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Abstract—Semantic mapping is the incremental process of
“mapping” relevant information of the world (i.e., spatial in-
formation, temporal events, agents and actions) to a formal
description supported by a reasoning engine. Current research
focuses on learning the semantic of environments based on their
spatial location, geometry and appearance. Many methods to
tackle this problem have been proposed, but the lack of a
uniform representation, as well as standard benchmarking suites,
prevents their direct comparison. In this paper, we propose
a standardization in the representation of semantic maps, by
defining an easily extensible formalism to be used on top of
metric maps of the environments. Based on this, we describe
the procedure to build a dataset (based on real sensor data) for
benchmarking semantic mapping techniques, also hypothesizing
some possible evaluation metrics. Nevertheless, by providing a
tool for the construction of a semantic map ground truth, we
aim at the contribution of the scientific community in acquiring
data for populating the dataset.

I. INTRODUCTION

In the last years, semantic mapping has become a very
active research area. Such increasing interest is motivated by
the idea that if robots can understand the environment in which
humans live, and the way they operate in it, they can also
collaborate and act (i.e., have a more cognitive behavior).
Nevertheless, the ability to communicate represents a strict
requirement for collaboration among two or more agents.
When dealing with humans, this can be naturally achieved by
enabling robots to use spoken language, based on the learned
semantic of the world. Associating symbols with numerical
representations in fact is a key requirement for producing a
robot that can use spoken language. Indeed, semantic mapping
is the incremental process of mapping relevant information of
the world (i.e., spatial information, temporal events, agents
and actions) to a formal description supported by a reasoning
engine, with the aim of learning to understand, collaborate and
communicate.

Ongoing research mostly tries to address the problem by
focusing on a subset of the information to be learned, and by
considering an agent whose main abilities are navigation and
object manipulation. In this way, strict requirements for com-
municative or collaborative behaviors are typically ignored.
A relevant definition in this sense is given by Nüchter and
Hertzberg [1], who describe a semantic map for a mobile robot
as “a map that contains, in addition to spatial information
about the environment, assignments of mapped features to en-
tities of known classes. Further knowledge about these entities,
independent of the map contents, is available for reasoning in
some knowledge base with an associated reasoning engine”.
Based on the same concept, several approaches have been
proposed. These can be grouped in two main categories:
fully automated methods for classification of locations and

Fig. 1. Double view of the example dataset acquired in the Robot Innovation
Facility of Peccioli, in Italy. Part of the sitting room and the kitchen are shown,
together with some bounding boxes identifying a chair, a deckchair and two
robots.

objects [2]–[4], and techniques, which exploit the support of
the user in the knowledge acquisition and learning process [5]–
[7]. While a comprehensive overview of the relevant work
in this direction can be found in the survey by Kostavelis
and Gasteratos [8], it is important to remark that even the
simplest semantic map goes far beyond “simple” labeling of
spatial features. In fact, even though they are built on top of
sophisticate SLAM procedures, Computer Vision and Machine
Learning algorithms, semantic maps must provide the possibil-
ity to reason over the acquired knowledge. Therefore they have
to be formalized and represented in a proper way. Moreover,
semantic mapping methods cannot be directly evaluated on
the metrics and benchmarking datasets which are available
for other algorithms, since they do not take into account any
kind of reasoning. On the contrary, approaches proposed in
literature (Section II) lack of any kind of standardization and
typically underestimate these questions. In particular, two main
issues emerge from the analysis of the state-of-the-art: 1) the
absence of a common formalism for representing semantic
maps and, consequently, 2) the lack of suitable validation
and evaluation techniques. This puts a significant limitation
on the research field, since it is difficult to understand the
improvements over the state-of-the-art and to even compare
available methods.

The aim of this paper is therefore twofold. First, we address
the above highlighted issues, by proposing a formalization
and a standardization in the representation of semantic maps



(Section III). Second, we make a proposal for their evaluation,
as well as for benchmarking semantic mapping methods, by
means of a dataset based on real sensor data (Section IV).
Moreover, by describing the procedure and providing usable
software2 for building such a dataset (Section V), we invite the
scientific community to contribute to its creation (see Fig. 1
for an example). Conclusions and open questions related to
our proposal are finally reported in Section VI.

II. RELATED WORK

There exists a large literature on the problem of learning
and representing the semantics of environments based on their
spatial location, geometry and appearance [8]. This activity is
usually referred to “semantic mapping”. Such a term, although
originally describing a difficult process that deals with more
heterogeneous information (i.e., not limited to spatial knowl-
edge), has strong implications. Semantic maps should, in fact,
not only assign a certain number of labels or properties to
relevant features of the environment (like in [3], [9]), but also
provide a representation of this knowledge in a form usable
by the system.

As introduced in the previous section, one of the main
issues of current research is the wide heterogeneity of the
representations used for semantic maps. For example Galindo
et al. [10] represent environmental knowledge by anchoring
sensor data, that describe rooms or objects in a spatial hier-
archy, to the corresponding symbol of a conceptual hierarchy.
Such a conceptual hierarchy is based on a small ontology in
description logic, which enables the robot to perform inference.
The authors validate their approach by building their own
domestic-like environment and testing the learned model by
executing navigation commands. Pangercic et al. [11], instead,
investigate the representation of “semantic object maps” by
means of a symbolic knowledge base (in description logic)
associated to Prolog predicates (for inference). Such a knowl-
edge base contains classes and properties of objects, instances
of semantic classes and spatial information. While profiling
the time required by the semantic mapping process, the authors
experiment their approach on a PR2 robot which has to open a
cabinet and to detect handles based on an apriori given seman-
tic map. Moreover, Bastianelli et al. [12] use a Prolog knowl-
edge base containing both the specific knowledge of a certain
environment and the general knowledge about a domain. The
knowledge base is linked to the physical environment by means
of a matrix like data structure generated on top of a metric map.
Once again, the experimental validation is based on qualitative
evaluations of the robot behavior, given a certain command
and the learned semantic map. Riazuelo et al. [13] instead
describe the RoboEarth cloud semantic mapping system, which
is composed of an ontology, for coding concepts and relations,
and a SLAM map for representing the scene geometry and
object locations. In particular, a recognition module identifies
objects based on a local database of CAD models, while the
whole system is integrated with an OWL ontology.

The other problem, which emerges as a consequence of the
variety of representations, is the absence of a standard suitable
validation and evaluation procedure. In addition to previous
examples, Zender et al. [5] generate a representation ranging

2The software is available at the following url: http://goo.gl/v7xSyl

from sensor-based maps to a conceptual abstraction, encoded
in an OWL-DL ontology of an indoor office environment.
However, except for individual modules, their experimental
evaluation is mainly qualitative. Pronobis and Jensfelt [7],
instead, represent a conceptual map as a probabilistic chain
graph model and evaluate their method by comparing the
robot belief to be in a certain location against the ground
truth. Gunther et al. [4] perform a sort of semantic aided
object classification based on an OWL-DL knowledge base.
The evaluation is based on the rate of correctly classified
objects. Finally, Handa et al. [14] propose a synthetic dataset,
which could be eventually extended with semantic knowledge
and used as a ground truth for comparing semantic mapping
methods. However, even when noise is introduced, fictitious
data never reflect a real world acquisition.

Note that none of the cited works can compare the per-
formance of their semantic mapping method against those of
other similar systems. Starting from these considerations we
propose a standard methodology for representing and evaluat-
ing semantic maps. In particular, we describe a formalization
which includes a reference frame, spatial information and a set
of logic predicates. Such a formalization is thought to be used
as a general structure of the representation that all the semantic
maps have to include and can extend. Moreover, in addition to
proposing an evaluation metric, we suggest the procedure for
the creation of a semantic mapping dataset. In particular, such
a dataset is based on real sensor data enriched with semantic
information.

III. SEMANTIC MAP REPRESENTATION

As previously stated, in order to define a map to be
“semantic”, we require that knowledge is represented in a
suitable manner. In fact, this enables additional information
to be inferred from the map, whenever a reasoning engine
is associated to it. For this reason, in this section, we pro-
pose a formalization of a minimal general structure of the
representation that should be implemented in a semantic map.
This representation has to play the role of common interface
among all the semantic maps, and can be easily extended or
specialized as needed.

In the general formalization that we are describing, such a
representation is defined as a triple

SM = 〈R,M,P〉, (1)

where:

• R is the global reference system in which all the
elements of the semantic map are expressed;

• M is a set of geometrical elements obtained as raw
sensor data. They are expressed in the reference frame
R and describe spatial information in a mathematical
form.Ms ⊆M is the subset of semantically relevant
elements;

• P is a set of predicates, among which is-a(X, Y)
and instance-of (X, Y) are mandatory. P has to be
compliant with the concept hierarchy shown in Fig. 2.
Ps ⊆ P , with |Ps| > 0, contains the predicates that
provide an abstraction of the elements in Ms.



Fig. 2. Minimal concept hierarchy to be used for a standard semantic map
representation.

Note that the definition of a unique reference frame R
allows to associate the elements of the subset Ms with those
of Ps. Moreover, the requirement that M is composed of
geometrical elements obtained as raw sensor data, gives the
opportunity to define an additional functionality on top of our
representation. Indeed, as we will explain in Section IV, we
are interested in the possibility to get the actual sensor data,
given a specific pose in the map expressed according to R. For
what concerns P , instead, the predicates is-a and instance-of
represent respectively: the subclass relation, meaning that if is-
a(B, A) holds, the class B is a subclass of the class A and every
instance of B is also an instance of A; the membership relation,
meaning that if instance-of (a, A) holds, the individual a
belongs to the class A. Additionally, some predicates can have
a function-like behavior, meaning that they can occur only once
for each individual. For example, if dealing with the classes
Person and IDNumber, the predicate hasId(X, Y) occurs
only once for each instance of Person and IDNumber.

To give a general idea, let us suppose we are building a
semantic map for a robot operating and interacting with people
in a mall. In this case, we can use our representation and
choose M to be a set of points, like a unique point cloud
modeling the 3D map of the environment. For what concerns
P , we can extend the concept hierarchy of Fig. 2 as follows:

• being a person an element of interest, we can define
a class Person and add the predicate is-a(Person,
Physical_Thing);

• a specialization of the class Location can be
introduced for the shops and corridors, by defin-
ing the classes Shop, Corridor and adding the
predicates is-a(Shop, Location), is-a(Corridor,
Location);

• a Connecting_Architecture can be specified
in such a way that it always connects an element of
the class Shop and one of the class Corridor;

• since a shop could use advertisements for promoting

itself, we can define a class Advertisement,
add the predicate is-a(Advertisement,
Abstract_Thing) and define a new predicate
hasAdvertisement(X, Y), where X could be an instance
of Shop and Y an instance of Advertisement.

Finally, we can select as reference frame R the global frame
of a 3D map.

IV. SEMANTIC MAP EVALUATION

Once we are given the representation schema presented
in Section III, a metric and one shared environment, then it
is possible to perform a comparison between two different
methods on the basis of the semantic maps they generate.
For this reason, we have to define one or more metrics that
allow for a quantitative evaluation of each method. Then, we
have to find an environment in which to perform this kind of
experiments. While some Robotics Innovation Facilities exist3
to this purpose, it is still not easy to retrieve common loca-
tions and environments, mainly due to logistic, physical and
economic constraints. For these reasons, while hypothesizing
some metric in Section IV-A, we suggest the construction
of a dataset of semantic maps according to the proposed
representation schema. In particular, the set of geometrical
elementsM should be built with real sensor data. In this way,
it is possible to simulate the robot navigation, as well as its
sensor acquisition. This can be done by defining a projection
function that transforms the elements ofM into the associated
sensor domain. For example, in the case of a RGB-D camera
the geometrical elements are projected in a depth and RGB
image, while in the case of a laser they are projected into a
vector of range values.

Such a dataset is a ground truth of each environment and
therefore it can be used to make comparisons based on specific
metrics. Of course, the set P cannot be fully satisfactory, since
it is not feasible to take into account all the possible semantic
knowledge. For this reason, it is likely that a user might need
to extend it. In this case, it is important to update the original
ground truth so that it becomes more and more complete and
that everyone can test their system on the same dataset.

A. Evaluation Metric Hypotheses

In this section, we hypothesize some possible evaluation
metrics to be used for comparison between two semantic
maps which are compliant with our previous proposal. Given a
representation SM1 = 〈RGT ,M1,P1〉 and the ground truth
SMGT = 〈RGT ,MGT ,PGT 〉, an evaluation metric can be
defined as

δ(SM1,SMGT ) = f(|M1 	MGT |, |P1 � PGT |). (2)

Note that the reference frame RGT of SM1 and SMGT

coincide: this is easily achievable by applying the transfor-
mation offset between the original frame R1 of SM1 and
RGT of SMGT . The definition of the operators 	 and �
determines the metric itself. For example, 	 can be a distance
d between geometrical elements, according to Table I, while

3http://www.echord.eu/facilities-rifs/



the � operator could return two sets of predicates ∆ and Γ
such that:

{P1 \ Γ} ∪∆ |= PGT (3)

The lower the cardinality of ∆ and Γ, the better is the
semantic representation. However, this does not consider the
fact that the subset Ps contains some reference to spatial in-
formation (which could be measured again by metric criteria).
A solution to this problem could be the redefinition of � as
an operator which returns two sets of predicates ∆ and Γ, and
a distance d such that:

{(P1 \ P1s) \ Γ} ∪∆ |= {PGT \ PGTs
}, d(P1s ,PGTs

). (4)

For example, suppose that the ground truth SMGT con-
tains a table and a chair correctly positioned. If the table
is missing in the set P1 of the robot semantic map SM1,
from our metric in Eq. 3 we obtain that ∆ has cardinality 1.
Indeed, in this case the robot would not be able to execute the
command “go to the table”. Conversely, if the table belongs
to Ps, the cardinality is 0 and the robot is able to execute
the command. Similarly, if the object is not well positioned
in M1 any distance from Table I would be much bigger than
zero, and the robot would execute the command by reaching
a wrong location. Additional metrics could be defined on
different criteria like the processing time, the distance traveled
by the robot, the number of sensor readings processed, etc.

V. DATASET CONSTRUCTION

Since the construction of the dataset is based on the
representation proposed in Section III, and it consists of the
combination of spatial and semantic information, any approach
compliant with that could be applied. In this section we
describe our method for the generation of a ground truth, in
which the set M consists of a 3D point cloud, P implements
the proposed concept hierarchy and Ps contains abstractions
of bounding boxes. In particular, in order to collaborate with a
larger community of researchers, we consider low cost sensors
(i.e., RGB-D cameras like Microsoft Kinect and Asus Xtion)
which can be easily found on any robot. Note that building
a 3D map with this kind of sensors, leads to multiple open
issues. Still, even if with an additional manual refinement, our
software allows to build such maps. As shown in Fig. 3, this
process is composed of several steps, which can be divided
into metric and semantic phases. First, we acquire data in order
to generate a 3D map and we perform a preliminary manual
annotation of the objects inside the environment. Then, by
associating semantic information and volumes in the 3D map,

TABLE I. EXAMPLE DEFINITION OF THE 	 OPERATOR. THE INDEX i
INDICATES THE i-TH CORRESPONDING GEOMETRIC ELEMENT INM1 ANDM2 ,

WHILE p, l AND π REPRESENT RESPECTIVELY A POINT, A LINE AND A PLANE.
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Fig. 3. Steps involved in the process of building the dataset.

in the form of bounding boxes, we obtain the desired semantic
map. Of course, sensor calibration prior to data acquisition is
highly recommended (see Section V-B for more details).

A. Data Acquisition

The data acquisition step can be divided in two different
parts, one related to the 3D map, the other to the semantic
annotations for elements of interest inside the environment.
While manually collecting semantic annotations is relatively
easy, although tedious, 3D data acquisition results to be more
challenging due to the limitations of low cost sensors.

The generation of a 3D map requires the acquisition of a
log capturing the income of the robot sensors while moving
around the environment. In particular, this should contain the
robot odometry (or laser data) and the camera stream (both
for depth and RGB). While taking the log, one should pay
attention to steer the robot so that at least one camera does
not see only a flat surface. Indeed, structures like a floor, a
wall or two parallel planes do not help the mapping system,
due to their poor geometrical information.

B. Sensor Calibration

The calibration of a sensor is the process of correctly
computing its internal parameters, as well as its pose with
respect to the robot reference frame. Extracting the right
internal parameters improves the data generated by the sensor
reducing its intrinsic error. For example, in the case of a depth
camera, this corresponds to determine its camera matrix and
distortion parameters. Computing the correct pose of a sensor,
instead, allows to accurately express data measurements with
respect to a different reference frame.

In order to perform sensor calibration and supposing to
use n RGB-D cameras on the robot, n+ 2 logs1 are required.
In particular, choosing one of the cameras as a reference, we
have:

1A log is obtained by acquiring and recording the required sensor data.



1) n intrinsic calibration logs, containing the stream
of the i-th RGB-D sensor, for the calibration of the
internal parameters of its depth camera (refer to [15]
for more details on how to acquire data);

2) 1 sensor-base calibration log, containing the robot
odometry (or laser data) and the camera stream, for
calculating the pose between the robot and reference
RGB-D sensor (the robot should slowly translate
and rotate while the reference sensor sees at least 3
planes, each of them being non parallel with all the
others);

3) 1 sensor-sensor calibration log (at least), containing
the stream of the n cameras, for computing the pose
of n−1 RGB-D sensors with respect to the reference
one (all the cameras should see, at least once, the
same part of the environment while always respecting
the condition of the previous point);

Common RGB-D cameras are affected by a substantial
distortion in the depth channel. Not considering this distortion
leads to systematic drifts in the estimate of the robot pose
while mapping. This calibration is performed by following the
procedure explained by Di Cicco et al. [15] on the intrinsic
calibration logs. At the end of this procedure, it is possible to
reduce the intrinsic error which normally affects the sensors
data (i.e., walls that should be flat, look curved on the edges).

Another goal of the calibration procedure is to find the
pose of one of the cameras (reference) with respect to the
robot frame, and the relative offsets (translation and rotation)
between all the other cameras and the reference. The software
we developed provides two different tools to compute these
offsets. The first one performs the computation of the transform
T∗ between the robot frame and the reference depth camera.
By using the sensor-base calibration log we estimate the
motion of the camera in a small region. Taking as reference the
odometry of the robot, this tool casts a least square problem
that minimizes a cost function which depends on the sensor
transform T and returns T∗. The second tool, instead, allows
the computation of the offset between pairs of depth cameras.
The main idea is to use the sensor-sensor calibration log to
generate, for each camera, an independent point cloud. In
this way, each sensor produces a cloud starting from its own
reference frame. Once this is done, our registration algorithm
can be run between pairs of point clouds. The output of
the alignment determines the relative translation and rotation
between the origins of the point clouds and thus between the
sensors.

At the end of the calibration we are able to construct a tree
of sensor pose transformations (see Fig. 4). From this tree, it
is possible to compute the transformation between any two
nodes, by a simple offset concatenation.

C. Data Processing

Once all the data is acquired, the 3D map can be built.
To this end, the point clouds recorded in the log are aligned
generating a set of local maps. A local map is a point cloud
constructed by aligning and integrating a sequence of depth
sensor data while the robot moves in the environment. This is
obtained through the use of a point cloud registration algorithm
based on the work by Serafin et al. [16]. A new local map is
started whenever one of the two following statements holds:

Fig. 4. Sensor transformation tree generated at the end of a calibration
procedure. In this case the robot was equipped with 3 depth cameras.

• the estimate of the robot (or equivalently the camera)
movement is greater than a certain amount. This
allows to limit the growth of the local map in terms
of dimension;

• the point cloud registration algorithm detects that
the last alignment is not good (with possibility of
inconsistency). This is necessary in order to avoid to
introduce errors inside the local map.

The local map generator uses the robot odometry as initial
guess for the point cloud alignment. However, a good odometry
estimation is not always available. In this case (but this is
useful in general), if the robot comes with a 2D laser, it is
possible to use as initial guess the transformation provided by
the scan matcher developed as part of our software. The 3D
map is represented as a pose graph [17], where each local
map is connected to the previous and following one by means
of a transformation. More in detail, nodes of the pose graph
represent local maps, with their position and orientation in a
global frame. Edges, instead, are relative transforms between
local maps. The benefits of this metric representation are
that it allows to add/remove anytime information and update
an existing map. Indeed, by using a tool provided in our
software, inconsistencies in the map can be manually fixed.
More specifically, the user can select and align two nodes of
the graph at time and add a new edge between them. This,
together with the optimization of the pose graph [18], leads to
the elimination of inconsistencies and thus, to a refined map.

D. Combining 3D Map and Semantic Data

Once both the 3D map and the semantic annotations
are available it is possible to combine them by means of
a geometric abstraction like a volume in the map. In our
case, we define such a volume to be a bounding box (i.e., a
parallelepiped) containing all the geometric elements to which
we want to attach the same semantic information.

After all the bounding boxes are assigned, we formalize
the predicates P (compliant with the conceptual hierarchy) in
OWL-DL, by using Protégé 4. Bounding boxes, in particular,
belong to the subset Ps and they are formalized by means of
classes like Size, Position and Shape.

E. Dataset Example

We performed the procedure described so far on a set of
data specifically acquired during the RoCKIn Camp5 held in

4http://protege.stanford.edu/
5http://rockinrobotchallenge.eu/



Fig. 5. Detail of the example dataset acquired in the RIF of Peccioli. The
image shows a table and chairs with their associated bounding boxes. RGB
information is intentionally omitted and resolution is reduced for a better
visualization of the bounding boxes.

the ECHORD++ Robotic Innovation Facility of Peccioli6, in
Italy. In particular, this is a domestic environment with several
rooms and everyday objects built to foster benchmarking of
robotic applications, to test their robustness, and to support
standardization efforts. While a detail of the 3D map of
the environment is shown in Fig. 5, the whole dataset is
hosted online (http://goo.gl/v7xSyl) and contains a ground
truth representation which is compliant with the requirements
stated in Section III. Namely, a 3D point cloud with an
associated reference frame and the corresponding OWL-DL
ontology compose the first example of a dataset for semantic
maps.

VI. DISCUSSION

In this paper we defined a methodology for representing
semantic maps. In particular, we designed a formalization of
their representation which includes both spatial and semantic
knowledge. On top of this, we made some hypotheses for
metrics and evaluation criteria, based on the idea that a ground
truth for semantic maps exists. Note that the procedure we pro-
posed for building a dataset is based on real sensor data. This
allows to simulate robot navigation inside the environment,
breaking down logistic, physical and economic barriers for a
fair comparison between different semantic mapping methods.
Finally, we provided useful documented open-source software
for building such a dataset (http://goo.gl/v7xSyl). We invite, in
this way, the scientific community to contribute in populating
the dataset with more and more annotations and environments.
In addition to all of this, we have also shown a first real
example of ground truth for a semantic map. Open challenges,
however, still remains. Future work, for example, should be
oriented to the definition of a standard metric of evaluation.

REFERENCES

[1] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile
robots,” Robotics and Autonomous Systems, vol. 56, no. 11, pp. 915–
926, 2008.

6http://www.echord.eu/facilities-rifs/the-peccioli-rif/

[2] N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Ruhr,
M. Tenorth, and M. Beetz, “Autonomous semantic mapping for robots
performing everyday manipulation tasks in kitchen environments,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 4263–4270.

[3] O. M. Mozos, H. Mizutani, R. Kurazume, and T. Hasegawa, “Cate-
gorization of indoor places using the kinect sensor,” Sensors, vol. 12,
no. 5, pp. 6695–6711, 2012.

[4] M. Gunther, T. Wiemann, S. Albrecht, and J. Hertzberg, “Building
semantic object maps from sparse and noisy 3d data,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 2228–2233.

[5] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. Kruijff, and W. Burgard,
“Conceptual spatial representations for indoor mobile robots,” Robotics
and Autonomous Systems, vol. 56, no. 6, pp. 493–502, 2008.

[6] C. Nieto-Granda, J. G. Rogers, A. J. Trevor, and H. I. Christensen,
“Semantic map partitioning in indoor environments using regional
analysis,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 1451–1456.

[7] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and rea-
soning with heterogeneous modalities,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3515–3522.

[8] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics
tasks: A survey,” Robotics and Autonomous Systems, 2014.

[9] N. Goerke and S. Braun, “Building semantic annotated maps by mobile
robots,” in Proceedings of the Conference Towards Autonomous Robotic
Systems, Londonderry, UK, 2009.

[10] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.-A. Fernandez-
Madrigal, and J. Gonzalez, “Multi-hierarchical semantic maps for
mobile robotics,” in Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference on. IEEE, 2005, pp. 2278–
2283.

[11] D. Pangercic, B. Pitzer, M. Tenorth, and M. Beetz, “Semantic object
maps for robotic housework-representation, acquisition and use,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, 2012, pp. 4644–4651.

[12] E. Bastianelli, D. Bloisi, R. Capobianco, F. Cossu, G. Gemignani,
L. Iocchi, and D. Nardi, “On-line semantic mapping,” in Advanced
Robotics (ICAR), 2013 16th International Conference on. IEEE, 2013,
pp. 1–6.

[13] L. Riazuelo, M. Tenorth, D. Marco, M. Salas, D. Gálvez-López,
L. Mosenlechner, L. Kunze, M. Beetz, J. Tardos, L. Montano et al.,
“Roboearth semantic mapping: A cloud enabled knowledge-based ap-
proach,” IEEE Transactions on Automation Science and Engineering
(T-ASE): Special Issue on Cloud Robotics and Automation, vol. 12,
no. 2, 2015.

[14] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
Intl. Conf. on Robotics and Automation, ICRA, Hong Kong, China, May
2014.

[15] M. Di Cicco, L. Iocchi, and G. Grisetti, “Non-parametric calibration
for depth sensors,” in Proc. of the 13th International Conference on
Intelligent Autonomous Systems. (IAS 13), 2014.

[16] J. Serafin and G. Grisetti, “Using augmented measurements to improve
the convergence of icp,” in 4th International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), ser.
LNCS 8810. Springer, 2014, pp. 566–577.

[17] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” Intelligent Transportation Systems Magazine, IEEE,
vol. 2, no. 4, pp. 31–43, 2010.

[18] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 3607–3613.


