
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 1

Specification Patterns for Robotic Missions
Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten Berger

Abstract—Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software.
Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing this need, a large
number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use
of formally specified missions for synthesis, verification, simulation or guiding implementation. For instance, the logical language LTL is
commonly used by experts to specify missions as an input for planners, which synthesize the behavior a robot should have. Unfortunately,
domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by
non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating,
composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification
problems, each of which detailing the usage intent, known uses, relationships to other patterns, and—most importantly—a template
mission specification in temporal logic. Our tooling produces specifications expressed in the temporal logics LTL and CTL to be used by
planners, simulators or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics
literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these
reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns’
correctness with simulators and two different types of real robots.

F

1 INTRODUCTION

MOBILE robots are increasingly used in complex environ-
ments aiming at autonomously realizing missions [9].

The rapid pace of development in robotics hardware and tech-
nology demands software that can sustain this growth [10],
[11], [12], [13]. Even though existing solutions are not readily
usable [14], in the near future robots will be used for accom-
plishing tasks of everyday life by end-users with no expertise
and knowledge in computer science, robotics, mathematics
or logics. Providing techniques that support robotic software
development is a major software-engineering challenge [10],
[15]. Indeed, as in the mobile application domain, where
electrical engineers develop low level hardware components
and constructing higher level software components that are
executed on mobile devices is a software engineering issue,
in the robotic domain robotic engineers develop robots and
low level software primitives that allow controlling and
managing these robots and developing and defining software
that uses those low level primitives is a software engineering
issue.

The mission describes the high-level tasks the robotic
software must accomplish [16]. Among the different ways of
describing missions that were proposed in the literature [17],
in this work, we consider declarative specifications [18].
These describe the final outcome the software should
achieve—rather than describing how to achieve it—and
are prominently used in the robotics domain [17]. Precisely
specifying missions and transforming them into a form useful
for automatic processing are among the main challenges in
engineering robotics software [19], [20]. On the one hand,
missions should be defined with a notation that is high-level
and user-friendly [16], [21]. On the other hand, to enable
automatic processing, the notation should be unambiguous
and provide a formal and precise description of what robots
should do in terms of movements and actions [22], [23], [24].

Engineering robotics software typically amounts

to expressing the robotic mission in natural language
(henceforth called mission requirement), and then translating
mission requirements into more precise mission specifications.
The latter are often expressed in a domain-specific language,
many of which have been proposed over the last decades
[17]. These languages are often integrated with development
environments used to generate code that can be executed
within simulators or real robots [25], [26], [27], [28]. However,
these languages are typically bound to specific types of robots
and support a limited number and type of missions. Other
works especially from the robotics domain, advocate the use
of formally specified missions in temporal logics [29], [30],
[31], [32]. Unfortunately, specifying missions using temporal
logic formulae can be too complex and error-prone for
practitioners or engineers. As such, defining robotic missions
is generally challenging, as widely recognized in the software-
engineering and robotics communities [33], [34], [35], [36].

Mission requirements are often ambiguous, hindering pre-
cise and unambiguous specification [36], [37], [38]. Consider
the very simple mission requirement “the robot shall visit the
kitchen and the office.” This can be interpreted as “visit the
kitchen” and also that at some point the robot should “visit
the office” without a specific order between the visit of the
kitchen and the office, or as visit “the kitchen and the office
in order.” Assume that the correct intended behavior requires
that “the kitchen and the office are visited in order,” which
is a common mission specification problem [39], [40]. When
transforming this mission requirement expressed in natural
language into a precise mission specification, an expert
might come up with the following formula in temporal logic:

φ1 = F
(
(r in l1) ∧ F(r in l2)

)
,

where r in l1 and r in l2 signify that robot r is in the kitchen
and office, respectively, andF denotes finally. Now, recall that
the actual mission requirement is that the robot reaches the
kitchen before the office. It is important to highlight that the
logical formula still admits that the robot reaches the office

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 2

before entering the kitchen, which may be an unintended
behavior. In fact, a possible interpretation might also require
that a robot should visit the office after having visited the
kitchen and that the robot absolutely cannot visit the office
before having visited the kitchen. This alternative interpre-
tation requires defining additional behavioral constraints. A
correct formula, among others, is the following:

φ2 = φ1 ∧
((
¬(r in l2)

)
U (r in l1)

)
,

where U stands for until. Further interpretations are also
possible. This highlights the ambiguity in natural language
requirements formulation, and common mistakes may be
introduced when diverse interpretations are given [24],
[41], [42], [43]. The additional constraint added in the last
interpretation above requires the office to not be visited
before the kitchen, recalling a specification pattern for
temporal logics known as the absence pattern [44]. Rather
than conceiving such specifications recurrently in an ad hoc
way with the risk of introducing mistakes, engineers could
re-use validated solutions to existing mission requirements.

Creating mission specifications that correctly capture
mission requirements is hard and error-prone [33], [34], [35],
[36], also evident from the examples above. The challenge
of defining behavioral properties in logical languages such
as LTL, has been recognized by researchers. While precise
behavioral specifications in logical languages enable reason-
ing about behavioral properties [45], [46], their specification
is hard and error prone [47], [48]. Practitioners are often
unfamiliar with the specification process as well as with
the intricate syntax and semantics of logical languages [44].
Specification patterns have become a popular solution to
this challenge. For instance, Dwyer et al. [44] introduced
patterns for safety properties, which were later extended by
Grunske [49] and Konrad et al. [50] to address real-time and
probabilistic quality properties, respectively. Autili et al. [51]
consolidated and organized these patterns into a comprehen-
sive catalog. Bianculli et al. [52] applied specification patterns
to the domain of web services. All these patterns provide
template solutions that can be used to specify the respective
properties. However, none of these pattern catalogs focuses
on the robotic domain to solve the mission specification
problem. Our contribution enriches this line of research by
focusing on the new emerging domain of mobile robots,
whose missions need to be expressed in precise terms by
users who are not proficient in formal specifications. It
follows a typical research paradigm in engineering that tries
to replicate, contextualize, and extend an existing useful
method to a different domain, which has its own specificities.

We propose a new set of patterns focusing on robot
movement as one of the major aspects considered in the
robotics domain [53], [54], [55], as well as on how robots
perform actions within their environment. For each pattern
we provide its usage intent, known uses, relationships to
other patterns, and—most importantly—a template mission
specification in temporal logics. The latter relies on LTL and
CTL as the most widely used formal specification languages
in robotics [27], [29], [30], [32], [56], [57], [58], [59], [60], [61],
[62]. The template mission specification can be defined in
multiple languages that may have different expressiveness –
the patterns we provide lie in the intersection of LTL and CTL.
These logical formalisms are sufficiently expressive, since

missions that contain explicit time requirements are beyond
the scope of this work, and subject of future investigation.
Our catalog has been produced by analyzing 245 natural-
language mission requirements systematically retrieved from
the robotics literature. From these requirements we identified
recurrent mission specification problems and conceived solu-
tions organized as patterns. Our patterns provide a formally
defined vocabulary that supports robotics developers in
defining mission requirements. Relying on the usage of the
pattern catalog as a common vocabulary allows mitigating
ambiguous natural language formulations [34]. Our patterns
also provide validated mission specifications for recurrent
mission requirements, facilitating the creation of correct
mission specifications.

We implemented the tool PsALM (Pattern bAsed Mission
specifier)to further support developers in designing missions.
PsALM allows (i) specifying a mission requirement through
a structured English grammar, which uses patterns as
basic building blocks and operators that allow composing
these patterns into complex missions, and (ii) automatically
generating specifications from mission requirements. PsALM
is robot-agnostic and integrated with Spectra [63] (a robot
development environment), a planner [30], NuSMV [64] (a
model checker), and Simbad [65] (a simulator for education
and research). The pattern catalog and the PsALM tool are
available in an online appendix [66].

We validated the correctness of the proposed patterns.
The methodology we conceived is generic and can be reused
in future work that propose pattern catalogs. Specifically,
we characterize all (and only) the set of behaviors that
were expected to be admitted by a mission requirement by
manually defining an ω-regular expression. This ω-regular
expression is compared with the set of behaviors admitted
by an LTL formula by using standard language inclusion
procedures. To further build confidence for the absence
of errors on the definition of the ω-regular expression,
we additionally tested patterns correctness on a set of 12
randomly generated models representing buildings where a
robot is deployed. We considered ten mission requirements
(each obtained by combining three patterns), converted
the mission requirements into LTL mission specifications
and used those to generate robots’ plans. We used the
Simbad [65] simulator to verify that the plans satisfied the
intended mission requirement. We subsequently generated
both LTL and CTL specifications from the considered mission
requirements. We verified that the same results are obtained
when they are checked on the randomly generated models,
confirming the correspondence among the CTL and LTL
specifications.

We evaluated the benefits of using our patterns for
designing missions. We collected 441 mission requirements
in natural language: 436 obtained from robotic development
environments used by practitioners (i.e., Spectra [63] and
LTLMoP [31], [36]), and five defined in collaboration with
two well-known robotics companies developing commercial,
human-size service robots (BOSCH and PAL Robotics). We
show that most of the mission requirements were ambiguous
but expressible using the proposed patterns, and that usage
of patterns reduces ambiguities. We then evaluated the
coverage of mission specifications. We collected 1229 LTL
and 22 CTL mission specifications from robotic development

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 3

environments used by practitioners (i.e., Spectra [63] and
LTLMoP [31], [36]) and research publications (i.e., [67]) and
show that almost all specifications can be obtained using
the proposed patterns (1154 over 1251, i.e., ≈ 92%). We
also generated specifications for five mission requirements
defined in collaboration with the two robotic companies
and fed them into an existing planner. The produced plans
were correctly executed by real robots, namely Tiago and
Turtlebot1 showing the benefits of the patterns support in real
scenarios. Finally, we also showed that the LTL formulation
of the patterns is within the GR(1) fragment, enabling the
use of existing reactive synthesis tools (e.g., [29]).

A small fragment of this work has been published as
an extended abstract [68] and a tool-demo paper [69]. In
these papers, we presented the initial idea and a description
of our toolset for early dissemination. This paper presents
our work in its full richness, explaining the methodology,
presenting all patterns with their formalization, as well as
our evaluation of the patterns’ correctness and benefit using
real-world mission requirements and mission specifications.

We proceed by presenting background information and
important terminology in Section 2, and by describing our
research methodology in Section 3. We present our pattern
catalog in Section 4, and tool support in Section 5. We
evaluate patterns’ correctness in Section 6 and their benefits
in Section 7. We discuss our findings in Section 8, related
work in Section 9, and conclude in Section 10.

2 BACKGROUND

In this section, we present the terminology used in the
remainder and introduce the temporal logic LTL used for
defining the patterns’ template solutions.

Recall that for communication and further refinement, the
requirements of a software system are typically expressed in
natural language or informal models. Refining these require-
ments into more formal representations avoids ambiguity,
allowing automated processing and analysis. Such practices
also emerged in the robotics engineering domain.
• Mission Requirement: a description in a natural language
or in a domain-specific language of the mission (also called
“task”) the robots must perform [37].
• Mission Specification: a formulation of the mission in a
logical language with a precise semantics [57] .
• Mission Specification Problem: the problem of generating a
mission specification from a mission requirement.
•Mission Specification Pattern: a mapping between a recurrent
mission-specification problem to a template solution and a
description of the usage intent, known uses, and relationships
to other patterns.
•Mission Specification Pattern Catalog: a collection of mission
specification patterns organized in a hierarchy aiding at
browsing and selecting patterns, in order to support decision
making during mission specification.

We consider LTL (Linear Temporal Logic) [70] and CTL
(Computation Tree Logic) [71], since they are commonly
used to express mission specifications in robotics and are
utilized extensively by the community (e.g., [32], [56], [58]). A
temporal logic specification can be used for several purposes,

1. Tiago (tiago.pal-robotics.com) and Turtlebot (turtlebot.com).

Table 1
Papers (requirements) analyzed per venue and year

Robotics Venue 20
17

20
16

20
15

20
14

20
13

T o
ta

l

Int. Conf. Robotics & Autom. 9(14) 16 (11) 17 (18) 27 (22) 16 (15) 85 (80)
Int. J. of Robotics Research 4(8) 13 (12) 12 (11) 13 (8) 17 (12) 59 (51)
Trans. on Robotics 2(6) 12 (9) 5 (1) 8 (2) 4 (2) 31 (20)
Int. Conf. on Int. Robots & Sys. 10(23) 55 (26) 13 (8) 20 (16) 33 (21) 131 (94)

such as (i) for producing plans through the use of planners,
(ii) for analysing the mission satisfaction though the use of
model checkers, and (iii) to design a robotic application.

We now briefly recall LTL’s syntax and semantics; a
precise treatment can be found in specialized text books (e.g.,
Baier and Katoen [5]). While CTL has also been considered
as a target logic to define patterns’ template solutions, it
is not introduced explicitly as this paper will use LTL as a
reference temporal logic. For additional details on the use of
CTL in the formulation of the proposed pattern the interested
reader may consult our online appendix [66]. Let π be a set
of atomic propositions; LTL’s syntax is defined as follows:

(LTL) φ ::= τ | ¬φ | φ ∨ φ | X φ | φ U φ where τ ∈ π.

The semantics of LTL is defined over an infinite sequence
of truth assignments to the propositions π. The formula X φ
expresses that φ is true in the next position in a sequence,
and the formula φ1 U φ2 expresses the property that φ1 is
true until φ2 holds. The eventually F , always G and weak
until W operators can be obtained from the X and U LTL
operators as usual [5].

3 METHODOLOGY

We derived our pattern catalog in three main steps: (i)
collection of mission requirements, (ii) identification of
mission specification problems, and (iii) pattern formulation.

Collection of Mission Requirements. We collected mis-
sion requirements from scientific papers in the field of
robotics. We additionally considered the software engineer-
ing literature, but noted a general absence of robotic mission
specifications. We chose major venues based on consultation
with domain experts and by considering their impact factor.
Specifically, we analyzed mission specifications published in
the four major robotics venues [72] over the last five years,
in line with similar studies for pattern identification [44],
[49], [50]. We analyzed all papers published within a venue
with two inclusion criteria (considered in order): (i) the
paper title implies some notion of robotic movement-related
concept, (ii) the paper contains at least one formulation
of a mission requirement involving a robot that concerns
movement. When the paper contained more than one mission
requirement, each was considered separately.

Altogether we obtained 306 papers, through which,
matching our inclusion criteria, we obtained 245 mission
requirements. Table 1 shows the venues included in our
analysis, together with the number of scientific publications
and mission requirements obtained per year. The considered
software engineering venues (ICSE, FSE, and ASE) are not
present since they did not contain any paper matching the
inclusion criteria.

tiago.pal-robotics.com
turtlebot.com

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 4

Robotic Missions Specification Patterns Avoidance/
Invariant

Conditional/Limited
Past

avoidance

Global
avoidanceFuture

avoidance

Restricted

Lower
Restricted
Avoidance

Exact
Restricted
Avoidance

Upper
Restricted
Avoidance

Trigger

WaitReaction

Instant.
Reaction

Delayed
Reaction

Fast
Reaction

Bind

Bound
Reaction

Bound
Delay

Core Movement Patterns

Coverage

Visit Sequenced
Visit

Ordered
Visit

Strict
Ordered

Visit

Fair
Visit

Surveillance

Patrolling Sequenced
Patrolling

Ordered
Patrolling

Strict
Ordered

Patrolling

Fair
Patrolling

Figure 1. Mission specification pattern catalog. Filled nodes: patterns, non-filled nodes: categories.

Identification of Mission Specification Problems. We
identified mission specification problems as follows2.
• (STEP.1) We divided the collected mission requirements

among two of the authors, who labeled them with key-
words that capture the mission specification problems
they describe. For example, the mission requirement
“The robot has to autonomously patrol the site and
measure the state of valve levers and dial gauges at
four checkpoints in order to decide if some machines
need to be shut down” (occuring in Schillinger et al. [73])
was associated with the keywords “patrol,” since the
robot has to patrol the site, and “instantaneous reaction,”
since when a valve is reached its level must be checked.

• (STEP.2) We created a graph structure representing
semantic relations between keywords. Each keyword
is associated with a node of the graph structure. Two
nodes were connected if their keywords identify two
similar mission specification problems. For example, the
keywords “visit” and “reach” are related since in both
cases the robot has to visit/reach a location.

• (STEP.3) Since our interest was not a mere classification
of actions and movements that are executed by a robots,
but rather detecting mission specification problems that
concern how actions and movements are executed by a
robot behavior over time, nodes that contain keywords
that only refer to actions are removed (e.g., balance).

• (STEP.4) Nodes that were connected through edges and
contained keywords that identify to the same mission
specification problem, e.g., visit and reach, were merged.

• (STEP.5) We hierarchically organized the mission speci-
fication problems into a catalog represented through a
tree structure that facilitates browsing among mission
specification problems.

Pattern Formulation. We formulated patterns by follow-
ing established practices in the literature [44], [49], [51]. A
pattern is characterized by
• (i) a name;
• (ii) a statement that captures the pattern intent (i.e., the

mission requirement);
• (iii) a template instance of the mission specification in

LTL and CTL;
• (iv) variations describing possible minor changes that

can be applied to the pattern;

2. For technical details on this methodology see [66].

• (v) examples of known uses;
• (vi) relationships of the pattern to others and;
• (vii) occurrences of the pattern in literature.
For each LTL pattern we also designed a Büchi Automa-

ton (BA) that unambiguously describes the behaviors of the
system allowed by the mission specification. The mission
specification was designed by consulting specifications en-
coding requirements already present in the papers surveyed,
by crosschecking them, and consulting specification patterns
already proposed in the software-engineering literature [51].
If the proposed specification was related to (or corresponded
with) one of an already existing pattern, we indicated this in
the relationships of the pattern to others, meaning that the
pattern presented in the literature is also useful to solve the
identified mission specification problem.

4 MISSION SPECIFICATION PATTERNS

In this section, we present our catalog of mission specification
patterns3 and present one of them. Our catalog comprises
22 patterns hierarchically organized into a pattern tree as
illustrated in Figure 1. Leaves of the tree represent mission
specification patterns. Intermediate nodes facilitate browsing
within the hierarchy and aid pattern selection and decision
making. Patterns identified by following the procedure
described in Section 3 are graphically indicated with a solid
border. Patterns represented with a dashed border represent
new patterns identified during our evaluation, as explained
below in Section 7.1.

We provide a high-level description of all patterns iden-
tified, examples of application, and the corresponding LTL
mission specifications. The interested reader may refer to our
online appendix [66], which contains additional examples,
occurrences of patterns in the literature, relations among the
patterns, and additional CTL mission specifications.

Preliminaries. To aid comprehension of behavior and fa-
cilitate precise pattern definitions, we introduce the following
notation. Given a finite set of locations L = {l1, l2, . . . , ln}
and robots R = {r1, r2, . . . , rn}, PL = {rx in ly | rx ∈
R and ly ∈ L} is a set of location propositions, each
indicating that a robot rx is in a specific location ly of the en-
vironment. Given a finite set of conditions of the environment
C = {c1, c2, . . . , cm}, we indicate as PE = {s1, s2, . . . , sm}

3. The pattern catalog in full, accompanied material and tool support
is available on our dedicated website: www.roboticpatterns.com

www.roboticpatterns.com

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 5

Table 2
Core movement patterns. The symbol % indicates the mathematical operator modulo.

Description Example Formula (l1, l2, . . . are location proposi-
tions)

V
is

it Visit a set of locations in an unspeci-
fied order.

Locations l1, l2, and l3 must be visited. l1 → l4 → l3 → l1 →
l4 → l2 → (l#)ω is an example trace that satisfies the mission
requirement.

n∧
i=1

F(li)

Se
qu

en
ce

d
V

is
it

Visit a set of locations in sequence,
one after the other.

Locations l1, l2, l3 must be covered following this sequence. The
trace l1 → l4 → l3 → l1 → l4 → l2 → (l#\3)

ω violates the
mission since l3 does not follow l2. The trace l1 → l3 → l1 →
l2 → l4 → l3 → (l#)ω satisfies the mission requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))

O
rd

er
ed

V
is

it

The sequenced visit pattern does not
forbid to visit a successor location
before its predecessor, but only that
after the predecessor is visited the
successor is also visited. Ordered
visit forbids a successor to be visited
before its predecessor.

Locations l1, l2, l3 must be covered following this order. The trace
l1 → l3 → l1 → l2 → l3 → (l#)ω does not satisfy the mission
requirement since l3 preceeds l2. The trace l1 → l4 → l1 → l2 →
l4 → l3 → (l#)ω satisfies the mission requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))
n−1∧
i=1

(¬li+1)U li

St
ri

ct
O

rd
er

ed
V

is
it

The ordered visit pattern does not
avoid a predecessor location to be
visited multiple times before its suc-
cessor. Strict ordered visit forbids
this behavior.

Locations l1, l2, l3 must be covered following the strict order l1, l2,
l3. The trace l1 → l4 → l1 → l2 → l4 → l3 → (l#)ω does not
satisfy the mission requirement since l1 occurs twice before l2. The
trace l1 → l4 → l2 → l4 → l3 → (l#)ω satisfies the mission
requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))
n−1∧
i=1

(¬li+1)U li

n−1∧
i=1

(¬li)U(li ∧ X (¬li U(li+1)))

Fa
ir

V
is

it

The difference among the number
of times locations within a set are
visited is at most one.

Locations l1, l2, l3 must be covered in a fair way. The trace l1 →
l4 → l1 → l3 → l1 → l4 → l2 → (l#\{1,2,3})

ω does not
perform a fair visit since it visits l1 three times while l2 and l3 are
visited once. The trace l1 → l4 → l3 → l1 → l4 → l2 → l2 →
l4 → (l#\{1,2,3})

ω performs a fair visit since it visits locations l1,
l2, and l3 twice.

n∧
i=1

F(li)

n∧
i=1

G(li → X ((¬li)W l(i+1)%n))

Pa
tr

ol
lin

g Keep visiting a set of locations, but
not in a particular order. The pa-
trolling problem also appears in lit-
erature as surveillance.

Locations l1, l2, l3 must be surveilled. The trace l1 → l4 → l3 →
l1 → l4 → l2 → (l2 → l3 → l1)

ω ensures that the mission
requirement is satisfied. The trace l1 → l2 → l3 → (l1 → l3)

ω

represents a violation, since l2 is not surveilled.

n∧
i=1

G F(li)

Se
qu

en
ce

d
Pa

tr
ol

lin
g Keep visiting a set of locations in

sequence, one after the other.
Locations l1, l2, l3 must be patrolled in sequence. The trace l1 →
l4 → l3 → l1 → l4 → l2 → (l1 → l2 → l3)

ω satisfies the mission
requirement since globally any l1 will be followed by l2 and l2 by l3.
The trace l1 → l4 → l3 → l1 → l4 → l2 → (l1 → l3)

ω violates
the mission requirement since after visiting l1, the robot does not
visit l2.

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))

O
rd

er
ed

Pa
tr

ol
lin

g Sequence patrolling does not forbid
to visit a successor location before
its predecessor. Ordered patrolling
ensures that (after a successor is
visited) the successor is not visited
(again) before its predecessor.

Locations l1, l2, and l3 must be patrolled following the order l1, l2,
and l3. The trace l1 → l4 → l3 → l1 → l4 → l2 → (l1 → l2 →
l3)

ω violates the mission requirement since l3 precedes l2. The trace
l1 → l1 → l2 → l4 → l4 → l3 → (l1 → l2 → l3)

ω satisfies the
mission requirement

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))
n−1∧
i=1

(¬li+1)U li

n∧
i=1

G(l(i+1)%n → X ((¬l(i+1)%n)U li))

St
ri

ct
O

rd
er

ed
Pa

tr
ol

lin
g

The ordered patrolling pattern does
not avoid a predecessor location to
be visited multiple times before its
successor. Strict Ordered Patrolling
ensures that, after a predecessor is
visited, it is not visited again before
its successor.

Locations l1, l2, l3 must be patrolled following the strict order l1,
l2, and l3. The trace l1 → l4 → l1 → l2 → l4 → l3 → (l1 →
l2 → l3)

ω violates the mission requirement since l1 is visited twice
before l2. The trace l1 → l4 → l2 → l4 → l3 → (l1 → l2 → l3)

ω

satisfies the mission requirement.

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))
n−1∧
i=1

(¬li+1)U li

n∧
i=1

G(l(i+1)%n → X ((¬l(i+1)%n)U li))

n−1∧
i=1

G((li)→ X (¬li U(l(i+1)%n)))

Fa
ir

Pa
tr

ol
lin

g Keep visiting a set of locations and
ensure that the difference among the
number of times locations within a
set are visited is at most one.

Locations l1, l2, and l3 must be fair patrolled. The trace l1 → l4 →
l3 → l1 → l4 → l2 → (l1 → l2 → l1 → l3)

ω violates the
mission requirements since the robot patrols l1 more than l2 and l3.
The trace l1 → l4 → l3 → l4 → l2 → l4 → (l1 → l2 → l3)

ω

satisfies the mission requirement since locations l1, l2, and l3 are
patrolled fairly.

n∧
i=1

G(F(li))

n∧
i=1

G(li → X ((¬li)W l(i+1)%n))

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 6

Table 3
Avoidance patterns.

Description Example Formula

Past
avoidance

A condition has been
fulfilled in the past.

If the robot enters location l1, then it should have not visited location
l2 before. The trace l3 → l4 → l1 → l2 → l4 → l3 → (l2 → l3)

ω

satisfies the mission requirement since location l2 is not entered before
location l1.

(¬(l1))U p, where l1 ∈ L and p ∈M

Global
avoidance

An avoidance
condition globally
holds throughout the
mission.

The robot should avoid entering location l1. Trace l3 → l4 → l3 →
l2 → l4 → l3 → (l3 → l2 → l3)

ω satisfies the mission requirement
since the robot never enters l1.

G(¬(l1)), where l1 ∈ L

Future
avoidance

After the occurrence
of an event, avoidance
has to be fulfilled.

If the robot enters l1, then it should avoid entering l2 in the future.
The trace l3 → l4 → l3 → l1 → l4 → l3 → (l3 → l2 → l3)

ω does
not satisfy the mission requirement since l2 is entered after l1.

G((c)→ (G(¬(l1)))), where c ∈M and l1 ∈ PL

Upper
Rest.
Avoidance

A restriction on the
maximum number of
occurrences is desired.

A robot has to visit l1 at most (less than) 3 times. The trace l1 →
l4 → l1 → l3 → l1 → l4 → l1 → (l3)

ω violates the mission
requirement since l1 is visited four times. The trace l4 → l3 → l1 →
l2 → l4 → (l3)

ω satisfies the mission requirement.

¬F(l1 ∧ X (F(l1 ∧ . . .X (F(l1)︸ ︷︷ ︸
n/n+1

)))), where l1 ∈

L

Lower
Rest.
Avoidance

A restriction on the
minimum number of
occurrences is desired.

A robot should enter location l1 at least (more than) 3 times. The trace
l4 → l3 → l2 → l2 → l4 → (l3)

ω violates the mission requirement
since location 1 is never entered. The trace l1 → l4 → l3 → l1 →
l4 → l1 → (l3)

ω satisfies the mission requirement.

F(l1 ∧ X (F(l1 ∧ . . .X (F(l1)︸ ︷︷ ︸
n/n+1

)))), where l1 ∈ L

Exact
Rest.
Avoidance

The number of occur-
rences desired is an ex-
act number.

A robot must enter location l1 exactly 3 times. The trace l4 → l3 →
l2 → l2 → l4 → (l3)

ω violates the mission requirement. The trace
l1 → l4 → l3 → l1 → l4 → l1 → (l3)

ω satisfies the mission
requirement since location l1 is entered exactly 3 times.

(¬(l1))U(l1 ∧ (X ((¬l1)U(l1 . . . ∧ (X ((¬l1)U(l1︸ ︷︷ ︸
n

∧(X (G(¬l1)))))))))), where l1 ∈ L

Table 4
Trigger patterns.

Description Example Formula

Inst.
Reaction

The occurrence of
a stimulus instanta-
neously triggers a
counteraction.

When location l2 is reached the action a must be executed. The
trace l1 → l3 → {l2, a} → {l2, a} → l4 → (l3)

ω satisfies the
mission requirement since when location l2 is entered condition a is
performed. The trace l1 → l3 → l2 → {l1, a} → l4 → (l3)

ω does
not satisfy the mission requirement since when l2 is reached a is not
executed.

G(p1 → p2), where p1 ∈M and p2 ∈ PL ∪ PA

Delayed
Reaction

The occurrence of a
stimulus triggers a
counteraction some
time later

When c occurs the robot must start moving toward location l1, and
l1 is subsequently finally reached. The trace l1 → l3 → {l2, c} →
l1 → l4 → (l3)

ω satisfies the mission requirement, since after c
occurs the robot starts moving toward location l1, and location l1 is
finally reached. The trace l1 → l1 → {l2, c} → l3 → (l3)

ω does
not satisfy the mission requirement since c occurs when the robot is
in l2, and l1 is not finally reached.

G(p1 → F(p2)), where p1 ∈ M and p2 ∈ PL ∪
PA

Prompt
Reaction

The occurrence of
a stimulus triggers
a counteraction
promptly, i.e. in
the next time instant.

If c occurs l1 is reached in the next time instant. The trace l1 → l3 →
{l2, c} → l1 → l4 → (l3)

ω satisfies the mission requirement, since
after c occurs l1 is reached within the next time instant. The trace
l1 → l3 → {l2, c} → l4 → l1 → (l3)

ω does not satisfy the mission
requirement.

G(p1 → X (p2)), where p1 ∈ M and p2 ∈ PL ∪
PA

Bound
Reaction

A counteraction must
be performed every
time and only when a
specific location is en-
tered.

Action a1 is bound though a delay to location l1. The trace l1 →
l3 → {l2, c} → {l1, a1} → l4 → {l1, a1} → (l3)

ω satisfies the
mission requirement. The trace l1 → l3 → {l2, c} → {l1, a1} →
{l4, a1} → {l1, a1} → (l3)

ω does not satisfy the mission require-
ment since a1 is executed in location l4.

G(p1 ↔ p2), where p1 ∈M and p2 ∈ PL ∪ PA

Bound
Delay

A counteraction must
be performed, in the
next time instant, ev-
ery time and only
when a specific loca-
tion is entered.

Action a1 is bound to location l1. The trace l1 → l3 → {l2, c} →
{l1} → {l4, 11} → {l1} → {l4, a1} → (l3)

ω satisfies the mission
requirement. The trace l1 → l3 → {l2, c} → {l1} → {l4, 11} →
{l1, a1} → {l4} → (l3)

ω does not satisfy the mission requirement.

G(p1 ↔ X (p2)), where p1 ∈ M and p2 ∈ PL ∪
PA

Wait Inaction is desired till
a stimulus occurs.

The robot remains in location l1 until condition c is satisfied. The
trace l1 → l3 → {l2, c} → l1 → l4 → (l3)

ω violates the mission
requirement since the robot left l1 before condition c is satisfied. The
trace l1 → {l1, c} → l2 → l1 → l4 → (l3)

ω satisfies the mission
requirement.

(l1)U(p), where l1 ∈ L and p ∈ PE ∪ PA

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 7

Name: Strict Ordered Patrolling
Intent: A robot must patrol a set of locations following a strict sequence ordering. Such locations can be, e.g., areas in a building to be
surveyed.
Template: The following formula encodes the mission in LTL for n locations and a robot r (% is the modulo arithmetic operator):

n∧
i=1

G(F(l1 ∧ F(l2 ∧ ...F(ln))))
n−1∧
i=1

((¬li+1) U li)
n∧

i=1
G(l(i+1)%n → X ((¬l(i+1)%n) U li))

Example with two locations.

G(F(l1 ∧ F(l2))) ∧ ((¬l2) U l1) ∧ G(l2 → X ((¬l2) U l1)) ∧ G(l1 → X ((¬l1) U l2))

where l1 and l2 are expressions that indicate that a robot r is in locations l1 and l2, respectively.
Variations: A developer may want to allow traces in which sequences of consecutive l1 (l2) are allowed, that is strict ordering is applied on
sequences of non consecutive l1 (l2). In this case, traces in the form l1 → (→ l1 → l1 → l3 → l2)ω are admitted, while traces in the form
l1 → (→ l1 → l3 → l1 → l2)ω are not admitted. This variation can be encoded using the following specification:

G(F(l1 ∧ F(l2))) ∧ ((¬l2) U l1) ∧ G((l2 ∧ X (¬l2)) → X ((¬l2) U l1)) ∧ G((l1 ∧ X (¬l1)) → X ((¬l1) U l2))

This specification allows for sequences of consecutive l1 (l2) since the left side of the implication l1 ∧ X (¬l1) (l2 ∧ X (¬l2)) is only triggered
when l1 (l2) is exited.
Examples and Known Uses: A common usage example of the Strict Ordered Patrolling pattern is a scenario where a robot is performing
surveillance in a building during night hours. Strict Sequence Patrolling and Avoidance often go together. Avoidance patterns are used to
force robots to avoid obstacles as they guard a location. Triggers can also be used in combination with the Strict Sequence Patrolling pattern
to specify conditions upon which Patrolling should start or stop.
Relationships: The Strict Ordered Patrolling pattern is a specialisation of the Ordered Patrolling pattern, forcing the strict ordering.
Occurrences: Smith et. al. [74] proposed a mission specification forcing a robot to not visit a location twice in a row before a target location is
reached.

Figure 2. The pattern Strict Ordered Patrolling. The catalog in full can be found in the online appendix [66].

a set of environment propositions such that si ∈ PE is
true if and only if condition ci holds. Given a finite set of
actions A = {a1, a2, . . . , am} that the robots can perform,
we indicate as PA = {rx exec ay | rx ∈ R and ay ∈ A}
a set of action propositions such that rx exec ay is true
if and only if action ay is performed by robot rx. We
define the set of propositions M of a robotic application
as PL ∪ PE ∪ PA. Let Mx,My,Mz ⊆ M , a trace is an
infinite sequence Mx → My → Mz . . . indicating that
Mz holds after My , and My holds after Mx. For example,
{r1 in l1} → {r1 in l2, c1} → {c2, r2 exec a1} . . . is a
trace where the element in position 1 of the trace indicates
that the robot r1 is in location l1, then the element in
position 2 indicates that the robot r1 is in location l2 and
condition c1 holds (indicating, for example, that an obstacle
is detected), and then the element in position 3 indicates
that condition c2 holds and robot r2 is executing action
a1. In the following, with a slight abuse of notation, when
a set is a singleton we will omit brackets. We use the
notation (Mx → . . . → My)

ω , where Mx, . . . ,My ⊆ M ,
to indicate a sequence Mx → . . . → My that occurs
infinitely. We use the notation l# to indicate any location, e.g.,
r1 in l1 → r1 in l# → r1 in l2 indicates that a robot r1 visits
location l1, afterwards any location, and then location l2. We
use the notation l#\K , where K ⊂M , to indicate any possi-
ble location not in K , e.g., r1 in l1 → r1 in l#\{l3} → r1 in l2
indicates that r1 visits l1, then any location except l3 is visited,
and finally l2.

Patterns. Patterns are organized in three main groups –
core movement (Table 2), triggers (Table 3), and avoidance
(Table 4), explained in the following. For simplicity, in
Tables 2 and 3, we assume that a single robot is considered
during the mission specification and we use the notation lx
as shortcut for r1 in lx. The presented examples assume that
the environment is made of four locations, namely l1, l2, l3,
and l4.

• Core movement patterns. How robots should move within
an environment can be divided in two major categories
representing locations’ coverage and locations’ surveil-
lance. Coverage patterns require a robot to reach a set
of locations of the environment. Surveillance patterns
require a robot to keep reaching a set of locations of the
environment.

• Avoidance patterns. Robot movements may be con-
strained in order to avoid occurrence of some behavior
(Table 3). Avoidance may reflect a condition, possibly
over the occurrence of some event. Conditional avoidance
generally holds globally (i.e., for the entire behavior)
and applies when avoidance of locations or obstacles is
sought that depends on some condition. For example,
a cleaning robot may avoid visiting locations that have
been already cleaned. In the restricted avoidance case,
avoidance does not hold globally but accounts for a
number of occurrences of an avoidance case. Depending
on the number of occurrences being a maximum, min-
imum or exact number, upper, exact or lower restricted
avoidance is yielded. For example, a cleaning robot may
avoid cleaning a room more than three times.

• Trigger patterns. Trigger patterns express a robot reactive
behaviour based on stimuli, or robot’s inaction until a
stimulus occurs as described in Table 4.

As an example, the definition of the Strict Ordered
Patrolling mission specification pattern is presented in Fig-
ure 2. The patterns in detail are available in our online
appendix [66]. Note that the logic formulation is generic on
purpose to allow specifications where a robot can be simulta-
neously in an area and in one of its sub-areas. An additional
logical constraint can be added to disallow these behaviors.
For example, the constraint G(¬((r1 in l1) ∧ (r2 in l2)))
disallows the robot r1 to be simultaneously in locations l1
and l2. Defining such constraints is an orthogonal concern.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 8

5 SPECIFICATION PATTERN TOOL SUPPORT

We now present PsALM [69]4, a tool that supports developers
in designing mission requirements through the proposed pat-
terns and the automatic generation of mission specifications.
PsALM allows creating complex mission requirements by
composing patterns with simple operators and transforming
mission requirements (i.e., composed patterns) into mission
specifications in LTL or CTL.

Figure 3 illustrates the components of PsALM. Its GUI
1 allows defining robotic missions requirements through

a structured English grammar, which uses patterns as basic
building blocks and AND and OR logic operators to compose
these patterns. The structured English grammar is provided
in our online appendix [66]. The SE2PT component extracts
from a mission requirement the set of patterns that are
composed through the AND and OR operators 2 . The
PT2LTL 3 and PT2CTL 4 components automatically
generate LTL and CTL specifications from these patterns.

The produced LTL specifications can be used in different
ways; three possible usages are presented in Figure 3. The
LTL formulae are (i) fed into an existing planner and used
to generate plans that satisfy the mission specification 5 ;
(ii) converted into Deterministic Büchi automata used as
input to the widely used Spectra [63] robotic application
modeling tool 6 ; or (iii) converted into the NuSMV [64]
input language to be used as input for model checking 7 .
The plans produced using the planner are (i) used as inputs
by Simbad [65] 10 , an autonomous robot simulation package
for education and research; and (ii) performed by actual
real robots 9 , as also illustrated in the following sections.
The produced CTL specifications are also converted to the
NuSMV [64] input language to be used as input for model
checking 7 .

To use our pattern-based mission specification and the
PsALM prototype tool in practice (as exemplified in Figure 4),
a robotics engineer follows four distinct steps:

1) The pattern catalog is consulted and behavior intents
relevant to the mission at hand are selected [66]. This
step is essential to establish common vocabulary, utilize
the unambiguous patterns notation, and provide a
precise description of what robots should do in terms of
movements and actions during run-time.

2) The mission is defined using an appropriate GUI that
allows using patterns as basic building blocks and
composing them through a structured English grammar
(Figure 4a).

3) Automatically generated CTL or LTL specifications are
customized if necessary.

4) Analysis, planning or simulation facilities are invoked
through interfacing with NuSMV [64], Spectra [63],
Simbad [65] (Figure 4b), or sent to robots for execution
(Figure 4c) through LTL planning.

A video showing how PsALM can be used in practice is also
made available on a dedicated website [75].

6 CORRECTNESS OF THE PATTERNS

We now describe the procedure we used to validate the
correctness of our patterns. This procedure can be considered

4. The tool is available at github.com/claudiomenghi/PsAlM

PT2CTL

PsALM

GUI

SE2PT

PT2LTL

SpectraPlannerNuSMV

Simbad

LTL

LTL

LTLCTL

MSP

SE

MSP

Real Robots
10

PLANPLAN

Software

Components
External

Tools

LTL: Linear Temporal Logic

CTL: Computation Tree Logic

SE: Structured English

PT: Mission specification Patterns

Legend

1

2

3 4

67 8

9

Figure 3. Main components of the PsALM specification tool [69].

a contribution per se since it can be used in validating
future patterns be proposed by the research community. The
procedure has two phases: (i) testing the compliance between
the English formulation and the logical specification of the
patterns (Section 6.1) and (ii) testing for errors in the logical
specification (Section 6.2).

6.1 Compliance Testing
We tested the compliance between the English formulation
and the target mission specifications (LTL and CTL) as
follows. We considered the English formulation and defined
an alternative set of specifications into a language that is
different from (but comparable to) the one used to express
the target mission specifications. We then compared the
specifications. If the alternative and the target mission
specifications are not equivalent, an error must be present
either in the alternative or in the target specification. If the
two formulations are equivalent there is no guarantee that
the specification is correct, as it might be the case that both
the specifications do not represent the intended mission
requirement. A further check that we performed to avoid
this case is explained in Section 6.2.

For LTL specifications we proceeded as follows:
• (STEP.A1) We considered a pattern’s English description

and wrote a ω-regular expression [5], which encodes all
(and only) the behaviors of the system that are admitted
by the specification;

• (STEP.A2) We converted the LTL specification into a
Büchi automaton (BA), which was subsequently con-
verted into a ω-regular expression;

• (STEP.A3) We checked the equivalence among the ω-
regular expressions.

We performed those steps using SPOT [76]. The testing
activity did not reveal any non-compliance between the
English formulation and the logical specification of the
patterns, i.e., all the ω-regular expressions were equivalent.

While a similar procedure can also be applied in the case
of the CTL specifications, e.g., by considering a restriction of
First Order Logic, in our case this check was not necessary
since the CTL mission specifications correspond with the LTL
specifications where all the temporal operators are scoped

github.com/claudiomenghi/PsAlM

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 9

(a) Pattern-based mission specification.

(b) Mission verification and simulation.

(c) Execution on robots.

Figure 4. Specification of dependable robotic missions with PsALM [69].

with the branch quantifier “for all” (∀). Since, given a CTL
formula, if there exists an equivalent LTL formula, it can be
obtained by dropping all the branch quantifiers [5], the CTL
formulation is compliant with the LTL specification.

The steps previously described can be used to check
compliance among English formulations and mission specifi-
cations in future pattern catalogs proposed by the research
community.

6.2 Checking for Errors through Testing
We performed a further experiment to check whether for
some patterns we had formulated two equivalent speci-
fications, but both of them do not represent the mission
requirement. This has been performed through testing. We
randomly created scenarios and assigned to a robot a mission
obtained by combining a set of patterns. We synthesized a
plan for the robot and observed the robot performing the
plans. We checked whether the robot was executing the
plans according to the mission requirement described by the
patterns. This has been performed through the following
steps:
• (STEP.B1) Scenarios were randomly defined over a

map. Testing by exploiting a set of randomly generated
models is a widespread technique to evaluate artifacts
in both software [77], [78], [79] and robotic engineering
communities [80], [81], [82], [83], [84].

• (STEP.B2) To test the LTL specifications, randomly gen-
erated mission requirements were created by combining
a core movement, a trigger, and an avoidance pattern,
and by ensuring that each pattern in our catalog is used
for at least one requirement. Then, (a) the corresponding
LTL specification was negated; (b) the specification and
the model of the scenario was encoded in a model
checker; and (c) the model checker was used to check
whether the models contained a path that satisfied the
mission specification (i.e., violates its negation). If a
path was present, a simulator was used to execute the

produced plan. Subsequently, we checked whether the
plan execution was correct with respect to the intent of
the mission specification patterns: when we expected a
plan to not be present in the given model, the model
checker was not able to compute it, and, when a plan
was expected to be present, it was computed by the
model checker. Finally, we simulated the generated
plans by using the Simbad robot simulator and checked
whether the robots achieve their mission requirements.

• (STEP.B3) To build confidence that errors do not ex-
ist in the CTL specification with respect to the LTL
ones, an extra testing activity was performed. The
comparison among the LTL versus the CTL expressions
was performed since given a CTL formula φ, and an
LTL formula ψ obtained by eliminating all the path
quantifiers from φ, either the two formula are equivalent
(i.e., φ ≡ ψ) or it does not exist any LTL formula
that is equivalent to φ [5]. Our testing activity aims
at determining whether CTL and LTL formulation are
not equivalent. The same models considered in step
(STEP.B2) were used and LTL and CTL specifications
were generated for the considered mission requirements.
The LTL and CTL specifications, as well as the model
of the scenario, were considered and a model checker
was used to check whether the verification of the
specifications returned the same results, i.e., if the LTL
specification was satisfied, also the CTL specification
was satisfied (and viceversa).

While the proposed process can be reused in future works,
the random generation procedure for creating test cases is
problem-specific and must be defined on a per-domain basis.
In the following, we describe the results of executing the
process described above.

• (STEP.B1) We generated 12 scenarios representing floor
plan structures containing 16 locations, where a robot is
deployed. We synthesized plans to be executed by robots
from combinations of mission specification patterns

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 10

Table 5
Results of the verification procedure for checking presence of errors. For
step B2 columns contain the number of times a plan is found (>) and not
found (⊥). For step B3 and B3′ columns contain the number of times the

mission requirement is satisfied (>) and violated (⊥).

B2 B3 B3′

Mission Requirement > ⊥ > ⊥ > ⊥

OrdPatrol,UpperRestAvoid,Wait 2 10 1 11 1 11
FairVisit,ExactRestAvoid∗,DelReact 5 7 0 12 4 8
StrOrdVisit,GlobalAvoid,InstReact 3 9 1 11 1 11

SeqVisit,FutAvoid,BindDel∗ 1 11 0 12 2 10
OrdVisit,PastAvoid,InstReact 3 9 1 11 1 11

Visit,LowRestAvoid,BindReact 3 9 1 11 1 11
StrictOrdPatrol,FutAvoid,Wait 1 11 1 11 1 11
Patrol,LowRestAvoid,InstReact 3 9 1 11 1 11

FairPatrol,ExactRestAvoid∗,DelReact 3 9 0 12 4 8
SeqPatrol,UpperRestAvoid,FastReact∗ 1 11 0 12 2 10

and checked whether the plan execution is correct
with respect to patterns’ intent. The plan has been
generated by allocating 12 traversable locations and
4 locations that cannot be crossed, on a 4 × 4 matrix.
The identifiers l0, l1, . . . , l11 are randomly assigned to
the traversable locations. In 6 of the 12 scenarios, the
robot can move among adjacent cells that are traversable,
while it cannot move within not crossable locations. In
the other 6 scenarios, the robot can cross adjacent cells
from a cell with coordinates [i, j] to a traversable one of
[i, j + 1 mod j] (and similarly to the j axis). Conditions
and actions specify whether a box is present in a location
(cond in the following), and the capability of the robot in
changing its color (act in the following). We randomly
selected 4 traversable locations in which cond is true
and 4 locations in which act can be performed, that is
the robot can wrap around to the other side of the grid.

• (STEP.B2) In total we generated 10 mission requirements
(Table 5). Core movement patterns are parametrized
with locations l1, l2. The patterns upper, exact, and
lower restricted avoidance are parametrized by forcing
the robot to visit location l3, at most, exactly, and at
least 2 times, respectively. The pattern global avoidance
forces the robot to not visit l3, while the future and past
avoidance force the robot to not visit l3 after and before
condition cond is satisfied, i.e., a room that contains a
box is visited. The wait pattern forces the robot to wait
in location l4 if a box is not present. The other trigger
patterns are parametrized with the action act that must
be executed by the robot in relation with the occurrence
of condition cond.
To test the LTL specifications, we followed the indi-
cations provided in (STEP.B2) and made use of the
NuSMV [64] model checker and of Simbad [65] to
simulate the robot executing the plan.
We did not find any error in the proposed LTL specifi-
cations. The column labeled ExpV1 in Table 5 marked
with > (respectively ⊥) contains the number of cases in
which a plan was (was not) present.

• (STEP.B3) We used the NuSMV [64] model checker:
Table 5’s column B3 contains the number of cases in
which the mission requirement was satisfied (>) and
not satisfied (⊥). Mission requirements were generally
not satisfied, since to be satisfied they have to hold

Table 6
Coverage of the proposed mission requirements. Lines contain the total
number of mission requirements (MR), the number of not expressible

(NE) and ambiguous (A) mission requirements and the number of
requirements that lead to a consensus (C) and no consensus (NC).

Columns labeled with Spectra and MP contain the number of
requirements extracted from LTLMoP.

Spectra

1 2 3 4 5 6 7 8 9 10 11 MP Total

MR 29 2 22 5 1 159 4 32 47 53 74 8 436
NE 3 0 0 0 0 47 0 0 7 1 8 0 66
A 3 0 2 1 0 35 0 10 12 32 7 0 102
C 13 0 11 2 1 29 4 8 11 8 20 5 112
NC 10 2 9 2 0 48 0 14 17 12 39 3 156

on all the paths of the models. The testing activity did
not reveal any error as NuSMV always returned the
same results for LTL and CTL specifications. Since in
several cases the mission requirement was always not
satisfied, and we also wanted to test cases in which
the mission requirement was satisfied, we relaxed the
mission requirements, by removing the patterns marked
with the ∗ symbol in Table 5. Table 5’s column B3′ shows
that by relaxing the mission requirements there were
cases in which the mission requirements were actually
satisfied. Also in these cases the testing activity did not
reveal any error in the LTL and CTL specifications as
NuSMV always returned the same results.

7 EVALUATION

We evaluated how effective our pattern catalog is in capturing
mission requirements and producing mission specifications.
We investigated three questions:
• RQ1: To what extent are real-world, natural-language

mission requirements expressible using our pattern
catalog? (Section 7.1)

• RQ2: To what extent are real-world mission specifica-
tions expressible using our pattern catalog? (Section 7.2)

• RQ3: Does the pattern catalogue support the formula-
tion of mission requirements and specifications in a set
of real-world scenarios defined in collaboration with our
industrial partners? (Section 7.3)

To cover both aspects and to answer the question above,
we performed three experiments.

7.1 Formulation of Mission Requirements (RQ1)

We collected mission requirements in natural language
from available requirements produced from Spectra [63]
and LTLMoP [31], [36]. Spectra is a tool that supports the
design of robotic applications. LTLMoP is a software package
assisting in the development, implementation, and testing of
robot controllers. We checked how the pattern catalog may
have supported developers in the definition of the mission
requirements.

In the case of Spectra, we extracted 428 mission require-
ments from Spectra files of 11 robotic applications. Note
that these mission requirements are realistic, since they
were defined for and executed with real robots. Videos are
available online [85]. The number of mission requirements

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 11

Table 7
Number of occurrences of each pattern in the formulation of mission

requirements.

Pattern Occ Pattern Occ Pattern Occ Pattern Occ

Visit 25 SeqVisit 1 OrdVisit 1 InstReact 127
PastAvoid 60 DelReact 50 Wait 3 FutAvoid 48
StrictOrdPat 1 GlobAvoid 25 ExactRest 1

(MR) per robotic application is reported in Table 6. In the
case of LTLMoP, 8 requirements were extracted from the
corresponding research papers [31], [36] (Table 6 MP column).

Each mission requirement was independently analyzed
by two of the authors. The authors checked whether it
is possible to express the mission requirement using the
mission specification patterns. If one the authors stated
that the requirement is not expressible, it is marked as not
expressible (NE). The number of not expressible mission
requirements is presented in Table 6 in the row NE. If at
least one of the authors found the mission requirement is
ambiguous the author marked it with the flag A. Otherwise,
the mission requirement is labeled with the mission specifica-
tion patterns needed to express the mission requirement.
Then, the mission specification patterns used to express
the mission requirement are considered. If the authors
used the same mission specification patterns to express the
mission requirement, a consensus is reached. The number of
mission requirements that leads to consensus (respectively
no consensus) is indicated in the row labeled C (respectively
NC). The number of occurrences of each pattern is indicated
in Table 7.

The results show that most of the mission requirements
(370 of 436, i.e., ≈ 84%) were expressible using the pattern
catalog, which we consider a reasonable coverage for a
pattern catalog. The 66 mission requirements that are not
covered suggested the introduction of new patterns identified
in Figure 1 with a dashed border. It also shows that the
pattern catalog is effective in real scenarios.

102 mission requirements were ambiguous, meaning
that different interpretations can be given to the proposed
mission requirement. For these requirements, alternative
combinations of patterns have been proposed by the au-
thors to express the mission requirement. Each of these
alternatives represents a possible way of expressing it in
a non-ambiguous manner. For 156 mission requirements,
while the authors judged that the requirement was not
ambiguous, different pattern combinations were proposed.
The combinations of patterns encode possible ways of
expressing the mission requirement in a non-ambiguous
manner.

7.2 Formulation of Mission Specifications (RQ2)
We analyzed the mission specifications contained in the
Spectra examples collected for answering RQ1 . We collected
1216 distinct LTL mission specifications and we analyzed
each of these specifications.5 We verified whether it is
possible to obtain the mission specifications starting from the
proposed patterns, by performing the following steps.

5. This number differs from the one of RQ1, since some specifications
were not related with a mission requirement in natural language.

• (STEP.1) For each property we automatically checked
whether it was an instance of a mission specification
pattern or a simple combination of mission specification
patterns through a script that matches pattern occur-
rences within mission specifications. Results are shown
in Table 8. Among 1216 mission specifications 424 were
obtainable from the proposed patterns.

• (STEP.2) We considered the mission specifications that
did not match any of the proposed patterns. 127 of
these mission specifications are simple statements on the
initial state of the system (no temporal operator is used)
and, thus, did not match any of the proposed patterns.
442 mission specifications concern properties that refer
to variation of the trigger patterns, that we have added to
the pattern catalogue. 224 mission specifications still did
not match any of the proposed patterns. After analysis,
155 among them were expressed using past temporal op-
erators6, which are not used in the mission specifications
proposed in this work. In Step 3 we checked whether
these specifications might be reformulated without the
past operators. 69 of these mission specifications, while
they could be rewritten using the proposed patterns,
they are written as complex LTL formulae and thus they
do not match any of our patterns or combination of
them. As these specifications did not “directly” match
any of our patterns (or combinations of them), we did
not consider them as covered.

• (STEP.3) We considered the 155 mission specifications ex-
pressed using past temporal operators and we designed
mission specifications for them. We found that 129 of
the proposed LTL formulae match one of the proposed
patterns, while 26 are complex LTL formulae that did
not match any combination of the patterns. Thus, the
final coverage of the proposed pattern catalog is 92%.

We then analyzed 13 mission specifications expressed
in the form of LTL properties and 22 PCTL properties
considered by Ruchkin et al. [67]. The PCTL properties wrap
an LTL formula into a CTL formula which is scoped with the
probabilistic operator (P). To check for the pattern presence
we transform PCTL formulae into CTL by replacing the
probabilistic operator (P) with the universal quantifier (∀)
and by scoping temporal operators of the LTL formulae with
the universal quantifier. Removing the probabilistic operator
in front of the PCTL formula generated an approximation
of the original formula. Scoping the LTL formulae with the
universal quantifier was allowed as the analyzed formulae
belong to the intersection among LTL and CTL 7. Given the
small number of LTL and CTL mission specifications we
manually checked the presence of patterns in the formulae
(Step 1 in Table 8). The results reported in the Table 8
(Columns labeled with [67]) show that 2 among these
specifications did not match any pattern. The results show
that the pattern system was able to generate almost all
mission specifications (1154 of 1251, i.e., ≈ 92%).

6. The LTL formulae can be formulated using the future or past
operators. We used future operators as commonly done and dictated by
reuse of robotic components (e.g., planners), needed for the real robots
of BOSCH/PAL Robotics. Formulations using past operators can be
obtained using LTL formulae equivalence.

7. This has been checked using a simple state-of-the-art procedure [5].

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 12

Table 8
Pattern occurrence in the formulation of mission specifications for the

considered mission specifications.

LTL CTL

Pattern Spectra [67] [67]

St
ep

1

Instantaneous reaction 318 0 0
Visit 52 0 0

Patrolling 0 1 0
Strict Ordered Visit 0 9 18

Wait 0 1 2
Avoidance/Invariant 21 0 0

Visit and Instantaneous reaction 18 0 0
Strict Ordered Visit and Global Avoidance 0 0 1

Reaction chain (chain of instantaneous reactions) 15 0 0
Non matching 792 1 1

St
ep

2

Init 127 - -
Fast reaction 379 - -

Bound reaction 36 - -
Bound delay 27 - -

Non matching for past 155 - -
Actual non matching 69 - -

St
ep

3 Fast reaction 103 - -
Bound delay 26 - -

Actual non matching 26 - -

7.3 Usage in Real-World Robotic Scenarios (RQ3)
We checked how the pattern catalog supports the formulation
of mission requirements and the generation of mission
specifications in real-world robotic scenarios. To this end,
we defined five scenarios (Table 9) in collaboration with our
industrial partners BOSCH and PAL Robotics.

The pattern catalog supported the formulation of mission
requirements using the patterns listed in Table 9 for the
different scenarios. In all the scenarios, PsALM allowed the
automatic creation of LTL mission specifications from the
mission requirements. The mission specifications were then
executed by the robots by relying on existing planners (see
Figure 3). In our case, we used an existing planner developed
by Meng and Dimarogonas [3] as this was a requirement
of the Co4Robots project [4] which was funding part of
this work. However, the proposed patters are agnostic with
respect to the LTL planner that is used to synthesize plans.
Videos of the robots performing the described missions are
available in our dedicated website [66]. The pattern catalog
effectively supported the creation of mission requirements
and specifications in realistic, industry-sourced scenarios.

8 REFLECTION

The pattern catalog is effective in supporting developers in
defining mission requirements and in generating mission
specifications. Sections 7.1 and 7.3 show that the pattern
catalog effectively supports the definition of mission require-
ments and that helps in reducing ambiguities in available
mission requirements. Sections 7.2 and 7.3 show that the
pattern catalog effectively supports the generation of mission
specifications. Section 7.3 shows how the pattern catalog
can be used to generate precise, unambiguous, and formal
mission specifications in industry-sourced scenarios.

Methodology. The number of mission requirements an-
alyzed is in line with other approaches in the field [44],
[49], [50], [51], [52]. These requirements usually come from
exemplar scenarios used to provide evaluation about effec-
tiveness of research-intensive works. As such, we believe

that the scope of the pattern system is quite wide. Our
study is certainly not exhaustive, as (i) formal specification
in robotic application spreads, and (ii) the types of mission
specifications change over time. As shown in the evaluation,
patterns will grow over time as specifications that do not
belong to the catalog emerge.

Patterns. While the presented patterns are mainly con-
ceived to address needs of robotic mission specification,
they are more generic and can be applied when the need
is to specify some “ordering” among events or action
execution. Rather than requiring robots reaching a set of
locations, coverage and surveillance patterns may also
include propositions that refer to generic events. In this sense,
the proposed patterns can be considered as an extension of
the property specification patterns [44], [89] that explicitly
address different ordering among the occurrence of a set of
events. While in this paper we proposed a direct encoding
in LTL and CTL, they may also be expressed in terms of
standard property specification patterns. The instantaneous
reaction pattern may be obtained from the response pattern
scoped with the global operator. The precedence chain and
the response chains patterns [44], [89] (that illustrate the 2
cause-1 effect and 1 cause-2 effects chain), can be composed
with the precedence and response patterns [44], [89] to specify
different ordering among a set of events.

Evaluation. The Spectra tool only supports specifications
captured by the GR(1) LTL fragment used to describe
three types of guarantees: initial, safety, and liveness. Initial
guarantees constraint the initial states of the environment.
Safety guarantees start with the temporal operator G and
constraint the current and next state. Liveness guarantees
start with the temporal operators G F and may not include
the X operator. These constraints justify the prevalence
of patterns presented in Tables 7, 8, and 5. While the
proposed patterns can be expressed using deterministic Büchi
automata, which can be translated into GR(1) formulae [29],
a manual encoding of the proposed patterns in GR(1) is
complex and error prone. This is confirmed by the fact that
analysis on the standard property specification patterns that
can be expressed in GR(1), and an automatic procedure
to map these patterns on formulae that are in the GR(1)
fragment has been recently conducted [29]. The BA generated
from the LTL formulations associated with the patterns
proposed in this work are deterministic, and thus can be
used as assumptions or guarantees of the GR(1) formula [1],
[2]. Thus, the automatic procedure presented in by Maoz
et al. [29] can be integrated in PsALM to generate Spectra
formulae.

9 RELATED WORK

Temporal logic specification patterns are a well-known solu-
tion to support developers in requirement specification [44],
[49], [50], [51], [90], [91], [92]. Foundational work by Dwyer
et al. [44] has been extended by Konrad and Cheng [50] to
express real-time properties, by Grunske [49] to address real
time and probabilistic properties, and Autili et al. [51] that
proposed a comprehensive catalog. Further use, refinement,
and extensions were developed, for events [90] or automata-
based specification [91], [92]. Property specification patterns
use in specific domains has been investigated in the literature,

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 13

Table 9
Mission specification patterns for checking the usage in real-world robotic scenarios. Labels SC1, SC2, . . . , SC5 identify the considered scenarios.

The column patterns contains the patterns used to formulate the mission requirement.

Scenario Informal Description Patterns

SC1 A robot is deployed within a supermarket and reports about the absence of sold items within a set of locations (i.e. l1,
l2, l3, and l4). Furthermore, if in location l4 (where water supplies are present) a human is detected, it has to perform
a collaborative grasping action and help the human in placing new water supplies.

Ordered Patrolling,
Instantaneous
Reaction

SC2 Three robots are deployed within an hospital environment: a mobile platform (Summit [86]), a manipulator (PA10 [87])
and a mobile manipulator (Tiago [88]), identified in the following as MP, M, and MM, respectively. The robot M is
deployed in hospital storage; when items (e.g., towels) are needed by a nurse or doctors, M has to load them on the
MP. MP should reach the location where the nurse is located. If the item is heavy (e.g., heavy medical equipment), MM
should reach the location where the nurse is to help unloading the equipment. When MP and MM are not required
for shipping items they are patrolling a set of locations to avoid unauthorized people entering restricted areas of the
hospital (e.g., radiotherapy rooms).

Patrolling,
Instantaneous
Reaction,
Ordered Visit,
Wait

SC3 A robot is developed within a university building to deliver coffee to employees. The robot reaches the coffee machine,
uses the coffee machine to prepare the coffee and delivers it to the employees.

Strict Ordered Visit,
Instantaneous
Reaction

SC4 A robot is deployed within a shop to check the presence of intruders during night time. It has to iteratively check for
intruders and report on their presence

Patrolling,
Instantaneous
Reaction

SC5 A robot is deployed within a company to notify employees in presence of a fire alarm. If a fire is detected, the robot is
send to different areas of the company to ask employees to leave the building.

Visit,
Instantaneous
Reaction

including service-based applications [52], safety [93] and
security [94]. Patterns have also been considered in the
robotic domain [95], [96], [97].

For example, Rothwell et al. [98], [99] proposed a specifi-
cation pattern editor for vehicle mission planning. However,
the work is not focusing on proposing and collecting mission
specification patterns for the robotic domain. Differently, we
proposed patterns, discuss their variations, and provided
example traces that do and do not fulfill the patterns.

Domain-Specific Languages (DSLs) [21], [28], [100], [101],
[102] have been proposed for various purposes including
production and analysis of behavior descriptions, property
verification, and planning. However, features incorporated
within DSLs are usually arbitrarily chosen by relying on
the domain-specific experience of robotic engineers. Instead,
specification patterns presented in this paper are collected
from missions encountered in the scientific literature, evalu-
ated in industrial uses, and aim at supporting a wide range of
robotic needs. We believe that the presented patterns consist
of basic building blocks that can be reused within existing
and new robotic DSLs. Moreover, support for developers on
solving the mission specification problem is also provided in
the literature by graphical tools that simplify the specification
of LTL formulae [22], [23], [24]. Our work is complementary
with those; graphical logic mission specifications can also be
integrated within PsALM.

Reasoning on system behavior is the main driver electing
temporal languages and logics as the most widely adopted
specification formalisms. Other system concerns may dictate
specification in different system domains. Since robot move-
ment occurs in space, we identify this concern as additionally
relevant. Spatial reasoning [103] has been traditionally con-
sidered in diverse domains such as safety properties [104],
including query languages [105] and logics for the analysis
of spatial data [106], [107], where the focus has been mainly
in relations that exist between regions, lines, and points of a
spatial model [108], [109]. In addition, spatial logics have also
been studied in the context of process calculi [110], graph
databases [111] or hybrid automata [112]. We identify investi-

gation of complex spatial robotic behaviours as an important
avenue for future work, especially regarding specification
of spatio-temporal behavior [113]. Sun et al. [104] propose a
combination of metric and spatial logics for verification of
safety properties in cyber-physical systems. Shao et al. [112]
present a composition of a topological and temporal logic
over hybrid automata. A combination of CTL and SLCS is
developed [114] to study bike sharing systems, while run-
time verification of spatio-temporal behaviors of complex
systems is studied by Nenzi et al. [115]. Signal Temporal
Logic (STL) [6] and Metric Temporal Logic (MTL) [116] is
also used in the literature to express missions that contian
explicit timing constraints [7], [8].

10 CONCLUSIONS

In this paper, we proposed a pattern catalog for mission
specification of mobile robots. We identified patterns by ana-
lyzing mission requirements that have been systematically
collected from scientific publications. We further presented
PsALM, a tool that uses the proposed patterns to concretely
support robotic developers in designing complex missions.
We evaluated the support provided by the pattern catalog
in the definition of real-world missions, as well as the
correctness of the mission specifications.

Currently, our patterns can be combined by using simple
AND and OR logical operators. By using these simple
operators our coverage was adequate for the great majority
of the mission requirements and specification collected from
literature. However, specification can be extended to support
patterns’ nesting. Analyzing how patterns can be nested
within each other may increment coverage, something which
is the subject of future investigation. Future extensions of our
mission specification pattern catalog will also consider time,
space, and probability and therefore the mapping to other
logics, such as STL [6], MTL [116], TCTL [117], and CSL [118].
Moreover, we will consider extensions of the patterns to
collaborative or team aspects of robotic missions. Although
the formal languages adopted so far constitute the majority

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 14

of mission specification, we will also investigate the use of
spatial logics [103], [106], [107], [110], [119] to express more
complex spatial robotic behaviors and conduct user studies.

ACKNOWLEDGEMENTS

This work has received funding from the European Research
Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreements No 731869
and No 694277).
We thank Domenico Bianculli for insightful comments. We
are grateful for feedback provided by the anonymous TSE
reviewers.

REFERENCES

[1] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1)
designs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2006, pp. 364–380.

[2] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive (1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[3] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local ltl specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[4] http://www.co4robots.eu/, “Co4robots,” 2019.
[5] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,

2008.
[6] O. Maler and D. Nickovic, “Monitoring temporal properties of

continuous signals,” in Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[7] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-
logic: Control of multi-drone fleets with temporal logic objectives,”
in International Conference on Cyber-Physical Systems. IEEE, 2018.

[8] R. Mangharam, “Fly-by-logic: A tool for unmanned aircraft system
fleet planning using temporal logic,” in NASA Formal Methods.
Springer, 2019, p. 355.

[9] IFR, “World Robotic Survey,” https://ifr.org/ifr-press-
releases/news/world-robotics-survey-service-robots-are-
conquering-the-world-, 2016.

[10] D. Brugali, Software engineering for experimental robotics. Springer,
2007, vol. 30.

[11] E. A. Lee, “Cyber physical systems: Design challenges,” in
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC). IEEE, 2008, pp. 363–369.

[12] J. Pérez, N. Ali, J. A. Carsı, I. Ramos, B. Álvarez, P. Sanchez, and
J. A. Pastor, “Integrating aspects in software architectures: Prisma
applied to robotic tele-operated systems,” Information and Software
Technology, vol. 50, no. 9-10, pp. 969–990, 2008.

[13] N. Gamez and L. Fuentes, “Architectural evolution of famiware
using cardinality-based feature models,” Information and Software
Technology, vol. 55, no. 3, pp. 563–580, 2013.

[14] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and
I. Crnkovic, “Safety for mobile robotic system: a systematic
mapping study from a software engineering perspective,” Journal
of Systems and Software (JSS), to appear, 2019.

[15] D. Brugali and E. Prassler, “Software engineering for robotics,”
IEEE Robotics Automation Magazine, vol. 16, no. 1, pp. 9–15, March
2009.

[16] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-
Gazit, “Provably correct reactive control from natural language,”
Autonomous Robots, vol. 38, no. 1, pp. 89–105, 2015.

[17] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling,
and Programming for Autonomous Robots. Springer, 2014.

[18] M. Broy, “Declarative specification and declarative programming,”
in Software Specification and Design. IEEE, 1991.

[19] J. F. Kramer and M. Scheutz, “Development environments for
autonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
pp. 101–132, 2007.

[20] S. Maniatopoulos, M. Blair, C. Finucane, and H. Kress-Gazit,
“Open-world mission specification for reactive robots,” in Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2014.

[21] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and
M. Tivoli, “Flyaq: Enabling non-expert users to specify and
generate missions of autonomous multicopters,” in Automated
Software Engineering (ASE). IEEE, 2015.

[22] I. Lee and O. Sokolsky, “A graphical property specification
language,” in High-Assurance Systems Engineering Workshop. IEEE,
1997.

[23] M. H. Smith, G. J. Holzmann, and K. Etessami, “Events and
constraints: A graphical editor for capturing logic requirements of
programs,” in International Symposium on Requirements Engineering.
IEEE, 2001.

[24] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos,
“A graphical language for ltl motion and mission planning,” in
International Conference on Robotics and Biomimetics (ROBIO). IEEE,
2013.

[25] R. Arkin, “Missionlab v7. 0,” 2006.
[26] T. Balch, “Teambots,” 2004. [Online]. Available: www.teambots.org
[27] S. Maoz and Y. Sa’ar, “Aspectltl: an aspect language for ltl

specifications,” in International conference on Aspect-oriented software
development. ACM, 2011.

[28] D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli, “Auto-
matic generation of detailed flight plans from high-level mission
descriptions,” in Model Driven Engineering Languages and Systems,
ser. MODELS. ACM, 2016.

[29] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering (FSE). ACM,
2015.

[30] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, 2015.

[31] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experi-
menting with language, temporal logic and robot control,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2010, pp. 1988–1993.

[32] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
ltl planning under uncertainty,” in Formal Methods, K. Havelund,
J. Peleska, B. Roscoe, and E. de Vink, Eds. Cham: Springer
International Publishing, 2018, pp. 399–417.

[33] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic
deployment of robotic teams,” IEEE Robotics Automation Magazine,
vol. 18, no. 3, pp. 75–86, Sept 2011.

[34] Y. Endo, D. C. MacKenzie, and R. C. Arkin, “Usability evaluation
of high-level user assistance for robot mission specification,”
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 34, no. 2, pp. 168–180, 2004.

[35] S. Maoz and J. O. Ringert, “On the software engineering challenges
of applying reactive synthesis to robotics,” in Workshop on Robotics
Software Engineering, ser. RoSE ’18. ACM, 2018.

[36] W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion
planning interface,” in International Conference on Systems, Man,
and Cybernetics. IEEE, 2016.

[37] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” vol. 38,
no. 1, Jan 2015, pp. 89–105.

[38] V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. Marcus, and
H. Kress-Gazit, “Sorry dave, i’m afraid i can’t do that: Explaining
unachievable robot tasks using natural language,” University of
Pennsylvania Philadelphia United States, Tech. Rep., 2013.

[39] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Transactions on
robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[40] C. Yoo, R. Fitch, and S. Sukkarieh, “Online task planning and
control for fuel-constrained aerial robots in wind fields,” The
International Journal of Robotics Research, vol. 35, no. 5, pp. 438–453,
2016.

[41] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural
language software requirements: a comprehensive survey,” ACM
SIGSOFT Software Engineering Notes, 2015.

[42] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements
for tools for ambiguity identification and measurement in natural
language requirements specifications,” Requirements engineering,
2008.

[43] J. O. Ringert, B. Rumpe, and A. Wortmann, “A requirements
modeling language for the component behavior of cyber physical
robotics systems,” arXiv preprint arXiv:1409.0394, 2014.

www.teambots.org

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 15

[44] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in International
Conference on Software Engineering (ICSE). IEEE, 1999.

[45] E. A. EMERSON, “{CHAPTER} 16 - temporal and modal logic,”
in Formal Models and Semantics, ser. Handbook of Theoretical
Computer Science, J. V. LEEUWEN, Ed. Elsevier, 1990, pp. 995 –
1072.

[46] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[47] G. J. Holzmann, “The logic of bugs,” in Foundations of Software
Engineering (FSE). ACM, 2002.

[48] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios
for specifying temporal properties: An automated approach,”
Automated Software Engg., vol. 14, no. 3, 2007.

[49] L. Grunske, “Specification patterns for probabilistic quality prop-
erties,” in International Conference on Software Engineering (ICSE).
IEEE, 2008.

[50] S. Konrad and B. H. Cheng, “Real-time specification patterns,” in
International conference on Software engineering (ICSE). IEEE, 2005.

[51] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang,
“Aligning qualitative, real-time, and probabilistic property specifi-
cation patterns using a structured english grammar,” Transactions
on Software Engineering, vol. 41, no. 7, pp. 620–638, 2015.

[52] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification
patterns from research to industry: a case study in service-based
applications,” in International Conference on Software Engineering
(ICSE). IEEE, 2012.

[53] R. A. Brooks et al., “Intelligence without reason,” Artificial intelli-
gence: critical concepts, vol. 3, pp. 107–63, 1991.

[54] D. Brugali and M. Reggiani, “Software stability in the robotics
domain: issues and challenges,” in International Conference on
Information Reuse and Integration. IEEE, 2005.

[55] D. Brugali, “Stable analysis patterns for robot mobility,” in Software
Engineering for Experimental Robotics. Springer, 2007, pp. 9–30.

[56] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with temporal logic constraints,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2011.

[57] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas,
“Temporal logic motion planning for dynamic robots,” Automatica,
vol. 45, no. 2, pp. 343–352, 2009.

[58] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising
motion planning under linear temporal logic specifications in par-
tially known workspaces,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2013.

[59] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided
controller synthesis for nonlinear systems with temporal logic,”
in International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013.

[60] H. Kress-Gazit, “Robot challenges: Toward development of verica-
tion and synthesis techniques [errata],” IEEE Robotics & Automation
Magazine, vol. 18, no. 4, pp. 108–109, 2011.

[61] S. Maoz and J. O. Ringert, “Synthesizing a lego forklift controller
in GR(1): A case study,” in Proceedings Fourth Workshop on Synthesis
(SYNT), 2015.

[62] S. Maoz and J. O. Ringert, “On well-separation of GR(1) speci-
fications,” in Foundations of Software Engineering (FSE). ACM,
2016.

[63] S. Maoz and J. O. Ringert. Spectra. http://smlab.cs.tau.ac.il/
syntech/spectra/. Accessed: 2018-06-20.

[64] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV:
A new symbolic model verifier,” in Computer Aided Verification
(CAV). Springer, 1999.

[65] L. Hugues and N. Bredeche, “Simbad: an autonomous robot
simulation package for education and research,” in International
Conference on Simulation of Adaptive Behavior. Springer, 2006.

[66] “Accompanied material and data for this paper,” http://www.
roboticpatterns.com/, 2018.

[67] I. Ruchkin, J. Sunshine, G. Iraci, B. Schmerl, and D. Garlan, “IPL:
An integration property language for multi-model cyber-physical
systems,” in International Symposium on Formal Methods. Springer,
2018.

[68] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi,
“Property specification patterns for robotic missions,” in Interna-
tional Conference on Software Engineering: Companion Proceeedings,
2018.

[69] C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “PsALM:
Specification of dependable robotic missions,” in International
Conference on Software Engineering (ICSE): Companion Proceeedings,
2019.

[70] A. Pnueli, “The temporal logic of programs,” in Foundations of
Computer Science. IEEE, 1977.

[71] M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logic of
branching time,” Acta informatica, 1983.

[72] “Google Scholar Robotic Venues,” https://scholar.google.com/
citations?view op=top venues&hl=en&vq=eng robotics, 2017.

[73] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot col-
laborative high-level control with application to rescue robotics,”
in International Conference on Robotics and Automation (ICRA). IEEE,
2016.

[74] S. L. Smith, J. Tumová, C. Belta, and D. Rus, “Optimal path
planning for surveillance with temporal-logic constraints,” The
International Journal of Robotics Research, vol. 30, no. 14, pp. 1695–
1708, 2011.

[75] https://www.youtube.com/watch?v=ib2hKuRO6n4, “PsALM
video.” 2018.

[76] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — a framework for LTL and ω-automata
manipulation,” in Automated Technology for Verification and Analysis.
Springer, 2016.

[77] P. Saadatpanah, M. Famelis, J. Gorzny, N. Robinson, M. Chechik,
and R. Salay, “Comparing the Effectiveness of Reasoning For-
malisms for Partial Models,” in Workshop on Model-Driven Engi-
neering, Verification and Validation. ACM, 2012.

[78] M. Famelis, R. Salay, and M. Chechik, “Partial Models: Towards
Modeling and Reasoning with Uncertainty,” in International
Conference on Software Engineering (ICSE). IEEE, 2012.

[79] C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi, “Supporting
verification-driven incremental distributed design of components,”
in Fundamental Approaches to Software Engineering. Springer, 2018.

[80] C. Menghi, S. Garcı́a, P. Pelliccione, and J. Tumova, “Towards
multi-robot applications planning under uncertainty,” in Inter-
national Conference on Software Engineering (ICSE): Companion
Proceeeding, 2018.

[81] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
LTL planning under uncertainty,” in International Symposium on
Formal Methods (FM). Springer, 2018.

[82] G. Best, J. Faigl, and R. Fitch, “Multi-robot path planning for
budgeted active perception with self-organising maps,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2016.

[83] B. Takács and Y. Demiris, “Multi-robot plan adaptation by
constrained minimal distortion feature mapping,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2009.

[84] A. Stentz, “Map-based strategies for robot navigation in unknown
environments,” in AAAI spring symposium on planning with incom-
plete information for robot problems, 1996, pp. 110–116.

[85] Syntech. http://smlab.cs.tau.ac.il/syntech/lego/. Accessed: 2018-
06-20.

[86] Robotnik. https://www.robotnik.eu/mobile-robots/
summit-xl-hl/. Accessed: 2018-06-20.

[87] Mitsubishi. https://robotik.dfki-bremen.de/en/research/
robot-systems/mitsubishi-pa-10-7c.html. Accessed: 2018-06-20.

[88] P. robotics. http://tiago.pal-robotics.com/. Accessed: 2018-06-20.
[89] “Order Specification Patterns,” http://patterns.projects.cs.ksu.

edu/documentation/patterns/order.shtml.
[90] D. O. Paun and M. Chechik, “Events in linear-time properties,” in

International Symposium on Requirements Engineering. IEEE, 1999.
[91] D. Remenska, T. A. C. Willemse, J. Templon, K. Verstoep, and

H. Bal, “Property specification made easy: Harnessing the power
of model checking in uml designs,” in International Federated
Conference on Distributed Computing Techniques. Springer, 2014.

[92] K. C. Castillos, F. Dadeau, J. Julliand, B. Kanso, and S. Taha,
A Compositional Automata-Based Semantics for Property Patterns.
Springer, 2013.

[93] F. Bitsch, “Safety patterns - the key to formal specification of
safety requirements,” in International Conference on Computer Safety,
Reliability and Security, 2001.

[94] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, “Towards
security monitoring patterns,” in Symposium on Applied Computing.
ACM, 2007.

[95] C. Côté, D. Létourneau, F. Michaud, and Y. Brosseau, “Software
design patterns for robotics: Solving integration problems with

http://smlab.cs.tau.ac.il/syntech/spectra/
http://smlab.cs.tau.ac.il/syntech/spectra/
http://www.roboticpatterns.com/
http://www.roboticpatterns.com/
https://scholar.google.com/citations? view_op=top_venues&hl=en&vq=eng_robotics
https://scholar.google.com/citations? view_op=top_venues&hl=en&vq=eng_robotics
http://smlab.cs.tau.ac.il/syntech/lego/
https://www.robotnik.eu/mobile-robots/summit-xl-hl/
https://www.robotnik.eu/mobile-robots/summit-xl-hl/
https://robotik.dfki-bremen.de/en/research/robot-systems/mitsubishi-pa-10-7c.html
https://robotik.dfki-bremen.de/en/research/robot-systems/mitsubishi-pa-10-7c.html
http://tiago.pal-robotics.com/
http://patterns.projects.cs.ksu.edu/docum entation/patterns/order.shtml
http://patterns.projects.cs.ksu.edu/docum entation/patterns/order.shtml

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 16

marie,” in Workshop of Robotic Software Environment, IEEE Interna-
tional Conference on Robotics and Automation, 2005.

[96] N. M. Nasrabadi, “Pattern recognition and machine learning,”
Journal of electronic imaging, vol. 16, no. 4, p. 049901, 2007.

[97] J. Buchli and A. J. Ijspeert, “Distributed central pattern generator
model for robotics application based on phase sensitivity analysis,”
in International Workshop on Biologically Inspired Approaches to
Advanced Information Technology. Springer, 2004, pp. 333–349.

[98] C. Rothwell, A. Eggert, M. J. Patzek, G. Bearden, G. L. Calhoun,
and L. R. Humphrey, “Human-computer interface concepts for
verifiable mission specification, planning, and management,” in
AIAA Infotech@ Aerospace (I@ A) Conference, 2013, p. 4804.

[99] C. Rothwell, M. Patzek, and L. Humphrey, “Verifiable task
assignment and scheduling controller,” 711 Human Performance
Wing Wright-Patterson AFB United States, Tech. Rep., 2017.

[100] D. C. Schmidt, “Guest editor’s introduction: Model-driven engi-
neering,” Computer, vol. 39, no. 2, pp. 25–31, 2006.

[101] F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adopt-
ing MDE for specifying and executing civilian missions of mobile
multi-robot systems,” Journal of IEEE Access, vol. 2, no. 1, 2016.

[102] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, Towards Rule-
Based Dynamic Safety Monitoring for Mobile Robots. Springer, 2014,
pp. 207–218.

[103] M. Aiello, I. Pratt-Hartmann, J. van Benthem et al., Handbook of
spatial logics. Springer, 2007, vol. 4.

[104] H. Sun, J. Liu, X. Chen, and D. Du, “Specifying cyber physical
system safety properties with metric temporal spatial logic,” in
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2015.

[105] J. Kennedy, P. Barclay et al., “A survey of query languages for
geographic information systems,” 1996.

[106] C. H. Papadimitriou, D. Suciu, and V. Vianu, “Topological queries
in spatial databases,” in Symposium on Principles of database systems.
ACM, 1996.

[107] R. S. Bivand, E. Pebesma, and V. Gómez-Rubio, Spatial Data Import
and Export. Springer, 2013.

[108] M. J. Egenhofer and J. Herring, “Categorizing binary topolog-
ical relations between regions, lines, and points in geographic
databases,” The, vol. 9, pp. 94–1, 1990.

[109] M. J. Egenhofer, A. U. Frank, and J. P. Jackson, “A topological
data model for spatial databases,” in Symposium on Large Spatial
Databases. Springer, 1989, pp. 271–286.

[110] L. Cardelli, P. Gardner, and G. Ghelli, “A spatial logic for querying
graphs,” in Automata, Languages and Programming. Springer, 2002.

[111] L. Cardelli and L. Caires, “A spatial logic for concurrency,” in
Theoretical Aspects of Computer Software (TACS), vol. 1, 2001, pp.
1–37.

[112] Z. Shao and J. Liu, Spatio-temporal Hybrid Automata for Cyber-
Physical Systems. Springer, 2013, pp. 337–354.

[113] C. Tsigkanos, T. Kehrer, and C. Ghezzi, “Modeling and verification
of evolving cyber-physical spaces,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, 2017, 2017, pp. 38–48.

[114] V. Ciancia, D. Latella, M. Massink, and R. Pakauskas, “Exploring
spatio-temporal properties of bike-sharing systems,” in Self-
Adaptive and Self-Organizing Systems Workshops (SASOW), 2015
IEEE International Conference on. IEEE, 2015, pp. 74–79.

[115] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink,
“Qualitative and quantitative monitoring of spatio-temporal prop-
erties,” in Runtime Verification. Springer, 2015, pp. 21–37.

[116] R. Koymans, “Specifying real-time properties with metric tempo-
ral logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[117] R. Alur, “Techniques for automatic verification of real-time
systems,” Ph.D. dissertation, Stanford, CA, USA, 1992.

[118] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton, “Verifying
continuous time markov chains,” in International Conference on
Computer Aided Verification (CAV). Springer-Verlag, 1996.

[119] R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev,
“Spatial logic+ temporal logic=?” in Handbook of spatial logics.
Springer, 2007, pp. 497–564.

Claudio Menghi is an Associate Researcher at
the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), at the University of Luxembourg.
After receiving his PhD at Politecnico di Milano,
he was post-doctoral researcher at Chalmers |
University of Göteborg, Sweden. His current
research interests lie in software engineering,
with a special interest in cyber physical systems
(CPS), and formal verification.

Christos Tsigkanos is university assistant at
the Technical University of Vienna, Austria. Previ-
ously, he was post-doctoral researcher at Politec-
nico di Milano, Italy where he also received his
PhD (2017). His current research interests lie in
the intersection of distributed systems and soft-
ware engineering, and include self-adaptive and
dependable systems, requirements engineering
and formal verification.

Patrizio Pelliccione is Associate Professor at
the Chalmers University of Technology and Uni-
versity of Gothenburg, Sweden, Department of
Computer Science and Engineering and Asso-
ciate Professor at the University of L’Aquila, Italy
(double affiliation). He got his PhD in 2005 at the
University of L’Aquila (Italy) and from February
1, 2014 he is Docent in Software Engineering,
title given by the University of Gothenburg. His re-
search topics are mainly in software engineering,
software architectures modelling and verification,

autonomous systems, and formal methods. He has co-authored more
than 120 publications in journals and international conferences and
workshops in these topics. He has been on the program committees
for several top conferences and is a reviewer for top journals in the
software engineering domain. He is very active in European and Na-
tional projects. In his research activity he has collaborated with several
industries such as Volvo Cars, Volvo AB, Ericsson, Jeppesen, Axis
communication, Systemite, Thales Italia, Selex Marconi telecommuni-
cations, Siemens, Saab, TERMA, etc. More information is available at
http://www.patriziopelliccione.com.

Carlo Ghezzi is an Emeritus Professor in
the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Italy. He is
past president of Informatics Europe. He has
been the editor in chief of the ACM Transactions
on Software Engineering and Methodology and
associate editor of the IEEE Transactions on Soft-
ware Engineering. He is currently an associate
editor of the Communications of the ACM and the
Science of Computer Programming. His research
has been mostly focusing on different aspects

of software engineering. He co-authored more than 200 papers and
eight books. He coordinated several national and international research
projects and has been a recipient of an ERC Advanced Grant. He
received the ACM SIGSOFT Outstanding Research Award (2015) and
the Distinguished Service Award (2006). He is a fellow of the ACM and
the IEEE, a member of the European Academy of Sciences and the
Italian Academy of Sciences.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2945329, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 17

Thorsten Berger is an Associate Professor in
Software Engineering at Chalmers University
of Technology and University of Gothenburg in
Sweden. His research focuses on model-driven
software engineering, program analysis, and em-
pirical software engineering. He develops meth-
ods and tools for engineering highly configurable
software. Thorsten Berger received the PhD
degree in computer science from the University
of Leipzig in Germany in 2013, supported by a
scholarship from the German National Academic

Foundation. He worked as a Postdoctoral Fellow at the University of
Waterloo in Canada and the IT University of Copenhagen in Denmark.
He received grants from the Swedish Research Council (competitive
early-career grant), the Wallenberg Autonomous Systems Program,
Vinnova Sweden (EU ITEA project), and the European Union (H2020
project). He received best-paper awards at the 2015 ACM SIGPLAN
conference on MODULARITY and the 2013 European Conference on
Software Maintenance and Reengineering (CSMR, now IEEE SANER).
His service was recognized with a distinguished reviewer award at the
2018 IEEE/ACM ASE conference.

