 10.0 ;

Min := -1 0 .0 ;

Switched TRUE;

{======== STC type ======== } { K n o b s ln i t ia l i s e }

E x p l ic i t  := FALSE;

UsingLambda := TRUE;

Identify ingSystem  '= TP.UE;

{ ======== Control a c tio n

Auto := TRUE; 

In tegra lA ction  := TRUE;

} { S T C In it ia l is e }
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{ ======== Data Source ========} { R e i n i t i a l i s e }

ExternalData := FALSE;

LastTime := 0.016502;

P r in t ln te r v a l  := 1;

{ ======== Actual system ======== } { t S y s t e m ln i t ia l i s e }

A.Deg := 2;

A .C o eff[0] := 1.000000;

A .C o eff[1] := 2.000000;

A .C o eff[2] := 1.000000;

B.Deg := 0;

B .C o e f f [0] := 1.000000;

D.Deg := 0;

D .C o eff[0] := 0.000000;

Delay := 0.000000 ;

C onveyD ata and D eliverD ata

PROCEDURE ConveyData(VAR ThisLoopVAR: TypeLoopVAR;

VAR LoopVAR: LoopVARs;

VAR Time: REAL;

RunKnobs: TypeRunKnobs; 

FilterK nobs: TypeFilterK nobs);

PROCEDURE Receive;

VAR

uD: REAL;
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j ,  Loop: INTEGER;

Time, u, y , w : REAL; 

aa, bb, cc : REAL;

BEGIN {R eceive}

WITH ThisLoopVAR, RunKnobs DO 

BEGIN

_crec3(aa , bb, cc) ; 

u := aa;

IF NOT Cascade OR (ThisLoop = 1) THEN uD := u 

ELSE uD := LoopVAR[ThisLoop -  1] .y;

WITH tSystemKnobs, tSystem State  DO

uD := MultiLag(uD, Lags, LagTimeConstant, 

I n te r a c t iv e ,  F ilterK nobs,  

L a g S ta te );

y := bb; 

j := 0;

FOR Loop := 1 TO Loops DO

IF NOT (Loop = ThisLoop) THEN 

WITH tSystemKnobs DO 

BEGIN

j *•* j +

y := y + F i l t e r ( I n t e r a c t i o n [ j ] ,

B I n t e r a c t io n [ j ] , A, 

F ilterK n ob s,

I n te r a c t io n S t a te [j + l j ) ;

END;

IF NOT Cascade OR (ThisLoop = Loops) THEN 

BEGIN

w := cc;
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END

ELSE w := LoopVAR[ThisLoop + 1] .u;

END;

END {R eceive} ;

BEGIN {ConveyData}

Receive;

END {ConveyData} ;

PROCEDURE DeliverData(VAR u: REAL;

PutDataKnobs: TypePutDataKnobs);

BEGIN {D eliverData}

WITH PutDataKnobs DO 

BEGIN

IF u > Max THEN u := Max 

ELSE IF u < Min THEN u := Min;

IF Switched THEN

IF Abs(u -  Min) < Abs(u -  Max) THEN u := Min 

ELSE u := Max;

_ csen d (u );

END;

END {D eliverD ata} ;



A ppendix D

M ass M atrix (M ), and (Q)

Vector

Definition of Symbols

(a) and (d) represent Denavit-Hartenberg parameters, (w) represents the waist 

(linkl), (s) represents shoulder (link2), (e) represents elbow (link3). (cm) stands 

for centre of mass, (z) is inertia, and (m), mass, x , y , and 2; are directions, q 

represents angle and v angular velocity.

For example w xcm is the distance of center of mass associated with the waist in x 

direction.

T he Equations

M ( 1,1) :=  -  ((m 4 • ( -  (cos (2 • q2 +  2 • q3) • a fj -  2 • cos (2 • q2  +  £3) ' a2 - a3

— 4 • cos (q2 +  q3) • ax • a3  -  cos (2 • q2) • a\

— 4 • cos (q2) • • a2 — 2 • cos (#3) • a2 • a3

— 2 ' a \  — a22 — a\ — 2 - d \  — ^ ' d 2 ' d3 — 2 ' d ^

+  2 • sin (2 • q2 +  2 • 4 3 )  • m3  • a3  • eycm +  2 • sin (2 • q2 +  2 • q3) •
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m 3  • excm • eycm +  2 • sin (2 • q2 +  q3) • m3 • a2 • eycm 

+  4 • sin (tf2 +  £3) • m3 • ai • ez/cm +  2 • sin (2 • #2) -m 2 -a2 - s y ^

+  2 • sin (2 • 22) • m 2 • • sycm +  4 • sin (q2) • m2 • ax •

+  2 • sin (?3) • m3 • a2 • eycm -  cos (2 • q2 -f 2 • g3) • m3 • 03 -  2- 

cos (2 • q2 +  2 • tf3) • m 3  • a3 • excm -  cos (2 • q2 +  2 • g3) • m 3  • ea^m 

+  cos (2 • q2 +  2 • g3) • m3 • ey2m +  cos (2 • q2 +  2 • q3) • ezxx

— cos (2 • q2 +  2 • q3) • ezyy -  2 • cos (2 • q2 +  #3) -m 3 - a2 - a3

— 2 • cos (2 • q2 +  #3) • m3 • a2  • ezcm -  4 • cos (q2 +  #3) • m3 • • a3

— 4 • cos (tf2 +  ^3) • m3 • ai • -  cos (2 • #2) • m 2 • «2

— 2 • cos (2 • ^2) • m 2 • a2 • s r cm — cos (2 • g2) * ”22 •

+  cos (2 • 52) • rn2 • 33^  -  cos (2 • q2) ■m 3 'a \

+  cos (2 • q2) • sixx -  cos (2 • q2) • siyy -  4 • cos (q2) • m2 • «i • a2

— 4 • cos (<?2) • m2 • ai • szCm — 4 • cos (<72) • m 3  • aj. • a2

— 2 • cos (#3) • m3 • a2 • a3  — 2 • cos (#3) • m3 • a2 • ezcm — 2 • m r

aj — 4 • m! • • wxcm — 2 • mi • — 2 • m x • — 2 • m 2 • a?

— m 2 'a \  — 2 -m 2 -a2 - sxcm — 2  • m 2 • d% — A • m 2 • d2 • szcm

— m 2 • -  m2 ‘ sy2m -  2 • m2 • -  2 • m3 • a? -  m3 •

— m 3  • 03 — 2 • m3 • a3 • e rcm — 2 • m3 • d2 — 4 • m3 • d2 • d3

— 4 • m3 • d2 • ezcm -  2 • m3 • -  4 • m3 • d3 • ezcm -  m3 • ea^m

— m3 • CZ/cm ^ * e2cm ^ * ^*2/2/ SZyy CZx;r e ŷŷ j

M (l, 2) := -  (m4 • (sin (#2 +  Vz) '<Lz'd2 + sin (q2 +  q3) - a3  • d3

+  sin (g2) * «2 * d2 +  sin (#2) • a2 • d3)

+  sin (^2 +  #3) • m3 • a3 • d2 +  sin (g2 +  <Lz) • m3 • a3 • d3

■j- sin (<72 "I- Qz)' mz * *23 * & Z cm  4“ sin (<72 d- ^3) * Z7i3 * d2 •  c X q ^

+  sin (#2 +  93) ’ m 3 ' ^3 * ea:cm +  sin (q2 +  #3 ) * m 3 * ea; cm ’
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+  sin (q2) • m2 • a2 • d2 +  sin (q2) • m 2 • a2 • szcm 

+  sin (g2) • m 2 - d2 • sx cm +  sin (q2) • m2 • sx cm ' S^crn

4- sin (<?2) • rn3  • a2 • d2 +  sin (g2) • m3 • a2 • d3 

+  sin (g2) • m3 • a2 • e2rcm +  cos (g2 +  g3) • m3 • d2 • ez/cm 

4 - cos (<72 +  #3) • m3 • d3 • ez/c™ +  cos (#2 +  g3) • m3 • • ezcm

+  cos (g2) • m 2 • d2 • sycm +  cos (g2) • m 2 • s?/cm • szcm)

M (l, 3) := -  (m4 • sin (q2 +  q3) • a3  • (d2 +  d3) +  m3-

(sin (<72 4* q3) • a3 • d2 +  sin (<72 4~ #3) * a3 * d3 +  sin (q2 +  q3) - a3  • 

+  sin (<72 +  43) • d2 • excm +  sin (q2 +  q3) • d3  • excm 

+  sin (q2 +  q3) • ezcm • ezcm +  cos (q2 +  q3) • d2 • e?/cm 

+  cos (#2 +  #3) * d3  • eycm +  cos (q2 +  qz) • ez/Cm • e^cm))

M (2 ,1) := -  (m4 • (sin (g2 +  93) • «3 • d2 +  sin (q2 4* q3) • a3 • d3  

+  sin (^2) - a2 - d2 + s'n (ft) * «2 * d3)

+  sin (^2 +  #3) • zn3 • a3 • d2 +  sin (g2 +  #3) * zn3 • a3 • d3

+  sin (tf2 +  #3) • m3 • a3 • +  sin (g2 +  qz) • m3 • c?2 • e a ^

+  sin (q2 +  q3) • m3 • d3  • ezcm +  sin (q2 +  g3) • m 3  • ear cm ' Ĉ cttj

+  sin (<72) • m 2 • « 2 • d2 4- sin (q2) • m 2 • a2 - szcm 

4- sin (<72) - m 2 ' d2 - sx cm 4- sin (q2) - m 2 - sx cm ' S^cm

4- sin (q2 ) • m3 • a2 • d2 4- sin (q2) -m 3 - a2 - d3

4- sin (q2) • m 3  • a2 • ezcm 4- cos (?2 +  qz) • m3 • c?2 • ei/cm

4- cos (q2 4- $3) * zn3 * d3  • ez/C7n 4- cos (q2 4- <73) * "z3 • eycm • ezcm

4* cos (<72) ‘ Z722  ■ d2 • sycm  4* cos (^2) * zn2 • sycm • szcm)

M (2 ,2) := -  (m4 • ( -  (2 • cos (q3) • a2 • a3) -  ~  <*3)

4- 2 • sin (<73) • m 3  • a2 • ez/cm — 2 • cos (^3) • ra3 • a2 • a3

269

cm



APPENDIX D. M ASS M ATRIX  (M), AND (Q) VECTOR  270

— 2 • cos (q3) • m3 • a2 - excm — m 2 • a\ — 2 • m 2 • o2-

~  rn2 • s z L  -  m2 • st/L  -  m3 • a\ -  m3 • a\

2  * m 3 • <Z3 • €Xcm 7723 * €Xcm 7723 • Cycm 5 2 ^  e%zz^

M (2,3) := -  ( -  ((m4 • a3) • (cos (q3) • a2 +  o3)) +  sin (g3) • m3- 

o2 ' eycm -  cos (q3) • m3 • a2 • a3 -  cos (#3) •m 3 -a2 • ezcm

-  m3 • ag -  2 • m3 • a3  • excm -  m3 • ex2cm -  m 3  • ey2cm -  eiz^j

M (3,1) :=  -  (m4 • sin (q2 +  q3) • a3  • (d2 +  d3 ) -f m3-

(sin (q2 +  tf3) • a3 • d2 +  sin (q2 +  q3) • a3 • d3  +  sin (g2 +  £3) * o3 • ezcm 

+  sin (q2 +  g3) • d2 • ezcm +  sin (q2 +  ?3) • d3  • e a ^

+  sin (q2 +  q3) • excm • +  cos (q2 +  q3) • d2 • e?/cm

-f cos (q2 +  ^3) • d3  • e?/^ +  cos (q2 +  q3) • e7/cm • ezcm))

M (3,2) := -  ( -  ((m4 • a3) • (cos (q3) • a2 +  a3)) +  sin (^3) • m 3- 

«2 * eycm -  cos (#3) • m3 • a2 • a3  -  cos (q3) • m 3  • a2 • e a ^

7723 • (Z3 2  • 7713 * (Z3 * CXcm 7723 • CXcm 772.3 • 67/cm

M(3, 3) :=  7?74 • a\ +  m 3  • a\ +  2 • 7723 • a3  • excm +  m 3  • ea^m +  m 3  • e7/̂ m +  eizz

Q( 1,1) := -  (m4 • (sin (2 • q2 +  2 • q3) • t;i • v2 • Gtg +  sin (2 • q2 +  2 • q3) • ui • t;3 • ag

+  2 • sin (2 • q2 +  q3) • i>i • v2 • a2 • a3 +  sin (2 • q2 +  g3) • Vi • t;3 • a2 • a3

+  2 • sin (q2 +  q3) • 77i • t;2 • o4 • a3  +  2 • sin (#2 +  ^3) • ui • u3 • • a3

+  sin { 2  • q2) • v1 • v2 ' a\-\- 2  • sin (q2) • 2̂  • v2 • a4 • a2 

+  sin (</3) • vi • v3  • a2 • a3 -f cos (q2 +  #3) - v \ ‘ (i3 'd 2  

+  COS (g2 +  ^3) * 772 • 03 • C?3 +  2 • COS (tf2 +  tf3) • V2 • 773 • a3  • d2 

+  2 • cos (^2 +  q3) • u2 • t;3 • a3  • d3  -f cos (^2 +  ^3) *773 • o3 • c?2
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+  C O S  ( q 2 +  # 3 )  • ‘ 0 3  • d 3 +  c o s  ( q 2 )  • v \  • o 2 ’ d 2

+  c o s  ( q 2 ) • v \  • a 2 • d 3 )  +  s i n  (2 • q 2 - f  2 • # 3 )  • m 3 • V i  • v 2 • a 2z  

+  2 • s i n  (2 • q 2 +  2 • g 3 )  • m 3 • V i  • v 2 • a 3 • e z c m  

+  s i n  (2 • 2̂ +  2 • q3 )  • m 3 • u  1 • u 2 • e a ^ m  -  s i n  (2 • g 2 +  2 • g 3 )  •

m 3 - v  1 • u 2 • e z / ^  +  s i n  ( 2  • q 2 +  2  • g 3 )  • m 3 • v x • v 3 •

+  2 • sin (2 • q2 +  2 • g3) • m3 • • v3  • a3 • excm

+  sin (2 • q2 +  2 • g3) • m3 • Ui • u3 • ea^m -  sin (2  • q2 -f 2 • q3) • m 3  • v 1 • z;3-

ei/cm -  sin (2 • q2 +  2 • #3) • eixx • «i • v2 -  sin (2 • q2 +  2 • g3) • eixx •v 1 -v 3

-f sin (2 • q2 +  2 • g3) • ezyy • ui • v2 +  sin (2 • q2 +  2 • q3) • eiyy • vx • v3  

+  2 • sin (2 • q2 +  q3) • m3 • vx • n2 • a2 • a3 +  2 • sin (2 • q2 +  g3) • 

m3 • Vi - v2 • a2 • excm +  sin (2 • q2 +  g3) • m3 • ui • v3 • a2 • a3 

+  sin (2 • q2 +  93) • m3 • Vi • v3 • a2 • excm +  2 • sin (g2 +  q3) • 

m3 • vi • v2 • ai • a3  +  2 • sin (q2 +  q3) • m3 • ui • w2 • ai • ezcm 

+  2 • sin (</2 +  ^3) • m3 • Vi • v3 • • a3 +  2 • sin (q2 +  q3) • m3 • t v

v3 • ai • excm -  sin (g2 +  q3) -m 3 - v l - d 2 - eycm -  sin (q2 +  q3) • m3- 

v \ - d 3 - eycm ~  sin (q2 +  q3) • m3 • v 2 • eycm • e;zcm -  2 • sin (g2 +  #3) • 

m3 • v2 • v3  • d2 • ez/^ -  2 • sin (g2 +  #3) • m3 • v2 • z;3 • d3  • eycm -  2* 

sin (g2 +  ?3) • ra3 • v2 • v3  • ez/cm • e^cm -  sin (g2 +  #3) • m3 • • d2 • ez/cm

-  sin (#2 +  t?3) • m3 • v\ • 4  • e y ^  -  sin (#2 +  q3) • m3 • v | • ez/cm • e2cm 

+  sin (2 • q2) • m2 • t;i • v2 • +  2 • sin (2 • q2) • m2 • Vi • z;2 • a2  • sz cm

+ sin (2 • q2) • m 2 - v 1 • u2 • -  sin (2 • gr2) • m2 • i7i • u2 • 57/̂ m

+  sin (2 • q2) • m3 • t;i • u2 • a2 -  sin (2 • q2) • 52^  • Vi • v2

+  sin (2 • q2) • siyy • • u2 +  2 • sin (q2 ) • m 2 • Vi • v2 • ax • a2

-|- 2 • sin (^2) * tt22 • V\ ’ v2 ' d\ ' s x cm sin (<72) * m 2 * T72 • d2 • sycm

— sin (#2) • m2 • u2 * 52/cm * szcm +  2 • sin (q2) • m3 • Vi • v2 • ai • a2
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4- sin (q3) • m3 • vx • v3  • a2 • a3  +  sin (q3) • m3 • vx • v3  • a2 • excm 

+  2 • cos (2 • q2 +  2 • q3) • m3 • z;i • v2 • a3 • eycm

4- 2 • cos (2 • <72 +  2 • q3) • m 3  • • z;2 * cm ’ eycm

+  2 • cos (2 • q2 +  2 • q3) • m 3  • vj. • n3 • a3  • ez/cm

4- 2 • cos (2 • q2 +  2 • g3) • m3 • Vi • v3  • excm ' eyCm

+  2 • cos (2 • q2 +  #3) • m3 • Ui • u2 • a2 • ez/cm +  cos (2 • q2 +  qz) • 

m 3  • ui • u3 • a2 • ez/cm +  2 • cos (g2 +  g3) • m3 • v\ • v2 • «i • ez/cm 

4- 2 • cos (q2 +  q3) • m 3  • Vi • v3  • ai - eycm +  cos (q2 +  q3) • m 3  • v% • a3  - d2

4- cos (q2 +  q3) • m 3  • v\ • a3  • d3  +  cos (q2 +  q3) • m 3  • v\ • a3  • ezcm

+  cos (q2 +  q3) -m 3 - v l -  d2 - excm +  cos (q2 +  q3) • m3 • z;̂  • d3  • excm 

+  cos (</2 +  #3) • m 3  • z;2 • excm • ezcm +  2 • cos (g2 +  q3) • m3- 

v2 • z;3 • a3 • c?2 +  2 • cos (q2 +  q3) - m 3  - v2 • v3  - a3  • d3  

+  2 • cos (#2 +  93) 'm 3 -v 2 'V 3 -a3 - ezcm +  2 • cos (?2 +  q3) • 

m 3 -v 2 -v 3 -d2 - excm +  2 • cos (q2 +  g3) • m3 • z;2 • v3  • d3 • excm 

+  2 • cos (g2 +  q3) • m3 • v2 -v3 - excm * C2cm +  cos (g2 +  q3) • m3 • v\ • a3 • d2 

+  cos (g2 +  g3) • m 3 • • a3 • d3 +  cos (g2 +  g3) • m3 • z;̂  • a3  • e2cm

+  cos (g2 +  g3) • m3 • v\ • d2 * e x ^  +  cos (q2 +  q3) • m3 • z;̂  • d3 • excm

4- cos (#2 +  £3) • m3 • i>| ■ e x ^  • e-zcm +  2 • cos (2 • q2) • m 2 - vx - v2  • a2  • sycm

+  2 • cos (2 • q2) • m 2 • v \ - v 2 - s x cm * -sz/cm +  2 • cos (g2) - m 2 -v 1 • v2 • ai • sz/cm

+  cos (</2) • m 2 • zaj • a2 • d2 +  cos (g2) • m 2 • v\ • a2 • szcm 

4“ COS (z/2) " Z7l2 • U2 * d2 * SXCm H- COS (z/2) * T7l2 • Ẑ2 " SXcm ' szcm 

4- cos (q2) - m 3 ' v \ '  a2 - d2 -\- cos (q2) 'm 3 ' v \ - a 2 ' d 3  

4- cos (q2) -m 3 - v \ -  a2 - e z ^  4- cos (q3) • m3 • u 1 • u3 • a2 • ez/cm)

Q (2,1) := (m4 • (sin (2 • +  2 • g3) • uj • a\ 4- 2 • sin (2 • q2 4- g3) • v? • a2 • «3

4- 2 • sin (^2 4- qz) • u? * «i * a3 +  sin (2 • ?2) • vj • a\
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+  2 • s i n  ( q2 )  • v\ • ax • a2 -  4 • s i n  (q3) • v2 • u 3  • a 2  • « 3  

-  2 • s i n  ( 9 3 )  • U 3  • a2 • a 3  +  2 • c o s  (q2 +  q3) • g • a 3  

+  2 • c o s  ( 9 2 )  • g • a 2 )  4- s i n  (2 • q2 4- 2 • 9 3 )  • m 3  • u j  • a g

4- 2 • s i n  (2 • q2 4- 2 • q3) • m 3  • • a3  • e x c m  4- s i n  (2 • q2 4- 2 • 9 3 )  • m 3  • v \ •

e x * m  -  s i n  (2 • ? 2  4- 2 • 9 3 )  - m 3 • v 2 • ey2cm -  s i n  (2 • 9 2  4- 2 • 9 3 ) . -  e z * *  • v *

4- sin (2 • 92 4- 2 • 93) • eiyy • 4- 2 • sin (2 • q2 4- 93) • m3 • • a2 • a3

4- 2 • sin (2 • 92 4- 93) ■ m3 • wj • a2 * excm -  2 • sin (92 4- 93) • g * rn3  • ez/cm

4- 2 • sin (92 4- 93) * zn3 • • ai • a3 4- 2 • sin (92 4- 93) * m 3  • uj • ax • excm

4- sin (2 • 92) • m2 • Vi • a2 +  2 ‘ sin (2 * #2) • m 2 • v? • <z2 * sxcm

4- sin (2 • 92) • m 2 • v2 • -  sin (2 • q2) • m 2 • v 2 •

4- sin (2  • 92) • m 3  • “  sin (2 * #2) * sixx • uj

4- sin (2 • 92) • siyy • u? -  2 • sin (92) • g • m 2 • s?/cm 

4- 2 • sin (92) • m 2 • Vi • a4 • a2 +  2 • sin (92) • m 2 • uj • ai • sxcm

4- 2 • sin (92) • m3 • vj • ax • a2 -  4 • sin (q3) • m 3  • v2 • v3  • a2 • a3

-  4 • sin (q3) - m 3 -v 2 - v3 - a2 ‘ excm -  2 • sin (q3) • m 3 ♦ • a2 • a3

-  2 • sin (93) • ra3 • u3 • a2 • ex,™ 4- 2 • cos (2 • 92 4- 2 • 93) • m3 • vj • a3 • eycm

4- 2 • cos (2 • 92 4- 2 • 93) • m3 • v 2 • excm • ez/CTO 4- 2 • cos (2 • q2  4- 93) • m 3  • • a2 • ez/cm

4- 2 • cos (92 4- 93) * 9 ' m 3  • a3  4- 2 • cos (q2 + q3) ■ g - m 3  • excm

4- 2 • cos (92 4- 93) • m3 • uj • ai • ez/cm 4- 2 • cos (2  ■ 92) • m2 • v\ • a2 • sz/cm

4- 2 • cos (2 • 92) -m 2 ' v \ ‘ sxcm • s?/cm 4- 2 • cos (q2) • g • ra2 • a2

4- 2 • cos (92) • g  • m 2 • sZcm 4- 2 • cos (92) • g  • m3 • a2

4- 2 • cos (92) • m 2 • v? • ai • s?/cm -  4 • cos (93) • ra3-

v2 -v3 - a2 - eycm — 2 • cos (93) • m 3 • v3 • a2 • e?/cm) /2

<3(3,1) := (ra4 • a3 • (sin (2 • 92 4- 2 • 93) • v 2 • a3 4- sin (2 • q2 4- q3) - ■ a2

4- 2 • sin (92 4- 93) • w? • +  sin (93) • uj • a2
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4- 2  • sin ( 9 3 )  • v \  • a2 4- 2  • cos ( 9 2  +  9 3 )  • g )

+  sin (2 • 92 4- 2 • 93) • m3 • nj • a\ +  2 • sin (2 • 92 4 - 2 • 93) • m3 • v% • a3 • 

4- sin (2 • 92 +  2 • 93) • m3 • vj • ex2̂  -  sin (2 • 92 +  2 • 93) • 

m 3 • vj • ez/̂ m -  sin (2 • 92 +  2 • 93) • ei** • uj 

+  sin (2 • 92 +  2 • 93) • ezyy • v\ 4- sin (2 • 92 4- 93) * m 3  • v\ • a2 • a3  

4- sin (2 • 92 +  93) -m 3 • w? • a2 • excm -  2 • sin (92 4- 93) • 9  • m3 * ez/Cm 

4- 2 • sin (92 4* 93) • Z7i3 * T7? • «i • a3 4- 2 • sin (92 4- 93) • m3 • uj • ai • excm 

4- sin (93) • m 3  • • a2 • a3 4- sin (93) • m3 • v\ • a2 * exOT

4- 2 • sin (93) • m 3  • v\ • a2 • a3 4- 2 • sin (93) • m3 • ^  • a2 • excm 

4- 2 • cos (2 • 92 4- 2 • 93) • m 3  • nj • a3 • eycm

4- 2 • cos (2 • 92 4- 2 • 93) • m 3  • v 2 • excm • e?/cm

4- cos (2 • 92 4- 93) • m3 • vj • a2 • 4- 2 • cos (92 + q3) - g ■ m 3  • a3

4- 2 • cos (92 4- 93) * 9  • ™ 3  ' excm 4- 2 • cos (92 4- 93) * m 3  • v\ • ax • e?/cm

4- cos (93) • m3 • 17J • <z2 • eycm 4- 2 • cos (93) • m 3  • • a2 • ez/cm) / 2

274
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