
 

 

  

Abstract— This paper presents a genetic algorithm for the multi-

mode resource-constrained project scheduling problem (MRCPSP), 

in which multiple execution modes are available for each of the 

activities of the project. The objective function is the minimization of 

the construction project completion time. To solve the problem, is 

applied a two-level genetic algorithm, which makes use of two 

separate levels and extend the parameterized schedule generation 

scheme by introducing an improvement procedure. It is evaluated the 

quality of the schedule and present detailed comparative 

computational results for the MRCPSP, which reveal that this 

approach is a competitive algorithm. 

 
Keywords— Construction Management, Project Scheduling, 

Multi-mode RCPSP, Resource Constraints, Genetic Algorithms. 

I. INTRODUCTION AND BACKGROUND 

A construction project is a group of discernible tasks or 

activities that are conducted in a coordinated effort to 

accomplish one or more objectives. Construction projects 

require varying levels of cost, time and other resources (i.e., 

labor, equipment, material, suppliers), Patrick [57]. 

Construction projects are found throughout business and 

areas such as manufacturing facilities, infrastructure 

development and improvement, and residential and 

commercial building (as shown in Figure 1). 

The project schedule is the core of the project plan. It is 

used by the project manager to commit people to the project 

and show the organization how the work will be performed. 

No matter the size or scope of your project, the schedule is 

a key part of project management. The schedule tells you 

when each activity should be done, what has already been 

completed, and the sequence in which things need to be 

finished. 

Schedules also help you do the following:  

1. They provide a basis for you to monitor and 

control project activities; 

2. They help you determine how best to allocate 

resources so you can achieve the project goal;  
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3. They help you assess how time delays will impact 

the project; 

4. You can figure out where excess resources are 

available to allocate to other projects;  

5. They provide a basis to help you track project 

progress.  

A project can be depicted by a graph where the activities 

are numerically numbered. Associated with each activity is a 

set of possible durations with specific resource requirements. 

If resources are available in limited quantities each time 

period, the resources are considered renewable (e.g., machines 

or manpower). 

As the number of project activities increases and thus the 

complexity of their sequential ordering, the need for organized 

planning and scheduling increases too. This need further 

increases when a large number of project activities are 

considered relative to the uniqueness of each construction 

project in terms of the dynamic plant and nonstandardized 

nature of the work. So, finding feasible schedules which 

efficiently use scarce resources is a challenging task within 

project management. In this context, the well-known Resource 

Constrained Project Scheduling Problem (RCPSP) has been 

studied during the last decades, see e.g. [4, 5, 6, 7, 8, 32, 33, 

59]. 

In the classical RCPSP, the activities of a project have to 

be scheduled so that the makespan of the project is minimized. 

So, the technological precedence constraints have to be 

observed as well as limitations of the renewable resources 

required to accomplish the activities. Once started, an activity 

may not be interrupted. 

This problem has been extended to a more realistic model, 

the multi-mode resource constrained project scheduling 

problem (MRCPSP), where each activity can be performed in 

one out of several modes. Each mode of an activity represents 

an alternative way of combining different levels of resource 

requirements with a related duration. Each renewable resource 

has a limited availability such as manpower and machines for 

the entire project. 

The objective of the MRCPSP problem is minimizing the 

makespan. While the exact methods are available for 

providing optimal solution for small problems, its computation 

time is not feasible for large-scale problems. Hence, in 
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practice heuristic and metaheuristics methods to generate near-

optimal solutions for large problems are of special interest. 

 

 

Figure 1: Commercial building project. 

 

Several approaches to solve the MRCPSP have been 

proposed in the last years:  

Exact procedures:  Talbot [12] was the first to present an 

enumeration scheme for solving the problem. Patterson et al. 

[13] proposed an enumerative type of branch and bound 

algorithm based on the generation of a precedence tree that 

guides the search for solutions. Speranza and Vercellis [38] 

proposed a depth-first branch-and-bound algorithm, but 

Hartmann and Sprecher [39] have shown that this algorithm 

may be unable to find the optimal solution for instances with 

two or more renewable resources. Sprecher et al. [40], 

Hartmann and Drexl [41] and Sprecher and Drexl [42] 

presented a branch-and-bound algorithm. Demeulemeester et 

al. [43] presented a depth-first branch-and-bound procedure 

for the discrete time/resource trade-off problem. 

Heuristics procedures: Talbot [12] and Sprecher and Drexl 

[42] proposed to use a time limit on their exact branch-and-

bound procedure. Boctor [21] tested 21 heuristic scheduling 

rules and suggested a combination of 5 heuristics which have 

a high probability of giving the best solution. Drexl and 

Grunewald [19] proposed a biased random sampling approach, 

while Ozdamar and Ulusoy [44] proposed a local constraint 

based analysis approach. Boctor [23] presented a heuristic 

algorithm based on the Critical Path Method computation, 

Kolisch and Drexl [25] suggested a local search method with a 

single-neighborhood search, Lova et al. [53] proposed 

heuristics based on priority rules and Knotts et al. [45] 

evaluated different agent-based algorithms for solving the 

MRCPSP. 

Metaheuristics procedures: evolutionary algorithms have 

been presented by Vaca [22], Mori and Tseng [24], Ozdamar 

[46], Hartmann [28], Alcaraz et al. [47], Lorenzoni et al. [35], 

Lova et al. [30], Damak et al. [29], Mendes [54] and Pan and 

Yeh [58]. Slowinski et al. [48], Jozefowska et al. [49] and 

Bouleimen and Lecocq [50] used the simulated annealing 

approach. Zhang et al. [51] proposed the particle swarm 

optimization methodology for solving the MRCPSP. 

This paper introduces a new genetic algorithm approach 

for solving the MRCPSP based on the work proposed by 

Mendes [54].  

Extending this approach, we develop a phenotype which 

consists of a random key vector with genes for all modes for 

all activities and for delay time. The basic idea is to choice one 

mode for each activity and converts the phenotype for multi-

mode into a phenotype for a single-mode. Using the best mode 

for each activity the solution is generated using a 

parameterized scheduling scheme for a single-mode RCPSP. 

A local search procedure is applied trying to improve the 

initial solution. For the evolutionary process the genetic 

algorithm uses the phenotype for multi-mode. 

II. PROBLEM FORMULATION 

The MRCPSP problem can be stated as follows. A project 

consists of n+2 activities where each activity has to be 

processed in order to complete the project. Let J  = {0, 1, …, 

n, n+1} denote the set of activities to be scheduled and K = 

{1, ..., k} the set of renewable resources. Each resource type k 

has a limited capacity of Rk at any point in time.  

The activities 0 and n+1 are dummy, have no duration and 

represent the initial and final activities. The activities are 

interrelated by two kinds of constraints:  

1. The precedence constraints, which force each 

activity j to be scheduled after all predecessor 

activities, Pj, are completed.  

2. Performing the activities requires resources with 

limited capacities.  

Each activity can be performed in one of several different 

modes. A mode represents a combination of different 

resources and/or levels of resources with an associated 

duration. Once an activity is started in one mode, it may not be 

changed. One activity j can be executed in m modes given by 

the set Mj = {1, . . . , mj}. The duration of activity j being 

performed in mode mj is given by djm. The activity j executed 

in mode mj uses rjmk units of renewable resource k, where rjmk 

<= Rk for each renewable resource k. 

While being processed, activity j requires rjmk units of 

resource type k Є K during every time instant of its non-

preemptable duration djm. The parameters djm, rjmk and Rk are 

assumed to be non-negative and deterministic.  

The problem depends on finding a schedule of the 

activities, taking into account the resources and the precedence 

constraints, which minimize the makespan (Cmax).  

Let Fj represent the finish time of activity j. A schedule 

can be represented by a vector of finish times (F1,…, Fm,..., 

Fn+1). The makespan of the solution is given by the maximum 

of all predecessors activities of activity n+1, i.e. 

{ }lPln FMaxF
n 11 +∈+

= . 

A mathematical programming formulation of this problem 

has been given by Talbot [12]. 
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III. TYPES OF SCHEDULES 

Classifying schedules is the basic work to be done before 

attacking scheduling problems. Schedules can be classified 

into one of the following three types of schedules: 

i) Semi-active schedules. These are feasible 

schedules obtained by sequencing activities as 

early as possible. In a semi-active schedule the 

start time of a particular activity is constrained by 

the processing of a different activity on the same 

resource or by the processing of the directly 

preceding activity on a different resource. 

ii) Active schedules. These are feasible schedules in 

which no activity could be started earlier without 

delaying some other activity or breaking a 

precedence constraint. Active schedules are also 

semi-active schedules. An optimal schedule is 

always active. 

iii) Non-delay schedules. These are feasible schedules 

in which no resource is kept idle at a time when it 

could begin processing some activity. Non-delay 

schedules are active and hence are also semi-

active. 

 

In this work are generated active schedules. The 

constructive heuristic used to construct active schedules is 

based on a parameterized active generation scheme. 

IV. GENETIC ALGORITHM 

The approach presented in this paper is based on a genetic 

algorithm to perform its optimization process. 

Genetic algorithms (GAs) are search algorithms based on 

the mechanics of natural selection and natural genetics. They 

combine survival of the fittest among string structures with a 

structured yet randomized information exchange to form a 

search algorithm with some of the innovative flair of human 

search [1]. 

The GAs follows the principles of The Origin of Species 

proposed by Charles Darwin [60], see Figure 2. 

 

 
Figure 2: The Origin of Species. 

 

 

 

One fundamental advantaged of GAs from traditional 

methods is described by Goldberg [1]: in many optimization 

methods, we move gingerly from a single solution in the 

decision space to the next using some transition rule to 

determine the next solution. This solution-to-solution method 

is dangerous because it is a perfect prescription for locating 

false peaks in multimodal search spaces. By contrast, GAs 

work from a rich database of solutions simultaneously (a 

population of chromosomes), climbing many peaks in parallel; 

thus the probability of finding a false peak is reduced over 

methods that go solution to solution.  

First of all, an initial population of potential solutions 

(individuals) is generated randomly. A selection procedure 

based on a fitness function enables to choose the individuals 

candidate for reproduction. The reproduction consists in 

recombining two individuals by the crossover operator, 

possibly followed by a mutation of the offspring. Therefore, 

from the initial population a new generation is obtained. From 

this new generation, a second new generation is produced by 

the same process and so on. The stop criterion is normally 

based on the number of generations. 

The general schema of GAs may be illustrated as follows, 

see Figure 3.  

 

procedure GENETIC-ALGORITHM 

 

Generate initial population P0; 

  Evaluate population P0; 

  Initialize generation counter g �0; 

  While stopping criteria not satisfied repeat 

  Select some elements from Pg to copy into Pg+1; 

      Crossover some elements of Pg and put into Pg+1; 

      Mutate some elements of Pg and put into Pg+1; 

      Evaluate some elements of Pg and put into Pg+1; 

      Increment generation counter: g � g+1; 

   End while 

 

End GENETIC-ALGORITHM; 

Figure 3: Pseudo-code of a genetic algorithm. 

 

A. Decoding 

The genetic algorithm uses a random key alphabet U (0, 1) 

and an evolutionary strategy identical to the one proposed by 

Goldberg [1].  

A chromosome represents a solution to the problem and it 

is encoded as a vector of random keys (random numbers). 

Each solution encoded as initial chromosome is made of mn+1 

genes where n is the number of activities (first level): 

 

 

 

Chromosome = ( gene11 , gene21,  … ,  genem1, …, gene1n , gene2n,  … ,  genemn , genemn+1)

Genes for each 

mode of activity 1

Genes for each 

mode of activity n

Gene for 

delay time
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For each activity j we have a set of execution modes:

 

 

After the choice of the execution mode mj

j, the solution chromosome is composed by n+1

level). 

 
The priority decoding expression uses the following 

expression:  

 

1
1,..., (1)

2

+ 
= × = 

 

jmj

j

geneLLP
PRIORITY j n

LCP

where,  

 

LLPj is the longest length path from the beginning of the 

activity j to the end of the project  

LCP is length along the critical path of the project, see 

Mendes [5]. 

mj is the gene of the selected mode for activity 

 

 
The gene mn+1 is used to determine the delay time used 

when scheduling the activities. The delay time used by each 

chromosome is given by the following expression:

 

1 1.5 (2)
+

= × ×mnDelay time gene MaxDur

where MaxDur is the maximum duration of all activities. The 

factor 1.5 is obtained after some experimental tuning.

A maximum delay time equal to zero is equivalent to 

restricting the solution space to non-delay schedules and a 

maximum delay time equal to infinity is equivalent to 

allowing active schedules. To reduce the solution space is 

used the value given by expression (2), see Mendes [

 

B. A Two-Level Genetic Algorithm 

The genetic algorithm presented in this paper is based on a 

two-level mechanism.  

The first level is composed by the chromosome with all genes 

to solve the initial problem – MRCPSP.  

For each initial chromosome, we must select only one gene 

by activity. With a gene by activity we must solve the 

chromosome, that is, the RCPSP, see Figure 4

 

 

we have a set of execution modes: 

 

j for each activity 

+1 genes (second 

The priority decoding expression uses the following 

 

1,..., (1)= × =PRIORITY j n
 (1) 

is the longest length path from the beginning of the 

is length along the critical path of the project, see 

is the gene of the selected mode for activity j. 

is used to determine the delay time used 

. The delay time used by each 

by the following expression: 

1.5 (2)   

where MaxDur is the maximum duration of all activities. The 

factor 1.5 is obtained after some experimental tuning. 

A maximum delay time equal to zero is equivalent to 

delay schedules and a 

maximum delay time equal to infinity is equivalent to 

allowing active schedules. To reduce the solution space is 

), see Mendes [55]. 

presented in this paper is based on a 

The first level is composed by the chromosome with all genes 

, we must select only one gene 

we must solve the solution 

4. 

Figure 4: A Two-Level Genetic Algorithm

 

C. Evolutionary Strategy 

There are many variations of genetic algorithms obtained by 

altering the reproduction, crossover, and mutation 

Reproduction is a process in which individual (chromosome) 

is copied according to their fitness values (makespan). 

Reproduction is accomplished by first copying some of the 

best individuals from one generation to the next, in what is 

called an elitist strategy.  

In this paper the fitness proportionate selection, also known as 

roulette-wheel selection, is the genetic operator for selecting 

potentially useful solutions for reproduction. 

characteristic of the roulette wheel selection is stochast

sampling. 

The fitness value is used to associate a probability of 

selection with each individual chromosome. If 

of individual i in the population, its probability of being 

selected is,       

1

, 1,..., (3)

=

= =

∑

i
i N

i

i

f
p i n

f

An example is presented in Table 1.

A roulette wheel model is established to represent the 

survival probabilities for all the individuals in the population. 

Then the roulette wheel is rotated for several times

Figure 5. After selection the mating population con

chromosomes (individuals): 1, 2, 3, 4, 5 and 6. 

 
 

 

 

 

Chromosome = ( gene11 , gene21,  … ,  genem1, …, gene1n , gene2n,  

Genes for each 

mode of activity 1

Genes for each 

mode of activity 

Chromosome = (gene21,  … , gene1n , … ,  genemn ,  gene

Genes for each

mode of activity j delay

 

 
Level Genetic Algorithm. 

There are many variations of genetic algorithms obtained by 

altering the reproduction, crossover, and mutation operators. 

Reproduction is a process in which individual (chromosome) 

is copied according to their fitness values (makespan). 

Reproduction is accomplished by first copying some of the 

best individuals from one generation to the next, in what is 

the fitness proportionate selection, also known as 

wheel selection, is the genetic operator for selecting 

potentially useful solutions for reproduction. The 

characteristic of the roulette wheel selection is stochastic 

The fitness value is used to associate a probability of 

selection with each individual chromosome. If fi is the fitness 

in the population, its probability of being 

, 1,..., (3)
 

presented in Table 1. 

A roulette wheel model is established to represent the 

survival probabilities for all the individuals in the population. 

Then the roulette wheel is rotated for several times [1], see 

. After selection the mating population consists of the 

chromosomes (individuals): 1, 2, 3, 4, 5 and 6.  

2n,  … ,  genemn , genemn+1)

Genes for each 

mode of activity n

Gene for 

delay time

genemn+1)

Gene for 

delay time

MRCPSP

First Level

RCPSP

Second Level
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Table 1: Selection probability and fitness value. 
 

 

 
 

Figure 5: Roulette-wheel selection. 

 

After selecting, crossover may proceed in two steps. First, 

members of the newly selected (reproduced) chromosomes in 

the mating pool are mated at random. Second, each pair of 

chromosomes undergoes crossover as follows: an integer 

position k along the chromosome is selected uniformly at 

random between 1 and the chromosome length l. Two new 

chromosomes are created swapping all the genes between k+1 

and l [1], see Figure 6. 

The mutation operator preserves diversification in the 

search.  This operator is applied to each offspring in the 

population with a predetermined probability. We assume that 

the probability of the mutation in this paper is 0.001. With 200 

genes positions we should expect 200 x 0.001 = 0.2 genes to 

undergo mutation for this probability value. 

 

 
Figure 6: Crossover operator example. 

 

V. SCHEDULE GENERATIONS SCHEMES 

Schedule generation schemes (SGS) are the core of most 

heuristic solution procedures for the RCPSP. SGS start from 

scratch and build a feasible schedule by stepwise extension of 

a partial schedule. A partial schedule is a schedule where only 

a subset of the n+2 activities have been scheduled. There are 

two different classics methods SGS available. They can be 

distinguished into activity and time incrementation. The so 

called serial SGS performs activity-incrementation and the so 

called parallel SGS performs time-incrementation [37]. 

The constructive heuristic used to construct active 

schedules is based on a parameterized active schedules 
generation scheme [55]. 

VI. LOCAL SEARCH 

Local search algorithms move from solution to solution in the 

space of candidate solutions (the search space) until a solution 

optimal or a stopping criterion is found. In this paper it was 

applied backward and forward improvement based on Klein 

[34]. 

Initially is constructed a schedule by planning in a forward 

direction starting from the project’s beginning. After it is 

applied backward and forward improvement trying to get a 

better solution. The backward planning consists in reversing 

the project network and applying the scheduling generator 

scheme. An example is described by Mendes [5].  

VII. COMPUTATIONAL EXPERIMENTS 

This section presents results of the computational experiments 

done with the algorithm proposed in this paper. This algorithm 

is called RKV-AS-MM (Random Key Variant Active 

Schedules for Multi-Mode). This computational experience has 

been performed on a computer with an Intel Core 2 Duo CPU 

T7250 @2.00 GHz. The algorithm proposed in this work has 

been coded in Visual Basic 6.0 under Microsoft Windows NT. 

 

A. Genetic algorithm configuration 

Though there is no straightforward way to configure the 

parameters of a genetic algorithm, we obtained good results 

with values: population size of 5 × number of activities in the 

problem; mutation probability of 0.001; top (best) 1% from 

the previous population chromosomes are copied to the next 

generation; stopping criterion of 50 generations. 

B. Experimental results 

In what follows, it is compared the RKV-AS-MM with others 

approaches reported in the literature. Table 2 lists the eleven 

chosen approaches and the problem (project) instances are 

those used by [18] and [22]. The RKV-AS-MM and each of 

the eleven chosen approaches are applied individually to each 

chosen problem (single-mode), [18]. The final project 

durations generated by the RKV-AS-MM are compared with 

the corresponding results generated by each one of the eleven 

approaches, see Table 3. The results of the RKV-AS-MM are 

the same (optimal values) as the procedures proposed by Vaca 

[22] and RKV-MM [54]). 

Number of 

chromosome 

Fitness 

value 

Selection 

probability

1 14 0,20

2 12 0,17

3 10 0,14

4 9 0,13

5 8 0,11

6 7 0,10

7 4 0,06

8 3 0,04

9 2 0,03

10 1 0,01

20%

17%

14%13%

12%

10%

6%

4%
3%1%

1

2

3

4

5

6

7

8

9

10

trial 2

trial 1

trial 6

trial 3

trial 5

trial 4
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Table 2: The approaches for testing single-mode instances. 

 

Rule Heuristic 

TR Technological ranking 

EST Ascendant Earliest Start Times 

EFT Ascendant Earliest Finish Times 

LST Ascendant Latest Start Times 

LFT Ascendant Latest Finish Times 

Total Float Ascendant total Float 

ACTIM Descendent Activity-Time 

ACTRES Descendent Activity-Resources 

Li & Willis [18] Backward Scheduling 

Vaca [22] GA 

RKV-MM [54] GA - Random Key Variant  

for Multi-Mode 

 

 

Table 3: Results for single-mode instances. 

 

 
 

In what follows, it is compared the RKV-AS-MM with the 

approaches proposed by Vaca [22] and Mendes [54] for the 

problem instances (multi-mode). To illustrate its effectiveness, 

we consider a total of 26 instances (with a number of activities 

between 7 and 80) proposed by Vaca [22] which are adapted 

to the field of construction. The problem instances require 

between two and ten renewable resource types. All resources 

are given as renewable resources and the availabilities 

associated with all resources are assumed to be constant over 

time. Instance details are described by Vaca [22]. 

Table 4, Column 5, summarizes the obtained results by 

RKV-AS-MM. The results are the best when compared with 

the values presented by Vaca [22] and Mendes [54]. The 

maximal computational time dispended is 60 seconds for each 

instance.  

Table 5 shows the number of instances solved (NIS) and 

the average relative deviation (ARD) with respect to the best 

known solution (BKS). 

 

 

 

 
Table 4: Experimental results for multi-mode instances. 

Probl. 

No. 

Duration 

without 

limited 

resources 

BKS                      

Best 

duration 

for multi-

mode            

[22] 

RKV-

MM 

[54] 

RKV-

AS-

MM 

1 71 96 107 107 96 

2 74 77 77 77 78 

3 238 306 309 309 306 

4 23 28 28 28 28 

5 125 132 132 132 132 

6 46 75 75 75 75 

7 26 42 42 42 42 

8 75 126 141 141 126 

9 37 66 66 66 66 

10 85 103 103 103 103 

11 93 140 140 140 140 

12 9 11 11 11 11 

13 8 9 9 9 9 

14 48 88 88 88 88 

15 18 19 19 19 19 

16 11 12 12 12 12 

17 16 22 23 23 22 

18 16 17 17 17 17 

19 36 37 37 37 37 

20 8 13 14 13 13 

21 80 80 80 80 80 

22 28 38 38 38 38 

23 33 34 40 34 34 

24 33 35 37 35 35 

25 31 56 61 58 56 

26 60 84 86 85 84 

 

For comparison between the methods, we have used one 

measure, namely the average relative deviation (ARD): 
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3 17 23 24 24 25 25 24 24 24 23 24 23 23 23 

5 18 17 21 24 19 23 21 26 23 18 22 17 17 17 

6 19 39 47 44 45 39 40 39 39 43 39 39 39 39 

7 20 13 15 15 16 14 13 14 14 16 13 13 13 13 

8 21 88 112 112 108 92 100 100 92 92 92 88 88 88 

9 22 45 50 46 50 46 46 53 46 46 46 45 45 45 

18 23 35 41 40 47 36 39 47 36 39 38 35 35 35 

19 24 35 42 39 36 39 36 36 39 35 36 35 35 35 

20 25 64 70 70 74 73 68 74 73 73 67 64 64 64 
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Table 5: Average relative deviation. 

Algorithm NIS ARD 

Oscar Lopez Vaca [22] 26 0.027 

J. Magalhaes-Mendes [54] 26 0.013 

This paper 26 0.000 

 

 

Overall, we solved 26 instances with RKV-AS-MM and 

obtained an ARD of 0.000%. The RKV-AS-MM obtained the 

best-known solution for 25 instances, i.e. in 96% of problem 

instances. RKV-AS-MM presented an improvement with 

respect to almost all others algorithms.   

 

VIII. CONCLUSIONS 

The resolution of the MRCPSP by a two-level genetic 

algorithm is proposed in this paper. The chromosome 

representation of the problem is based on random keys. 

Reproduction, crossover and mutation are applied to 

successive chromosome populations to create new 

chromosome populations. These operators are simplicity 

themselves, involving random number generation, 

chromosome copying and partial chromosome exchanging. 

The schedules are constructed using priorities defined by 

the genetic algorithm with a constructive heuristic. The 

constructive heuristic for constructing feasible schedules is 

extended by the flexible use of different planning directions 

including the backward and forward improvement (FBI) 

planning. For some instance, a combination of a heuristic 

constructive and the genetic algorithm may yield a good 

result, but in another instance the FBI can improve the initial 

schedule. 

The approach was tested on a set of 26 standard instances 

with multi-modes in the field of construction, taken from the 

literature and compared with the others approach. The 

algorithm produced good results when compared with other 

approaches therefore validating the effectiveness of the 

proposed algorithm. 

Further research can be extended to problems where the 

resource availability varies within time and in contexts where 

several projects must be concurrently executed. 
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