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Abstract 

FMS scheduling has been one of the most popular topics for researchers. A number of approaches have been delivered to 

schedule FMSs including simulation techniques and analytical methods. Decentralized metaheuristics can be seen as a 

way where the population is divided into several subpopulations, aiming to reduce the run time and the numbers of 

evaluation, due to the separation of the search space. Decentralization is a prominent research path in scheduling so the 

computing cost can be reduced and solutions can be found faster, without penalizing the objective function. In this project, 

a decentralized metaheuristic is proposed in the context of a flexible manufacturing system scheduling problem. The main 

contribution of this project is to analyze other types of search space division, particularly those associated with the 

physical layout of the FMS. The performance of the decentralized approach will be validated with FMS scheduling 

benchmarks. 
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1. Justification and problem statement 

Highly specialized transfer lines dedicated to mass production have evolved towards flexible 

manufacturing systems (FMS), with heterogeneous components and different layouts. Flexible manufacturing 

systems were introduced in the 1970s aiming for greater responsiveness to market changes, rapid turnaround, 

high quality, low inventory costs, and low labor costs (Basnet and Mize, 1994; ElMaraghy, 2006). Browne et 

al., (1984) defined a FMS as “an integrated, computer controlled complex of automated material handling 

devices and computing numerically controlled (CNC) machine tools that can simultaneously process medium-

sized volumes of a variety of product types”. Generally speaking, a FMS is expected to combine the 
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productivity efficiency of transfer lines and the flexibility of job shops to attain mid-volume, mid-variety 

needs (Chan and Chan, 2004). 

In the most general sense, FMS control is   mainly composed of three activities: scheduling, product 

dispatching and on-line process monitoring, as seen in Figure 1 (Caramia and Dell’Olmo, 2006; Leitão, 2004). 

Scheduling, also termed as detailed or short-term scheduling due to the short decision horizon, defines the 

product flow though FMS resources, deciding "what" must be manufactured, at what time and during which 

time periods (i.e., "when"); and by using which FMS resources (i.e., "where") (Van Dyke Parunak, 1991). A 

usual industrial practice is to generate short-terms schedules and then proceed to product dispatching to 

execute those schedules taking into account current status of FMS resources (Caramia and Dell’Olmo, 2006). 

Last, on-line monitoring revises possible deviations caused by unexpected events and machine perturbations. 

Then, those perturbations are reported to the scheduling module so this latter can react and adapt properly, 

ensuring the continuing operation of the FMS. 

Figure 1 FMS control loop, taken from  Zambrano Rey, (2014) 

Industries using flexible manufacturing systems are facing several challenges issued from rapid 

technological innovations, globalized and customer-driven (i.e., mass customization) markets. Mass 

customization results in rapidly changing customer requirements, accelerated innovation and shorter product 

lifecycles (Christo and Cardeira, 2007). As a consequence, FMS scheduling has to deal with lower sized 

batches, even one-of-a-kind products, and smaller delivery times. Therefore, to accommodate such variations 

in product quantity, quality and specification types, FMS scheduling requires to be flexible, scalable, and 

easily reconfigurable (McFarlane and Bussmann, 2003). In addition, FMS scheduling needs to be reactive and 

adapt rapidly to external changes, fault tolerant to detect and gracefully recover from system failures and 

minimize their consequences; as well as modular and easy to interoperate to manage efficiently recent 

manufacturing technologies and legacy systems (Chituc and Restivo, 2009; Colombo and Karnouskos, 2009). 
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In addition, new managerial philosophies such as Just-in-time production (JIT) impose additional 

requirements to eliminate or reduce several sources of waste. 

From an Operations Research perspective, scheduling in FMS is a more complex version of the classical 

flexible job-shop scheduling problem, which is known to be NP-hard (Conway et al., 2012). Therefore, it is 

frequently observed in literature that the FMS scheduling problem is addressed with hard assumptions (e.g., 

neglecting transport times, unlimited buffer capacity), constraint relaxations, and regular and single 

performance criteria (Shnits et al., 2004; Shirazi et al., 2011). Since there are different types of algorithms, 

scheduling algorithms can be classified in four basic approaches depending on the quality of solutions and 

algorithm complexity: optimal and near-optimal, artificial intelligence, heuristics and dispatching rules 

(denoted from a) to d) in) as reported by Zambrano Rey, (2014). 

 

 

 

 

 

 

 

Figure 2: FMS scheduling techniques, taken from  Zambrano Rey, (2014)   

Since using optimal/nearly-optimal methods to solve the realistic FMS problem is computationally 

intensive, and sometimes no solutions can be found; artificial intelligence algorithms have become popular to 

solve such problems. Artificial intelligence try to mimic the human brain or biological systems in an attempt 

to find good solutions (possibly the optimal) to high complex problems, with less calculation effort thus 

favoring reactivity (Steels and Brooks, 1995).  

A metaheuristic is an iterative master process that guides and modifies the operations of subordinate 

heuristics to efficiently produce high-quality solutions (Talbi, 2009). It may manipulate a complete (or 

incomplete) single solution or a collection of solutions at each iteration. The subordinate heuristics may be 

high (or low) level procedures, a simple local search, or just a construction method. Metaheuristics have been 

applied to solve realistic industrial problems such as vehicle routing (Kovacs et al., 2015), warehouse location 

and placement (“A Parallel Genetic Algorithm for the Multilevel Unconstrained Lot-Sizing Problem,” 2008; 

Almeida-Luz et al., 2009; Byun et al., 2009; Homberger and Gehring, 2008), steel industry (Zhao et al., 

2011), packing (Leon et al., 2009; Segura et al., 2011), and assembly line balancing (Ozbakir et al., 2011; 

Alba et al., 2013). In scheduling, metaheuristics haven been popular to solve single-machine (Bożejko et al., 

2014), flow-shop (Dai et al., 2013), job-shop (Kuo and Cheng, 2013) and flexible-job shop problems (Mekni 

and Chaâr, 2014). 

Metaheuristics can be divided into two groups: population-based or single-based metaheuristics. 

Population-based metaheuristics can be understood as an iterative improvement of a population of solutions. 

Some well-known population-based metaheuristics are genetic algorithms, evolutionary strategies, particle 
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swarm optimization, and ant colony optimization (Talbi, 2009). Single-based metaheuristics can be 

interpreted as “walks” through neighborhoods or search trajectories through the search space of the problem 

at hand. Simulated annealing, tabu search, simple evolutionary strategies, trajectory or local search methods 

are some examples of single-based metaheuristics (Talbi, 2009). Contrary to single-based algorithms that 

focus on improving and maintaining one candidate solution; population-based metaheuristics focus on 

generate a multiple candidate solutions, applying the principle of evolution: survival of the fittest. 

Given the challenges faced by FMS, population-based metaheuristics seem to offer promising results for 

FMS scheduling. However, a sequential and centralized execution of metaheuristics have a polynomial 

temporal complexity, thus they might not be suitable for industrial problems. Hence, decentralizing 

metaheuristic execution seems an interesting way not only to reduce the search time but also to improve the 

quality of the solutions provided (Alba et al., 2013; Cahon et al., 2004a).  

2. Literature Review 

2.1. FMS scheduling using metaheuristics 

Scheduling is an important element of production systems because it serves as an overall plan on which 

many other shop activities are based. There are two key elements in any scheduling system: schedule 

generation and revisions (monitoring and updating the schedule). The first element which acts as a predictive 

mechanism determines planned start and completion times of operations of the jobs. The second element 

which is viewed as the reactive part of the system monitors the execution of the schedule and copes with 

unexpected events (i.e., machine breakdowns, tool failures, order cancelation, due date changes, etc) 

(Sabuncuoglu and Bayız, 2000). 

Metaheuristics have been actively used for FMS scheduling and re-scheduling given their advantages. In 

fact some metaheuristics, such as genetic algorithms, are already available in commercial software for 

scheduling in industrial applications (Nie et al., 2013). Several centralized FMS scheduling approaches based 

on metaheuristics have been proposed. For instance, Zambrano Rey et al., (2015) used genetic algorithms and 

particle swarm optimization for solving the flexible job-shop scheduling problem. Such approach was 

implemented and validated with a realistic FMS. Souier et al., (2012) presented the results of a simulation 

study of a typical flexible manufacturing system, in which the routing scheduling problem was addressed 

using simulated annealing, tabu search, ant colony optimization, genetic algorithms and particle swarm 

optimization. 

2.1. Decentralized metaheuristics 

Population-based metaheuristics are stochastic search techniques that have been successfully applied in 

many real and complex applications (epistatic, multimodal, multiobjective, and highly constrained problems) 

that are involved in the FMS scheduling problem. A population-based algorithm is an iterative technique that 

applies stochastic operators on a pool of individuals (the population). Every individual in the population is the 

encoded version of a tentative solution. An evaluation function associates a fitness value to every individual 

indicating its suitability to the problem. Iteratively, the probabilistic application of “variation operators” on 

selected individuals guides the population to tentative solutions of higher quality (Alba et al., 2013). 

Decentralized metaheuristics have shown to be useful in practice to solve a large number of applications. 

Many real-life problems may need days or weeks of computing time to be solved on serial machines. This is 

the usual scenario when considering difficult problems such as complex combinatorial problems with large 

search spaces, multi-objective problems with many hard-to-evaluate objective functions, or dynamic 
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optimization problems, such as the dynamic FMS scheduling problem (Alba et al., 2013). In terms of 

decentralization of the population evolution Alba et al., (2013) reports the parallel models shown in Figure 3: 

Classical parallel models for population based meta-heuristics: (a) master-slave, (b) distributed and (c) 

cellular models. In (a) the master centralizes the population and manages the selection and the replacement 

steps. It sends sub-populations to the workers that execute recombination and evaluation tasks. The workers 

return back newly evaluated solutions to the master. In (b) the model divides the entire population into several 

sub-populations distributed among different processors and each one is responsible for the evolution of one 

sub-population. It executes all the steps of the meta-heuristic, and occasionally individuals migrate among 

islands. In (c) each processor is responsible for either a single individual or at most a small number. The 

difference with respect to the island paradigm is that the diffusion-based scheme requires a neighborhood 

structure of processors to perform the recombination and selection (Baños et al., 2006). 

Another study focused on parallel metaheuristics was proposed by Bożejko et al., (2010). The proposed 

approach solves the flexible job shop scheduling problem by solving the classic job shop problem where 

operations have to be executed on one machine from a set of dedicated machines. The parallel metaheuristic 

implemented was based on two modules, the machine selection module and the operation scheduling module. 

The machine selection module was implemented with a tabu search (1st approach) and a population-based 

metaheuristics (2nd approach) working sequentially. This module was configured to help an operation to 

select one of the parallel machine from the set of machine types to process it. In turn, the operation scheduling 

module was used to schedule the sequence and timing of all operations assigned to each machine from the 

center. In other words, this module had to solve the classic job shop problem after having assigned operations 

to machines. 

 

Figure 3: Classical parallel models for population based meta-heuristics: (a) master-slave, (b) distributed and (c) cellular models 

Cahon et al., (2004) proposed a ParadisEO that is an extension of the evolving objects (EO) framework 

devoted to the design of serial evolutionary algorithms (EA). The parallel/distributed population evaluation is 

always stored on a single processor. However, the assignment of the individuals to the processors for 

evaluation depends on the hardware architecture. On shared memory multi-processors threads pick up 

individuals from the global list in a concurrent way. On distributed memory processors the population is 

divided into sub-populations according to the user defined granularity parameter. 
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3. Objectives 

Taking into account that FMS reactive scheduling is of the outmost importance to face unexpected events, 

and that decentralization helps to improve scheduling reactivity and performance, the following questions 

arise: What would be the criteria to take into account when designing a decentralized metaheuristic, in terms 

of problem encoding? How can the FMS scheduling problem be decomposed in order to decentralized the 

metaheuristic used to solve it? What type of behavior should be defined for determining the relationship 

among the different entities dealing with each part of the problem? 

Then, the main objective of this capstone final project is to propose a decentralized metaheuristic approach 

applied to the FMS scheduling problem. The specific objectives derived from this main objective are: 

 

 Analyze the FMS scheduling encoding schemes that can be applied in decentralized approaches 

 Propose a decentralized approach for the FMS scheduling problem 

 Validate the proposed approach against a centralized approach from related literature using design of 

experiments 

3.1. Design requirements 

The main requirements for this project are: 

 Reduced response times: one of the main goals of decentralizing a metaheuristic is to reduce the search 

time. This helps designing real-time and reactive optimization methods. Therefore, the proposed 

methodology should help to face one of the main challenges for FMS scheduling, which is to be reactive in 

order to cope with internal and external perturbations (Talbi, 2009). 

 Improving robustness: As the optimization applications are often time-consuming the performance issue is 

crucial. The metaheuristic should be able to perform well on a large variety of instances and problems 

using the same parameters. The parameters of the metaheuristic may be over fitted using the training set of 

instances and less efficient for other instances (Talbi, 2009). Moreover, the execution of the algorithms 

must be robust to guarantee the reliability and the quality of the results. Hence, the proposed methodology 

should be suitable to tackle variations of the FMS scheduling problems, including different objective 

functions and/or multiple objective functions. 

 Scalability: The proposed approach must show an improvement of the computing cost when dealing with 

large instances when compared with a centralized approach. 

4. Methodology 

As presented in Section 2, there are various options to decentralize a population-based metaheuristic. 

However, all the aforementioned methods are similar in the sense that decentralized entities are used to 

evaluate an individual of the population or they have in charge the evolution of a subset of individuals. 

Therefore, the entire problem is evaluated, once or multiple times. This section first presents an analysis of 

encoding schemes, aiming to find one that ease decentralization. In addition, in the same Section, the strategy 

of Decentralization, focused on the machine sequence encoding scheme is explained. Section 4.2 describes 

the implementation to decentralize the FMS scheduling problem based on the chosen encoding scheme, 

independently from the metaheuristic. Last, Section 4.3 explains the programming strategy implemented in 

Java for two behaviors. 
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4.1. FMS encoding schemes 

An interesting option to have an actual decentralization is to have multiple entities working on parts of the 

problem, hence it is important to find an encoding scheme that allows to break the problem into several 

problems.  Table 1 reports the different encoding schemes found in FMS scheduling articles.  

 

 

 

 

 Table 1. Different encoding schemes 

Authors strategy Encoding 

Defersha and 

Chen, 2010 

Island model  

 

In this representation, a chromosome is composed of serval genes, 

one for each operation, and each gene is formed by a triplet ( j, 

o,m), where m can assume the index of an alternative machine on 

which an operation o of job j can be assigned. The sequence of the 

genes in the chromosome represents the sequence of the jobs in 

the machines. 

Bożejko et al., 

2013 

Neigborhood 

model 
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In this coding system the system with which the evaluation was 

carried out consists of having machine centers, that is, its machine 

sequence will be linked to a center where each center is equipped 

with identical machines, therefore at the moment to perform the 

evaluation of the coding, first they have to evaluate the processing 

of the works in each center and then they must evaluate the 

assignment in each of the centers, therefore this coding can not be 

evaluated in our problem because it is not It has machine centers, 

if not all machines have the same properties. 

 

Leila 

Asadzadeh∗ , 

Kamran 

Zamanifar 

 

Island model 

 

In this model, was used an island model, the initial population is 

divided into sub-populations, and each sub-population is evolved 

separately. Communication between sub-populations is restricted 

to the migration of chromosomes. The evaluation and decision not 

to use this method was due to the fact that the communication 

between agents is only allowed at the moment of making a 

migration in the genetic algorithm, because the decision of the 

work was to do the analysis with a PSO algorithm, the 

communication within the algorithm because the sample space of 

the machine selection and the sequence of operations can undergo 

changes at the moment that the instance suffers some kind of 

disturbance this would generate a change within the division of 

the machine sequences to each agent and with this coding there 

would not be any kind of immediate reaction. 

 

Chiu and Liu, 

2011 

Master-slave 

model 

In this method, the structure of master-slave model is adopted to 

achieve higher diversity of population and escape from being 

trapped in local optima, in addition to realize parallel processing. 

In the master-slave model, one computing node is designated as 

the master while the others are designated as slaves, which are 

separated from each other and evolve independently. 
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L. De Giovanni, 

F. Pezzella 

An 

Improved 

Genetic 

Algorithm 

 

 

 

The proposed Algorithm is obtained by a straightforward 

extension of the chromosome encoding used for classic job-shop 

problems, where no information on operation routing is required: 

each gene specifies a job and a related factory, while the sequence 

of operations on machines is determined by the decoding 

procedure, according to the order in which the genes appear. 

 

 

The encoding schemes presented before combine the machine selection with the operation sequencing 

decisions, then metaheuristics have to explore both solution spaces at the same time. The main hypothesis of 

this project is based on the possibility of dividing the physical FMS configuration, so the metaheuristic can be 

decentralized to focus on parts on the system. This idea gives the possibility to assign parts of the system to an 
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entity so such entity can intensively explore the reduced solution space, increasing the possibility to find 

better solutions.  Consequently, in the following subsection, the encoding scheme proposed by (Zambrano 

Rey et al., 2015) is described because it allows to form subsets of individuals based on subsets of machine 

sequences. 

4.1.1. Strategy of Decentralization-Machine sequence encoding scheme 

 

Due to the different nature of the machine selection and job sequencing sub-problems, Zambrano Rey et 

al., (2015) propose an encoding technique that handles the two problems separately, through two-vector 

encoding. This chromosome structure has two main advantages. First, two-vector encoding allows generic 

problem modeling, making it possible to use the same structure for other kinds of problems (e.g., the job-shop 

problem and flow-shop like problems). Second, if both vectors are independent, various genetic operations 

can be applied, allowing more diversity and easier chromosome manipulation, thus improving the efficiency 

of the algorithm. In order to restrain the chromosome size, the sequencing vector is a permutation of the 

integers from 1 to n (where n is the number of jobs) and represents a feasible solution for the scheduling sub-

problem. As shown in Figure 4, ej is the position of job j in the release sequence. 

 

 

 

 

 

For the machine selection vector, an indirect encoding technique is used to explore the different machine 

sequences for each job. Since the size of the second vector must comply with the size of the first one, the 

genes in the second vector must represent an entire machine sequence for their corresponding jobs in the first 

vector. Given that different types of jobs may have a different number of available machine sequences, a 

bounded real coding scheme is adopted. As described in Figure 5, each gene gj of the machine routing vector 

is generated by a uniform distribution. By multiplying the value of gj with the maximum number of available 

machine sequences of each job j (MRj), the index of one feasible machine sequence, denoted by mrj, is 

obtained for each job j. The ceiling function (Figure 5) is used to obtain a meaningful value within the set of 

available machine sequences, i.e., the smallest upper integer. 

 

 

 

 

 

 

 

 

Let’s consider a case where there are 3 jobs and a FMS system with 3 machines. The FMS has full 

machine flexibility meaning that all machines can execute all operations. Figure 6 shows the decoding process 

to obtain a machine sequence for each job. In this case, jobs will be dispatch in order [1 2 3] and the machine 

sequences for each job by the decoding process, obtaining machine sequences [3 11 25]. It is important to say 

that the machine sequence matrix is built at the beginning of the process, on the basis of the active machines; 

if a machine breaks down, then the machine sequence matrix should be replace to leave only the available 

sequences. 

 

 

Figure 4: Sequencing vector 

Figure 5: Machine selection vector 
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The interesting part of this encoding scheme is the capability of focusing of certain sequences, isolating for 

instance certain machines. Thus it is possible to create groups of machine sequences depending on the part of 

the system that we would like to analyze. For instance, in Figure 7, there are 5 machines and the area marked 

with red dotted lines contains all the sequences that use machines 1, 2 and 3. Consequently, the decentralized 

approach proposed herein is based on this division of the physical system, meaning that decentralized 

processing units take care of different areas of the system, and compete to offer the best scheduling 

performance. It is then expected that, the evaluation of the whole solution space is better achieved by multiple 

entities focusing on multiple physical layouts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Decoding process 
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4.2. Implementation a decentralized metaheuristic for the FMS scheduling problem 

4.2.1. Multi-agent systems 

Multi-agent systems can be defined as a collection of, possibly heterogeneous, computational entities, 

having their own problem-solving capabilities and which are able to interact in order to reach an overall goal 

(Oliveira et al., 1999). The multi-agent systems (MAS) are a society organized, constituted by semi-

autonomous agents, which interact with others, aiming to resolve collaboratively some problems, or to 

achieve some individuals or collectives goals. The agents may be homogeneous or heterogeneous and have 

common goals or not, but still maintain a degree of communication between them (Bennane, 2010). A multi-

agent system is usually composed by a set of autonomous agents that have to coordinate their activities in 

order to accomplish a global objective. While the autonomy of the agents is essential for a MAS, it may cause 

the loss of the global coherence. The organization of a MAS is used to manage these intra- and inter-agent 

properties (Bordini et al., 2007). In the following, different organizations are described: 

Hierarchies: Hierarchies could be draw as a tree structure, it worked dividing the real problem into sub-

problems where these sub-problems are easily to be solved. The agent as more level has in the tree, it has 

more clarity of the problem; on the other hand it has strong disadvantages, such as bottlenecks and lags. 

Holarchies: A holarchy is a hierarchy of self-regulating holons which function (a) as autonomous wholes in 

supra-ordination to their parts, (b) as dependant parts in sub-ordination to controls on higher levels, and (c) in 

co-ordination with their local environment (Botti and Giret, 2008). Holarchies systems are incredible useful 

when the problem can be divided and assigned to different holons as a result of some advantages, as stability, 

autonomy and cooperation capacity. 

Coalitions: A coalition is a subset of agents formed for a purpose (goal directed) and dissolved when that 

need no longer exists (dynamic). There are some extended and difficult task that cannot be solved by a single 

agent because his capabilities, limited resources; or because his performance is too slow. Then, a group of 

agents formed a coalition with the purpose of solve the task o problem by cooperation. Its drawback is the 

additional complexity incurred if the partitioning of agents is not disjoint (Horling and Lesser, 2004). 

Teams: A team is set of cooperative agents which have agreed to work together towards a common goal. In 

comparison to coalitions, teams attempt to maximize their utility (Anderson et al., 2004). This high-level goal 

remains relatively consistent and agents can change their roles over time in order to accomplish it. 

Congregations:  are groups of agents who have bounded together into a typically flat organization in order 

to derive additional benefits. Unlike other paradigms, congregations are assumed to be long-lived and are not 

formed to achieve a single specific goal. A congregation allows an agent to localize its search for other 

agents; rather than considering the entire population as being equally likely to contain agents worth 

interacting with, an agent can bias its search towards members of its congregation. 

Societies: Agents can have different goals, varied levels of rationality and heterogeneous capabilities, and 

they may also differ in their available information; the societal construct provides a common domain through 

Figure 7:Different machine sequences 
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which they can act and communicate. A set of constraints (social laws or norms) is imposed on the behavior 

of the agents (Arcos et al., 2005). There are two aspects to the society formation problem. The first is to 

define the roles, protocols and social laws which form the foundation of the society. Given such a definition, 

the second problem is to implement the more literal formation of the society; that is, determining how agents 

may join and leave it. 

Federations:  consist in groups of agents which have ceded some amount of autonomy to a single delegate, 

which represents the group (called facilitator, mediator, translator or broker). Group members interact only 

with this agent, which acts as an intermediary between the group and the outside world (Jun Sawamoto et al., 

2005). An agent federation is a small multi-agent system composed of one service agent and several function 

agents. The service agent constitutes the service management of agents, and it is responsible for coordinating 

the internal members and interacting with the intermediary and other agent federations on behalf of its own 

agent federation. The function agents are responsible for the implementation and execution of the specific 

functions in the agent federation.  

Markets: are collections of agents with two main roles: buyers and sellers (shown in Fig. 2h as red and 

white respectively). Buyers send bids for a common set of items (e.g., resources, tasks, services, goods), 

which are received by sellers that process them and determine the winner. In these structures, agents are self-

interested, driven completely by their own goals. Interaction in markets occurs through communication and 

negotiation (Gimpel et al., 2008; Nevmyvaka et al., 2003). 

 

The organizational structure considered here in is based on a coalition of agents, because the primary 

agent decides to call a group of agents to help with a scheduling task, giving its complexity. The primary 

agent divides de physical layout and assign to other agents in the coalition, smaller search spaces by giving 

only certain machine sequences to explore.  

4.2.2. Multithreading 

A thread is a sequence of instructions executed within the context of a process, and less overhead is 

associated with multiple threads (running under a process) than with multiple processes. The smaller memory 

and synchronization overhead of a thread, relative to a process, creates the potential for writing more efficient 

parallel programs with multiple threads. For example, a parallel application may run on a symmetric 

multiprocessor computer with one process running for each processor on a node, an approach which requires 

storage on each node of the entire overhead of all processes on that node, and which likely requires storage of 

redundant data. (Nielsen and Janssen, 2000). Multi-threaded processor architectures are capable of 

concurrently executing multiple threads using a shared execution resource. Multi-threaded processors have 

two major advantages over other types of processor: 1) they offer the ability to hide latency within a thread 

(e.g., memory or execution latency) and 2) they achieve high efficiency. A possible third advantage is that 

they are potentially less complex than alternative high performance processors. (Chalmers et al., n.d.). 

Multithreading is also used for hiding long memory latency in uniprocessors and multiprocessor computer 

systems and aims at increasing system efficiency(Vlassov and Ayani, 2000). Multi-threading provides 

multiple execution contexts within a single process. A process comprises a list of executable instructions, all 

the runtime data needed by the program, open file descriptors, a main thread of execution, and, possibly, other 

threads of execution. All threads in the process have access to all the data and file descriptors, and, 

additionally, there is a small amount of data unique to each thread. (Nielsen and Janssen, 2000). 

In order to handle decentralization, Java libraries (Jade) were used in the first place because it allows the 

creation of multi-agents capable of performing the division of the scheduling problem and handles the coding 

of metaheuristic approaches. Also, Java allows the intelligent evaluation of the response that acquires by other 
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agents. Given the limited knowledge in programming multi-agents systems in Java, another option to simulate 

decentralization was considered, aiming to obtain results in less amount of time, but guaranteeing to preserve 

the focus and objectives of the project. Besides, Java provides parallel programming support in the core of the 

language. This feature enables programmers to write code that exploits multithreading without the need to use 

any external library, as for instance multi-agent libraries (Eiras-Franco et al., 2016). Therefore, in this project, 

the multithreading concept was be used to simulate the coalition of agents, in which each thread simulates and 

agent. In the following section, the design methodology is explained.  

4.3. Programming strategy 

The strategy used to evaluate and physically divide the system is based on the creation of two types of 

agents (or decisional entities), a main agent and several secondary agents. Section 5.2 explains the functions 

and architecture of each of the agents. The main agent orchestrates the scheduling problem and leads 

secondary agents. These secondary agents evaluate a number of machine sequences thus physically evaluate 

only part of the problem (FMS system), according to the allocation done by the main agent. Secondary agents 

will work in parallel, solving the algorithm and at the end all agents send their response to the main agent. 

Then the main agent orders them according to the lower objective function (OF). In this project we propose 

two behaviors, one without and another with competition. Competition is established between secondary 

agents where at the end of the evaluations and after the main agent orders, a percentage of secondary agents 

are eliminated due to their poor performance. In the following, two pseudocodes are explained for the two 

behaviors.  

 

Alg. 1 Decisional Entity (DE) pseudocode without competition 

The objective is to achieve a solution between several launches of the main program without some type of 

competition between each one of the solutions. 

 

 Begin 

01. Set DE parameters: 

Benchmark (Benchmark), Number of Jobs (NbJobs), Number of machines (NbMacs), Number of 

threads (n), Combinations to evaluate (mat[I][NbJobs]), Machine Availability (MacAvailability), 

Batch Description (BatchDescrip), Processing Times (ProcTimes), Machine Routing Flexibility 

(MRF), Common Due Date (CommonDD). 

 

02. Generation of the combinations to evaluate 

While (generation<I) do 

Create mat[generation] combination; 

EndWhile 

 

03. Generation of the threads 

For i=1 to n 

Create Thread I; 

Send parameters to Thread i (i, MacAvailability, Benchmark, NbJobs, BatchDescrip, 

ProcTimes, JobNumber, JobDescrip, NbMacs, MRF, CommonDD, mat[i]); 

Endfor 

 

04. Wait to all threads execution finished  
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Wait the notification of all threads; 

 

05. Sort threads in ascending order depending on their objective function 

Choose the Thread with the smallest objective function; 

End 

 

Alg. 2 Decisional Entity(DE) pseudocode with competition 

The objective is to reduce the computational cost through the competition between the different solutions. 

  

Begin 

01. Set DE parameters: 

Benchmark (Benchmark), Number of Jobs (NbJobs), Number of machines (NbMacs), Number of 

threads (n), Combinations to evaluate (mat[I][NbJobs]), Machine Availability (MacAvailability), 

Batch Description (BatchDescrip), Processing Times (ProcTimes), Machine Routing Flexibility 

(MRF), Common Due Date (CommonDD), Kill percent (KillDE), Threads Counter (x), Thread 

Validation (Validate[I]) 

 

02. Generation of the combinations to evaluate 

While (generation<I) do 

Create mat[generation] combination; 

EndWhile 

 

03. Generation of the threads 

For i=1 to n 

Create Thread I; 

Send parameters to Thread i (i, MacAvailability, Benchmark, NbJobs, BatchDescrip, 

ProcTimes, JobNumber, JobDescrip, NbMacs, MRF, CommonDD, mat[i]); 

Endfor 

 

04. Select the best Thread solution based on their objective function 

While (x >1) do 

//Check for termination of the iteration k is reached 

Wait the notification of all threads 

Sort threads in ascending order depending on their objective function; 

For i=n to (n-(x*KillDE)) 

Assign value of 0 to the current thread objective function; 

Validate [Thread i] = false; 

Notify Thread to Stop; 

EndFor 

Calculate the Number of threads alive (new x); 

EndWhile 

End 
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5. Engineering design 

5.1. Design statement 

This project focuses on designing a decentralized approach to deal with the FMS scheduling problem. In 

this particular case, the coalition organizational paradigm is taken as reference and the architectural structure 

(decisional entities and their relationships) and dynamic behavior (competition or not) of the decentralized 

approach are defined. As a functional feature, a competition behavior between entities is also proposed in 

order to improve the computing cost of the proposal. 

5.2. Design process 

In order to design the proposed approach, the algorithm used by Zambrano Rey et al., 2015 was modified. 

In this section, the parameters, functions, and the entities capable of solving the FMS scheduling problem by 

decentralized metaheuristics is explained. It is important to state that this approach is independent from the 

metaheuristic, making it a generic approach.  

The design process is explained in two phases. First, the actual architecture explaining the decisional 

entities (agents), the relationships between them, and their roles is shown in Figure 8.  

 Decisional Entity ED: this is the main decisional entity (or main agent) that controls the entire 

process. 

o Role: Define the division of the problem, starts the process and gather all the solutions of 

the entities and make the decision of which entity follows and which entity dies. 

o Parameters: FMS Scheduling problem instance (based on literature benchmark), #Jobs, 

#Machines, #Threads, Competition/NoCompetition 

o Data send: Machine sequence, Stop Criteria 

o Data received: objective function, Completition times and computational cost. 

 Decisional Entity TH#: these are the working entities (or secondary agents), which are assigned 

with a set of machine sequence combinations to test using a metaheuristic.  

o Role: Entity in charge of evaluating assigned part of the problem and returning the best 

solution to the main entity. This entity hosts the metaheuristic approach. 

o Parameters: Machine sequence iteration, objective function. 

o Data send: Completion time, objective function, Computational Cost i. 

o Data received: Stop criteria, Machine Sequence. 

 

Parameters, Functions and Variables used in the decentralized strategy.  

It is important to mention that because of previous works; the instantiation of this approach is done by 

choosing the PSO (particle swarm optimization) as the metaheuristic approach and the MSD (mean square 

deviation) as the objective function, since large deviations in job completion times are undesirable, the 

scheduling objective for just-in-time production is translated into the minimization of the mean-square due 

date deviation (MSD), according to the definition of MSD, the objective is to reduce the error between the 

estimator and what is estimated. However, the proposed approach does not constraint neither the selection of 

the metaheuristic, nor the selection of the objective function. 

 

Number of Jobs: Number of Jobs in the FMS, it is a number depending of the type of problem associate 

Number of Machines: Number of Machines available used in the FMS 

Common due date: Common due-date to all jobs 

Partial Flexibility: Boolean variable that identifies if the instances is partial flexibility or not 
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Iter Max: Maximum number of iterations where there is no improvement of <0.01 in the MSD 

Iterations: Number of total iterations 

Number of Threads: Number Threads working in different machine sequences 

Thread Competition: Boolean variable that identifies if there is competition 

Type Competition: Variable that identifies what type of competence will evaluate   

Perc Kill Competition: Percentage of entities that will be eliminated after n iterations. 

Number Iteration to Kill: Number of iterations reached where the best response of each thread will be 

evaluated 

Machine sequence combinations(): Is the set of machine routes available for job j.  

A machine route is defined as a sequence of machine that handle job’s operation sequence. 

Completion times: Variable time depending on the time result where the FMS Scheduling ended. 

MSD_i: Variable of the MSD obtained from each of the entities  

Computational cost i: Variable computational cost obtained after each iteration of the entities   

PSO( ): Metaheuristic approach used to solve the FMS, the PSO has different parameters explained below. 

 

Set PSO parameters: Swarm size, inertia weight (w in Eq. 1), acceleration constants (c1 and c2 in Eq. 1), 

maxnumber of generations, improvement parameter, Initialization, Initial population evaluation, Generation 

of the next swarm, Calculate the new velocity (Vk in Eq. 1), Calculate the new position (Xk in Eq. 2), 

Evaluation of the new swarm, Evaluate each particle’s MSD, Replaced individual best solution (pbest) by the 

new particle, Sort particles in ascending order depending on their MSD Set global best solution(gbest) with 

the particle with the smallest MSD; Choose the particle with the smallest MSD 

  

  (   )   ∗   ( )     ∗      ∗  (      ( )    ( ))    ∗    ∗  (     ( )    ( )))  (Eq. 1) 

 

  (   )    ( )     (   )   (Eq. 2) 

 

Where ω is the inertia weight, and c1 and c2 are the acceleration constants. 

Return(Completion time, MSD, Computational Cost): When the current thread finished will communicate 

the current Completion time, the best MSD and the Computational Cost to the main. 

Figure 8. Strategy Communication 
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The way of communication of the chosen strategy, including the roles and behavior, where  the main 

thread or Decisional entity generates the combinations and loads the necessary data for the realization of the 

FMS scheduling problem (number of Jobs, number of machines, which machine will perform each job), after 

10 iterations the main thread will evaluate the current solutions of the secondary thread, the current solution of 

each secondary thread is the best currently, and the Secondary threads will evaluate the PSO algorithm, 

creating an initial population and evaluating the position of each particle to obtain the MSD which is the 

solution of each iteration, all secondary threads are synchronized to send the current solution to the main 

thread.  

 

Secondly, de dynamic strategy shown in Figure 9 is explained with a UML diagram where we show the 

different behaviors of the entities when a competition exists or where it not, also the Figure 10 and 11 

describe the different parameters, function and variables that the strategy used. 

The UML sequence diagram shows the behavior of the entities, how they communicate with each other, the 

handling of the information of parameters, variables and functions, as well as the order in which the whole 

process is carried out. As we can see, a cycle only ends when the main entity has eliminated all entities, for 

this all entities in each of the iterations send their responses (MSD) to the main entity so that it evaluates and 

decides and re-initiates the process. Where the parameters send by the main entity to the entities in the PSO 

are (Number of Jobs, Number of Machines, Machine sequence, MSD i), all the entities works with these 

parameters to be able to return to main the best MSD founded. 

 

 

 

Figure 9. UML Diagram  
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Figure 10. Decentralized Strategy Structure-Without competition 

Figure 11. Decentralized Strategy Structure-With competition 
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The decentralized strategy structure demonstrates the different variables, parameters and functions that 

each type of entity must have for the correct operation of the strategy, as well as the different architecture for 

when there is and there is no competition. This project was based on showing the behavior when physical 

division of the system is possible, so it is very important to take into account the difference when there is and 

there is no competition and how the behavior of entities can influence the response. 

Two types of competition between entities were carried out in this project, the first type of competition is, 

after n iterations, the current best MSD is evaluated for each of the threads and the thread with the worst 

response is eliminated; The second type of competition is that after iterations the best MSD is evaluated for 

each of the threads and x percentage of the current threads is eliminated. 

5.3. Performance Requirements 

The computational tool must provide a feasible solution to the FMS scheduling problem. It must consider 

all the proposed constraints. In addition, the proposed approach must provide the user to assign the value of 

the parameters corresponding to the problem that he/she wants to evaluate. Last, the proposed approach must 

provide a computational cost, MSD, the machine sequence and the completion times. In this particular case, 

the performance requirements are evaluation using a PSO optimization model. Thus, they may vary 

depending on the metaheuristic approach and objective functions used. 

5.4. Performance Test 

Existence of parallelism: In order to guarantee the decentralization and the execution of the whole system 

in parallel, the multithreading method was used in JAVA, which allows the parallel evaluation of the entities 

that work with only part of the problem. 

5.5. Design restrictions 

The FMS under study has been configured to assemble a set of products, each product with a different 

operation sequence and component requirements. The proposed methodology designed based on the 

following parameters, assumptions and constraints: 

Static parameters: the following parameters are considered as static because they are defined on the basis 

of FMS components, configuration and technical features, which remain unchanged for long periods of time. 

Parameters related to product design are also considered static and included herein. Static parameters taken 

into consideration in this project are: the types of products, set of machines, machines’ buffer capacity, 

product operation sequences, set of operations supported by the FMS, set of manufacturing operations 

supported by each machine, the distance between machines and transport device parameters (i.e. nominal 

speed, minimum distance, number).  

Dynamic parameters: The following parameters were considered dynamic because they depend on FMS 

current status and production order data. Dynamic parameters considered herein are: the set of products to be 

manufactured, set of active redundant machines for each operation, the number of machine sequences 

available for each product and the set of available transport routes and transportation times. 

Assumptions and constraints: the following assumptions and technical and managerial constraints are 

mostly taken into consideration in FMS studies with realistic implementations (Luh, 1998; Caumond et al., 

2009; Herrero-Perez and Martinez-Barbera, 2010; Berger et al., 2010): 
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  A machine can process one operation at a time 

  An operation is performed by only one machine 

  Precedence constraints may exist between operations of the same product 

  Machine’s input buffer capacity is limited 

  A product, once it has finished on a machine, is transferred directly to an available machine’s input buffer 

  Product re-circulation is allowed 

  The number of simultaneous products in the FMS is limited 

  Within one batch, setup times can be neglected. 

   Preemptions are not accepted, then an operation has to be completed without interruption once it has 

started. 

 

The mathematical model for the FMS taken into consideration, with the aforementioned parameters, 

assumptions and constraints, can be found in  Zambrano Rey, (2014). 

5.6. Norms and standards 

Regarding the norms and standards for this project, the methodology was based on ISO 13053- 1 standard. 

DMAIC is an acronym for the five phases of the methodology which stands for: Define, Measure, Analyze, 

Improve and Control. Firstly, in the Define phase not only the importance of the problem to solve is 

determined but also the research question is established (see “Justification and Problem Statement” section). 

Additionally, this phase is related to the design of the decentralized approach, parameters, variables and 

funtions (see “Methodology” section). Considering the importance of evaluating the design of the model and 

its functionality, different FMS scheduling problems were analyzed for the validation of the effectiveness of 

the decentralized approach. Referring to the Measure and Analyze stages, the obtained results were analyzed 

using one way ANOVA, parameters were interpreted and adjusted. In the “Performance tests” section, the 

analysis and their respective relevance are described. In addition, in the “Results” section, a more detailed 

analysis of the obtained results is shown.  

Having solved the model, the Improve phase responds to the purpose of analyzing the impact of the 

proposed model in comparison with the centralized approach. In this stage, the impact of the model was 

studied using the computational cost and the solution established in the design statement. This analysis is 

presented in the “Performance tests” and “Results” sections. Finally, the Control phase, seen as a segment of 

the implementation of the model in a real situation, was not a part of the scope of this project. However, it was 

included from a theoretical point of view, reviewing the results of the model and the computational tool 

functionality (See “Results” and “Conclusions” sections). 

6. Results 

The following experiments were carried out, to evaluate if the MSD varies according to the number of 

Threads created, also there is a competition between the Threads in 2 cases, 1. At the (10,20 and 50) Iterations 

there will be a comparison and the thread that has the worst solution is eliminated also another experiment 

where competition is entered every 20 iterations and 10,20, or 30% is eliminated ; in addition, the results are 

compared with the results obtained by  Zambrano Rey, (2014) , where it evaluates a centralized structure 

through the metaheuristics Genetic Algorithm and PSO. Appendix 1 will show the results of all the 

experiments 
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To run these tests was used a virtual machine of Microsoft Standard_D15_v2 with the following 

specifications: 20 vCPUs, 140GB storage, 64GB RAM, this in order to use the multithreading methodology 

so that each Thread to work separately.  

6.1. Case study: FMS Benchmarks 

The proposed approach will be validated using the theoretical flexible job-shop scheduling benchmark 

proposed by Brandimarte, (1993). In such benchmark, there are 15 problem instances, denoted mk1 to mk15. 

In this project only, instances mk1 to mk10 were evaluated. The number of jobs varies from 10 to 30, the 

number of machines from 6 to 15 and the number of operations from 58 to 232. Two of the problems are fully 

flexible (mk2 and mk7) and the other were designed as partially flexible.  

6.2. Analysis of results 

 

 

 

From the results we can conclude that the decentralized methodology is not improving the solution (MSD) 

obtained by  Zambrano Rey, (2014)  , this may be for several reasons such as the decoding scheme, or 

because the PSO algorithm does not have additional techniques to improve efficiency , however for the 

Standard deviation(STD)  we observe that we do not obtain such high data as in some cases the centralized 

GA and PSO, this means that the sample space that is evaluating the algorithm does not present high peaks 

that may affect the final solution 

 

For the following experiments, only the Mk2 test was taken into account, because it is completely flexible, 

it obtains greater complexity due to the greater number of sequences. 

 

Problem 

instance   DECENTRALIZED PSO CENTRALIZED GA CENTRALIZED PSO 

Problem ID 

Due 

Date 

(s) Avg MSD {std} 

Avg. 

CT(S) Avg MSD {std} Avg. CT(S) Avg MSD {std} Avg. CT(S) 

Mk1 10 21.47 {0.42} 193.55 17.45 {0.31} 107 18.57 {0.83} 139 

Mk2 10 16.84 {0.89} 174.25 10.67 {1.63} 153 10.04 {1.86} 189 

Mk3 10 201.67 {4.82} 710.8 176.4 {3.41} 401 169.76 {20.89} 843 

Mk4 30 55.51 {1.69} 545.4 34.06 {1.03} 356 28.61 {1.16} 854 

Mk5 40 128.04 {2.56} 586.35 93.02 {1.37} 585 85.11 {1.41} 1028 

Mk6 70 89.38719 {1.75} 219.6 25.6 {3.24} 625 13.45 {2.61} 878 

Mk7 70 123.7105 {2.93} 1240.75 9.25 {1.95} 678 31.35 {7.89} 3561 

Mk8 100 195.5325 {3.63} 1511.5 116.82 {2.09} 718 86.62 {3.11} 2693 

Mk9 100 306.3114 {3.87} 1732.85 200.33 {6.94} 849 336.15 {81.81} 3254 

Mk10 120 236.7173 {4.40} 1625.5 126.3 {2.90} 1118 186.23 {9.77} 2983 

 

Table 2. Results for Brandimarte’s benchmark 
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Experiment 1. Evaluate if MSD variates with the different number of threads 

In this experiment, we will evaluate if the number of threads differs in the value of the MSD, in order to 

establish if it is possible to work with the minimum number of threads and thus decrease the computational 

cost. 

                                                                               
                                                        

ANOVA 

MSD   

 Sum of 

Squares 

df Mean Square F Sig. 

Between Groups 4,971 2 2,486 ,960 ,393 

Within Groups 82,811 32 2,588   

Total 87,782 34    

 

After performing the analysis of a factor, the result is that the number of threads not differ significantly at 

the level α= 0.05 in the calculated MSD. This means that for the experiment to evaluate the MSD with the 

different threads, it is possible to decrease the total number of threads to the minimum worked in this project 

(5), so all the simulations will handle with the minimum threads to minimize the computational cost. 

Experiment 2. Evaluate the maximum number of iterations without competition 

 In this experiment, we will evaluate if the number of iterations(200,500,1000) differs in the value of the 

MSD, to establish if it is possible to work with the minimum number of iterations and thus decrease the 

computational cost. 

                                                                                  
                                                           

 

ANOVA 

MSD_Without Competition 

 Sum of Squares df Mean Square F Sig. 

Between Groups ,805 2 ,402 ,550 ,580 

Within Groups 41,698 57 ,732   

Total 42,503 59    

 

After performing the analysis of a factor, the result is that the number of iterations no differ significantly at 

the level α= 0.05 in the calculated MSD. This means that for the experiment to evaluate the MSD when the 

number of iterations changes, it is possible to decrease the number of iterations to the minimum worked in 

this project(200), so all the simulations will handle with the minimum number of iterations and will minimize 

the computational cost.  

 

Experiment 3. Evaluate if there is a difference in the MSD if change the number of iterations to enter 

competition 
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 In this experiment we will evaluate if modifying the number of iterations to enter competition (10,20,50), 

affects the result of the MSD 

                                                                                   
                                               
                                                                              
                             
 

ANOVA 

MSD_With Competition 

 Sum of 

Squares 

df Mean Square F Sig. 

Between Groups ,549 2 ,274 ,183 ,833 

Within Groups 85,613 57 1,502   

Total 86,162 59    

 

 

After performing the analysis of a factor, the result is that the number of iterations between competition no 

differ significantly at the level α= 0.05 in the calculated MSD. This means that for the experiment to evaluate 

the MSD when the number of iterations changes, it is possible to decrease the number of iterations between 

competition, that could help with the solution because the sample space will be reduce with each dead thread.  

6.3. Impact of the model 

Aiming to analyze the impact of the model, due to the work has a theoretical approach it is very difficult to 

perform an economic impact analysis, taking into account that the case of the study are tests found in the 

literature that address especially the FMS, however if we take into account that our results obtained an 

improvement in computational time, we can say that because the strategy found a solution before this can be 

implemented previously earning time and saving money in the business environment. 

 

7. Conclusions and recommendations  

7.1 Conclusions 

This paper proposed a decentralized Metaheuristic for the FMS scheduling problem aimed at minimizing 

the computational cost and improve the robustness in JIT context. The meta-heuristic approaches proposed 

are innovative because of their particle encodings, sharing a bi-level structure and a real-code-based encoding 

scheme. An important aspect of the encoding technique proposed is that it always offers legal and feasible 

solutions, thus avoiding repair mechanisms. 

Taking into account that a completely flexible system was used for this project the DoE of this project, it 

should be established that for a problem that is partially flexible, this should work the same because partially 

flexible system is less complicated instance because it would have fewer combinations of machines possible 

for each of the iterations. 

Due to the physical evaluation of the system and using the codification mentioned in section 4.3 it is 

possible to determine that the problem is adjusted to any type of disturbances in the system, and that it is not 

necessary to change the type of codification to the different problems and disturbances that Can be presented 

in an FMS. 
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Owing to the parallelization, each decisional entity has a smaller sample space if compared to a non-

parallelized strategy, thanks to which the time in which the solutions are stabilized is smaller. 

Due to the use of Threads, we see in Table 2 that the computational cost of the decentralized proposal is 

less than the centralized one, this is because the sample space is divided therefore for each iteration the agent 

only searches within the sample space assigned. 

Through the designs of the proposed experiments, the results show that for this strategy it does not 

significantly affect the number of total iterations when improving the MSD, this tells us that we can base the 

minimum number of iterations worked on. 

After analyzing the results obtained, it is important to highlight that it was possible to carry out the 

decentralization of the system, by the type of coding worked, however we found that the results are not what 

was expected according to what was evaluated and compared with a centralized instance.  

Through the analysis of the different coding schemes used previously, it is found that in none of the 

schemes was a PSO algorithm used, this gives us the hypothesis that the PSO algorithm when used in a 

decentralized environment does not find a better solution if we compare it with the centralized, this may be 

due to the size of the population that is created at the moment of making the change from particle to particle.  

It is found that within the code because multiple divisions of the sample space are generated this also 

generates multiple garbage data that generate slowness when performing an iteration and at the same time 

delays when delivering a final solution. 

 

7.2 Recommendations  

Future work on PSO will focus on techniques that allows to parallelize the solution, for PSO, it will be 

interesting to implement diverse parallelism methods as a multi agent systems, that interact between them and 

one principal agent take decisions to improve the results. 

Future work could establish another type of competence when removing agents and therefore eliminate 

decisional sample space, this could improve the solution or computational times. 

It is important to say that the PSO algorithm may not be optimized to work with the multithreading 

methodology, possibly with an improvement in the algorithm it may be possible to reach a better solution due 

to the decrease of the sample space. 

As future work will could perform the analysis of what the results would be by means of a genetic 

algorithm, using the type of coding worked on in this project. 

8. Glossary 

Flexible Manufacturing System(FMS): A flexible manufacturing system (FMS)is a computer-controlled 

manufacturing system. It can produce multiple types of parts using shared resources such as robots, machines, 

etc. Parts are manufactured according to a defined sequence of operations. Some operations of parts may be 

processed by more than one machine (routing flexibility), and some resources may be used to process more 

than one part type (resource flexibility). When an operation of a part is completed, the part may be moved to 

the next machine through material handling systems or transferred to an intermediate buffer.(Lei et al., 2017) 

 Scheduling: Scheduling is an important element of production systems because it serves as an overall 

plan on which many other shop activities are based. There are two key elements in any scheduling system: 

schedule generation and revisions (monitoring and updating the schedule). The first element which acts as a 

predictive mechanism determines planned start and completion times of operations of the jobs. The second 

element which is viewed as the reactive part of the system monitors the execution of the schedule and copes 

with unexpected events (i.e., machine breakdowns, tool failures, order cancelation, due date changes, etc) 

(Sabuncuoglu and Bayız, 2000) 
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Decentralization: Decentralized metaheuristics have shown to be useful in practice to solve a large 

number of applications. Many real-life problems may need days or weeks of computing time to be solved on 

serial machines. This is the usual scenario when considering difficult problems such as complex 

combinatorial problems with large search spaces, multi-objective problems with many hard-to-evaluate 

objective functions, or dynamic optimization problems, such as the dynamic FMS scheduling problem (Alba 

et al., 2013). 

Artificial intelligence: Artificial Intelligence (AI) is a general term that implies the use of a computer to 

model intelligent behavior with minimal human intervention. AI is generally accepted as having started with 

the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as 

forced labor. (Hamet and Tremblay, 2017) 

Metaheuristics: Metaheuristic algorithms have provided efficient tools to engineering designers by which 

it became possible to determine the optimum solutions of engineering design optimization problems 

encountered in every day practice. Generally metaheuristics are based on metaphors that are taken from nature 

or some other processes.(Saka et al., 2016) 

Multithreading: Multithreading allows users to take advantage of multicore systems without timposing 

the overhead of creating multiple processes and providing direct access to a common address space. However 

the creation and management of threads introduces a computational overhead that makes the use of threads 

suboptimal when the tasks parallelized have low complexity.(Eiras-Franco et al., 2016) 

9. Table of annexes 

Num 
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x 
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document 
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OWN JAVA https://drive.google.com/open?id=1hGbE

6XRiVK-W3gT8E1yCCd-UL6ThsRjj  

5 

2 Results OWN Excel https://drive.google.com/open?id=1JLQx

HU1lxFDY-4WpOEekus-1DIrDJmo_ 

5 
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