48,011 research outputs found

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels

    A Proposal for Semantic Map Representation and Evaluation

    Get PDF
    Semantic mapping is the incremental process of “mapping” relevant information of the world (i.e., spatial information, temporal events, agents and actions) to a formal description supported by a reasoning engine. Current research focuses on learning the semantic of environments based on their spatial location, geometry and appearance. Many methods to tackle this problem have been proposed, but the lack of a uniform representation, as well as standard benchmarking suites, prevents their direct comparison. In this paper, we propose a standardization in the representation of semantic maps, by defining an easily extensible formalism to be used on top of metric maps of the environments. Based on this, we describe the procedure to build a dataset (based on real sensor data) for benchmarking semantic mapping techniques, also hypothesizing some possible evaluation metrics. Nevertheless, by providing a tool for the construction of a semantic map ground truth, we aim at the contribution of the scientific community in acquiring data for populating the dataset

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Integrating mobile robotics and vision with undergraduate computer science

    Get PDF
    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision, and is directly linked to the research conducted at the authors’ institution. The paper describes the most relevant details of the module content and assessment strategy, paying particular attention to the practical sessions using Rovio mobile robots. The specific choices are discussed that were made with regard to the mobile platform, software libraries and lab environment. The paper also presents a detailed qualitative and quantitative analysis of student results, including the correlation between student engagement and performance, and discusses the outcomes of this experience

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Accurate robot simulation through system identification

    Get PDF
    Robot simulators are useful tools for developing robot behaviours. They provide a fast and efficient means to test robot control code at the convenience of the office desk. In all but the simplest cases though, due to the complexities of the physical systems modelled in the simulator, there are considerable differences between the behaviour of the robot in the simulator and that in the real world environment. In this paper we present a novel method to create a robot simulator using real sensor data. Logged sensor data is used to construct a mathematically explicit model(in the form of a NARMAX polynomial) of the robot’s environment. The advantage of such a transparent model — in contrast to opaque modelling methods such as artificial neural networks — is that it can be analysed to characterise the modelled system, using established mathematical methods In this paper we compare the behaviour of the robot running a particular task in both the simulator and the real-world using qualitative and quantitative measures including statistical methods to investigate the faithfulness of the simulator
    • …
    corecore