331 research outputs found

    Dock Assignment and Truck Scheduling Problems at Cross-docking Terminals

    Get PDF
    In this paper, we consider the integration of dock assignment and truck scheduling problem at cross-docking terminals. The problem is first formulated as a 0-1 integer programming model. Since both dock assignment and truck scheduling problems are NP-hard, its integration is more difficult to solve. Thus we propose reduced variable neighborhood search (RVNS) algorithms to solve the problem. Computational experiments are carried out on four set of instances. The results show that RVNS is capable of finding good solutions in a much shorter computation time when it is compared with optimization solver Gurobi’s solutions

    The parcel hub scheduling problem with limited conveyor capacity and controllable unloading speeds

    Get PDF
    We investigate a specific truck scheduling problem at cross-docks in the postal service industry on an operational level aiming to maximise the number of duly parcels assuming fixed departure times of the outbound trucks. The inbound gates and the conveyors as means of transportation inside the hub constitute the bottleneck resources. As a novel extension, we propose flexible unloading speeds to efficiently utilise the scarce resources. We formalise the problem with a mixed integer program and explicitly incorporate controllable unloading speeds of the inbound trucks. We determine the computational complexity and develop a genetic algorithm to efficiently solve the problem. Our investigation focuses on both the performance of the genetic algorithm and the applicability of the results in a real-world environment by implementing scheduling policies in a simulation model that considers individual parcel interactions. Based on our experimental results, we can state that especially in problem settings with scarce conveyor capacities, our approach to incorporate controllable unloading speeds has the potential of significantly increasing the number of duly parcels

    A Review on Quantitative Approaches for Dock Door Assignment in Cross-Docking

    Get PDF
    Cross docking is a relatively new technique in supply chain operations. It offers limited storage time to maximize the efficiency of goods transshipment. Efficient operation of a cross docking system requires an appropriate coordination of inbound and outbound flows, accurate planning and dynamic scheduling.  The planning strategies at cross docking terminals, which are receiving growing attention today, are the truck-to-door assignment and destination to door assignment problems. This paper provides a comprehensive literature review of quantitative approaches in dock door assignment problems of cross docking planning. The contributions of this paper are to identify the gap of knowledge in operational levels mainly in dock door assignment and to point out the future research direction in cross docking

    Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products\u27 Unit Costs Delivered to the Final Customers

    Get PDF
    This study aims at proposing a decision-support tool to reduce the total supply chain costs (TSCC) consisting of two separate and independent objective functions including total transportation costs (TTC) and total cross-docking operating cost (TCDC). The full-truckload (FT) transportation mode is assumed to handle supplier→customer product transportation; otherwise, a cross-docking terminal as an intermediate transshipment node is hired to handle the less-than-truckload (LTL) product transportation between the suppliers and customers. TTC model helps minimize the total transportation costs by maximization of the number of FT transportation and reduction of the total number of LTL. TCDC model tries to minimize total operating costs within a cross-docking terminal. Both sub-objective functions are formulated as binary mathematical programming models. The first objective function is a binary-linear programming model, and the second one is a binary-quadratic assignment problem (QAP) model. QAP is an NP-hard problem, and therefore, besides a complement enumeration method using ILOG CPLEX software, the Tabu search (TS) algorithm with four diversification methods is employed to solve larger size problems. The efficiency of the model is examined from two perspectives by comparing the output of two scenarios including; i.e., 1) when cross-docking is included in the supply chain and 2) when it is excluded. The first perspective is to compare the two scenarios’ outcomes from the total supply chain costs standpoint, and the second perspective is the comparison of the scenarios’ outcomes from the total supply chain costs standpoint. By addressing a numerical example, the results confirm that the present of cross-docking within a supply chain can significantly reduce total supply chain costs and total transportation costs

    Models and Algorithms for Inbound and Outbound Truck to Door Scheduling

    Get PDF
    Cross-docking is a logistic strategy that facilitates rapid movement of consolidated products between suppliers and retailers within a supply chain. It is also a warehousing strategy that aims at reducing or eliminating storage and order picking, two of which are known to be major costly operations of any typical warehouse. This strategy has been used in the retailing, manufacturing, and automotive industries. In a cross-dock, goods are unloaded from incoming trucks, consolidated according to their destinations, and then, loaded into outgoing trucks with little or no storage in between. In this thesis, we address an integrated cross-dock door assignment and truck scheduling problem in which the assignment and sequencing of incoming trucks to strip doors and outgoing trucks to stack doors is optimized to minimize the total time to process all trucks. We present a mixed integer programming formulation to model this problem and some valid inequalities to strengthen the formulation. We also present two metaheuristics to obtain high quality solutions in reasonable CPU times. These algorithms use a mix of composite dispatching rules, constructive heuristics, local search heuristics which are embedded into a greedy randomized adaptive search procedure (GRASP) and an iterated local search (ILS). Results of computational experiments are presented to assess the performance of the proposed algorithms, in comparison with a general purpose solver

    Scheduling cross-docking operations under uncertainty: A stochastic genetic algorithm based on scenarios tree

    Get PDF
    A cross-docking terminal enables consolidating and sorting fast-moving products along supply chain networks and reduces warehousing costs and transportation efforts. The target efficiency of such logistic systems results from synchronizing the physical and information flows while scheduling receiving, shipping and handling operations. Within the tight time-windows imposed by fast-moving products (e.g., perishables), a deterministic schedule hardly adheres to real-world environments because of the uncertainty in trucks arrivals. In this paper, a stochastic MILP model formulates the minimization of penalty costs from exceeding the time-windows under uncertain truck arrivals. Penalty costs are affected by products' perishability or the expected customer’ service level. A validating numerical example shows how to solve (1) dock-assignment, (2) while prioritizing the unloading tasks, and (3) loaded trucks departures with a small instance. A tailored stochastic genetic algorithm able to explore the uncertain scenarios tree and optimize cross-docking operations is then introduced to solve scaled up instaces. The proposed genetic algorithm is tested on a real-world problem provided by a national delivery service network managing the truck-to-door assignment, the loading, unloading, and door-to-door handling operations of a fleet of 271 trucks within two working shifts. The obtained solution improves the deterministic schedule reducing the penalty costs of 60%. Such results underline the impact of unpredicted trucks’ delay and enable assessing the savings from increasing the number of doors at the cross-dock

    Design and Analysis of Efficient Freight Transportation Networks in a Collaborative Logistics Environment

    Get PDF
    The increase in total freight volumes, reducing volume per freight unit, and delivery deadlines have increased the burden on freight transportation systems of today. With the evolution of freight demand trends, there also needs to be an evolution in the freight distribution processes. Today\u27s freight transportation processes have a lot of inefficiencies that could be streamlined, thus preventing concerns like increased operational costs, road congestion, and environmental degradation. Collaborative logistics is one of the approaches where supply chain partners collaborate horizontally or/and vertically to create a centralized network that is more efficient and serves towards a common goal or objective. In this dissertation, we study intermodal transportation, and cross-docking, two major pillars of efficient, cheap, and faster freight transportation in a collaborative environment. We design an intermodal network from a centralized network perspective where all the participants intermodal operators, shippers, carriers, and customers strive towards a synchronized and cost-efficient freight network. Also, a cross-dock scheduling problem is presented for competitive shippers using a centralized cross-dock facility. The problem develops a fast heuristic and meta-heuristic approach to solve large-scale real-world problems and draws key insights from a cross-dock operator and inbound carrier\u27s perspectives

    Managing loading and discharging operations at cross-docking terminals

    Get PDF
    Abstract A cross-docking terminal is a relevant node within a distribution chain. Actually, at this intermediate logistic platform between suppliers and retailers, incoming flows of possible different commodities are consolidated into single shipments, with respect to the retailers\x92 orders, and directly delivered, skipping thus the storage phase. In such a context the synchronization of the inbound and outbound trucks is a necessary condition to guarantee fast and congestion-free transshipment operations. In this paper we propose a Mixed Integer Linear Program and a heuristic algorithm for managing the loading and discharging operations, with the aim of minimizing the completion time of the whole transshipment process
    • …
    corecore