227 research outputs found

    A two-level genetic algorithm for the multi-mode resource-constrained project scheduling problem

    Get PDF
    This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm

    Project scheduling under multiple resources constraints using a genetic algorithm

    Get PDF
    The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm

    Assessing dynamic models for high priority waste collection in smart cities

    Get PDF
    Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on modern societies. WM involves a set of processes ranging from waste collection to the recycling of the collected materials. The proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can be adopted in SCs and help in WM. Novel approaches that involve dynamic routing models combined with the IoT capabilities could provide solutions that outperform existing models. In this paper, we focus on a SC where a number of collection bins are located in different areas with sensors attached to them. We study a dynamic waste collection architecture, which is based on data retrieved by sensors. We pay special attention to the possibility of immediate WM service in high priority areas, e.g., schools or hospitals where, possibly, the presence of dangerous waste or the negative effects on human quality of living impose the need for immediate collection. This is very crucial when we focus on sensitive groups of citizens like pupils, elderly or people living close to areas where dangerous waste is rejected. We propose novel algorithms aiming at providing efficient and scalable solutions to the dynamic waste collection problem through the management of the trade-off between the immediate collection and its cost. We describe how the proposed system effectively responds to the demand as realized by sensor observations and alerts originated in high priority areas. Our aim is to minimize the time required for serving high priority areas while keeping the average expected performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the proposed algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths and weaknesses. We claim that, local authorities could choose the model that best matches their needs and resources of each city

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    Integrating sustainability into production scheduling in hybrid flow-shop environments

    Get PDF
    Global energy consumption is projected to grow by nearly 50% as of 2018, reaching a peak of 910.7 quadrillion BTU in 2050. The industrial sector accounts for the largest share of the energy consumed, making energy awareness on the shop foors imperative for promoting industrial sustainable development. Considering a growing awareness of the importance of sustainability, production planning and control require the incorporation of time-of-use electricity pricing models into scheduling problems for well-informed energy-saving decisions. Besides, modern manufacturing emphasizes the role of human factors in production processes. This study proposes a new approach for optimizing the hybrid fow-shop scheduling problems (HFSP) considering time-of-use electricity pricing, workers’ fexibility, and sequence-dependent setup time (SDST). Novelties of this study are twofold: to extend a new mathematical formulation and to develop an improved multi-objective optimization algorithm. Extensive numerical experiments are conducted to evaluate the performance of the developed solution method, the adjusted multi-objective genetic algorithm (AMOGA), comparing it with the state-of-the-art, i.e., strength Pareto evolutionary algorithm (SPEA2), and Pareto envelop-based selection algorithm (PESA2). It is shown that AMOGA performs better than the benchmarks considering the mean ideal distance, inverted generational distance, diversifcation, and quality metrics, providing more versatile and better solutions for production and energy efciency

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    A decentralized metaheuristic approach applied to the FMS scheduling problem

    Get PDF
    La programación de FMS ha sido uno de los temas más populares para los investigadores. Se han entregado varios enfoques para programar los FMS, incluidas las técnicas de simulación y los métodos analíticos. Las metaheurísticas descentralizadas pueden verse como una forma en que la población se divide en varias subpoblaciones, con el objetivo de reducir el tiempo de ejecución y el número de evaluaciones, debido a la separación del espacio de búsqueda. La descentralización es una ruta de investigación prominente en la programación, por lo que el costo de la computación se puede reducir y las soluciones se pueden encontrar más rápido, sin penalizar la función objetivo. En este proyecto, se propone una metaheurística descentralizada en el contexto de un problema de programación flexible del sistema de fabricación. La principal contribución de este proyecto es analizar otros tipos de división del espacio de búsqueda, particularmente aquellos asociados con el diseño físico del FMS. El desempeño del enfoque descentralizado se validará con los puntos de referencia de programación de FMS.FMS scheduling has been one of the most popular topics for researchers. A number of approaches have been delivered to schedule FMSs including simulation techniques and analytical methods. Decentralized metaheuristics can be seen as a way where the population is divided into several subpopulations, aiming to reduce the run time and the numbers of evaluation, due to the separation of the search space. Decentralization is a prominent research path in scheduling so the computing cost can be reduced and solutions can be found faster, without penalizing the objective function. In this project, a decentralized metaheuristic is proposed in the context of a flexible manufacturing system scheduling problem. The main contribution of this project is to analyze other types of search space division, particularly those associated with the physical layout of the FMS. The performance of the decentralized approach will be validated with FMS scheduling benchmarks.Ingeniero (a) IndustrialPregrad
    corecore