324 research outputs found

    EapGAFS: Microarray Dataset for Ensemble Classification for Diseases Prediction

    Get PDF
    Microarray data stores the measured expression levels of thousands of genes simultaneously which helps the researchers to get insight into the biological and prognostic information. Cancer is a deadly disease that develops over time and involves the uncontrolled division of body cells. In cancer, many genes are responsible for cell growth and division. But different kinds of cancer are caused by a different set of genes. So to be able to better understand, diagnose and treat cancer, it is essential to know which of the genes in the cancer cells are working abnormally. The advances in data mining, machine learning, soft computing, and pattern recognition have addressed the challenges posed by the researchers to develop computationally effective models to identify the new class of disease and develop diagnostic or therapeutic targets. This paper proposed an Ensemble Aprior Gentic Algorithm Feature Selection (EapGAFS) for microarray dataset classification. The proposed algorithm comprises of the genetic algorithm implemented with aprior learning for the microarray attributes classification. The proposed EapGAFS uses the rule set mining in the genetic algorithm for the microarray dataset processing. Through framed rule set the proposed model extract the attribute features in the dataset. Finally, with the ensemble classifier model the microarray dataset were classified for the processing. The performance of the proposed EapGAFS is conventional classifiers for the collected microarray dataset of the breast cancer, Hepatities, diabeties, and bupa. The comparative analysis of the proposed EapGAFS with the conventional classifier expressed that the proposed EapGAFS exhibits improved performance in the microarray dataset classification. The performance of the proposed EapGAFS is improved ~4 – 6% than the conventional classifiers such as Adaboost and ensemble

    Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification

    Full text link
    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice

    Knowledge Generation with Rule Induction in Cancer Omics

    Get PDF
    The explosion of omics data availability in cancer research has boosted the knowledge of the molecular basis of cancer, although the strategies for its definitive resolution are still not well established. The complexity of cancer biology, given by the high heterogeneity of cancer cells, leads to the development of pharmacoresistance for many patients, hampering the efficacy of therapeutic approaches. Machine learning techniques have been implemented to extract knowledge from cancer omics data in order to address fundamental issues in cancer research, as well as the classification of clinically relevant sub-groups of patients and for the identification of biomarkers for disease risk and prognosis. Rule induction algorithms are a group of pattern discovery approaches that represents discovered relationships in the form of human readable associative rules. The application of such techniques to the modern plethora of collected cancer omics data can effectively boost our understanding of cancer-related mechanisms. In fact, the capability of these methods to extract a huge amount of human readable knowledge will eventually help to uncover unknown relationships between molecular attributes and the malignant phenotype. In this review, we describe applications and strategies for the usage of rule induction approaches in cancer omics data analysis. In particular, we explore the canonical applications and the future challenges and opportunities posed by multi-omics integration problems.Peer reviewe

    Machine learning methods for omics data integration

    Get PDF
    High-throughput technologies produce genome-scale transcriptomic and metabolomic (omics) datasets that allow for the system-level studies of complex biological processes. The limitation lies in the small number of samples versus the larger number of features represented in these datasets. Machine learning methods can help integrate these large-scale omics datasets and identify key features from each dataset. A novel class dependent feature selection method integrates the F statistic, maximum relevance binary particle swarm optimization (MRBPSO), and class dependent multi-category classification (CDMC) system. A set of highly differentially expressed genes are pre-selected using the F statistic as a filter for each dataset. MRBPSO and CDMC function as a wrapper to select desirable feature subsets for each class and classify the samples using those chosen class-dependent feature subsets. The results indicate that the class-dependent approaches can effectively identify unique biomarkers for each cancer type and improve classification accuracy compared to class independent feature selection methods. The integration of transcriptomics and metabolomics data is based on a classification framework. Compared to principal component analysis and non-negative matrix factorization based integration approaches, our proposed method achieves 20-30% higher prediction accuracies on Arabidopsis tissue development data. Metabolite-predictive genes and gene-predictive metabolites are selected from transcriptomic and metabolomic data respectively. The constructed gene-metabolite correlation network can infer the functions of unknown genes and metabolites. Tissue-specific genes and metabolites are identified by the class-dependent feature selection method. Evidence from subcellular locations, gene ontology, and biochemical pathways support the involvement of these entities in different developmental stages and tissues in Arabidopsis

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Microarray gene expression ranking with Z-score for Cancer Classification

    Get PDF
    Over the past few decade there has been explosion in the amount of genomic data available to biomedical engineer due to the advantage of biotechnology. For example using microarray it is possible to find out a persons gene expressions profile more than 30000 genomes. Among this one of the most important gene selection problem is gene ranking. Here we will describe Z-score ranking for microarray gene expression selection. In that technique it choose the gene and then applied the Z-Score Ranking technique and then divides the genes into subsets with Successive Feature selection and then finally LDA Applied for the result. With this Z-score ranking technique we will get the accurate results and less effort. The Lymphoma and Leukemia dataset genes are utilized. The proposed technique shows capable classification accuracy for the whole test data sets

    Using gene and microRNA expression in the human airway for lung cancer diagnosis

    Full text link
    Lung cancer surpasses all other causes of cancer-related deaths worldwide. Gene-expression microarrays have shown that differences in the cytologically normal bronchial airway can distinguish between patients with and without lung cancer. In research reported here, we have used microRNA expression in bronchial epithelium and gene expression in nasal epithelium to advance biological understanding of the lung-cancer "field of injury" and develop new biomarkers for lung cancer diagnosis. MicroRNAs are known to mediate the airway response to tobacco smoke exposure but their role in the lung-cancer-associated field of injury was previously unknown. Microarrays can measure microRNA expression; however, they are probe-based and limited to detecting annotated microRNAs. MicroRNA sequencing, on the other hand, allows the identification of novel microRNAs that may play important biological roles. We have used microRNA sequencing to discover novel microRNAs in the bronchial epithelium. One of the predicted microRNAs, now known as miR-4423, is associated with lung cancer and airway development. This finding demonstrates for the first time a microRNA expression change associated with the lung-cancer field of injury and microRNA mediation of gene expression changes within that field. The National Lung Screening Trial showed that screening high-risk smokers using CT scans decreases lung-cancer-associated mortality. Nodules were detected in over 20% of participants; however, the overwhelming majority of screening-detected nodules were non-malignant. We therefore need biomarkers to determine which screening-detected nodules are benign and do not require further invasive testing. Given that the lung-cancer-associated field of injury extends to the bronchial epithelium, our group hypothesized that the field of injury may extend farther up in the airway. Using gene expression microarrays, we have identified a nasal epithelium gene-expression signature associated with lung cancer. Using samples from the bronchial epithelium and the nasal epithelium, we have established that there is a common lung-cancer-associated gene-expression signature throughout the airway. In addition, we have developed a nasal epithelium gene-expression biomarker for lung cancer together with a clinico-genomic classifier that includes both clinical factors and gene expression. Our data suggests that gene expression profiling in nasal epithelium might serve as a non-invasive approach for lung cancer diagnosis and screenin

    Machine Learning for Survival Prediction in Breast Cancer

    Get PDF
    In the last few years, machine learning revealed an important instrument to support decision making in oncology. In this manuscript, an application is presented about the use of several machine learning algorithms for the prediction of the survival rate of breast cancer patients. Before presenting the results, the manuscript contains a rather basic introduction to the foundations of machine learning, that can be useful for medical doctors that are not expert in the area. The experiments were carried on using the well-known 70-gene signature dataset for breast cancer. The presented results highlight that genetic programming has interesting advantages compared to other machine learning algorithms, both in terms of prediction accuracy and in terms of model interpretability.info:eu-repo/semantics/publishedVersio

    Analysis of Microarray Data using Machine Learning Techniques on Scalable Platforms

    Get PDF
    Microarray-based gene expression profiling has been emerged as an efficient technique for classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the behavior of this disease, generate a huge volume of data. The data retrieved from microarray cover its veracities, and the changes observed as time changes (velocity). Although, it is a type of high-dimensional data which has very large number of features rather than number of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period is very much essential. It often contains huge number of data, only a fraction of which comprises significantly expressed genes. The identification of the precise and interesting genes which are responsible for the cause of cancer is imperative in microarray data analysis. Most of the existing schemes employ a two phase process such as feature selection/extraction followed by classification. Our investigation starts with the analysis of microarray data using kernel based classifiers followed by feature selection using statistical t-test. In this work, various kernel based classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The proposed models are investigated using three microarray datasets like Leukemia, Breast and Ovarian cancer. Finally, the performance of these classifiers are measured and compared with Support vector machine (SVM). From the results, it is revealed that the proposed models are able to classify the datasets efficiently and the performance is comparable to the existing kernel based classifiers. As the data size increases, to handle and process these datasets becomes very bottleneck. Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS) and processing (MapReduce as well as Spark) the datasets in an efficient way. The next contribution in this thesis deals with the implementation of feature selection methods, which are able to process the data in a distributed manner. Various statistical tests like ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark frameworks which are executed on the top of Hadoop cluster. The performance of these scalable models are measured and compared with the conventional system. From the results, it is observed that the proposed scalable models are very efficient to process data of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional implementation of those algorithms. After selecting the relevant features, the next contribution of this thesis is the scalable viii implementation of the proximal support vector machine classifier, which is an efficient variant of SVM. The proposed classifier is implemented on the two scalable frameworks like MapReduce and Spark and executed on the Hadoop cluster. The obtained results are compared with the results obtained using conventional system. From the results, it is observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded that Spark is more efficient than MapReduce due to its an intelligent way of handling the datasets through Resilient distributed dataset (RDD) as well as in-memory processing and conventional system to analyze the Big datasets. Therefore, the next contribution of the thesis is the implementation of various scalable classifiers base on Spark. In this work various classifiers like, Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Radial basis function network (RBFN) with two variants hybrid and gradient descent learning algorithms are proposed and implemented using Spark framework. The proposed scalable models are executed on Hadoop cluster as well as conventional system and the results are investigated. From the obtained results, it is observed that the execution of the scalable algorithms are very efficient than conventional system for processing the Big datasets. The efficacy of the proposed scalable algorithms to handle Big datasets are investigated and compared with the conventional system (where data are not distributed, kept on standalone machine and processed in a traditional manner). The comparative analysis shows that the scalable algorithms are very efficient to process Big datasets on Hadoop cluster rather than the conventional system

    Multiobjective optimization in bioinformatics and computational biology

    Get PDF
    corecore