
MACHINE LEARNING
FOR SURVIVAL PREDICTION

IN BREAST CANCER

BY

LEONARDO VANNESCHI
NOVA Information Management School (NOVA IMS)

Universidade Nova de Lisboa
Campus de Campolide, 1070-312 Lisboa, Portugal

Title

Machine Learning for Survival Prediction in Breast Cancer

Author

Leonardo Vanneschi

Publisher

Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa NOVA

Information Management School (NOVA IMS)

ISBN

978-972-8093-18-1

Digital Version

http://hdl.handle.net/10362/110873

© Leonardo Vanneschi, Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de

Lisboa. NOVA Information Management School (NOVA IMS), 2021

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International License.

 This work is supported by national funds through FCT – Fundação para a

Ciência e a Tecnologia, I.P., in the context of the project BINDER (PTDC/CCI-

INF/29168/2017)

How to cite

Vanneschi, L. (2021). Machine Learning for Survival Prediction in Breast Cancer. Lisboa: Instituto

Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa. NOVA Information

Management School (NOVA IMS). ISBN: 978-972-8093-18-1. Link: http://hdl.handle.net/10362/110873

http://hdl.handle.net/10362/110873
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/10362/110873

Contents

1 Introduction . 1

2 Machine Learning . 3
2.1 Methods to Test Generalization Ability . 8

2.1.1 Data Splitting . 8
2.1.2 Crossvalidation . 9
2.1.3 How to Perform a Fair Experimental Study 10

2.2 Measures of Performance of a Classifier . 13
2.3 Features . 18

2.3.1 Feature Engineering . 19

3 Materials and Methods . 23
3.1 Material . 23
3.2 Methods . 24

4 Experimental Study . 27
4.1 Predictive Power of Machine Learning Methods 27
4.2 Comparison with the Scoring Method . 27
4.3 The Role of Feature Selection . 28
4.4 Performance on Unbalanced Datasets . 28
4.5 Performance on an Independent Dataset . 29
4.6 Assessment of Sensitivity . 29
4.7 Maximizing Sensitivity in GP . 30

5 Conclusions and Future Work . 33
References . 37

v

Chapter 1
Introduction

Current cancer therapies have serious side effects: ideally type and dosage of the
therapy should be matched to each individual patient based on his/her risk of re-
lapse. Therefore the classification of cancer patients into risk classes is a very active
field of research, with direct clinical applications. Until recently, patient classifi-
cation was based on a series of clinical and histological parameters. The advent
of high-throughput techniques to measure gene expression led in the last decade
to a large body of research on gene expression in cancer, and in particular on the
possibility of using gene expression data to improve patient classification. A gene
signature is a set of genes whose levels of expression can be used to predict a biolog-
ical state (see [Nevins and Potti, 2007]): in the case of cancer, gene signatures have
been developed both to distinguish cancerous from non-cancerous conditions and to
classify cancer patients based on the aggressiveness of the tumor, as measured for
example by the probability of relapsing within a given time.

While many studies have been devoted to the identification of gene signatures
in various types of cancer, the question of the algorithms to be used to maximize
the predictive power of a gene signature has received less attention. To investigate
this issue systematically, one of the most established gene signatures is considered
in this work, i.e. the 70-gene signature for breast cancer [van ’t Veer et al., 2002].
This work proposes a comparison of the performance of four different machine
learning algorithms in using this signature to predict the survival of a cohort of
breast cancer patients. The 70-gene signature is a set of microarray features se-
lected in [van ’t Veer et al., 2002] based on correlation with survival, on which the
molecular prognostic test for breast cancer “MammaPrint”TM is based. While sev-
eral machine learning algorithms have been used to classify cancer samples based on
gene expression data [Chu and Wang, 2005, Deb and Reddy, 2003, Deutsch, 2003,
Langdon and Buxton, 2004, Paul and Iba, 2005, Yu et al., 2007], in this a system-
atic comparison of the performance of four machine learning algorithms using the
same features to predict the same classes is performed. In this comparison, feature
selection is thus not explicitly performed as a pre-processing phase before executing
the machine learning algorithms. The machine learning algorithms studied here are
Genetic Programming (GP), Support Vector Machines, Multilayered Perceptrons

1

2 1 Introduction

and Random Forests. These methods were applied to the problem of using the 70-
gene signature to predict the survival of the breast cancer patients included in the
NKI dataset [van de Vijver et al., 2002]. This is considered one of the gold-standard
datasets in the field, and the predictive power of the 70-gene signature on these pa-
tients was already shown in [van de Vijver et al., 2002]. In this preliminary study all
the studied machine learning methods were used in an “out-of-the-box” version, so
as to obtain a first evaluation, as unbiased as possible, of the performance of the
methods.

Many different machine learning methods [Lu and Han, 2003] have already been
applied for microarray data analysis, like k-nearest neighbors [Michie et al., 1994],
hierarchical clustering [Alon et al., 1999], self-organizing maps [Hsu et al., 2003],
Support Vector Machines [Guyon et al., 2002, Hernandez et al., 2007] or Bayesian
networks [Friedman et al., 2000]. Furthermore, in the last few years Evolution-
ary Algorithms (EA) [Holland, 1975] have been used for solving both problems
of feature selection and classification in gene expression data analysis. Genetic
Algorithms (GAs) [Goldberg, 1989] have been employed for building selectors
where each allele of the representation corresponds to one gene and its state
denotes whether the gene is selected or not [Liu et al., 2005]. GP on the other
hand has been shown to work well for recognition of structures in large data
sets [Moore et al., 2001]. GP was applied to microarray data to generate programs
that reliably predict the health/malignancy states of tissue, or classify different types
of tissues. An intrinsic advantage of GP is that it automatically selects a small num-
ber of feature genes during the evolution [Rosskopf et al., 2007]. The evolution of
classifiers from the initial population seamlessly integrates the process of gene se-
lection and classifier construction. In fact, in [Yu et al., 2007] GP was used on can-
cer expression profiling data to select potentially informative feature genes, build
molecular classifiers by mathematical integration of these genes and classify tumour
samples. Furthermore, GP has been shown a promising approach for discovering
comprehensible rule-based classifiers from medical data [Bojarczuk et al., 2001] as
well as gene expression profiling data [Hong and Cho, 2006]. The results presented
in those contributions are encouraging and pave the way to a further investigation of
GP for this kind of datasets, which is reported in this manuscript.

Chapter 2
Machine Learning

Machine Learning (ML) [Mitchell, 1997, Shalev-Shwartz and Ben-David, 2014] is
a field of study whose objective is to program computers to automatically learn to
solve a problem, or accomplish a task. ML is useful when manually programming
a computer to carry out a task is either impractical or infeasible. Typical cases are
either problems that are so complex to be beyond human capabilities, like the ones
characterized by vast amounts of data, or tasks that living beings perform routinely,
yet our introspection on how we do it is not sufficiently elaborated to allow us to
extract a well defined algorithm, like for instance driving, speech recognition, image
understanding or client categorization. Other tasks where ML is useful are the ones
where adaptativity to changes in the environment is a necessary requirement, like
for instance time series forecasting, handwritten text decoding or spam detection. In
its most accepted definition:

“Machine Learning is the study of algorithms that automatically improve by
means of experience” [Mitchell, 1997].

In this definition, learning is intended as improving by means of experience. Even
though the term “learning” can have several meanings and interpretations, it is clear
that “improving by means of experience” is one of the most intuitive and close to
our everyday experience. For instance, it includes the idea of “trial and error”, that
is very often implemented by many living beings when they are about to learn how
to solve new tasks: learning often implies numerous consecutive attemps (or trials)
of solving the task. If a trial gives a positive result, it will be rewarded by similar
future trials; on the other hand, if a trial gives a negative result, it is customary to
identify it with an erroneous behaviour, and thus not repeat it in the future attempts.
Iterating the process, the trials should become more and more effective with time,
until the task gets solved. A simple example consists in the method rats use to select
food: when rats encounter food items with new look and smell, they will first eat
a small amount of it. According to the flavour and the physiological effect of the
food, the rats will later decide if eating more or not. If the food produces an ill
effect, that food will be associated with illness, and not eaten again. If it tastes good
and does not produce any negative effect on the health of the rat, it will probably be

3

4 2 Machine Learning

eaten again. Also human beings use trial and error several times to learn tasks. For
instance, when a person is learning how to play tennis, she will probably try to hit
the ball by performing particular movements of the arms, shoulders and legs. Those
movements will be identified as effective or erroneous, according to the result of the
shot, and this result will affect the next attempts to hit the ball. As a last example
of how much trial and error is used by humans for learning new tasks, the students
that have recently attended a course of introduction to programming should agree on
how many wrong attempts, with subsequent mistake identifications and adaptions,
were needed before becoming able to write correct computer programs.

This learning process is what has inspired the introduction of the field of ML. But
what do we exactly want machines to learn? Even though it is impossible to give
general definitions to cover such a vast field as ML, it is possible to cover the large
majority of the situations saying that one of the most frequent objectives of ML is
the one of learning a function. In large part of the situations, ML is dealing with a
problem that can be defined as follows. Given a set of data pairs:

D = {(x1,y1),(x2,y2), ...,(xn,yn)}

the objective is to find (or approximate) a function (or relation) φ , such that:

∀i = 1,2, ...,n : φ(xi) = yi

In the most general definition, xi and yi can be any kind of object (numbers, vec-
tors, matrices, expressions, images, movies, sentences, other objects from the real
world, etc.), however the most typical situation is the one in which the xi are
m-dimensional vectors of objects of any type (including, but not necessaily, num-
bers), while the yi are scalar values.

Before having a closer look at the problem of learning, it is useful to fix some
terminology:

• D is called dataset;
• {x1,x2, ...,xn} are called input data, input vectors, instances or observations;
• {y1,y2, ...,yn} are called expected outputs, or target values;
• the sought for function φ , i.e. the function that perfectly matches all possible data

in the input domain into the corresponding targets, is called target function;
• learning is a process that allows us to obtain a function f that approximates the

target function φ ;
• function f , i.e. the function obtained as a result of the learning process, is called

data model, or simply model;
• finally, we will talk of supervised learning in case the target values {y1,y2, ...,yn}

are known for each observation, and unsupervised learning otherwise. This
manuscript focuses on supervised learning given that, for the used datasets, tar-
get values (survival rates of cancer patients) are known for a set of observations
(cancer patients).

Last but not least, we will say that model f has a good generalization ability if f be-
haves like the target function φ also for data that do not belong to D. Understanding

2 Machine Learning 5

if a model has a good generalization ability can be a hard task, because, of course,
in general the target function φ is not known a priori and cannot be extrapolated
by simply looking at the data. Actually, in some senses, we could even say that φ

is not even an existing function, but more the concept, the logic, or the underly-
ing knowledge, that allowed a given entity (a person, a device, etc.) to generate the
data (Example 2.2 should clarify this). Furthermore, in some cases, several differ-
ent functions can perfectly match the known data, and in such a situation, deciding
which one is the target function is impossible, unless further data are provided. How-
ever, the concept of generalization is crucial to ML. The following examples should
clarify the issue.

Example 2.1. (A “Toy” Numeric Example). Let us consider the following simple
numeric dataset, where x1 and x2 are the components of the bi-dimensional input
vectors (input variables, or features) and y is the target:

D =

x1 x2 y
1 8 9
3 2 5
4 1 5
7 3 10

A question arises natural: “What is the target function?”. Any attempt to answer this
question in a formal way can only lead to the answer “I don’t know”, given that one
may imagine several functions matching the data in D, and no information is given
on how to choose among them. However, given the simplicity of this example, one
could easily hypothesize that in this case, the target function is the function that
sums two numbers, in other words: φ(x1,x2) = x1 + x2.

Now, let us assume that a ML system is able to find a model like:

f (x1,x2) = x1 + x2

It is obvious that now we can apply f to any pair of numbers, and not only the
ones in D, and the result will be the sum of those numbers; for instance f (2,6) = 8.
Let us, instead, assume that our ML system finds a model like:

g(x1,x2) = if ((x1 == 1) & (x2 == 8)) then return 8;
else if ((x1 == 3) & (x2 == 2)) then return 5;
else if ((x1 == 4) & (x2 == 1)) then return 5;
else if ((x1 == 7) & (x2 == 3)) then return 10;
else return a random value;

(2.1)

If one looks at these two models f and g, it is not difficult to convince oneself
that both of them work perfectly on the data in D, but (still in the hypothesis
that φ(x1,x2) = x1 + x2 is the target function) f is a perfect approximation of φ

6 2 Machine Learning

also for data that are not in D, while g has a completely different behavior: for each
pair of input values that are not in D, the output of g will be identical/similar to
the output of φ only in extremely rare and lucky cases. This is a typical situation in
which we can say that f has a good generalization ability, while g has not. Further-
more, the reason why g is not able to generalize reasonably clearly seems overfitting
(a concept that will be discussed more deeply later): g is clearly too “specialized”
for the data in D, and thus lacks generality.

In general, we could say that the difference between having a good generalization
ability and overfitting (which is the difference between f and g in this example)
consists in the difference between learning the knowledge that is hidden in the data
(and code that knowledge in the data model) and just mimicking/mocking what is
written in the dataset. It is clearly the former behavior that we want our machines
to have: data have to used as examples to build a knowledge that goes beyond them
(that is, actually, more general). In other words, we want our ML systems to learn
by examples and not learn the examples.

Example 2.2. (A “Real-Life” Example). In this example, we discuss a real-life
ML application, consisting in predicting the toxicity of a candidate new drug, a
step that is an important part of the drug discovery process, i.e. the process of de-
scovering and commercializing a new drug. Studies of this application can be found
in several bibliographic references, including, for instance, [Archetti et al., 2007a].
Let us consider a dataset of the following shape:

D =

x11 x12 ... x1m y1
x21 x22 ... x2m y2
...
xn1 xn2 ... xnm yn

where, for each i = 1,2, ...,n, vector xi = {xi1,xi2, ...,xim} represents a molecular
compound, that is candidate to become a new drug, represented by means of its
molecular descriptors, and yi represents the corresponding value of the toxicity of
that molecular compound.

Estimating the toxicity of a molecular compound is generally a very expansive
and prone to error process. It is done by feeding a sample of test animals with
incremental doses of the compound. The amount of compound that was given when
half of the cavies have died is one of the most used measures of toxicity, called
Lethal Dose 50% (LD50). Imagine that this is the process that has been applied to
create a dataset like D (for each molecular compound i = 1,2, ...,n, 50% of the test
animals have been killed in order to estimate the target value yi!). The objective
of ML is now to learn the hidden relationship (assuming it exists!) between the
molecular descriptors and the value of the toxicity, codying it in a data model. In this
way, whenever in the future it is needed to estimate the toxicity of a new molecular
compound, we can simply apply the model to its molecular descritors, thus not

2 Machine Learning 7

having to sacrifice any more test animals. At this point, two observations can be
done:

1. The toxicity of new molecular compounds is unknown. As such, we have no way
of verifying the correctness of the prediction of the model on those new data. The
prediction made by the model needs to be trusted.

2. Generalization is not just important, it is the only thing that matters. A “model”
that is able to correctly quantify the toxicity only for the compounds that are in
the dataset is totally useless: we already know the toxicity of those compounds.
What matters is that the model is able to generalize and return a reliable estima-
tion for new compunds, that are not in D.

Both these observations are not peculiar of the specific problem discussed in this
example, but they can be extended to practically all ML problems, including the
application studied in this manuscript. The reader is particularly invited to reflect
about the importance of Point 1. Pharmaceutical companies usually invest ingent
amounts of money in the drug discovery process. If we want ML models to be
trusted, we need to find a way to learn so that generalization becomes likely, or
at least we need to be able to test the generalization ability of our models (this
issue will be deepened in the continuation, when subjects such as data splitting and
crossvalidation will be presented).

The ML process, at least in its most basic formulation, can be visualized as in Fig-
ure 2.1. The process of applying a ML system to generate a data model is called

Fig. 2.1 Illustration of a simple ML process.

learning or training phase, while the process of applying the model on new data is
called generalization or prediction phase.

The learning problem discussed so far has two significant particular cases:

• Classification, in which the target values y1,y2, ...,yn have a discrete and “lim-
ited” codomain;

8 2 Machine Learning

• Regression, in which the target values y1,y2, ...,yn have a coninuous, or “vast”,
codomain1.

In the case of classification, the target values can be interpreted as classes, or groups,
and the learning problem can be interpreted as the task of partitioning data into
groups. Simple example of classification problems can be, for instance: partition-
ing a set of images portraying faces into men and women, partitioning a text into
English, French, Portuguese or Italian language, partitioning a set of numbers into
small, medium and large, etc.

2.1 Methods to Test Generalization Ability

2.1.1 Data Splitting

Let
D = {(x1,y1),(x2,y2), ...,(xn,yn)}

be a supervised dataset. k observations, with k < n, are selected and inserted into a
new set J. Even though, in general, the choice of the instances to be inserted in J is
made at random, let us assume for simplicity that the first k observations in D are
inserted in J2, in other words:

J = {(x1,y1),(x2,y2), ...,(xk,yk)}

Learning is performed using only the data in J. Let g be the model obtained as the
result of this learning phase; the set:

D− J = {(xk+1,yk+1),(xk+2,yk+2), ...,(xn,yn)}

can be used to test the generalization ability of g. This can be done by evaluating g
on the input data xk+1,xk+2, ...,xn and comparing the calculated outputs with the re-
spective expected outputs yk+1,yk+2, ...,yn. Any error measure can be used to make
this comparison. For instance if we assume that we use the absolute error, a measure
of the generalization ability of our ML system can be:

E =
n

∑
i=k+1

|g(xi)− yi| (2.2)

1 The distinction between classification and regression can be fuzzy in some cases, and this is why
the definition was deliberately based on informal terms such as “limited” and “vast”.
2 The reader is invited to convince herself that the same effect as selecting k instances at random
from D can be obtained by first shuffling at random the instances in D, and then selecting the first k.

2.1 Methods to Test Generalization Ability 9

The set J is usually called training set, and D− J is called test set, while we refer
to the whole set of available data D using the term dataset. Usually, the training
set is built by selecting k random instances from D with uniform probability, and
the remaining instances form the test set. No rules exist for quantifying k, but it is
frequent to find studies in the literature in which the training set contains (approxi-
mately) 70% of the instances in D, while the test set contains the remaining 30%.

Data splitting has the advantage of being very simple, but it has an important
drawback: the results may be dependent on the particular set used for training. In
other words, if we repeat the experiments with a different splitting the results may
be (and in many circumstances actually are significantly) different. Avoiding any
kind of logical “choice” when we select the training instances is a first advisable
step to counteract this issue (for instance, it is generally not recommended to select
the first k instances, in the order in which they appear in D, even in case no apparent
logic exists in the order of the observations). This is why it is a general practice
to select the training instances randomly. However, this is generally not enough to
avoid bias given by the particular used training set. The method explained in the
continuation was introduced to extend data splitting and limit this problem.

2.1.2 Crossvalidation

In the standard version of crossvaliadtion, also called h-folds crossvalidation, the
entire dataset is partitioned into h subsets3 and data splitting is repeated h times. At
each iteration, one of the subsets is used as a test set, while the remaining h−1 sub-
sets are used as a training set. At the end of the process, each one of the h partitions
is used exactly once as test set. Let {E1,E2, ...,Eh} the the errors obtained in each
one of the iterations. A measure of the generalization ability of the ML system can
be given, for instace, by:

E =
1
h

h

∑
i=1

Ei (2.3)

which corresponds to the average error obtained in the different iterations.
The advantage of the crossvalidation is that it is less dependent than a single data

splitting on the particular choice of the training data. The drawback is that training
has to be performed h times, so it can be executed in an amount of time that is
approximately h times bigger than a single data splitting. Furthermore, in general,
the variance associated to E should get smaller as h gets larger. So, to have a small
variance between the results of each iteration, the number of iterations should be
large, which contributes to slow down even more the process.

Last but not least, the reader is invited to reflect on the fact that at the end of
the crossvalidation we have h different models, resulting from the h independent
training phases. In case we need one final model, which one should be chosen? The

3 We remind that, by definition, a partition of a set is a grouping of its elements into non-empty
subsets, in such a way that every element is included in exactly one subset.

10 2 Machine Learning

answer to this question is not unique, and several options can exist, but in general, it
is typical to create the final model by combining the h obtained models. For instance,
for classification problems, one may want to consider a voting among the h models.
The final result could be the class that is given as output by the largest number of
models. Analogously, for regression problems, the final output could be given by
a statistic, like the average or the median, calculated on the outputs of the single
models.

The crossvalidation has several variants, the most popular of which is possi-
bly the so called repeated random sub-sampling validation, or Monte Carlo cross-
validation [Dubitzky et al., 2006]. This method creates multiple random splits of
the dataset into training and test set. The advantage is that the proportion of the
training/test split is not dependent on the number of iterations (i.e., the number of
partitions). The disadvantage is that some observations may never be selected in the
test set, whereas others may be selected more than once. In other words, the test sets
used in the different iterations may overlap. Another variant of the crossvalidation
is the so called leave-p-out cross-validation, in which p observations are used as the
test set and the remaining observations as the training set. This is usually repeated
on all possible ways in which the original dataset can be partitioned into a test set
of p observations and a training set.

2.1.3 How to Perform a Fair Experimental Study

Data splitting, crossvalidation and their existing variants are generally used to assess
the generalization ability of a ML system. The test set is used to simulate new,
unseen, data and thus one golden rule exists: it is strictly prohibited to use the test
set (or any part of it) in any process different from the final testing of the model. In
other words, we should behave as if the data belonging to the test set are unknown in
the moment in which we train the system. Only when we have a final model, those
data can be used for testing its generalization ability.

However, very often, ML algorithms depend on a number of parameters (often
called hyper-parameters), and in order to find appropriate values for those param-
eters, a preliminary experimental tuning phase is often necessary. When this is the
case, how should we organize and use our data? Hyper-parameter tuning has to be
considered a part of the training process. As such, the previous rule applies also to
this phase: it is strictly forbidden to use the test set for optimizing parameters. For
instance:

training the system with different parameter configurations, and then using
the configuration that has returned the best results on testing data is a highly
unfair and completely wrong practice!

On the other hand, one may argue that using the configuration that has obtained the
best results on the test set may be misleading, because that configuration may be
overfitting training data. So, what to do? Many possible answers to this question
exist, but roughly all of them envisage at least the following steps:

2.1 Methods to Test Generalization Ability 11

• Partition the dataset D into a learning set J and a test set D− J;

• “Forget” the test set, until a final model is obtained, with the appropriate param-
eter setting;

• Further partition the learning set into at least one training set U and at least one
validation set J −U4. Use the training set to generate models using different
parameter settings, and use the validation set to select the preferred one.

When the most appropriate parameter setting has been found, it is customary to train
again the ML system using the whole learning set, and assess its generalization
ability using the test set. However, this last step is optional, and in some cases a
model that has been generated using only the training set U is used.

As it is not hard to understand, even though the previous data partitionings
(i.e. the splitting of the dataset D into a learning set and a test set, and the further
splitting of the learning set into a training and a validation set) are done at random,
the results are generally dependent on the particular partitions used. For this reason,
the previous schema should be iterated several times, using each time different sets
of data for the different tasks. Typical cases are:

• Nested Data Split, or (k ∗ `)-Fold Monte Carlo Crossvalidation. The method is
characterized by two nested loops. The internal loop optimizes the hyperparam-
eters and finds the most appropriate configuration. In the external loop, that con-
figuration is used to generate and test the final model. Let k be the number of
iterations of the external loop, and ` the number of iterations of the internal loop.
The method is shown in Algorithm 1.

• (k∗`)-Fold Crossvalidation. This is a nested variant of the crossvalidation. Anal-
ogously to the previous method, it contains an outer loop of k folds and an inner
loop of ` folds. The whole available dataset is partitioned into k subsets. One by
one, a set is selected as test set and the k− 1 other sets are combined into the
corresponding learning set. This is repeated for each of the k sets. At each iter-
ation, each learning set is further sub-divided into ` subsets. One by one, a set
is selected as validation set and the `−1 other sets are combined into the corre-
sponding training set. This is repeated for each of the ` sets. As previously, the
training sets are used to fit model parameters, while the validation sets are used

4 The reader has to be aware of the fact that there is no common agreement in the literature about
this terminology. For instance, it is not infrequent to find references in which the terms test set
and validation set are exchanged compared to the terminology used here (in other words, some
references call validation set the set D− J and test set the set J−U). Analogously, in some refer-
ences the term learning set is not used. In those cases, often the set J is identified using the term
training set, or outer training set, while different terminologies can be used to identify the set U ,
including the expression inner training set. Given that no precise convention exists, none of these
terminologies can be considered “wrong”, as well as none of them can be considered as “the cor-
rect one”. However, the terminology adopted in these pages can be considered clearer than others.
For instance, it has the advantage to always identify with the term training set the set of data on
which the ML system is executed, with the objective of generating a model.

12 2 Machine Learning

Algorithm 1: Pseudo-code for the nested data split, or (k ∗ `)-random folds
crossvalidation.

1. for i = 1,2, ...,k do
1.1. partition the dataset D into a learning set Ji and a test set D− Ji;
1.2. for j = 1,2, .., ` do

1.2.1. partition the learning set Ji into a training set Ui j and a validation set Ji−Ui j;
1.2.2. for each parameter setting that needs to be compared do

– train the ML system on Ui j;
– collect the results obtained on Ji−Ui j;

end
end

1.3. Select the configuration ci that returns the best average result, calculated on all the
validation sets Ji−Ui1, Ji−Ui2, ..., Ji−Ui`;

1.4. Train the ML system on the whole learning set Ji, using configuration ci. Let fi be the
obtained model, whose generalization ability can be assessed using the test set D− Ji;

end
2. Aggregate models f1, f2, ..., fk (for instance performing a voting for classification problems or

an average for regression), in order to obtain the final model f .

to provide an unbiased evaluation of the models on unseen data. The configura-
tion that obtained the best average results on the validation sets is fit on the entire
learning set. The performance of these models is then evaluated using the test
sets. Analogously to the difference between the traditional crossvalidation and
the Monte Carlo crossvalidation, the difference between the (k∗`)-fold crossval-
idation and the (k ∗ `)-fold Monte Carlo crossvalidation is that in the (k ∗ `)-fold
Monte Carlo crossvalidation some observations may never be selected in the test
and/or validation sets, whereas others may be selected more than once. On the
other hand, contrarily to the (k∗ `)-fold crossvalidation, in the (k∗ `)-fold Monte
Carlo crossvalidation the proportion of the different data splits is not dependent
on k and `.

• k-Fold Crossvalidation with Validation and Test set. This method can be seen as
a k ∗1-fold crossvalidation. The whole dataset is partitioned into k subsets. One
by one, a set is selected as test set. Then, one by one, one of the remaining sets
are used as a validation set and the other k−2 sets, joined, are used as a training
set. This is repeated for all possible combinations. As for the previous methods,
the training set is used for model fitting and the validation set is used for model
evaluation for each of the parameter settings. Finally, for the configuration that
obtained the best average result on the validation sets, the test set is used to assess
the generalization ability. Two variants are possible: either evaluating the model
that was trained on the training set or evaluating a new model that was fit on the
combination of the training and the validation set.

2.2 Measures of Performance of a Classifier 13

2.2 Measures of Performance of a Classifier

The discussion of the previous section is general, in the sense that it holds both for
classification and regression problems. In this section, we focus on classification.
The simplest and most popular measure to quantify the error made by a classifica-
tion model is the number of correctly classified instances. To calculate this measure,
we simply have to count the number of instances for which the predicted class label
is identical to the class label that appears in the supervised dataset. The number of
correctly classified instances is a measure that depends on the number of instances.
In order to make the measure comparable when used on datasets of different sizes,
it is typical to normalize this measure, so as to obatin another measure called accu-
racy, defined as:

Accuracy =
number of correctly classified instances

total number of instances

Using a measure like the number of correctly classified instances, or the accuracy,
can be not sufficient to understand the behavior of a classifier. Often, more sophis-
ticated measures of performance are needed for classifiers. For instance, we may
need measures that express the quality of a classification for each class, and not
just one single general number. To convince oneself about the importance of hav-
ing a measure that expresses a different value for each class, one may imagine, for
instance, a binary classification problem, where the objective is to categorize a set
of patients into one of the two possible classes: healthy or sick. It is clear that, in
some cases, misclassifying a sick patient can have more serious consequences than
misclassifying a healthy patient. Starting by saying that both misclassifications are
mistakes, and, as such, both of them have serious consequences, treating a healthy
patient as a sick one, among other consequences, may cause the patient to undertake
unnecessary treatments or to get uselessly worried. On the other hand, treating a
sick patient as a healthy one may cause the patient to not undertake treatments that
may be crucial to save her life. In such an application, it is clear that an information
like the number of misclassifications made by the system is not sufficient. On what
class those missclassifications happened is also a needed information.

Two of the most known and employed measures to quantify the performance of
a classifier on the single existing classes are precision and recall. Given a class C in
which data can be partitioned, these measures are defined as follows:

Precision(C) =
#instances belonging to C, classified as C

#instances classified as C
(2.4)

Recall(C) =
#instances belonging to C, classified as C

#instances belonging to C
(2.5)

As we can see, the measures share the same numerator, consisting in the intersec-
tion between the observations labelled as C in the given dataset and the observations
that the model has categorized as belonging to class C (in other words, the numer-

14 2 Machine Learning

ator contains the number of instances that the classifier has categorized correctly
as class C). The two measures differ because of the denominator: for precision, the
denominator tells us about the work made by the classifier, while for recall, it tells
us about the ground truth. Under this perspective, one may have an intuition on the
meaning of precision and recall by comparing them to concepts such as correctness
and completeness, respectively.

To have a better understanding on how to calculate precision and recall, consider
the example shown in Figure 2.2. In this example, three classes are given: C1, C2

Fig. 2.2 Example used to explain the concepts of precision and recall. The upper line shows how
data are really partitioned into three classes C1, C2 and C3 in the given dataset. The lower line
shows how a classification model has categorized the same objects in the same classes.

and C3. The upper line of the figure shows how 15 objects (observations) are par-
titioned into these three classes in the given dataset. The lower line, instead, shows
how those objects have been categorized by a ML model. Precision and recall for
the different classes are:

Precision(C1) =
2
3
≈ 0.66, Recall(C1) =

2
6
≈ 0.33

Precision(C2) =
4
6
≈ 0.66, Recall(C2) =

4
5
= 0.8

Precision(C3) =
4
6
≈ 0.66, Recall(C3) =

4
4
= 1

Both precision and recall are numbers included in [0,1], where 1 represents the best
value, while 0 is the worst one. An ideal model, i.e. the one that classifies each obser-
vation correctly, has both precision and recall equal to 1. Models that have only one
among precision and recall is equal to 1 deserve a discussion. One may be tempted
to consider such models as good ones, but this can be very misleading. Consider, for
instance, the case of C3 in the previous example. The recall of C3 is equal to 1 be-

2.2 Measures of Performance of a Classifier 15

cause the classifier has categorized as C3 all the instances that are really in C3, plus
others. If we extremize this situation, even a “naive” model that blindly categorizes
all existing observations in C3 can have a recall equal to 1. However, this model has
clearly not learned anything. A similar argument also holds for precision: any model
that categorizes in a class only a subset of the objects that actually belong to that
class is equal to 1. But this argument also holds if many objects belong to the class
and only one is categorized in it. For instance, given the objects A,B,C,D,E,F that
belong to class C1, a model that categorizes object A as the only member of class C1
has a precision equal to 1. However, also in this case, the amount of information that
this model has learned is poor. In conclusion, it does not make much sense to study
only one among precision and recall, without studying the other. These measures
give us two different pieces of information, each of which is incomplete without the
other. Only studying them together makes sense.

Other popular measures of performance of a classifier are true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN). Given a class C,
these measures are defined as follows:

• TP(C) = # instances belonging to C, classified as C
• TN(C) = # instances that do not belong to C, that have not been classified as C
• FP(C) = # instances that do not belong to C, classified as C
• FN(C) = # instances belonging to C, that have not been classified as C

When the first word is true, the measure quantifies a correct behavior of the model:
true positives quantify the number of times an object of C has been correctly cate-
gorized, while true negatives quantify the number of times that an object has been
correctly identified as not belonging to C. Analogously, when the first word is false,
the measure quantifies errors of the model: false positives count the number of times
the model has categorized an object in C erroneously, while false negatives quantify
the number of objects that have not been classified in C, but they were supposed to.

Knowing the values of TP, FP and FN, it is possible to immediately obtain the
precision and the recall. In fact, directly from the definition of precision and recall,
we have that, for each class C:

Precision(C) =
TP(C)

TP(C)+FP(C)

Recall(C) =
TP(C)

TP(C)+FN(C)

Another important measure that joins precision and recall into one single number
for each class is the F-measure (also called F-score or F1-score), defined as:

F-measure(C) =
2 ∗ Precision(C) ∗ Recall(C)

Precision(C) + Recall(C)

16 2 Machine Learning

The F-measure is often preferred over the accuracy in case of unbalanced datasets.
In fact, let us consider, for instance, a binary classification problem, i.e. a problem
that consists in categorizing observations into one of the two possible classes C1
and C2. Let us assume, without loss of generality, that, in our dataset, numeous ob-
servations labelled with class C1 are available, while only a negligible number of
observations are labelled with class C2. It is clear that a “naive” model, that blindly
categorizes all observations as belonging to class C1 has an excellent accuracy. If the
ML system is guided by accuracy, as a performance measure to choose among
the candidate solutions, it is clear that such a model is likely to be the preferred
one, even though it has learned none of the information available in the data. On
the other hand, given that such a model has poor precision and recall on class C2,
its F-measure is also poor. In order to have a good F-measure, also in case of unbal-
anced datasets, the ML system is forced to learn the information that allows us to
distinguish between the different classes.

In some cases, it is useful to understand how better or worse a classifier is, com-
pared to a random classifier, where by random classifier, here, it is meant an algo-
rithm that, for each possible instance, always returns a random class, picked up with
uniform distribution among all the possible existing alternatives. This can be quan-
tified, for instance, by the K Statistic or K measure, that some ML packages have
implemented, including Weka [Hall et al., 2009]. This measure is defined as:

K =
Accuracy −P(E)

1−P(E)

where P(E) is the probability of the random classifier to correctly classify all ele-
ments in the considered dataset. It is clear that K gets closer to the ideal value of 1
as much as also the accuracy gets closer to its ideal value of 1. When stratifying the
results class by class is not a requirement, the K measure can give some interest-
ing information, that may be integrated with the information given by the accuracy,
and/or with statistics calculated over other measures such as precision, recall and
F-measure.

We conclude this presentation of measures of performance of classifiers with the
discussion of a measure that is very popular, but can be used only for binary classi-
fication, and only in case the classifier works with a threshold mechanism. Imagine,
for instance, the two classes of a binary classification problem to be represented
by labels 0 and 1. Given an observation, the ML model could work by generating
a number x, that is then transformed into either 0 or 1. The typical case is: if x is
smaller than 0.5, the return 0, else return 1. In this case, a threshold equal to 0.5
is used. This is the typical functioning, for instance, of supervised artificial neu-
ral networks. In such a situation, the performance of the model can be represented
by a plot, called Receiver Operating Characteristic (ROC) curve. The plot is cre-
ated by reporting the values of the true positive rate (TPR) against the false positive
rate (FPR) for various different values of the threshold.

TPR and FPR are defined as follows:

2.2 Measures of Performance of a Classifier 17

T PR =
T P

T P+FN
, FPR =

FP
FP+T N

TPR is identical to recall, and it is also known as sensitivity or probability of detec-
tion. FPR is also known as fall-out or probability of false alarm. In some references,
it is also possible to find the term specificity, where:

specificity = 1−FPR

Let us consider the frequent case in which the output of the model is a number
in [0,1]. In this case, to combine the FPR and the TPR into a single metric, we first
compute the two former measures with a set of different threshold values (like, for
instance, 0.00,0.01,0.02, ...,1.00). Then we plot them on a single graph, with the
FPR values on the abscissa and the TPR values on the ordinate. The resulting curve
is the ROC curve, and the metric we consider is the area under the curve (AUC),
also called AUROC. An example of a ROC curve is reported in Figure 2.3. In this

Fig. 2.3 Example of a ROC curve. The AUROC is represented in light blue.

figure, the blue area corresponds to the AUROC. The dashed line is the diagonal; it
represents the ROC curve of a random predictor, and it has an AUROC equal to 0.5.
The random predictor is commonly used as a baseline to compare with the model.
The value of the AUROC is always included in [0,1]. The best possible prediction
method would yield a point in the upper left corner (coordinate (0,1)) of the ROC
space, representing 100% specificity (i.e. no false positives). The point (0,1) is also
called a perfect classification. A completely random guess would give a point along
the diagonal (the so-called line of no-discrimination) from the left bottom to the top
right corner.

18 2 Machine Learning

2.3 Features

A feature is a characteristic of the objects that have to be classified or, more gener-
ally, for which a prediction is needed. So, datasets are usually a collection of values
(or instances) of features. Given a dataset of the form:

D =

x11 x12 ... x1m y1
x21 x22 ... x2m y2
...
xn1 xn2 ... xnm yn

We normally use the following termnilogy:

• For each j = 1,2, ...,m, column {x1 j,x2 j, ...,xn j} represents a feature, and for
each i = 1,2, ...,n, element xi j is a feature value, or feature instance.

• For each i = 1,2, ...,n, line {xi1,xi2, ...,xim} is a dataset instance, observation or
sample, and yi is the corresponding target value.

In case of classification, features are appropriate or useful if they allow us to make
a difference between one class (or more) and the others. This is why an appropriate
choice of the features is often crucial in supervised ML. Let us consider, for instance,
the following toy dataset, whose objective is to classifiy animals into roosters and
dogs:

paws # eyes having a crest body fat blood pressure target
animal 1 2 2 True 7% 97 Rooster
animal 2 4 2 False 18% 118 Dog
animal 3 4 2 False 22% 126 Dog
animal 4 2 2 True 10% 101 Rooster

This dataset contains four observations, each one representing a different animal.
Each animal is represented by five features: number of paws and number of eyes,
which are integer numbers, having or not having the crest, a Boolean value, body
fay rate, which is a percentage, and blood pressure, which is a floating point number.
Observing this dataset, we can immediately notice that:

• Number of paws and having/not having the crest are good features: they clearly
allows us to tell dogs from roosters.

• number of eyes is a totally useless feature: its value is the same for both classes,
and so the feature is constant in the whole dataset.

• Body fat rate and blood pressure may help to make the classification, but if we
use these two features, the classification may be harder than if we simply use one
among number of paws and having/not having the crest.

2.3 Features 19

Examples of models that allow us to make a perfect classification for each instance
in the dataset are:

if (having crest) then Rooster else Dog

or:
if (number of paws == 2)

then Rooster
else if (number of paws == 4)

then Dog

Both these models use a restricted number of features, compared to the total number
of features that appear in the dataset. Removing several features from the dataset,
possibly leaving only number of paws and/or having/not having a crest, may signif-
icantly help the work of a classifier. The presence of useless features, or of features
which make the classification harder, in fact, increments the search space and makes
the model’s optimization harder.

2.3.1 Feature Engineering

Feature selection is the process of choosing the features that are useful to make the
prediction, disregarding all the others. It is often a very hard and complex task, and
in can, in principle, be based on previous knowledge of the problem, or on mathe-
matical relationships between data. Feature extraction is the process of combining
one or more existing features to create a smaller number of more insightful features.
Contrarily to feature selection, in feature extraction features are typically not chosen
or disregarded, but only combined. Feature selection and feature extraction can both
be used, or only one of them can be used. Reducing the dimensionality of the feature
space can be a crucial task to improve the generalization ability of a ML system, so
choosing or creating the appropriate features is a fundamental step from which the
performance of the whole system can depend. They are usually applied before be-
ginning the learning process, and for this reason, they are usually integrated in a so
called data preprocessing phase, a phase that usually contains also a step of data
cleaning, aimed at removing mistakes, imperfection or noise from the data.

Modern datasets have hundreds to tens of thousands of variables or features.
Feature selection and feature extraction have three main objectives:

• improving the prediction performance of the models,
• providing faster and more cost-effective predictors, and
• providing a better understanding of the underlying process that generated the

data.

Besides this, there are many other potential benefits of feature selection/extraction:
facilitating data visualization and data understanding, reducing the measurement
and storage requirements, reducing training and utilization times, etc.

20 2 Machine Learning

Methods for feature selection can essentially be partitioned into:

• Filters;
• Wrappers;
• Embedded methods.

Wrappers utilize the learning machine of interest as a black box to score subsets of
variable according to their predictive power. Filters select subsets of variables inde-
pendently of the chosen predictor. Embedded methods perform variable selection in
the process of training and are usually specific to given learning machines (Genetic
Programming is one of these methods).

The most popular kinds of filters (although by far not the only ones known) are:

• Correlation based methods;
• Information Theory based methods;

Both these methods have the objective of ranking the features according to their
“usefulnes” in helping prediction, so that only the k top-ranked ones can be used for
generating the predictive model. The intuition is that if a feature is independent from
the target, it is uninformative for predicting it. Of course, these methods introduce a
new parameter k, that can have a crucial influence on the performance of the system,
and that can only be set by means of experimental comparisons.

The idea of correlation-based feature selection is simple: calculate the correlation
between all features and the target, and then rank the features according to this corre-
lation value. One of the most known measures is the Pearson correlation coefficient.
For a particular feature, given the vector of all the feature values x = x1,x2, ...,xn
and the vector of the target values y = y1,y2, ...,yn, the Pearson correlation between
X and Y is:

Corr =
cov(x,y)√

var(x) var(y)

where cov is the covariance of two vectors and var is the variance of one vector, so:

Corr =
∑

n
i=1(xi− x) · (yi− y)√

∑
n
i=1(xi− x)2 ·∑n

i=1(yi− y)2

where x is the average of the elements of vector x. By definition, Corr is a value
in [−1,1]. Usually, the measure that is used to perform the ranking is Corr2, because
a negative correlation can be useful (it is enough to consider the feature with a
negative sign in the model). One possible drawback of correlation criteria is that
they can only detect linear dependencies between features and target. A simple way
of lifting this restriction is to make a non-linear fit of the target with single variables
and rank according to the goodness of that fit.

2.3 Features 21

Concerning information theory-based feature selection, the ranking of features is
done using mutual information between features and the target:

Inf = ∑
xi

∑
yi

P(X = xi,Y = yi) · log
P(X = xi,Y = yi)

P(X = xi) ·P(Y = yi)

This measure is appropriate in case the features are discrete variables. The case
of continuous variables (and possibly continuous targets) is harder and one can con-
sider discretizing the variables.

Besides correlation and information theory, another possible measures to rank
the features is the χ2 between features and targets, which also aims at quantifying
the depencence between features and target.

One common criticism of variable ranking is that it may lead to the selection
of a redundant subset. The same performance could possibly be achieved with a
smaller subset of complementary variables. Still, one may wonder whether adding
presumably redundant variables can result in a performance gain. Actually, it is an
experimental fact that, in classification, better class separation may be obtained by
adding variables that are presumably redundant. More precisely, perfectly correlated
variables are truly redundant in the sense that no additional information is gained by
adding them; but very high variable correlation (or anti-correlation) does not mean
absence of variable complementarity. Furthermore, experimental evidence tells us
that a variable that is completely useless by itself can provide a significant perfor-
mance improvement when taken with others, and two variables that are useless by
themselves can be useful together. These two last observations lead the scientific
community to the idea that filters can have important limitations, and they can be
overcome by means, for instance, of wrappers or the use of embedded methods.

The ML process reported in Figure 2.1 can be extended including data prepro-
cessing, leading to the more complete scheme represented in Figure 2.4. As we

Fig. 2.4 Extension of the schema of Figure 2.1, to include data preprocessing.

can see, the objective of data preprocessing is usually the one of generating a new

22 2 Machine Learning

dataset, that is generally smaller and possibly more informative, than the original
one. This step is often crucial to facilitate the work to the ML system and often
allows us to generate better models.

Chapter 3
Materials and Methods

3.1 Material

The data used in the work presented in this manuscript is the NKI breast cancer
dataset [van de Vijver et al., 2002], providing gene expression and survival data for
295 consecutive breast carcinoma patients. Of all the observations available in the
dataset, only the expression data for the genes included in the “70-gene” signa-
ture [van ’t Veer et al., 2002] was considered.

Both survival and gene expression data were transformed into binary form. For
the survival data, the outcome was defined as the survival status of the patient at time
tend = 10.3 years. By choosing this particular endpoint the number of dead and alive
patients were balanced: out of 148 patients for which the status at tend is known, 74
were dead and 74 were alive. Binary expression data were obtained by replacing all
positive logarithmic fold changes in the original dataset with 1 and all negative and
missing ones with 0.

The resulting dataset is a matrix H = [H(i, j)] of binary values composed by 148
rows (instances) and 71 columns (features), where each line i represents the gene
signature of a patient whose binary target (0 = survived after tend years, 1 = dead
for breast cancer before tend years) has been placed at position H(i,71). In this way,
the last column of matrix H represents all the known target values. Our task is now
to generate a mapping F such that F(H(i,1),H(i,2), ...,H(i,70)) = H(i,71) for each line i
in the dataset. Of course, we also want F to have a good generalization ability, i.e.
to be able to assess the target value for new patients, that have not been used in the
training phase. For this reason, we used a set of machine learning techniques, as
discussed in the next section. To compare the predictive power of the computational
methods, we performed 50 independent choices of learning and test set, the learning
set including 70% of the patients, chosen randomly with uniform distribution, and
the test set consisting in the remaining 30%. The various prediction methods were
then run on these datasets, so that the choice of training and testing sets in each run
was the same for all methods. Parameter setting was obtained by further partitioning
the learning set into 50 independent choices of a training set, formed by 70% of the

23

24 3 Materials and Methods

observations in the learning set chosen randomly with uniform distribution, and a
validation set, consisting in the remaining 30% of the observations of the learning
set. In other words, (k ∗ `)-random folds crossvalidation presented in Section 2.1.3,
and detailed in Algorithm 1 was employed.

3.2 Methods

The studied machine learning methods are described here, with references to more
detailed expositions.

Genetic Programming

Genetic Programming (GP) [Koza, 1992, Poli et al., 2008, Vanneschi, 2004] is an
evolutionary approach which extends Genetic Algorithms (GAs) [Holland, 1975,
Goldberg, 1989] to the space of programs. Like any other evolutionary algorithm,
GP works by defining a goal in the form of a quality criterion (or fitness) and then
using this criterion to evolve a set (also called population) of solution candidates
(also called individuals) by mimic the basic principles of Darwin’s theory of evo-
lution [Darwin, 1859]. The most common version of GP, and also the one used
here, considers individuals as abstract syntax tree structures1 that can be built re-
cursively from a set of function symbols F = { f1, f2, . . . , fn} (used to label internal
tree nodes) and a set of terminal symbols T = {t1, t2, . . . , tm} (used to label tree
leaves). GP breeds these solutions to solve problems by executing an iterative pro-
cess involving the probabilistic selection of the fittest solutions and their variation
by means of a set of genetic operators, usually crossover and mutation.

We used a tree-based GP configuration inspired by boolean problems introduced
in [Koza, 1992]: each feature in the dataset was represented as a boolean value and
thus our set of terminals T was composed by 70 boolean variables (i.e. one for each
feature of our dataset). Potential solutions (GP individuals) were built using the set
of boolean functions F = {AND,OR,NOT}. The fitness function is the number of
incorrectly classified instances, which turns the problem into a minimization one
(lower values are better)2.

Finally no explicit feature selection strategy was employed, since we want
to point out GP’s ability to automatically perform an implicit feature selection.
The mechanism allowing GP to perform feature selection, already pointed out
for instance in [Archetti et al., 2006, Archetti et al., 2007b, Archetti et al., 2007c,
Rosskopf et al., 2007], is simple: GP searches over the space of all boolean expres-

1 Traditionally represented in Lisp notation.
2 We are aware that, in case of minimization problems, the term “fitness” might be inappropriate,
given that a fitness is usually a measure that has to be maximized. Nevertheless, we chose to use
this term for simplicity.

3.2 Methods 25

sions of 70 variables. This search space includes the expressions that use all the 70
variables, but also the ones that use a smaller number of variables. In principle there
is no reason why an expression using a smaller number of variables could not have
a better fitness value than an expression using all the 70 variables. If expressions
using smaller number of variables have a better fitness, they survive into the popu-
lation, given that fitness is the only principle used by GP for selecting genes. If it
happens that GP finds expressions using a small number of variables with a better
fitness value than the ones using all variables, the former expressions survive into
the population, while the latter ones are extinguished.

The parameters used in our GP experiments are reported in Table 4.1, together
with the parameters used by the other machine learning methods we studied. GPLab,
a public domain GP system implemented in MatLab, was used (for the GPLab soft-
ware and documentation, see [Silva, 2007]).

Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning meth-
ods used for classification and regression. They were originally introduced
in [Vapnik, 1998]. Their aim is to devise a computationally efficient way of identi-
fying separating hyperplanes in a high dimensional feature space. In particular, the
method seeks separating hyperplanes maximizing the margin between sets of data.
This should ensure a good generalization ability of the method, under the hypothe-
sis of consistent target function between training and testing data. To calculate the
margin between data belonging to two different classes, two parallel hyperplanes
are constructed, one on each side of the separating hyperplane, which are “pushed
up against” the two data sets. Intuitively, a good separation is achieved by the hy-
perplane that has the largest distance to the neighboring data points of both classes,
since in general the larger the margin the lower the generalization error of the clas-
sifier. The parameters of the maximum-margin hyperplane are derived by solving
large quadratic programming (QP) optimization problems. There exist several spe-
cialized algorithms for quickly solving these problems that arise from SVMs, mostly
reliant on heuristics for breaking the problem down into smaller, more manage-
able chunks. In this work we used the implementation of John Platt’s [Platt, 1998]
sequential minimal optimization (SMO) algorithm for training the support vector
classifier. SMO works by breaking the large QP problem into a series of smaller
2-dimensional sub-problems that may be solved analytically, eliminating the need
for numerical optimization algorithms such as conjugate gradient methods. The im-
plementation we used is the one contained in the Weka public domain software [?].
This implementation globally replaces all missing values and transforms nominal
attributes into binary ones. It also normalizes all attributes by default (in that case
the coefficients in the output are based on the normalized data, not the original data
and this is important for interpreting the classifier).

26 3 Materials and Methods

The main parameter values used in this work are reported in Ta-
ble 4.1 [Platt, 1998]. Being aware that in several application domains, SVM have
been shown to outperform competing techniques by using nonlinear kernels, which
implicitly map the instances to very high (even infinite) dimensional spaces, we used
polynomials kernels with degrees 1, 2, and 3.

Multilayered Perceptron

Multilayered Perceptron is a feed-forward artificial neural network
model [S. Haykin, 1999]. It is a modification of the standard linear percep-
tron in that it uses three or more layers of neurons (nodes) with nonlinear activation
functions, and is more powerful than simple perceptron in that it can distinguish
data that are not linearly separable, or separable by a hyperplane. It consists of an
input and an output layer with one or more hidden layers of nonlinearly-activating
nodes. Each node in one layer connects with a certain weight to every other node
in the following layer. The implementation we have adopted is the one included
in the Weka software distribution [?]. We used the Back-propagation learning
algorithm [S. Haykin, 1999] and the values used for all the parameters are reported
in Table 4.1. The used parameter values are reported in Table 4.1.

Random Forests

Random Forests denotes an improved Classification and Regression Trees
method [Breiman et al., 1984]. It works by creating a large number of classification
trees or regression trees. Every tree is built using a deterministic algorithm and the
trees are different owing to two factors. First, at each node, a best split is chosen from
a random subset of the predictors rather than from all of them. Secondly, every tree
is built using a bootstrap sample of the observations. The out-of-bag data, approxi-
mately one-third of the observations, are then used to estimate the prediction accu-
racy. Unlike other tree algorithms, no pruning or trimming of the fully grown tree
is involved. In this work we use the Breiman model presented in [Breiman, 2001]
and implemented in the Weka software [Hall et al., 2009]. As it can be seen from
Table 4.1, this method, compared to the other ones, has the advantage of a smaller
amount of parameter setting required. In order to allow a fair comparison with GP,
we have considered random forests composed by 2500 trees (given that the GP
population is composed by 500 trees and it runs for 5 generations, 2500 trees are
globally inspected by GP too) and such that each node corresponds to exactly one
feature (as it is for GP). All the other parameters are reported in Table 4.1.

Chapter 4
Experimental Study

4.1 Predictive Power of Machine Learning Methods

Table 4.2 summarizes the results returned by each machine learning method on 50
independent runs. The first line indicates the different methods, the second line
shows the best (i.e. lowest) value of the incorrectly classified instances obtained
on the test set over the 50 runs, and the third line reports the mean performance of
each group of 50 runs on their test sets, together with the corresponding standard
error of mean (SEM). As Table 4.2 clearly shows, the best solutions were found
by GP and Multilayered Perceptrons and the best average result was found by GP.
Moreover, statistical analysis indicates that GP consistently outperforms the other
methods except SVM using polynomial kernel with degree 2. In fact, as it can be
seen in Table 4.3, the difference between the various average results is statisti-
cally significant (P-value 3.05×10−5 for ANOVA test on the 4 samples of solutions
found by each method). Finally, pairwise 2-tailed Student t-tests comparing GP with
each other method demonstrate its general better performance. These statistical tests
were performed since there was no evidence of deviation from normality or unequal
variances.

The solutions found by GP typically use a rather small number of features (i.e.
terminals). In fact, the solutions of the 50 GP runs are functions of a number of ter-
minal that ranges from 1 to 23, with a median value of 4, and first and third quartiles
of 2 and 7 respectively. Few of these features tend to recur in several solution as it
can be seen in Table 4.6, where the gene symbol, the gene name of each feature,
together with the number of solutions where the feature occurs are shown.

4.2 Comparison with the Scoring Method

The authors of Ref. [van de Vijver et al., 2002] used the seventy-gene signature by
computing the correlation coefficient between the expression profile of the patient

27

28 4 Experimental Study

(limited to the 70 genes of the signature) and a previously computed typical expres-
sion profile of a good prognosis patient. To compare the performance of the various
machine learning algorithms with this scoring system, the following process was
implemented:

• prognostic score s of the patients (excluding the ones used to train the signa-
ture in [van ’t Veer et al., 2002]) was obtained from the Supplementary Mate-
rial of [van de Vijver et al., 2002], and classified as good prognosis the patients
with s > 0.4 and as bad prognosis the ones with s≤ 0.4. This is the cutoff used
in [van de Vijver et al., 2002].

• 50 random lists of 44 patients were generated from this set, to match the statistic
used for machine learning techniques, and computed for each list the number of
false predictions given by the scoring method.

The mean number of false predictions was 16.24, with a SEM of 0.37. Therefore
the scoring method appears to be superior to all machine learning algorithm other
than GP, and slightly superior to GP. The difference between the performances of GP
and the scoring method are not statistically significant (P = 0.49, 2-tailed Student
t-test).

4.3 The Role of Feature Selection

To determine to what extent feature selection is responsible for the good perfor-
mance of GP, we identified the 10 features most often selected by GP among the
70 initial features and ran again both GP and SVM with quadratic kernel using
only these features. Remarkably, the performance of both methods significantly im-
proved: for GP, the number of incorrectly identified features decreased from 16.40
(SEM 0.30) to 12.86 (0.40); for the SVM it went from 16.76 (0.18) to 14.96 (0.41).
Using this preliminary round of feature selection the performance of GP becomes
significantly better than both SVM and the original scoring method.

These results suggest, on one hand, that the feature selection performed by GP
has intrinsic value, not necessarily tied to the use of syntax trees, since the SVM can
take advantage of the feature selection performed by GP to improve its performance.
Second, that a recursive use of GP, in which a first run is used to select the best
features to be used in a second run, might be a promising way of optimizing the
method.

4.4 Performance on Unbalanced Datasets

To check whether the performance of the GP is tied to the choice of a balanced
dataset, the analysis was repeated using different time cutoffs (5 and 7.5 years) and
the performance of GP was compared with the SVM using polynomial kernel with

4.6 Assessment of Sensitivity 29

degree 2, which was the best performing method after GP in the balanced dataset.
At 7.5 years there is again no significant difference between the performance of the
two methods. However, at 5 years GP performs significantly better than the SVM
(P = 6.46× 10−6 from two-sided t-test). We conclude that the balancing of the
dataset is not crucial to obtain a good performance from GP.

4.5 Performance on an Independent Dataset

An important feature of any predictor based on gene expression data is its robust-
ness with respect to the choice of dataset, since gene expression data from cancer
patients come from studies using different protocols and/or microarray platforms.
Thus, the best predictors found by GP in each of the 50 runs were applied to an
independent breast cancer dataset [Miller et al., 2005], obtained on a different mi-
croarray platform. Due to the difference in gene content between platforms, only 17
of the 50 best solutions found by GP could be applied to the new dataset. All of them
showed statistically significant predictive power (P-values between 7.6×10−3 and
2.9× 10−4 from Fisher exact test). Since this result was obtained with no further
training, it shows the robustness of the solutions obtained by GP with respect to the
choice of dataset and microarray platform.

4.6 Assessment of Sensitivity

When using gene signatures to predict the survival of a cohort of breast cancer
patients, one of the main goal in clinical applications is to minimize the number
of false negative predictions. Table 4.4 summarizes the false negative predictions
returned by each machine learning method on the 50 runs. The first line indicates the
different methods, while the second and the third lines show the best (i.e. lowest) and
mean performances (together with the corresponding SEM) values of incorrectly
classified instances.

The best solutions were found by GP, and statistical analysis indicates that GP
consistently outperforms the other five methods as it can be seen in Table 4.5. The
difference between the various average results is statistically significant (P-value
2.75×10−9 for ANOVA test on the 4 samples of solutions found by each method).
Finally, pairwise 2-tailed Student t-tests comparing GP with each other method
demonstrate its better performance.

The original scoring method of [van ’t Veer et al., 2002,
van de Vijver et al., 2002], and in particular the suggested cutoff of 0.4, was
chosen in such a way as to minimize the number of false negatives. Therefore it is
not surprising that in this respect the scoring method is far superior to all machine
learning methods, including GP. Indeed the average number of false negatives given
by the scoring method is 1.78, to be compared to the numbers reported in Table 4.5.

30 4 Experimental Study

4.7 Maximizing Sensitivity in GP

It is well know that the fitness function driving the evolutionary dynamics in a GP
framework can be modified in order to let emerge solutions with different charac-
teristics. The results presented and discussed in the previous section were obtained
with the goal of minimizing all incorrectly classified instances, summing both false
negative and false positive predictions obtained by the solutions. However, when
using gene signatures to predict the survival of a cohort of breast cancer patients,
minimizing the number of false negative predictions is recognized as one of the most
important goals.

For all these reasons, we modified the GP fitness function so that false negatives
(positives) are penalized more than errors of the other type, hoping to tune the al-
gorithm towards better sensitivity (sensibility). In particular, solutions with greater
sensitivity can emerge if larger weights are assigned to false negatives compared
to false positives. In general, we can transform the fitness function in a weighted
average of the form:

Fitness = 0.9×FalseNegative+0.1×FalsePositive

With respect to this new formulation, the fitness function of the GP algorithm
whose results were presented in the previous section can be expressed as 0.9×
FalseNegative + 0.1× FalsePositive. The results of 50 runs of this new version
of the GP technique showed an average of 16.04 (with SEM = 0.44) of total in-
correctly classified instances. Compared with the performances of the previous GP
algorithm, no statistically significant difference can be highlighted (Student t-test
P = 0.50). When looking only at the number of false negative incorrectly classified
instances, the average performance of 4.32 (SEM = 0.346) is better than the one
of standard GP reported in Table 4.5 (Student t-test P = 6.62×10−16), even if still
worse than that of the original scoring method.

Figures and Tables

(or (and (or ORC6L RFC4) (or UCHL5 PRC1))
(and (or PRC1 AI554061) (or ESM1 AW014921)))

Fig. 4.1 Tree representation and the traditional Lisp representation of the model with the best
fitness found by GP over the studied 50 independent runs.

4.7 Maximizing Sensitivity in GP 31

GP Parameters
population size 500 individuals

population initialization ramped half and half [Koza, 1992]
selection method tournament (tournament size = 10)

crossover rate 0.9
mutation rate 0.1

maximum number of generations 5
algorithm generational tree based GP with no elitism

SVM Parameters
complexity parameter 0.1

size of the kernel cache 107

epsilon value for the round-off error 10−12

exponent for the polynomial kernel 1.0,2.0,3.0
tolerance parameter 0.001

Multilayered Perceptron Parameters
learning algorithm Back-propagation

learning rate 0.03
activation function for all the neurons in the net sigmoid

momentum 0.2 progressively decreasing until 0.0001
hidden layers (number of attributes + number of classes) / 2

number of epochs of training 500

Random Forest Parameters
number of trees 2500

number of attributes per node 1

Table 4.1 Parameters used in the experiments.

GP SVM-K1 SVM-K2 SVM-K3 MP RF
best 10 13 14 15 10 12

average (SEM) 16.40 (0.30) 18.32 (0.37) 16.76 (0.18) 17.62 (0.17) 18.08 (0.39) 17.60 (0.35)

Table 4.2 Experimental comparison between the number of incorrectly classified instances found
on the test sets by the different machine learning methods. Each method was independently run 50
times using each time a different training/test partition of the validation dataset (see text for details).
The first line indicates the method: Genetic Programming (GP), Support Vector Machine with
exponent for the polynomial kernel 1.0 (SVM-K1), 2.0 (SVM-K2), and 3.0 (SVM-K3), Multilayer
Perceptrons (MP), and Random Forest (RF). The second line shows the best value of the incorrectly
classified instances obtained on the test set over the 50 runs, and the third line reports the average
performances of each group of 50 runs on their test sets (standard error of mean is shown in
parentheses).

ANOVA
P = 3.05×10−5

GP vs. SVM-K1 GP vs. SVM-K2 GP vs. SVM-K3 GP vs. MP GP vs. RF
P = 0.0001 P = 0.3107 P = 0.0008 P = 0.0009 P = 0.0103

Table 4.3 Statistical significance of the difference in performance between the methods. First line
shows ANOVA test on the 6 samples of solutions found by each method, while second line depicts
pairwise 2-tailed Student t-tests comparing GP with each other method.

32 4 Experimental Study

GP SVM-K1 SVM-K2 SVM-K3 MP RF
best 2 6 6 6 5 6

average (SEM) 9.82 (0.44) 13.26 (0.51) 12.60 (0.35) 14.08 (0.39) 12.88 (0.51) 13.38 (0.49)

Table 4.4 Experimental comparison between the number of false negatives found on the test sets
by the different machine learning methods. Each method was independently run 50 times using
each time a different training/test partition of the validation dataset (see text for details). The first
line indicates the method: Genetic Programming (GP), Support Vector Machine (SVM), Multilayer
Perceptrons (MP), and Random Forest (RF). The second line shows the best value of the incorrectly
classified instances obtained on the test set over the 50 runs, and the third line reports the average
performances of each group of 50 runs on their test sets (standard error of mean is shown in
parentheses).

ANOVA
P = 2.75×10−9

GP vs. SVM-K1 GP vs. SVM-K2 GP vs. SVM-K3 GP vs. MP GP vs. RF
P = 2.74×10−6 P = 3.32×10−6 P = 1.27×10−10 P = 8.53×10−6 P = 4.65×10−7

Table 4.5 False negative prediction: statistical significance of the difference in performance be-
tween the methods. First line shows ANOVA test on the 6 samples of solutions found by each
method, while second line depicts pairwise 2-tailed Student t-tests comparing GP with each other
method.

Accession ID Gene name Gene description Solutions
NM 003981 PRC1 protein regulator of cytokinesis 1 48
NM 002916 RFC4 replication factor C (activator 1) 4, 37kDa 23
AI992158 - - 16
AI554061 - - 10
NM 006101 NDC80 NDC80 homolog, kinetochore complex com-

ponent (S. cerevisiae)
9

NM 015984 UCHL5 ubiquitin carboxyl-terminal hydrolase L5 7
NM 020188 C16orf61 chromosome 16 open reading frame 61 6
NM 016448 DTL denticleless homolog (Drosophila) 6
NM 014791 MELK maternal embryonic leucine zipper kinase 6
NM 004702 - - 6

Table 4.6 The 10 most recurring features in the solutions found by GP. The four columns show:
accession ID, gene name, gene description, and number of solutions where that feature occurs.

Chapter 5
Conclusions and Future Work

The investigation presented in this document was aimed at refining the set of criteria
that could lead to better risk stratification in breast cancer. To reach this goal, the
starting point was the use of the well known “70-genes signature” and the applica-
tion of several machine learning schemes, in order to perform a comparison between
them. Some simplifying assumptions were made, preprocessing the data accord-
ingly and several evaluation experiments were ran. The presented results showed
that while all the studied machine learning algorithms do have predictive power in
classifying breast cancer patients into risk classes, GP clearly outperforms all other
methods. The fact that all methods other than GP had very similar performance
suggests that GP is indeed the most promising method. The improvement in per-
formance shown by GP compared to the original scoring method was rather small
and not statistically significant. As expected, the scoring method was superior to all
machine learning algorithms in minimizing false negatives. In a second phase, GP
was enriched by changing its fitness function into a weighted average between false
negatives and false positives. It was shown that, when larger weight is given to false
negatives, it is possible to tune the GP algorithm towards greater sensitivity. While
the sensitivity of GP is still less than the original scoring method, the possibility
of tuning the fitness function is another intrinsic advantage of this technique with
respect to the other machine learning ones considered here. Nevertheless these re-
sults warrant further investigation into the use of GP in this context for at least three
reasons:

• The implementation of GP was purposely not optimized, and we can expect sub-
stantial improvements in performance from further work aimed at tuning the var-
ious GP settings.

• Maybe more importantly, GP can potentially offer biological insight and gen-
erate hypotheses for experimental work (see also [Yu et al., 2007]). Indeed an
important result of the presented analysis is that the trees produced by GP tend
to contain a limited number of features, and therefore are easily interpretable in
biological terms. For example, the best-performing tree is shown in Figure 4.1
and includes 7 genes (features).

33

34 5 Conclusions and Future Work

• Finally within the context of GP there is a natural way to tune the algorithm
towards better sensitivity (specificity), simply by defining a fitness function in
which false negatives (positives) are penalized more than errors of the other type.

Future work along these lines should therefore focus on both improving the per-
formance of GP and interpreting the results from the biological point of view. An
obvious first step towards optimization would be to abandon the binarization of the
data (which here was used to produce trees that are easier to interpret) and build a GP
based on continuous expression values. The biological interpretation might benefit
from a statistical and functional analysis of the most recurring subtrees in optimal
GP solutions. As a partial conclusion, it is possible to assert that GP outperforms
other machine learning methods as a tool to extract predictions from an established
breast cancer gene signature. Given the possibility of generating biological insight
and hypotheses that is intrinsic to the method, it deserves deeper investigation along
the lines described above. Finally, it would be an appropriate task to test the GP ap-
proach on other features/gene sets, that account for other cancers or other diseases,
always with the objective of providing clinicians with more precise and individual-
ized diagnosis criteria.

Another important research avenue to explore in the future concerns the possi-
bility of increasing our datasets by means of Radiomics [Lambin et al., 2012]. Ra-
diomics is an emerging field of medical studies, aimed at extracting large amounts
of highly informative features from medical images, thus converting images into
mineable data, and analysing those data for decision support. The hypothesis of Ra-
diomics is that the distinctive imaging features between disease forms may be cru-
cial for predicting prognosis and therapeutic response for various conditions, thus
providing valuable information for personalised therapy. The Radiomics workflow
can be organized into distinct phases, each with its own challenges:

• identification of a patient cohort;
• optimization of acquisition protocols;
• tumor and organ segmentation;
• feature extraction and feature selection; and
• model development and validation.

An important objective for future research is to improve the state of the art in
two of these phases: tumor and organ segmentation and model development and
validation, with particular reference to breast cancer, that is the type of disease
that is discussed in this document. These phases may be approached using ex-
isting and novel machine learning and deep learning technologies. These tech-
nologies need to be studied and compared, to discover the most appropriate al-
gorithm, able to outperform the state of the art in each specific case. Concern-
ing machine learning, also in sight of the results presented in this document,
focus should be given to two recently defined and extremely promising bio-
inspired algorithms, which are new developments of GP: Geometric Semantic GP
(GSGP) [Vanneschi, 2017], mostly used for regression problems, and Multidimen-
sional Multiclass GP (M3GP) [Muñoz et al., 2015], mostly used for (binary or mul-
ticlass) classification problems. These methods will be compared to the state of the

5 Conclusions and Future Work 35

art methods in Radiomics, including Random Forests, Support Vector Machines,
Bayesian Networks and Linear, Least Square and Logistic regression. In the last
few years, GSGP has developed enormously, becoming one of the most popular hot
topics in the GP community. Thanks to an efficient and innovative implementation
of GSGP [Vanneschi, 2017], it was possible to apply GSGP to a vast set of applica-
tions from different domains, including prediction of pharmacokinetic parameters
in drug discovery, positioning of computer tomography slices, prediction of the uni-
fied Parkinson’s disease rating scale assessment, prediction of anticoagulation level
in pharmacogenetics, and also rather different application domains like energy fore-
casting, prediction of high performance concrete strength, and prediction of vessels’
trajectories at sea for improving maritime safety and security.

Concerning deep learning, Convolutional Neural Networks (CNNs), which rep-
resent the state of the art in computer vision and many other problem domains, rep-
resent an interesyting starting point for comparison. Future work should include the
delopment of new methods for integrating GSGP with CNNs, or to introduce into
CNNs the concept of semantics, that is characteristic of GSGP. The idea is that shar-
ing the same properties as GSGP, and extending them to deep learning, these novel
systems will induce a unimodal error surface (i.e. an error surface characterized
by the absence of locally optimal solutions) for any supervised learning problem.
This fact should bestow on these novel systems a competitive advantage in terms of
evolvability. At the same time, as for GSGP, these systems should be able to limit
overfitting, thus being able to generate accurate and robust predictive models.

Besides an extensive performance comparison of machine learning and deep
learning methods, in the future importance should be given to an attentive evaluation
of the relative pros and cons. Generally speaking, we expect the machine learning
methods to require more effort in the pre-processing phase (for feature extraction
and selection), as opposite to the deep learning methods, that incorporate feature
extraction and selection directly in some internal learning layers. On the other hand,
we expect deep learning methods to have a better performance in problems charac-
terized by a vast amount of data, while they may be outperformed by the machine
learning methods in case of smaller amounts of data, a not so infrequent event in the
medical field. The amount of available data is indeed a crucial theme for any medical
application, and for oncology in particular. The studied applications are generally
characterized by a vast amount of data, but supervising those data is generally a
very hard and time consuming task. For this reason, currently only a small part of
the available data are supervised. This leads to the potential for the existence of very
large datasets, in which unsupervised observations are much more numerous than
the supervised ones. For this reason, a significant part of the future studies should
be dedicated to advancements in the area of semi-supervised learning. Particularly
promising seems the idea of extending the properties that characterize the most re-
cent versions of GP (and that determined their recent success) to semi-supervised
learning. A significant first step has been taken recently for the case of the M3GP
algorithm.

References 37

References

[Alon et al., 1999] Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., and
Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tu-
mour and normal colon tissues probed by oligonucleotide arrays. In Proc. Nat. Acad. Sci., pages
6745–6750. USA 96.

[Archetti et al., 2006] Archetti, F., Lanzeni, S., Messina, E., and Vanneschi, L. (2006). Genetic
programming for human oral bioavailability of drugs. In M. Cattolico et al., editor, Proceed-
ings of the 8th annual conference on Genetic and Evolutionary Computation, pages 255 – 262,
Seattle, Washington, USA.

[Archetti et al., 2007a] Archetti, F., Lanzeni, S., Messina, E., and Vanneschi, L. (2007a). Genetic
programming for computational pharmacokinetics in drug discovery and development. Genetic
Programming and Evolvable Machines, 8(4):413–432.

[Archetti et al., 2007b] Archetti, F., Messina, E., Lanzeni, S., and Vanneschi, L. (2007b). Genetic
programming and other machine learning approaches to predict median oral lethal dose (LD50)
and plasma protein binding levels (%PPB) of drugs. In E. Marchiori et al., editor, Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics. Proceedings of the Fifth
European Conference, EvoBIO 2007, Lecture Notes in Computer Science, LNCS 4447, pages
11–23. Springer, Berlin, Heidelberg, New York.

[Archetti et al., 2007c] Archetti, F., Messina, E., Lanzeni, S., and Vanneschi, L. (2007c). Genetic
programming for computational pharmacokinetics in drug discovery and development. Genetic
Programming and Evolvable Machines, 8(4):17–26.

[Bojarczuk et al., 2001] Bojarczuk, C., Lopes, H., and Freitas, A. (2001). Data mining with
constrained-syntax genetic programming: applications to medical data sets. Proceedings In-
telligent Data Analysis in Medicine and Pharmacology, 1.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification

and Regression Trees. Belmont, California, Wadsworth International Group.
[Chu and Wang, 2005] Chu, F. and Wang, L. (2005). Applications of support vector machines to

cancer classification with microarray data. Int J Neural Syst, 15(6):475–484.
[Darwin, 1859] Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. John

Murray.
[Deb and Reddy, 2003] Deb, K. and Reddy, A. R. (2003). Reliable classification of two-class

cancer data using evolutionary algorithms. Biosystems, 72(1-2):111–129.
[Deutsch, 2003] Deutsch, J. M. (2003). Evolutionary algorithms for finding optimal gene sets in

microarray prediction. Bioinformatics, 19(1):45–52.
[Dubitzky et al., 2006] Dubitzky, W., Granzow, M., and Berrar, D. P. (2006). Fundamentals of

Data Mining in Genomics and Proteomics. Springer-Verlag, Berlin, Heidelberg.
[Friedman et al., 2000] Friedman, N., Linial, M., Nachmann, I., and Peer, D. (2000). Using

bayesian networks to analyze expression data. J. Computational Biology, 7:601–620.
[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley.
[Guyon et al., 2002] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for

cancer classification using support vector machines. Machine Learning, 46:389–422.
[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,

I. H. (2009). The WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–18.
[Hernandez et al., 2007] Hernandez, J. C. H., Duval, B., and Hao, J. (2007). A genetic embedded

approach for gene selection and classification of microarray data. Lecture Notes in Computer
Science, 4447:90–101.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The Univer-
sity of Michigan Press, Ann Arbor, Michigan.

[Hong and Cho, 2006] Hong, J. and Cho, S. (2006). The classification of cancer based on dna
microarray data that uses diverse ensemble genetic programming. Artif. Intell. Med, 36:43–58.

38 5 Conclusions and Future Work

[Hsu et al., 2003] Hsu, A., Tang, S., and Halgamuge, S. (2003). An unsupervised hierarchical
dynamic self-organizing approach to cancer class discovery and marker gene identification in
microarray data. Bioinformatics, 19(16):2131–40.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming. The MIT Press, Cambridge, Mas-
sachusetts.

[Lambin et al., 2012] Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout,
R. G., Granton, P., Zegers, C. M., Gillies, R., Boellard, R., Dekker, A., and Aerts, H. J. (2012).
Radiomics: Extracting more information from medical images using advanced feature analysis.
European Journal of Cancer, 48(4):441 – 446.

[Langdon and Buxton, 2004] Langdon, W. B. and Buxton, B. F. (2004). Genetic programming
for mining dna chip data from cancer patients. Genetic Programming and Evolvable Machines,
5(3):251–257.

[Liu et al., 2005] Liu, J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L., and Ling, X.-
B. (2005). Multiclass cancer classification and biomarker discovery using ga-based algorithms.
Bioinformatics, 21:2691–2697.

[Lu and Han, 2003] Lu, Y. and Han, J. (2003). Cancer classification using gene expression data.
Inf. Syst., 28(4):243–268.

[Michie et al., 1994] Michie, D., Spiegelhalter, D., and Taylor, C. (1994). Machine learning, neu-
ral and statistical classification. Prentice Hall.

[Miller et al., 2005] Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., Pawi-
tan, Y., Hall, P., Klaar, S., Liu, E. T., and Bergh, J. (2005). An expression signature for p53 status
in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc
Natl Acad Sci U S A, 102(38):13550–13555.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition.

[Moore et al., 2001] Moore, J., Parker, J., and Hahn, L. (2001). Symbolic discriminant analysis
for mining gene expression patterns. Lecture Notes in Artificial Intelligence, 2167:372–381.

[Muñoz et al., 2015] Muñoz, L., Trujillo, L., and Silva, S. (2015). M3gp multiclass classification
with gp. In Genetic Programming - 18th European Conference, EuroGP 2015, Proceedings,
volume 9025 of Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), pages 78–91. Springer-Verlag. 18th
European Conference on Genetic Programming, EuroGP 2015 ; Conference date: 08-04-2015
Through 10-04-2015.

[Nevins and Potti, 2007] Nevins, J. R. and Potti, A. (2007). Mining gene expression profiles:
expression signatures as cancer phenotypes. Nat Rev Genet, 8(8):601–609.

[Paul and Iba, 2005] Paul, T. K. and Iba, H. (2005). Gene selection for classification of cancers
using probabilistic model building genetic algorithm. Biosystems, 82(3):208–225.

[Platt, 1998] Platt, J. (1998). Fast training of support vector machines using sequential minimal
optimization. Advances in Kernel Methods – Support Vector Learning.

[Poli et al., 2008] Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A field guide
to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).

[Rosskopf et al., 2007] Rosskopf, M., Schmidt, H., Feldkamp, U., and Banzhaf, W. (2007). Ge-
netic programming based dna microarray analysis for classification of tumour tissues. Technical
Report Technical Report 2007-03, Memorial University of Newfoundland.

[S. Haykin, 1999] S. Haykin (1999). Neural Networks: a comprehensive foundation. Prentice
Hall, London.

[Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. (2014). Under-
standing Machine Learning: From Theory to Algorithms. Cambridge University Press, New
York, NY, USA.

[Silva, 2007] Silva, S. (2007). GPLAB – a genetic programming toolbox for MATLAB, version
3.0. http://gplab.sourceforge.net.

[van de Vijver et al., 2002] van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A.
A. M., Voskuil, D. W., Schreiber, G. J., Peterse, J. L., Roberts, C., Marton, M. J., Parrish, M.,

References 39

Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S.,
Rutgers, E. T., Friend, S. H., and Bernards, R. (2002). A gene-expression signature as a predictor
of survival in breast cancer. N Engl J Med, 347(25):1999–2009.

[van ’t Veer et al., 2002] van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M.,
Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J.,
Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002). Gene
expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530–536.

[Vanneschi, 2004] Vanneschi, L. (2004). Theory and Practice for Efficient Genetic Programming.
PhD thesis, Faculty of Sciences, University of Lausanne, Switzerland.

[Vanneschi, 2017] Vanneschi, L. (2017). An Introduction to Geometric Semantic Genetic Pro-
gramming, pages 3–42. Springer International Publishing, Cham.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York, NY.
[Yu et al., 2007] Yu, J., Yu, J., Almal, A. A., Dhanasekaran, S. M., Ghosh, D., Worzel, W. P., and

Chinnaiyan, A. M. (2007). Feature selection and molecular classification of cancer using genetic
programming. Neoplasia, 9(4):292–303.

