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Abstract

Models and Algorithms for Inbound and Outbound Truck to Door
Scheduling

Sayed Ibrahim Sayed

Cross-docking is a logistic strategy that facilitates rapid movement of consolidated

products between suppliers and retailers within a supply chain. It is also a warehousing

strategy that aims at reducing or eliminating storage and order picking, two of which are

known to be major costly operations of any typical warehouse. This strategy has been

used in the retailing, manufacturing, and automotive industries. In a cross-dock, goods

are unloaded from incoming trucks, consolidated according to their destinations, and then,

loaded into outgoing trucks with little or no storage in between.

In this thesis, we address an integrated cross-dock door assignment and truck schedul-

ing problem in which the assignment and sequencing of incoming trucks to strip doors

and outgoing trucks to stack doors is optimized to minimize the total time to process all

trucks. We present a mixed integer programming formulation to model this problem and

some valid inequalities to strengthen the formulation. We also present two metaheuristics

to obtain high quality solutions in reasonable CPU times. These algorithms use a mix of

composite dispatching rules, constructive heuristics, local search heuristics which are em-

bedded into a greedy randomized adaptive search procedure (GRASP) and an iterated local

search (ILS). Results of computational experiments are presented to assess the performance

of the proposed algorithms, in comparison with a general purpose solver.

iii



Acknowledgments

All praise belongs to Allah who has given me the patience and perseverance to accom-

plish my master’s degree. Peace upon his messenger, Muhammad.

I want to express my very great appreciation to my supervisor Dr. Ivan Contreras for

his guidance and support to finish my thesis. The advice given by him has been a great help

in accomplishing and writing this thesis.

I want to express my gratitude towards my beloved family as nothing would be possible

without their support and encouragement. They helped me a lot to reach this stage in my

life. My parents supported me emotionally and financially. Thanks to my father Sayed

Omar and my mother Fozia Sayed for the continues encouragement, motivation, and sup-

ports. Thanks to my sisters Amina, Sawsan, Noorah, and Fatema for motivation and help.

Also, thanks to my brother’s Sultan, Yousuf, and Abdulrahman for their puerile support.

I want to thank my friends and lab-mates for their help in writing the thesis. I can not

forget the valuable support and motivation of Maryam. I have often looked towards her for

a valuable suggestion, and she always helped me whenever I needed an assistant. Thanks

to my friend Aditya, a PhD candidate for sharing knowledge through the course work

and having significant dissections about the research. To my friend since my childhood,

Amjad thanks for your support and motivation. Thanks again to Maryam, Amjad and

Aditya for fixing the grammatical issues. Thanks to Wael for greet dissections and valuable

suggestions about my thesis to Carlos for the great memories in office.

Thanks to Concordia University, Transportation Association of Canada, and port of

iv



Montreal for the financial support during my study. At last, thanks to many other people

whose names are not mentioned here but contributed to this research.

v



Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Literature Review 6

2.1 Single Docks at Each Side . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Multiple Docks Without Internal Transshipment Time . . . . . . . . . . . . 9

2.3 Multiple Docks With Internal Transshipment Time . . . . . . . . . . . . . 10

3 Problem Definition 13

3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Mathematical Programming Formulation . . . . . . . . . . . . . . . . . . . 14

4 Solution Algorithms for the TDSP 20

4.1 Heuristics Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Dispatching Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Constructive Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.4 Combining Constructive and Local Search Heuristics . . . . . . . . 32

4.2 Metaheuristics Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



4.2.1 GRASP Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Iterative Local Search Algorithm . . . . . . . . . . . . . . . . . . . 37

4.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 54

Bibliography 56

vii



List of Figures

Figure 1.1 Buijs et al. (2014) Cross-docking problem classes. . . . . . . . . . . 4

viii



List of Tables

Table 4.1 Results for instances with 25% density in flow matrix . . . . . . . . . 43

Table 4.2 Results for instances with 35% density in flow matrix . . . . . . . . . 44

Table 4.3 Results for instances with 50% density in flow matrix . . . . . . . . . 44

Table 4.4 Results for instances with 75% density in flow matrix . . . . . . . . . 45

Table 4.5 Results of B&C Algorithm. . . . . . . . . . . . . . . . . . . . . . . 46

Table 4.6 Results of constructive algorithms and dispatching rules . . . . . . . 47

Table 4.7 Results of composite heuristics algorithms . . . . . . . . . . . . . . . 47

Table 4.8 Results of metaheuristics algorithm. . . . . . . . . . . . . . . . . . . 49

Table 4.9 Overall Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.10 Results of case 1: neglecting the internal transportation time . . . . . 52

Table 4.11 Results of case 2: including the transshipment time . . . . . . . . . . 52

Table 4.12 Results of case 3: over estimating the transshipment time . . . . . . . 52

Table 4.13 Results of desynchronize model . . . . . . . . . . . . . . . . . . . . 53

ix



Chapter 1

Introduction

Globalization and competition have been constantly putting pressure on companies and

organizations to have efficient supply chain management. PwCs Performance Measure-

ment Group classifies some companies to be Best in Class supply chains (BIC). Companies

classified as BIC obtain 20% higher profitability and reach 50% higher sales growth. Ac-

cording to Supply Chain Management Association (2016), in Canada, the size of the supply

chain sector is equal to that of the manufacturing sector and around six times the size of the

agriculture sector. Supply Chain Management Association (2016) defines the supply chain

management (SCM) as strategic management of the relationship between several groups

or divisions, the flow of materials, services, information, and money to achieve better eco-

nomic value. According to Transport Canada (2017), more than 800 millions tons of goods

were transported across the country in 2015 by private sectors. Logistic management is

defined as the the strategic management of flow of materials from end to end. Good lo-

gistic practices result in lower transportation costs, better customer satisfaction, and higher

efficiency in terms of speed, flexibility, and capacity Roy (2011). In the business sector,

different companies are applying different transportation and logistics strategies. The main

four strategies are direct shipment, milk-runs, warehousing, and cross-docking. The com-

modities are shipped directly from the origin to the destination in a direct shipment strategy.
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In a milk-run strategy, commodities are grouped into routes, where each route consists of a

sequence of pickups and drop offs. In cross-docking and warehousing strategies, products

are consolidated into full truckload (Buijs et al., 2014).

In transportation networks, cross-dock terminals are the intermediate nodes where prod-

ucts are consolidated into full truckload to achieve economies of scale. At the cross-dock

terminal, the products are not stored for a long time as they are in traditional warehouses.

Elimination of storage results in zero holding cost, minimal damage, and loss of items.

In comparison to a point to point delivery system, there is a trade-off between the han-

dling costs at cross-dock terminal and savings from achieving full truckloads. In supply

chains where suppliers and/or customers are sparsely located from one another, cross-dock

technique results in an efficient transportation system as compared to the point to point de-

livery system. The benefits to be yielded from the cross-dock technique depends on certain

conditions. According to Apte and Viswanathan (2000), products with the following char-

acteristics will best fit the cross-dock technique: products with high demand rates, products

with stable rates, and products with low stock-out costs.

To illustrate the process at the cross-dock terminal, an inbound truck arriving at the

terminal is assigned to an inbound door, where the commodities are unloaded from the

inbound truck at the inbound door in the unloading area. The unloaded commodities are

sorted and consolidated at the sorting area and then moved on to the loading area. On

the other hand, the outbound truck is assigned to an outbound door. Once assigned, the

commodities from the loading area are then loaded on to the outbound truck to be shipped

to their next destination. Unloading, loading and moving the commodities within the cross-

dock terminal can be done by forklifts or by advanced automated systems. The efficiency of

the cross-dock terminal is directly affected by how these trucks are assigned and scheduled.

(Stephan and Boysen, 2011).
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A successful implementation of the cross-docking technique includes solving many de-

cision problems. Buijs et al. (2014) proposed a general classification of the cross-dock

problems. As shown in Figure 1.1, problems are classified into two main classes, local

cross-dock management problems and cross-docking network management problems. The

first class focuses on the activities within a cross-dock terminal whereas the second one

focuses on the activities between the cross-dock terminal and other participating entities

interacting with the cross-dock terminal. These are then further classified into following

three sub-classes: strategic, tactical and operational. Decisions involved in designing the

cross-dock terminal include the shape of the cross-dock, number of doors, capacity and

material handling design. The network design decisions include the terminal location, the

terminal type, and the number of cross-dock terminals. In the tactical level, cross-dock

planning decisions include trucks to doors assignment and re-sources capacity planning.

On the other hand, network planning decisions contain the route capacity planning, ship-

ment flow allocation and assignment of shipments to destinations. At the operational level,

cross-dock scheduling problem studies the trucks scheduling and resource scheduling. Net-

work scheduling includes solving the truck routing problem. Here, we study a synchronized

truck scheduling and truck to door assignment problem.

According to Ladier and Alpan (2016), truck to door scheduling problem in cross-

dock is a combination of two decision problems: the cross-dock door assignment problem

and the truck scheduling in the cross-dock problem. Cross-dock door assignment problem

deals with the assignment of trucks to doors in such a way that minimizes or maximizes

the required objective while respecting the constraints in the place. The truck scheduling

problem aims to determine the time table at the trucks which are scheduled. Also, it as-

sumes that the assignment of trucks to doors are known in advance. Another version of this

problem is the truck sequencing problem, where the decision to be made is the sequencing
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Figure 1.1: Buijs et al. (2014) Cross-docking problem classes.

of trucks irrespective of the time at which trucks are scheduled. The truck to door schedul-

ing problem deals with both the assignment of trucks to doors and the time at the trucks

which are scheduled. The objective could be to minimize the cost, time, or the number

of delayed trucks. These problems are further classified into three classes, only inbound

problem, only outbound problem and both inbound & outbound problem. For instance,

in the inbound cross-cock door assignment problem, the decisions to be made are for the

inbound side only, and the assignment of the outbound trucks is assumed to be known and

vice versa for the outbound cross-dock door assignment problem. On the other hand, for

both inbound and outbound Cross-Dock door assignment problem, the assignment of both

inbound and outbound trucks should be determined. Both the assignment problems and

scheduling problems are well known to be hard problems to solve even in the single side

case. (Ladier and Alpan, 2016).

In this thesis, we study the truck-to-door scheduling problem (TDSP). In this problem,

we are aiming to reach an optimum decision for the assignment and scheduling for a given

set of inbound and outbound trucks to a set of inbound and outbound doors. One of the
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assumptions in this problem is that the distance between the inbound door and the outbound

door is a factor to be considered. This is due to the fact that typically, the number of doors

in a cross-dock terminal can range from anywhere between 8 to 200 doors. While in some

cases, it could be 500 or more doors e.g. Dallas, TX Terminal which has more than 500

doors (Gue, 1999). Incorporating that into the scheduling problem leads to minimizing the

handling required to run the operation. Also, we assume that trucks are available at time

zero, the truck permutation is not allowed, and products are not interchangeable. Moreover,

we consider an exclusive mode which means that each door serves either as an inbound

door or outbound door, but not both at same time. According to the classification scheme

presented by Boysen and Fliedner (2010), our problem is classified as [E|ti0|Cmax]. The

principal contributions of this thesis are:

• we introduce the TDSP problem where we consider certain assumptions to have a

closer representation of the reality.

• We present two mathematical programming formulations to for the TDSP.

• we propose two constructive algorithms to obtain feasible solutions.

• we develop a local search algorithm using various neighbourhoods.

• we develop two metaheuristics to obtain high quality solutions.

The remainder of this thesis is organized as follows. In Chapter 2, a comprehensive lit-

erature review on Truck-to-door scheduling at cross-dock problems is presented. Chapter 3

contains the problem description, assumptions, notations and two mathematical models. In

Chapter 4, we present the solution methodologies and computational results. In the com-

putational results section, we generate instances and analyze the results obtained from the

two formulations and proposed solution methodologies. Finally, we draw our conclusion

in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we present a literature review for truck to door scheduling problems

in a cross-dock terminal. Our focus here is on the existing research in scheduling and se-

quencing where the decisions to be made are for both inbound and outbound trucks at the

cross-dock terminal. Boysen and Fliedner (2010) present a classification scheme and nota-

tions for structuring this complex research field. The notations are a combination of clas-

sical machine scheduling attributes and additional cross-dock scheduling attributes. The

classification scheme and notations are based on both door environment and operational

characteristics of the cross-dock. Also, they present a literature review for cross-dock prob-

lems. Stephan and Boysen (2011) present the cross-dock concept and classified decision

problems and for each class, they provide a detailed literature review.

Van Belle et al. (2012) present a classification of problem types for cross-dock research

by conducting an extensive review of the literature. Buijs et al. (2014) provide a frame-

work for synchronizing interdependent cross-dock problems to support the future work.

They also present a literature review and classification based on the inputs and outputs

of the decision problem of cross-dock research. They categorized decision problems at

the cross-dock into two main types: local decisions and network management decisions.

Furthermore, for each type, they classified decision problems into three decision level:
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strategic, tactical, or operational.

Ladier and Alpan (2016) study the gap between the research and the industry by analyz-

ing and matching publications and literature reviews to industrial practices. They focus on

tactical and operational decisions at the cross-dock terminal. They visited eight cross-dock

terminals and interviewed managers there. For two out of eight managers, makespan is an

important performance measurement. They conclude that, in practice, its preferable to sep-

arate inbound and outbound doors. They highlighted the gap between the research and the

industry mentioned above. To fill the gap between researches and the industry practices,

they suggested some areas to focus.

We overview the work done on the single door environment where authors assumed

that the terminal consists of one inbound door and one outbound door. After that, we

overview works done on the multiple door environments under the assumption that the

internal transpiration time is neglected. Following that, an overview of the work done on

the multiple door environment is given, where the internal transportation time is taken into

account.

2.1 Single Docks at Each Side

To the best of our knowledge, Yu (2002) is the first work to study the truck scheduling

problem. It is a PhD thesis and it studies three different versions of the problem. The first

problem, that is also presented in Yu and Egbelu (2008), assumes that the storage is allowed

and the truck preemption is not allowed. The second problem assumes that the storage is

not allowed while the truck preemption is allowed. The last problem assumes that both

storage and truck preemption are allowed. All problems assume that trucks are available at

time zero, trucks change over time and the product shifting time is identified and fixed, and

products are interchangeable. The thesis presents mixed integer programming (MIP) for-

mulations and heuristics to solve the problem. For the first problem, Vahdani and Zandieh
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(2010) and Arabani et al. (2011) propose metaheuristics algorithms. Also, Shiguemoto

et al. (2014) propose a hybrid genetic algorithm with the tabu search. Keshtzari et al.

(2016) propose a new MIP formulation model. They compare their formulation with the

one proposed by Yu and Egbelu (2008) using the commercial software CPLEX that was

able to solve their model in significantly less amount of time. Also, they propose a meta-

heuristic to solve larger instances.

Chen and Lee (2009) and Chen et al. (2009) study the cross-dock sequencing problem

with a single inbound and single outbound door. The problem is studied in the context of

the classical two-machine flow shop with additional precedence constraints. They assumed

that trucks are available at time zero, products are not interchangeable, and the objective is

to minimize the makespan. They introduce some optimality properties and show that the

problem is NP-hard, however in some particular cases the problem can be solved in poly-

nomial time. They propose both heuristics and branch and bound algorithms. Fonseca et al.

(2017) present a time-index formulation and propose a Lagrangian relaxation that decom-

poses the problem into two sub-problems, one for each side. To solve the sub-problems,

they present a polynomial time algorithm. Moreover, they present hybrid Lagrangian meta-

heuristics. Then, they extended that by studying multiple inbound and outbound doors.

Boysen et al. (2010) present a time-index formulation and assume that loading and un-

loading of a truck takes one time slot. Also, they assume that all trucks takes same process

time and neglect the transportation time at the terminal. They prove that the problem is

NP-hard and propose a method to obtain a lower bound and a decomposition approach

to get good upper bounds. They decompose the problem into two sub-problems: one for

the inbound and the other for the outbound side. Bodnar et al. (2015) study a scheduling

problem with the time windows constraint. They consider a cross-dock terminal with three

types of docks, inbound docks, outbound docks and mix docks. They assume that products

unloaded from an inbound are either loaded directly to the outbound truck or stored at the
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temporary storage area. They presented a MIP formulation and heuristics.

2.2 Multiple Docks Without Internal Transshipment Time

Song and Chen (2007) study scheduling parallel inbound doors and single outbound

doors, in a flow shop context. In their model, preemption is not allowed, all trucks are

available at time zero, and products are not interchangeable. They present a MIP formula-

tion, two heuristics based on Johnson’s rule and two methods to obtain a lower bound.

Chen and Song (2009) consider a parallel dock door on at least one side, which is a

generalization of the problem studied in Chen and Lee (2009). They study the problem

in the context of the two-stage hybrid flow shop problem. They neglected the transporta-

tion and consolidation time at the terminal. They proposed a MIP model, developed four

heuristics based on Johnsons rule and provided a method to get a lower bound. Cota et al.

(2016) study the same problem and present a time-index formulation that dominates the

one proposed by Chen and Song (2009). Also, they present a constructive algorithm that

outperforms the heuristics presented in Chen and Song (2009) for large instances. Bel-

langer et al. (2013) study the problem as a three-stage hybrid flow shop. They consider a

cross-dock terminal with parallel inbound and outbound doors and they include the sort-

ing process by considering a parallel station between inbound and outbound doors. They

present several heuristics and a branch and bound algorithm to solve the problem.

Li et al. (2004) study the truck sequencing problem in a just in time context. They as-

sume that products are not interchangeable, the preemption is not allowed and both release

date and due dates are known. The objective is to minimize the total weighted earliness and

the tardiness of the trucks. They present a MIP formulation and provide a heuristic to solve

the problem. Joo and Kim (2013) consider three types of trucks; inbound trucks, outbound

trucks and a mix of both trucks. They assumed that products are interchangeable and the

objective is to minimize the makespan. They present a mathematical model and propose
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two metaheuristics to solve the problem. Yazdani et al. (2015) study a similar problem to

the one studied by Joo and Kim (2013). They propose a MIP formulation and present a

metaheuristic.

Boysen (2010) studies the scheduling problem in the food industry where storage is not

allowed. Also, he assume that products are not interchangeable and all trucks are available

at time zero. Also, he neglect the transportation time of commodities at the terminal. He

consider a discrete time window where each time slot equals 15 minuets and each truck is

assigned to one time slot. Also, he assumes that trucks can be loaded/unloaded in one time

slot. He considers three objective functions to minimize the flow time, the processing time

and the tardiness. He proposes a mathematical formulation and develops an exact method

based on the dynamic programming and a simulated annealing algorithm.

2.3 Multiple Docks With Internal Transshipment Time

Guo et al. (2012) study multi-objective dock to door scheduling problems. They con-

sidered two objective functions. In the first, they minimize the transportation cost and in the

second, they minimize the weighted earliness and tardiness. They assumed that the truck

arrival time and due dates are known, the preemption is not allowed, and products are not

interchangeable. To solve the problem, they presented a genetic algorithm and local search

procedures.

Van Belle et al. (2013) assume that the arrival and departure time of trucks are known

and the truck change over time is fixed. Also, they assume that the transportation of prod-

ucts within the terminal is a function of distance and the speed is constant. Their objective

is to minimize the weighted sum of the total transportation time and total tardiness. They

present a MIP formulation and propose a tabu search heuristic and local search to solve the

problem. A similar work is done by Miao et al. (2014). The differences are that, in the

latter, the truck scheduling time is fixed, but the assignment of trucks to doors is a decision
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to be made. Also, unfulfilled shipments are allowed and the objective function of the latter

is to minimize to the total operation cost and the total penalty cost for the unfulfilled ship-

ments. They present a MIP formulation and to solve the problem, they present an adaptive

tabu search algorithm.

Assadi and Bagheri (2016) and Wisittipanich and Hengmeechai (2017) assume that

products are interchangeable. The former minimizes the total weighted earliness and tardi-

ness. Also, they presented a MIP formulation and propose two metaheuristics algorithms

to solve the problem. The latter minimizes the makespan. They present a MIP formulation

and propose the particle swarm optimization algorithm to solve the problem.

Kuo (2013) assumes that the sequence at which trucks are served are predetermined,

trucks are available at time zero, each product needs one unit of time to unload or load, and

preemption is not allowed. Also, the transfer time between inbound and outbound doors is

a function of the rectilinear distance between doors, and the speed is fixed for all products.

The makespan is calculated after assigning trucks to doors and the objective is to minimize

the makespan. They propose a model to calculate the makespan, variable neighborhood

search algorithm, and four simulated Annealing algorithms.

Hermel et al. (2016) study a hierarchical approach for the truck to door scheduling

problem. They assumed that all trucks are available at time zero, preemption is not allowed,

products are not interchangeable, and resources at the terminal are limited. The objective is

to minimize the makespan. They decompose the problem into four sub problems and solve

them in a given sequence to get the final trucks assignment and schedule at doors. The four

problems include clustering of trucks, assigning trucks to doors, allocating resources and

scheduling trucks.

Shakeri et al. (2012) assume that trucks are loaded with standard sized pallets, and

the position or the order in which pallets are unloaded or loaded are known in advance.

Unloading or loading each pallet needs one unit of time and one pallet is moved at a time
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by a forklift. They assume that resources, such as manpower and forklifts at the cross-dock

terminal, are limited. They present a MIP formulation, where the objective to minimize

the makespan. They propose two phases heuristic to solve the problem. The first phase,

sequences or orders the trucks and the second, assigns the trucks to the doors. Shakeri

et al. (2016) propose a new solution method for the same problem. They combined the

incremental neighborhood evaluation with two metaheuristics: tabu search and variable

neighborhood search. Ye et al. (2018) study a similar problem, but they considered an

exclusive mode terminal. They present a MIP formulation and solve it with a particle swarm

optimization algorithm. They compare the performance of the particle swarm optimization

and Genetic algorithms. They conclude that the particle swarm optimization algorithm

provides a better solution in less time.
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Chapter 3

Problem Definition

In this chapter, we formally define the TDSP. Then, we propose two MIP formulations.

3.1 Problem Description

Let M and N denote the set of inbound trucks and the set of outbound trucks. Let I

denotes the set of inbound doors, and J denotes the set of outbound doors. Let K denotes

the set of commodities, where each commodity is originated from inbound truck o(k) ∈M

and has outbound truck d(k) ∈ N as its destination. For each k ∈ K, We denote wk as the

amount of commodity to be transshipped from inbound truck o(k) to outbound truck d(k).

For each pair of inbound door i ∈ I and outbound door j ∈ J , let dij denote the distance or

travel time required to transfer a unit of commodity from inbound door i to outbound door

j. Let T denotes the set of time slots representing the planning horizon. The unloading and

loading process time for each inbound and outbound truck is denoted by pm and pn. The

time needed to transfer commodity k from inbound door i to outbound door j is wkdij .

We assume that all trucks are available at time zero, ready for loading and unloading

and there is no due date. Also, we assume that the parameters wk, dij , pm and pn are con-

stant and known in advance. We assume the preemption is not allowed and once loading

13



or unloading of a truck is started, it is necessary to keep the truck at the door till the end

of loading or unloading time. For the door environment, we consider an exclusive mode,

which means a door is predetermined to be either an inbound door or an outbound door.

Also, products are assumed to be non-interchangeable. In other words, each commodity

is coming from a specific inbound truck is assigned to a specific outbound truck. Once all

commodities from an inbound truck are unloaded, they are sorted, consolidated, and trans-

ferred to their respective outbound doors at the terminal. We assume doors are identical,

which means that assigning a truck to any door results in the same process time. For an

outbound truck, all commodities associated with it must be ready and available at the door

before the truck is assigned to that door. We discretize the planning horizon and a truck

can only be assigned at the beginning of each t ∈ T . Each door can process one truck at

a time, which means that at each door at each time slot one truck could be served at most.

We assume that doors are uncapacitated, in terms of the number of trucks they can serve.

Also, we assume the time horizon is enough to process all the trucks.

The Truck to Door Scheduling Problem (TDSP) aims to assign trucks to doors and

to determine the schedule of trucks at each door. Each inbound/outbound truck must be

assigned to an inbound/outbound door. Also, at each door, trucks are scheduled such that

there is no conflict in the schedule. The objective functions is to minimize the makespan.

That is, the objective is to minimize the departure time of the last outbound truck leaving

the cross-dock.

3.2 Mathematical Programming Formulation

In this part, we introduce two mathematical programming formulations for the TDSP.

To formulate the TDSP problem, we use three sets of binary decision variables. The first

set is to assign and schedule the inbound trucks at the inbound doors. For each inbound

truck m ∈M , for each inbound door i ∈ I , and for each time slot t ∈ T we define:
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xmit =

 1 if inbound truck m is assigned to inbound door i at time t.

0 otherwise.

For each outbound truck n, for each outbound door j, and for each time slot twe define:

ynjt =

 1 if outbound truck n is assigned to outbound door j at time t.

0 otherwise.

The third set variables are commodities path selection variables. For each commodity,

these variables link the origin and the destination of the commodity to the doors they are

assigned to. For each commodity k, inbound door i and outbound door j we define:

zkij =

 1 if commodity k transits via inbound door i and outbound door j.

0 otherwise.
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minimize Cmax

subject to:
∑
j∈J

∑
t∈T

(t+ pn)ynjt ≤ Cmax ∀n ∈ N (1)

∑
i∈I

∑
j∈J

zkij = 1 ∀k ∈ K (2)

∑
i∈I

∑
t∈T

xmit = 1 ∀m ∈M (3)

∑
j∈J

∑
t∈T

ynjt = 1 ∀n ∈ N (4)

∑
j∈J

zkij =
∑
t∈T

xo(k)it ∀k ∈ K, i ∈ I (5)

∑
i∈I

zkij =
∑
t∈T

yd(k)jt ∀k ∈ K, j ∈ J (6)

∑
m∈M

∑
a∈[max{0,t−pm+1},t]

xmia ≤ 1 ∀t ∈ T, i ∈ I (7)

∑
n∈N

∑
a∈[max{0,t−pn+1},t]

ynja ≤ 1 ∀t ∈ T, j ∈ J (8)

∑
j∈J

∑
t∈T

tyd(k)jt −
∑
i∈I

∑
t∈T

txo(k)it ≥

∑
i∈I

∑
j∈J

(pm + wkdij)zkij ∀k ∈ K (9)

xmit ∈ {0, 1} ∀m ∈M, i ∈ I, t ∈ T (10)

ynjt ∈ {0, 1} ∀n ∈ N, j ∈ J, t ∈ T (11)

zkit ≥ 0 ∀k ∈ k, i ∈ I, j ∈ J (12)

The objective function seeks to minimize the makespan. Constraints (1) computes the

makespan value by finding the last scheduled truck. It ensures that the makespan should

be grater or equal to the departure time of each outbound truck. Constraints (2) ensure that

each commodity is transmitted via a single pair of inbound & outbound doors. Constraints
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(3) ensures that each inbound truck is being assigned to a single inbound door at a single

time slot. Similarly, constraints (4) ensure that each outbound truck is being assigned to

a single outbound door at a single time slot. Constraints (5) state that if the origin of

commodity k is assigned to inbound door i, then commodity k must transmit via inbound

door i. At the outbound side, (6) state that if the destination of commodity k is assigned to

outbound door j, then commodity k must transmit via outbound door j. Constraints (7) and

(8) state that each door cannot serve more than one truck at a time and there is no conflicts

in the schedule at each doors. Constraints (9) ensure there is enough time to unload and

transfer all arrived commodities from inbound trucks before assigning outbound trucks to

doors.

Now, we propose the second formulation, that does not require the set of zkij variable.

The formulation eliminates the set of zkij variable in the cost of adding a huge number

of constraints. We see the impact of that in the computational results section, where we

provide a comparison between the two formulations.

minimize Cmax

subject to: (1), (3), (4), (7), & (8)

yd(k)jt ≤
∑
i∈I

∑
s∈Skijt

xo(k)is ∀k ∈ K, j ∈ J, t ∈ T (13)

xmit ∈ {0, 1} ∀m ∈M, i ∈ I, t ∈ T (14)

ynjt ∈ {0, 1} ∀n ∈ N, j ∈ J, t ∈ T (15)

Where,

Skijt := {s ∈ Z+ : 0 ≤ s ≤ t− dpo(k) + wkdije} (16)
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Constraints (13) are equivalent to (12) from the previous formulation. This constraint

states that, the destination of commodity k can be assigned to door j at time t, if and only

if, its origin is scheduled at a door such that there is enough time to unload and transfer the

commodity from the origin truck to the outbound loading area.

Moreover, we try to take advantage of both formulations. To solve a MIP model, one

can use many commercial and open source solvers. Often, the Branch & Bound enumer-

ation tree is the base for these solvers. Indeed, the quality of the lower bound obtained at

each node in the B&B enumeration tree directly impacts the performance of theses solvers.

In a simple word, a better the LP bound results in a better performance for the solver in term

of computational time. We improve lower bound results from the LP relaxation of F(1) by

adding constraints (13) from F(2) to F(1). We add these constraints as valid inequalities.

However, adding these constraints to the formulation results in adding a massive number of

constraints. Also, not all of these constraints are necessary to obtain the optimal solution.

To solve the new formulation and handle the constraints efficiently, we develop a Branch

and Cut based algorithm. In this algorithm, we add a subset of constraints (13) at some

nodes in the enumeration tree.

At the root node, we solve the LP relaxation of formulation F(1). After obtaining a

solution, we evaluate the solution in constraint (13), which may result in the set of violated

constraints. For each commodity, the algorithm adds the most violated constraint. We find

the most violated constraints by inspection. Moreover, the algorithm generates the cuts at

the root node and every node at every third level in the branch & bound tree. To add the

constraint, we used user Callback function in CPLEX, and we add them as purge cuts. At

each iteration, the algorithm adds a subset of violated cuts. At the root node, we add at

most sets of 40 cuts, and if there is no improvement, we stop after adding 20 sets of cuts.

At any node other than the root node at most two sets of constraints are added. The reason

to limit the number of cuts to be added is to avoid increasing the size of the problem which
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results in more computational time at each node.
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Chapter 4

Solution Algorithms for the TDSP

In this section, we present several methods to solve the TDSP. We start by present-

ing a set of dispatching rules we use to develop various constructive heuristics. We then

present a local search algorithm that can be used to improve the initial solution obtained

with this constructive heuristics. We also combine the dispatching rules, constructive al-

gorithms, and the local search algorithm to develop two metaheuristics: an iterated local

search ILS and a greedy randomized adaptive search procedure GRASP. Finally, we present

the results of computational experiments and perform a set of sensitivity analysis. In the

computational experiments section, we compare the results with CPLEX using the two

formulations, presented in Chapter 3, as well as the results from the proposed solution

methods.

4.1 Heuristics Algorithms

In this section, we present solution algorithms that provide feasible solutions in a short

amount of time. We adopt the use of dispatching rules which is a conventional technique

for solving scheduling problems. Dispatching rules are used in developing heuristic algo-

rithms and usually, they are the first step performed in the heuristics. Indeed, optimality
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of solutions generated from the heuristics are not guaranteed, but good feasible solutions

are obtained in a short amount of time for large size instances. We start by presenting

a set of dispatching rules. We also present a composite dispatching rule that combines

several dispatching rules. Once dispatching rules are defined, we use them to implement

two constructive algorithms. We then define some neighborhoods to be used in variable

neighbourhood decent VND methods.

4.1.1 Dispatching Rule

In the context of machine scheduling problems, dispatching rules are frequently used

to prioritize and order a set of jobs that needed to be scheduled on one or machines. These

rules are based on the attribute of the jobs and machines such as processing time, release

date, due date, etc. Dispatching rules are well-known in the industry and have been ex-

tensively studied in the literature. Panwalkar and Iskander (1977) establishes a summary

of more than a 100 such rules. Some of the dispatching rules result in an optimal solution

for specific variant of machine scheduling problems. Composite dispatching rules combine

more than one dispatching rule for prioritizing jobs. Dispatching rules are commonly used

to design heuristic algorithms.

In this section, we present six dispatching rules to prioritize and order trucks. These

dispatching rules rank trucks using one of their attributes such as processing time, amount

of commodity, etc. Then, the dispatching rule sorts trucks in nonincreasing or nonde-

creasing order. We finally present a composite dispatching rule which combines diffident

dispatching rules. Using three attributes of trucks, we define six dispatching rules. The

first two are the classical longest processing time first (LPT) and the shortest processing

time first (SPT) rules. These rules order trucks based on the processing time required to

load or unload them. The next two rules are the highest number of linked trucks first

(HNLT) and the fewest number of linked trucks first (FNLT). A pair of inbound truck
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m ∈ M and an outbound truck n ∈ N are linked if there is a commodity k ∈ K such

that o(k) = m and d(k) = n. The number of the linked trucks to a given inbound

truck m is |Lm| where Lm = {n ∈ N : ∃k ∈ K, o(k) = m, d(k) = n}. On the other

hand, the number of the linked trucks to a given outbound truck n ∈ N is |Ln| where

Ln = {m ∈ M : ∃k ∈ K, o(k) = m, d(k) = n}. In HNLT and FNLT, we order trucks

based on the number of linked trucks. Finally, the last two rules are the longest total pro-

cessing time (LTPT) and the shortest total processing time (STPT). The total processing

time is TPm =
∑

n∈L̄m
pn for an inbound truck m and TPn =

∑
m∈L̄n

pm for an outbound

truck n. In other words, the total processing time of an inbound truck is the summation of

the process time of the linked outbound trucks. In these two rules, we order trucks based

on the total processing time.

We can classify these six dispatching rules based on the way trucks are ordered (i.e

nonincreasing, nondecreasing). LPT, HNLT, and LTPT orders trucks in nonincreasing or-

der according to their attributes values. On the other hand, SPT, FNLT, and STPT orders

trucks in nondecreasing order according to their attributes values. In the next section, we

employ these dispatching rules to design deterministic constructive algorithms. The re-

sults of Section 4.3, show that dispatching rules that orders truck in nonincreasing way

outperforms their opposite, in terms of quality of the obtained solution. For this reason, we

present the composite dispatching rule that combines dispatching rules of type high first

only.

A composite dispatching rule combines two or more dispatching rules. We now present

a method for combining three dispatching rules: LPT, HNLT, and LTPT. For each truck,

we assign a ranking index value by using three attributes of trucks: process time, number

of linked trucks, and the total process time of linked trucks. Then, we order trucks in

a nonincreasing order based on their ranking index value. So, for each inbound truck

m ∈M and outbound truck n ∈ N , letRI inm andRIoutn denote the ranking index value. Let
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Am and An denote the set of attributes of inbound truck m and outbound truck n where,

Am = {pm, |Lm|, TPm} and An = {pn, |Ln|, TPn}. am(i) and an(i) denote the value

of attribute i for inbound truck m and outbound truck n. Also, ainmax(i) and aoutmax(i) are

the maximum values of attribute i for all trucks at each side. Finally, Ki is a controlling

parameter for attribute i. The value of RI inm and RIoutn for inbound and outbound truck is

defined as follows:

RI inm =
∏
i∈Am

exp
(am(i)− ainmax(i)

Kiam(i)

)
(17)

RIoutn =
∏
i∈An

exp
(an(i)− aoutmax(i)

Kian(i)

)
(18)

There are three beneficial aspects of these functions. First, they allow us to integrate the

three dispatching rules. The second is that these functions allow us to control the weight of

each attribute to the ranking index value by using the controlling parameter Ki. To make

attribute i less effective we increase the value of Ki and vice versa. The last reason is that

the range of the function is from zero to one, which simplifies the analysis. These dis-

patching rules are used as building blocks for developing the heuristics and metaheuristics

algorithms presented in the coming sections.

4.1.2 Constructive Phase

Let Sin and Sout denote sets of partial schedules for inbound and outbound trucks. Also,

let (m, i, t, r) ∈ Sin denote an element of partial feasible solution Sin. In particular, the

tuple (m, i, t, r) denotes that inbound truck m is scheduled at inbound door i at time slot

t in position r. Similarly, (n, j, t, r) ∈ Sin denotes that outbound truck n is scheduled

at outbound door j at time slot t in position r. Let Cout
i (Sin) and Cout

j (Sout) denote the
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makespan of inbound door i and outbound door j for a given Sin and Sout respectively.

Let Rin
i (Sin) and Rout

j (Sout) denote the number of trucks assigned to inbound door i and

outbound door j. As mentioned, the first step of the algorithm is to order trucks according

to one of dispatching rules presented in Section 4.1.1. The dispatching rules transform M ,

N and Ln, for each n ∈ N , into ordered sets M̄ , N̄ and L̄n. Let mr denotes the truck

ordered at the rth position in M̄ and L̄n . Similarly, let nr denotes the truck ordered at the

rth position in N̄ . For each inbound door i, let d̄i =
∑

j∈J di.j

|J | denotes the average distance

from inbound door i to outbound door. Let stinm(Sin) and stoutn (Sout) be the starting time

of inbound truck m and outbound truck n given by the partial solution. Let f(Sin, Sout)

denotes the makespan of schedules Sin and Sout.

We now present two constructive algorithms to obtain an initial feasible solution. We

refer to them as the sequential schedule constructive (SSC) heuristic and integrated sched-

ule constructive (ISC) heuristic. In the former one, the algorithm independently schedules

first inbound trucks and then schedules outbound trucks whereas, in the latter, the algo-

rithm schedules inbound tucks and outbound trucks simultaneously at each iteration. Both

algorithms start by ordering trucks according to one of the dispatching rules presented in

Section 4.1.1. These dispatching rules provide an initial ordering of the set of trucks and

schedule trucks to doors based on such ordering. Both algorithms start with an empty

solution and at each iteration, they schedule one truck to build up a feasible solution.

The pseudo code for SSC algorithm is depicted in Algorithm 1. The algorithm starts by

ordering trucks according to a given dispatching rule. It then schedules inbound trucks at

inbound doors. The algorithm iterates over positions of the set M̄ . At iteration r, the algo-

rithm finds an inbound door that results in the minimum estimated makespan for inbound

truck mr. To do that, the algorithm iterates over inbound doors i ∈ I and computes the

estimated makespan, that is Cin
i∗ (Sin)+ d̄i∗(

∑
n∈N wmr,n). Then, it schedules inbound truck

mr at the next available position at the door with the minimum estimated makespan. Next,
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the algorithm updates the inbound schedule. The algorithm continues until it schedules all

inbound trucks.

Once all inbound truck have been schedule, the algorithm starts to schedule outbound

trucks at outbound doors. The algorithm iterates over the positions of the order set N̄ .

At each iteration, for outbound truck nr, it finds an outbound door that results in the ear-

liest starting time. For that, the algorithm iterates over j ∈ J and obtains the earliest

starting time EST out
nr,j(Sin, Sout) for outbound truck nr at outbound door j. The earliest

starting time of a truck at a door is the maximum of the doors makespan or the time when

all commodities associated with such outbound truck are available for loading. That is,

EST out
nr,j(Sin, Sout) = min

t∈R+
{ t|t ≥ Cout

j (Sout), t ≥ stinm(Sin) + pmr + di∗jwmr,n∀m ∈ Ln}.

Then, the algorithm selects outbound door j∗ with minimum the EST (nr, j) and adds the

new element
(
nr, j

∗, EST out
nr,j∗(Sin, Sout), R

out
j∗ (Sout)

)
to Sout. Once all trucks have been

scheduled, the algorithm returns Sin and Sout, which correspond to a feasible solution.

Algorithm 1 sequential constructive algorithm SSC (DR)
Inputs M , N , p, d, w, Ln, DR.
set M̄ according to dispatching order DR
set N̄ according to dispatching order DR
for r = 1; r ≤ |M |; r + + do

i∗ ← arg mini∈I{ Cin
i (Sin) + d̄i ∗

∑
n∈Lmr

wmr,n}
Sin ← Sin

⋃(
mr, i

∗, Cin
i∗ (Sin), R(i∗)

)
end for
for r = 1; r ≤ |N |; r + + do

j∗ ← arg minj∈J{ EST out
nr,j

(Sin, Sout)}
Sout ← Sout

⋃(
nr, j

∗, EST out
nr,j∗(Sin, Sout), R

out
j∗ (Sout)

)
end for
Return Sin, Sout;

ISC algorithm schedules inbound and outbound trucks simultaneously. Let Stemp
in and

Stemp
out denote temporary copies of partial solutions Sin and Sout. As illustrated in Algorithm

2, it starts by ordering the set of outbound trucks N and sets of linked trucks Ln according

to a given dispatching rule. Then, the algorithm iterates over positions of N̄ . At iteration

r1, for each outbound j ∈ J , we obtain the earliest starting time EST out
nr,j(S

temp
in , Sout). For
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each outbound truck nr1 and outbound door j, the algorithm creates a temporary copy of

the partial inbound solution. Then, the algorithm schedules inbound trucks m ∈ Ln by

iterating over positions of the ordered set L̄n.

Algorithm 2 integrated schedule constructive ISC algorithm
Inputs M , N , p, d, w, Ln, Dispatching Rule.
Sin ← ∅, Sout ← ∅
set N̄ according to dispatching order DR
For each n ∈ N , set L̄n according to dispatching order DR
for r1 = 1; r1 ≤ |N |; r1 + + do

for j ∈ J do
Stemp
in ← Sin

for r2 = 1; r2 ≤ |Lnr1
|; r2 + + do

if (status(Sin,mr2) = 0) then
Select inbound door i∗ according to rule (a) and (b);
Stemp
in ← Stemp

in

⋃{(
mr, i

∗, Cin
i∗ (Stemp

in ), Rin
i∗ (Stemp

in )
)}

end if
end for
tj ← EST out

nr,j
(Stemp

in , Sout)
end for
j∗ ← argmin

j∈J
{tj}

for r2 = 1; r2 ≤ |Lnr1
|; r2 + + do

if (status(Sin,mr2) = 0) then
Select inbound door i∗ according to rule (a) and (b);
Sin ← Sin

⋃{(
mr, i

∗, Cin
i∗ (Sin), Rin

i∗ (Sin)
)}

end if
end for
Sout ← Sout

⋃{(
n, j,ESTout

nr,j∗(Sin, Sout), R
out
j (Sout)

)}
end for
Return Sin, Sout;

Let status(S,mr2) = 0 if inbound truck mr2 is not scheduled yet. At iteration r2, if

inbound truck mr2 is not scheduled yet in Sin, the algorithm schedules the inbound truck at

an inbound door i∗ and updates the temporary solution Stemp
in . We consider the following

two rules for selecting i∗:

(a) i∗ ← arg mini∈I{ dij|Cin
i (Stemp

in ) + pmr2
+ dijwmr2 ,nr1

≤ Cout
j (Stemp

out )}

(b) i∗ ← arg mini∈I{ Cin
i (Stemp

in ) + pmr + dijwmr,n}
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We apply rule (a) if there exists an inbound door which results in commodities waiting

for outbound truck nr1 . That is, commodities from mr2 arrive at outbound door j before

outbound door j becomes available. In the (a), we select the nearest inbound door satisfying

the condition Cin
i (Stemp

in ) + pmr2
+ dijwmr2 ,nr1

≤ Cout
j (Stemp

out ). In the other hand, if there is

no such an inbound door, we apply rule (b) and schedule the inbound truck at the inbound

door with minimum Cin
i (Stemp

in ) + pmr + dijwmr,n. Once all trucks in Lnr1
have been

scheduled, the algorithm obtains the earliest starting time EST out
nr,j(S

temp
in , Sout) and stores

its value in tj .

For inbound truck nr1 , once we obtain tj for all outbound doors, the algorithm selects

outbound door j∗ corresponding to the earliest starting time. Then, for all inbound trucks in

Ln1 , the algorithm schedules inbound truck by selecting inbound door i∗ according to the

two rules mentioned above. After that, the algorithm obtains the earliest starting time and

updates the partial solutions. The algorithm terminate once all trucks have been scheduled.

4.1.3 Local Search

Local search heuristics improve feasible solutions by exploring its predefined neighbor-

hood. In this section, we start by presenting six neighbourhoods: three are based on a swap

procedure, and three are based on a shift procedure. We generate the swap neighborhood

by selecting one or more pairs of trucks and then interchange their doors and positions at

the door. We generate inbound swap, outbound swap, and double swap neighborhoods.

The second class of the neighborhood is the shift neighborhood. Here, we generate the in-

bound shift, outbound shift, and double shift neighborhoods. Since these movements effect

the starting time of trucks, we present a procedure to reset the starting time of each truck.

Furthermore, we present several restricted versions of these neighborhoods. The motiva-

tion behind reducing the size of neighborhoods is mainly to reduce the computational time.

Finally, we present various variable neighborhood descent VND methods.
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The inbound swap neighborhood NM
swap(S) is defined by selecting a pair of inbound

trucks m1,m2 ∈ M and then interchanging doors and positions at which they are sched-

uled. For instance, consider (m1, i1, r1) and (m2, i2, r2) which state that, the inbound

truck m1 is at the rth
1 position at door i1 and the inbound truck m2 is at the rth

2 position

at inbound door i2. After performing a swap procedure between m1 and m2 the result

would be (m1, i2, r2) and (m2, i1, r1). Note that we can perform the swap procedure in

|M |× (|M |− 1) different ways but there are |M |×(|M |−1)
2

unique solutions in NM
swap(S). On

the other hand, the outbound swap neighborhood NN
swap(S) is similar to the inbound swap

neighborhood except that it is performed on the outbound trucks. The double swap neigh-

borhood NMN
swap(S) explores all solutions generated by selecting a pairs of inbound trucks

and a pair of outbound trucks and then performing a swapping procedure at both sides si-

multaneously. Note that the double swap procedure generates
( |M |(|M |−1))

2

)
×
( |N |(|N |−1))

2

)
unique solutions in neighborhood NN

swap(S).

The inbound shift neighborhood NM
shift(S) is defined by selecting one inbound truck

at a time and then perform a shift movement. The procedure selects an inbound truck

m and then changes its schedule from inbound door i at position r to inbound door i′ at

position r′. The procedure could shift the position at the same door, or it could schedule it at

another inbound door. The outbound shift neighborhoodNN
shift(S) is similar to the inbound

shift neighborhood except that it is performed on the outbound trucks. The double shift

neighborhood NMN
shift(S) is a combination of both inbound shifting and outbound shifting

movements. The double shift neighborhood explores all solutions generated by selecting a

pair of inbound trucks and outbound trucks and then performing shift movements at both

sides. The double shift movement explores up to |M2| × |N2| solutions.

The swap and shift movements transform a solution S into a new solution S ′ and they

at least change the schedule of one truck. Which in turn affects the starting time of other

trucks. To reset the starting time of trucks, we present reset starting time(S) subroutine
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illustrated in Algorithm 3. This subroutine scans and resets the starting time for all the

trucks again. Let mi,r and nj,r denote the rth inbound truck and outbound truck at inbound

door i and outbound door j under the schedule. The procedure starts with resetting the time

index for the inbound trucks and then it resets the time index of the outbound trucks.

As illustrated in Algorithm 3, the subroutine iterates over each inbound door i ∈ I .

At each inbound door i, the subroutines rests the starting time of inbound truck according

to the order defined by the schedule. After that, the subroutine rests the starting time of

the outbound trucks by iterating over each outbound truck and each truck scheduled at that

door. At each iteration the subroutine updates the starting time of each outbound truck and

the makespan of each door. We note that the complexity of resetting and scanning in the

worst case is O(|N | + |N | × |M |). So, the worst case running time required to explore

all solutions in inbound shift neighborhood (NM
shift(S)) is O((|N | + |N | × |M |)|M |2).

Therefore, exploring a subset of the neighborhood could be better in terms of computational

time.

Algorithm 3 reset starting time(S)

for (i = 1; i ≤ |I|; i + +) do
C(i) = 0;
for (r = 1; r ≤ R(i); r + +) do

st(mi,r) = Cin(i);
C(i) = st(mi,r) + pmi,r ;

end for
end for
for (j = 0; j < |J |; j + +) do

C(j) = 0; EST = 0;
for (r = 0; r < R(j); r + +) do

for (m ∈ Lnj,r) do
EST = max{EST,C(j), st(m) + pm + wm,nj,r ∗ ddr(m),j};

end for
st(nj,r) = max :
C(j) = st(nj,r) + pn;

end for
end for
Return S;

29



We now present two strategies to reduce the size of a neighborhood and then we use

them to define seven restricted versions of the neighborhoods presented before. Recall

that, the neighbourhood of a solution is explored by executing a swap, shift, double swap

or double shift movements. The first strategy is to focus only on the movements such that

the distance between the original door and the door at which the truck is swapped to (or

shift) to is less than some threshold value. Using this method we present a restricted version

of NMN
swap(S) and NMN

shift(S). The second method is to define a set of trucks and then only

evaluate the neighbors associated with such subset. Also, we combine these two strategies

to develop restricted versions of NM
swap(S), NN

swap(S), NM
shift(S), NN

shift(S), and NMN
swap(S).

We now present restricted versions of the two neighbourhoods NMN
swap(S) and NMN

shift(S)

denoted as NMN
swap(S,∆) and NMN

shift(S,∆), which are restricted by using the first strategy.

These restricted neighbourhoods define solutions that we can obtain by performing a shift

or a swap procedure at both sides, only if the distance between the original and new door

is less than ∆. Let dr(m) denote the inbound door where inbound truck m is scheduled

and dr(n) denote outbound door for outbound truck n as well. Let D(i, i′) and Let D(j, j′)

denotes the distance between two inbound doors i, i′ ∈ I and the distance between two

outbound doors j, j′ ∈ J . We define a controlling parameter ∆ to control size of a restricted

neighborhood. NMN
swap(S,∆) defined by selecting any pair of inbound truck m1,m2 ∈ M

and outbound truck n1, n2 ∈ N . If D(dr(m1), dr(m2)) and D(dr(n1), dr(n2)) is less than

∆, then we swap m1 with m2 and n1 with n2. Otherwise, we do not preform the swap

movement. On the other hand, NMN
shift(S,∆) is defined by selecting any pair of inbound

truck m ∈ M and outbound truck n ∈ N . Then, we shift inbound truck m from inbound

door i to inbound door i′ and outbound truck n from outbound truck j to outbound door j′,

only if D(i, i′) and D(j, j′) is less than ∆.

We now present the restricted versions of NM
swap(S), NN

swap(S), NM
shift(S), NN

shift(S),

and NMN
swap(S). For that, we combine both strategies to develop restricted neighbourhoods.
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LetNM
swap(S,∆, B) andNN

swap(S,∆, B) denote restricted version ofNM
swap(S) andNN

swap(S),

respectively. The restricted inbound swap neighborhood NN
swap(S,∆, B) is defined by

selecting a pair of inbound truck m1,m2 ∈ M . Then, we swap m1 with m2, only if

D(dr(m1), dr(m2)) is less than ∆ and either m1 ∈ B or m2 ∈ B. The restricted outbound

swap neighborhood NN
shift(S,∆, B) is similar to the restricted inbound swap neighbor-

hood except that it is performed on the outbound trucks. Moreover, let NM
shift(S,∆, B)

and NN
shift(S,∆, B) denote the restricted version of NM

shift(S), and NN
shift(S), respectively.

The restricted inbound shift neighbourhoodNM
shift(S,∆, B) selects an inbound truckm and

then shift its schedule from inbound door i at position r to inbound door i′, only if D(i, i′)

is less than ∆ and m ∈ B. The restricted outbound shift neighborhood NN
shift(S,∆, B) is

similar to the restricted inbound shift neighborhood except that it is performed on the out-

bound trucks. The restricted double swap neighbourhoodNMN
swap(S,∆, Bin, Bout) is defined

by selecting a pair of inbound trucks m1,m2 ∈ M and outbound trucks n1, n2 ∈ N . If

D(dr(m1), dr(m2)) and D(dr(n1), dr(n2)) are less than ∆, either m1 ∈ Bin or m2 ∈ Bin,

and either n1 ∈ Bin or n2 ∈ Bout, then we swap m1 with m2 and n1 with n2.

Local search is an iterative procedure that explores the neighbourhood of a solution S

to search for another solution S ′ with better objective function value. The procedure termi-

nates when it can not find a better solution. In this case, the solution is local optimal. We

now present various local search procedures based on the variable neighborhood descent

(VND) method for the TDSP. The VND is proposed by Hansen and Mladenović (2001).

This method systematically explores m sets of neighbourhoods N1, N2, ..., Nm. VND ex-

plores solutions inN1 until it finds a local optimal solution. After that, the algorithm search

solutions in N2, ..., Nm in sequence. Once VND finds an improved solution it starts from

N1 again. It keeps doing that until it cannot find an improved solution. We present five

versions of VND, each of which with different sets of neighbourhoods. We refer to them

as VND1, ...,VND5. After performing preliminary computational experiments, we define
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each VND procedure as follows:

• VND1: NM
swap(S, 6, Ln),NN

swap(S, Ln). NM
shift(S, 6, Ln),NN

shift(S, Ln),NMN
swap(S, 5, Ln, {n}).

• VND2: NM
swap(S), NM

shift(S), NN
swap(S), NN

shift(S), NMN
swap(S, 5).

• VND3: NM
swap(S), NN

swap(S), NM
shift(S), NN

shift(S), NMN
swap(S, 5), NMN

shift(S, 0).

• VND4: NM
swap(S), NM

shift(S), NN
swap(S), NN

shift(S).

• VND5: NM
swap(S), NM

shift(S), NN
swap(S), NN

shift(S), NMN
swap(S, 2).

4.1.4 Combining Constructive and Local Search Heuristics

Now we combine constructive algorithms and VND methods to develop two heuristics

algorithms. The first heuristic combines SSC, V ND1, V ND2, and V ND3. Whereas, the

second combines ISC, V ND1, V ND2, and V ND3. We refer to them as the sequential

schedule constructive local search (SSCLS) heuristic and integrated schedule constructive

local search (ISCLS) heuristic. These two heuristics construct a feasible solution and ex-

plore the neighbourhoods to obtain a local optimal solution.

The SSELS algorithm is illustrated in Algorithm 4. This algorithm is similar to the SSC,

but in SSELS we embed three local search procedures at different stages. SSELS algorithm

orders trucks according to a dispatching rule and then it schedules inbound trucks. After

that, for outbound truck nr, we obtain Cj for all outbound doors. Cj stores the makespan

results from scheduling outbound truck nr at the next available position at outbound door

j and then preforming V ND1(Sin, Sout) method. Then, we select outbound door j∗ which

correspond to the door with the minimum Cj and schedule the outbound truck at that door.

After that, we preform V ND2(Sin, Sout) method to improve the partial schedule. Once all

trucks have been scheduled, we perform V ND2(Sin, Sout) method to obtain a local optimal

solution.
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Algorithm 4 sequential schedule constructive algorithm local search SSCLS (DR)
Inputs M , N , p, d, w, Ln, DR.
set M̄ according to dispatching order DR
set N̄ according to dispatching order DR
for r = 1; r ≤ |M |; r + + do

i∗ ← arg mini∈I{ Cin
i (Sin) + d̄i ∗

∑
n∈Lmr

wmr,n}
Sin ← Sin

⋃(
mr, i

∗, Cin
i∗ (Sin), R(i∗)

)
end for
for r = 1; r ≤ |N |; r + + do

for j ∈ J do
Cj ← f

(
V ND1

(
Sin, Sout

⋃(
nr, j, EST out

nr,j
(Sin, Sout), R

out
j (Sout)

)))
end for
j∗ ← arg minj∈J{Cj}
Sin, Sout ← V ND2

(
Sin, Sout

⋃(
nr, j

∗, EST out
nr,j∗(Sin, Sout), R

out
j∗ (Sout)

))
end for
Sin, Sout ← V ND3

(
Sin, Sout

)
Return Sin, Sout;

The ISCLS algorithm is illustrated in Algorithm 5. This algorithm is similar to ICS

heuristic, but in ISCLS we embed various V ND methods at different stages of the algo-

rithm. It starts by ordering trucks according to a given dispatching rule. Then, the algorithm

iterates over outbound truck r1 and outbound door j ∈ J . Also, the algorithm obtains Cj

which stores the makespan value of a partial solution resulting from scheduling outbound

truck nr1 , inbound trucks linked to nr1 , and performing V ND1. Once the algorithm ob-

tains Cj for all outbound doors, it schedules all inbound trucks that are in set Lnr1
not

scheduled yet to outbound door i∗ respecting role (a) and (b) presented in Section 4.1.2.

Also, it schedules outbound truck nr1 at outbound door j∗ that corresponds to the door

with minimum Cj . Following that, the algorithm performs V ND2 to obtain a local optimal

partial feasible schedule. Once all trucks have been scheduled, the algorithm calls V ND3

to obtain a local optimal solution.
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Algorithm 5 integrated schedule constructive local search algorithm
Inputs M , N , p, d, w, Ln, Dispatching Rule.
Sin ← ∅, Sout ← ∅
set N̄ according to dispatching order DR
For each n ∈ N , set L̄n according to dispatching order DR
for r1 = 1; r1 ≤ |N |; r1 + + do

for j ∈ J do
Stemp
in ← Sin

for r2 = 1; r2 ≤ |Lnr1
|; r2 + + do

if (status(Sin,mr2) = 0) then
Select inbound door i∗ according to rule (a) and (b);
Stemp
in ← Stemp

in

⋃{(
mr, i

∗, Cin
i∗ (Stemp

in ), Rin
i∗ (Stemp

in )
)}

end if
end for
Cj ← f

(
V ND1

(
Stemp
in , Sout

⋃(
nr, j, EST out

nr,j
(Sin, Sout), R

out
j (Sout)

)))
end for
j∗ ← argmin

j∈J
{Cj}

for r2 = 1; r2 ≤ |Lnr1
|; r2 + + do

if (status(Sin,mr2) = 0) then
Select inbound door i∗ according to rule (a) and (b);
Sin ← Sin

⋃{(
mr, i

∗, Cin
i∗ (Sin), Rin

i∗ (Sin)
)}

end if
end for
Sin, Sout ← V ND2

(
Sin, Sout

⋃(
nr, j

∗, EST out
nr,j∗(Sin, Sout), R

out
j∗ (Sout)

))
end for
Sin, Sout ← V ND3

(
Sin, Sout

)
Return Sin, Sout;
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4.2 Metaheuristics Algorithms

In this section, we present two metaheuristics algorithms to solve the TDSP. The goal

of developing metaheuristics is to obtain a high-quality solution in a reasonable amount

of time. The results of Section 4.3 show that SSC heuristic outperforms ISC, in terms

of quality of the obtained solution. So, we develop metaheuristics using SSC and we do

not develop metaheuristics using ISC. Both metaheuristics we present here combine SSC,

V ND4 and V ND5. Also, both metaheuristics starts by ordering trucks according to a

dispatching rule presented before. We next introduce a greedy randomized adaptive search

procedure (GRASP) and then we present the iterated local search (ILS) metaheuristic.

4.2.1 GRASP Algorithms

GRASP is a multi-start metaheuristic that is applied to solve many problems including

scheduling, routing, location, assignment, etc. Festa and Resende (2009) presents a survey

that covers the works done from 1989 to 2008. As illustrated in Algorithm 6, GRASP

starts by ordering trucks according to a given dispatching rules and also consists of two

main phases a constrictive phase and a local search phase. At iteration t, the algorithm

constructs a feasible solution using a randomized constructive schedule (RCS) algorithm.

Then, the algorithm improves the solution using V ND5 method. After that, the algorithm

updates both the controlling parameter α and the best feasible solution s. The metaheuristic

repeats this procedure until it reaches the maximum number of iterations. To control the

search process, we use the controlling parameters α. Increasing α increases the randomness

of solutions obtained by RCS. Here, we start by an initial α, and at each iteration, we

decrease the value to α ∗ δ where δ ∈ [0, 1]. Also, if α ≤ αmin, we reset α = α0.

The RCS algorithm is illustrated in Algorithm 7. As in SSC algorithm, RCS indepen-

dently schedules inbound trucks and then schedules outbound trucks. However, SSC selects

and schedule trucks in the order defined by the dispatching rule, whereas the RCS selects a
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Algorithm 6 GRASP
Inputs M , N , p, d, w, Ln, Dispatching Rule.
set M̄ according to dispatching order DR
set N̄ according to dispatching order DR
for t = 0;≤ Number Of Iteration ; t+ + do

s0 ← randomized constructive schedule algorithm (M̄, N̄, I, J,D,W, Pu, P l, α)
s∗ ← V ND5(s0)
update(α, s)

end for
Return S

truck randomly from a restricted candidate list RCL. Let RI inmr
and RIoutnr

denote the rank-

ing index of inbound and outbound trucks ordered at the rth position, respectively. For M̄

and N̄ , we assume that trucks are ordered in nonincreasing order based on the ranking in-

dex value obtained using equations (17) and (18), respectively. RI in1 and RI in|M | correspond

to the maximum and minimum ranking index values for inbound trucks. Also, RIout1 and

RIout|M | correspond to the maximum and minimum ranking index values for outbound trucks.

The algorithm starts by scheduling inbound trucks at inbound doors. It first creates V ,

a copy of M̄ . Then, at each iteration of the while loop, the algorithm schedules an inbound

truck from V . For that, it creates a RCL which includes all inbound trucks m ∈ V , if

RI inm ≤ RI inm1
+ α(RI inm|V | − RI inm1

). Then, the algorithm randomly selects an inbound

truck from RCL and schedules that truck at inbound door i∗. That is the door with minimum

Cin
i (Sin) + d̄i ∗

∑
n∈Lm

wm,n. After that, the algorithm removes the selected truck from V

and starts over until it schedules all inbound trucks.

Once all inbound trucks have been scheduled, the RCS schedules outbound trucks. It

creates V , a copy of N̄ . Then, at each iteration of the while loop, it schedules an outbound

truck from V . For that, the algorithm creates a RCL and then it randomly selects an out-

bound truck from that list. After that, it schedules the selected truck to the next available

position at the outbound door j∗. which is the door that results in the minimum earliest

starting time. Then, the algorithm calls V ND4 to obtain a local minimum partial feasible
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schedule and then it removes the selected truck from V . The algorithm continues until it

schedules all outbound trucks and finally returns a feasible schedule.

Algorithm 7 randomized constructive schedule RCS algorithm (α)
Inputs M̄ , N̄ , p, d, w, Ln, Dispatching Rule(DR).
Sin ← ∅, V ← M̄ ;
while V 6= ∅ do

RCL← {m ∈ V |RI inm ≤ RI inm1
+ α(RI inm|V | −RI

in
m1
};

m← randomly select a truck from RCL
i∗ ← arg mini∈I{ Cin

i (Sin) + d̄i ∗
∑

n∈Lm
wm,n}

Sin ← Sin

⋃(
m, i∗, Cin

i∗ (Sin), R(i∗)
)

V = V/{m}
end while
Sout ← ∅, V ← N̄
while V 6= ∅ do

RCL← {n ∈ V |RIoutn ≤ RIoutn1
+ α(RIoutn|V |

−RIoutn1
}

n← randomly select a truck from RCL
j∗ ← arg minj∈J{ EST out

n,j (Sin, Sout)}
Sin, Sout ← V ND2

(
Sin, Sout

⋃(
n, j∗, EST out

n,j∗(Sin, Sout), R
out
j∗ (Sout)

))
V = V/{n}

end while
Return S;

4.2.2 Iterative Local Search Algorithm

According to Glover and Kochenberger (2006), Iterated Local Search (ILS) Algorithm

maintains a chain of current solutions. To escape a local optima and to obtain a new so-

lution, ILS applies a perturbation to the current solution and then improves the solution

by exploring one or more neighborhoods. At each iteration, ILS generates a new solution,

and a decision should be made even to make the new solution be the current solution or

ignore it. This decision is performed through a predefined Acceptance criterion. The ILS

metaheuristics is illustrated in Algorithm 8. p and α are the controlling parameters. The

algorithm consists of four main subroutines: construct a feasible solution, perturbation, ac-

ceptance criterion, and update the controlling parameters. In the first, a feasible solution

37



is constructed using SSC. Then, at each iteration, the perturbation routine takes a feasible

solution S∗ and partially destroys it and then the routine returns a new solution S ′. The

acceptance criterion takes the current solution S∗ and replaces it by S ′, if S ′ meets the

acceptance criterion. Finally, the update function updates the controlling parameters.

Algorithm 8 Iterated Local Search
Inputs : p, λ, NumberOfIteration. M̄ , and N̄
S0 ← ConstructFeasibleSolution(M̄ , N̄ );
for t ≤ Number Of Iteration do

S ′ ← Perturbation(S∗, p, M̄ , N̄ );
S∗ ← AcceptanceCriterion(S∗, S ′∗, λ);
update(p, λ)

end for
Return Best Feasible Solution

The perturbation subroutine is illustrated in Algorithm 9. This subroutine partly de-

stroys the feasible schedule by removing a subset of inbound and outbound trucks from

the schedule and then reschedule them. The subroutine first perturbs the inbound schedule

Sin and then it perturbs the outbound schedule Sout. As illustrated in the pseudo code, the

subroutine generates a random set V ⊆M where the carnality of V is less than dp× |M |e.

Then, the subroutine iterates over inbound doors and positions of doors. For inbound truck

mi,r, if mi,r ∈ V in, then we remove (mi,r, i, st
in
m(Sin), r) from inbound schedule Sin and

increment the counter which counts the number of removed trucks. Otherwise, we update

the position of inbound truck mi,r. Once we have been iterated over all inbound trucks, we

reschedule the removed trucks from Sin. For that, we iterate over the positions of M̄ . At

each iteration r, if inbound truck mr is not scheduled in Sin, we schedule mr at the next

available position at inbound door i∗ which results in minimum estimated makespan.

Once all inbound trucks have been scheduled, we perturb the outbound schedule Sout.

For that, we first create V out a set of outbound trucks to be removed from outbound sched-

ule Sout which contains all outbound trucks linked to inbound trucks in Vin. After that,

we iterate over outbound trucks scheduled at outbound doors. For outbound truck nj,r, if
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the truck is in set V out, we remove (nj,r, j, st
out
n (Sout), r) form the outbound schedule and

update the counter that corresponds to the number for removed trucks. Otherwise, we reset

the position of outbound truck nj,r in the outbound schedule. Once all outbound trucks in

V out have been removed, we reschedule them. For that, we iterate over positions of N̄ . At

iteration r, if outbound truck nr is not scheduled in Sout, we schedule the truck at outbound

door j∗ which corresponds to the outbound door with the earliest starting time. We then

call V ND4 method to obtain a local optimal partial schedule. Once all outbound trucks

have been scheduled we call V ND5 to obtain a local minimum schedule.

The acceptance criterion procedure is presented in Algorithm 10. The controlling pa-

rameter λ controls the frequency of replacing S∗ by the new solution obtained S ′. Increas-

ing λ results in fewer times S is replaced and vice versa. At each iteration, a perturbation

function is applied on the solution S∗ and a new solution S ′ is obtained. The acceptance

criterion function decides whether to replace the S∗ with S ′ for the next iterations or not.

As illustrated, if f(S ′) < αf(S∗) then, S∗ is replaced with S ′. otherwise, the function

returns S∗, the solution before applying the perturbation function.

To control the searching process, we update the controlling parameters p and λ. The

first controls the strength of the perturbation function. Increasing p results in more change

to the current solution. Its natural to start with small p and increase it to p ∗ (1 + δ) where

δ ∈ [0, 1]. In the case of p∗(1+δ) ≥ pmax, we set p = po. The second controlling parameter

controls how often the new solution replaces the current solution. To control that, we start

by an initial λ, at each iteration we decrease the value to λ ∗ δ where δ ∈ [0, 1], and if

λ ∗ δ ≤ λmin, we set λ = λ0.

4.3 Computational Results

For the experiments, we are using Intel(R) Xeon(R) V3 with 3.10GHz and 520GB of

RAM. All algorithms are coded in C and to solve the associated MIP we use the callable
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Algorithm 9 Perturbation
Inputs: Sin, Sout, p, M̄ , N̄ , Ln, W , D, I , J .
generate random set V in ⊆M , such that |V out| = dp× |M |e;
for i ∈ I do

count = 0
for r = 1; r ≤ Rin

i (Sin); r + + do
if mi,r ∈ V in then

Sin ← Sin\
(
mi,r, i, st

in
m(Sin), r

)
count++

else
Sin ← Sin\

(
mi,r, i, st

in
m(Sin), r

)⋃ (
mi,r, i, st

in
m(Sin), r − count

)
end if

end for
end for
for r = 1; r ≤ |M |; r + + do

if status(Sin,mr) = 0 then
i∗ ← arg mini∈I{ Cin

i (Sin) + d̄i ∗
∑

n∈Lmr
wmr,n}

Sin ← Sin

⋃(
mr, i

∗, Cin
i∗ (Sin), R(i∗)

)
end if

end for
generate a set V out ⊆ N , where n ∈ V out if ∃m ∈ Ln and m ∈ V in

for j ∈ J do
count = 0
for r = 1; r ≤ Rout

j (Sout); r + + do
if nj,r ∈ V out then

Sout ← Sout\
(
nj,r, j, st

out
n (Sout), r

)
count++

else
Sout ← Sout\

(
nj,r, j, st

out
n (Sout), r

)⋃ (
nj,r, j, st

out
n (Sout), r − count

)
end if

end for
end for
for r = 1; r ≤ |N |; r + + do

if status(Sout, nr) = 0 then
j∗ ← arg minj∈J{ EST out

nr,j(Sin, Sout)}
Sout ← Sout

⋃(
nr, j

∗, EST out
nr,j∗(Sin, Sout), R

out
j∗ (Sout)

)
Sin, Sout ← V ND4(Sin, Sout)

end if
end for
Sin, Sout ← V ND5(Sin, Sout)
Return Sin, Sout;
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Algorithm 10 AcceptanceCriterion
Inputs : S∗, S ′, λ;
if λ ∗ f(S ′) < f(S∗) then

Return S ′;
else

Return S∗;
end if

library of CPLEX 12.6.3. For CPLEX, we allow the solver to use four threads, and we limit

the running time to one day (24-hours). For metaheuristics, we run the algorithms 5 times

to report the best upper bound, average upper bound, and the worst upper bound generated

by the algorithms. The computational experiments we structured as follows. First, we

present the data generation method. After that, using the generated data, we analyze the

performance of CPLEX solver using the two formulations presented in Section 3.2. Next,

we analyze the performance of the branch and cut algorithm. After that, we evaluate the

dispatching rules and the composite dispatching rule presented in Section 4.1.1. The next

part of the experiments discusses the performance of the heuristics presented in Section

4.1.4. Then, we test the performance of the metaheuristics by comparing their output with

the solution generated by the other methods. Finally, we present the sensitivity analysis.

To generate the flow matrix, We applied the method proposed in Guignard et al. (2012)

and ?. The authors assumed that each outbound truck receives commodities from at least

one origin, and each inbound truck sends commodities to at least one destination. In ad-

dition to that, we assume that the number of commodities to be sent is a random number

uniformly distributed between [1, 5]. It is assumed that the number of inbound trucks equals

the number of outbound trucks and the number of inbound doors equals the number of out-

bound doors. We generate four sets of data with different flow matrix densities: 25%,

35%, 50%, and 75%. We assume that each commodity takes one unit processing time

for both loading and unloading. So, the unloading time of the inbound truck m is pm =∑
n∈N w(m,n) and loading time of the outbound truck n is pn =

∑
m∈M w(m,n). To generate
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the distances matrix, we cluster the terminal. Lets, CL = max
{

2,min{
⌊
|I|
3

⌋
, 4}
}

be the

maximum distance between clusters. Then, the distance between the inbound door i and

the outbound door j is di,j = max{1, d (i−j)×CL
|I| e, d (j−i)×CL

|I| e}. Note that di,j ∈ {1, 2, 3, 4}.

We generate 44 instances and refer to them as 00x00x00. The first two digits correspond to

the number of the inbound and outbound trucks. The second two digits corresponds to the

number of inbound and outbound doors. And, the last two digits correspond to the density

of the flow matrix.

In this part of the experiments, we analyze the performance of the two formulations

presented in Section 3.2. We classified the generated instance into four classes based on

the flow matrix density. Tables 4.1, 4.2, 4.3, and 4.4 summarizes the results of this exper-

iment. The first column of the table ”instance” contains the name of the instances. The

second column ”Opt” contains the best upper bounds obtained by CPLEX after solving

both formulations. For each formulation, the tables summarize four information, the LP

gap, the final gap, the number of explored nodes, and the total CPU time in seconds. The

LP gap is calculated as 100×(Opt−LP)/Opt, where LP is the optimal LP relaxation of the

problem. The final Gap is obtained by 100× (UB− LB)/UB, where UB is the best upper

bound and LB is the lower bound obtained by the solver. The ”Nodes” column contains

the number of nodes explored in the enumeration tree by the solver. The symbol ”-” means

that the solver could not obtain any value.

The results show that there is no clear evidence that one formulation is superior to the

other in terms of the LP bound. In fact, for more than a third of the instances, both formu-

lations provide the same LP bound. However, for eight instances Formulation 1 provides

better bounds whereas in 15 instances Formulation 2 provides a better LP bound. In av-

erage, the LP bound from Formulation 2 is slightly better than the lower bound generated

by Formulation 1. Out of 44 instances, CPLEX can solve to optimally 17 instances us-

ing Formulation 1 and 18 instances using Formulation 2. For the unsolved instances, the
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majority remains with a gap of more than 10% at most of 38%. In term of average final

gaps and average CPU time, the solver can provide a slightly better final gap in slightly less

average time using Formulation 2 as compare to Formulation 1. One significant advantage

of Formulation 1 is that Using Formulation 1 the solver can handle larger instances as com-

pared when using Formulation 2. In other words, Formulation 2 needs more RAM due to

the large number of constraints (13). For example, the solver can explore 66134 nodes in

the enumeration tree while solving 20x10x50 using Formulation 1. On the other hand, the

solver got stuck at the root node while solving Formulation 2. To conclude, there is no

superior advantage one formulation over the other, but CPLEX can handle larger instance

while using Formulation 1.

Table 4.1: Results for instances with 25% density in flow matrix

Formulation 1 (MIP) Formulation 2 (IP)
instance Opt LP gap Final gap Nodes CPU time LP gap Final gap Nodes CPU time
8x4x25 27 0.00 0.00 449 1 0.00 0.00 147 3
9x4x25 33 0.00 0.00 0 1 0.00 0.00 0 1

10x4x25 34 0.00 0.00 0 1 0.00 0.00 0 3
10x5x25 35 0.00 0.00 0 0 0.00 0.00 0 4
11x5x25 36 13.89 0.00 774 13 13.89 0.00 2650 34
12x5x25 46 17.39 0.00 501862 9571 17.17 0.00 1220426 20012
12x6x25 41 0.00 0.00 1206 6 0.00 0.00 76 37
15x6x25 56 21.79 14.29 1999214 86400 20.71 14.29 2810805 86400
15x7x25 46 0.00 0.00 3066799 77796 0.00 0.00 637 182
20x10x25 64 6.25 6.25 1444635 86400 6.25 6.25 542349 86400
50x30x25 - - - 0 86400 - - 0 86400
Average 5.93 2.05 26018.90 5.80 2.05 19307.60
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Table 4.2: Results for instances with 35% density in flow matrix

Formulation 1 (MIP) Formulation 2 (IP)
instance Opt LP gap Final gap Nodes CPU time LP gap Final gap Nodes CPU time
8x4x35 43 11.40 0.00 491 4 10.93 0.00 411 9
9x4x35 48 0.00 0.00 159 1 0.00 0.00 239 17

10x4x35 51 15.69 0.00 24802 193 15.69 0.00 58767 1356
10x5x35 44 9.09 0.00 267 8 9.09 0.00 366 37
11x5x35 53 5.66 0.00 644274 22238 5.66 0.00 560073 4879
12x5x35 63 23.02 13.33 2052136 86400 20.32 12.70 982587 86400
12x6x35 52 17.31 13.21 3755253 86400 17.31 13.46 590729 86400
15x6x35 85 10.59 5.88 2321786 86400 10.59 5.88 3294648 86400
15x7x35 71 15.49 15.28 3407403 86400 15.49 8.45 2507594 86400
20x10x35 90 12.22 0.00 172276 19111 10.67 0.00 2 71013
50x30x35 - - - 0 86400 - - 0 86400
Average 12.05 4.77 38715.50 11.57 4.05 42291.10

Table 4.3: Results for instances with 50% density in flow matrix

Formulation 1 (MIP) Formulation 2 (IP)
instance Opt LP gap Final gap Nodes CPU time LP gap Final gap Nodes CPU time
8x4x50 59 18.47 0.00 1873506 21242 20.34 0.00 88946 298
9x4x50 54 16.67 0.00 354303 6552 16.67 0.00 490737 5583

10x4x50 76 22.37 13.82 5727028 86400 25.00 16.71 1427709 86403
10x5x50 69 15.94 0.00 489 20 12.90 0.00 0 98
11x5x50 74 25.68 18.67 5033189 86400 19.73 10.81 4819228 86400
12x5x50 87 27.59 20.80 5773004 86400 23.56 17.05 632744 86400
12x6x50 76 21.71 16.46 6357976 86400 22.37 14.47 4275359 86400
15x6x50 116 34.57 25.86 3509907 86400 30.60 24.14 128402 86400
15x7x50 95 18.72 14.74 2684076 86400 21.28 18.95 385519 86400
20x10x50 120 19.17 15.75 66134 86400 15.17 8.33 0 86400
50x30x50 - - - 0 86400 - - 0 86400
Average 22.09 12.61 63261.40 20.76 11.05 61078.20
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Table 4.4: Results for instances with 75% density in flow matrix

Formulation 1 (MIP) Formulation 2 (IP)
instance Opt LP gap Final gap Nodes CPU time LP gap Final gap Nodes CPU time
8x4x75 75 30.67 8.00 5798949 86400 24.53 0.00 2772142 28755
9x4x75 95 32.32 18.95 9688112 86400 32.84 23.96 688577 86402

10x4x75 119 36.95 29.41 7264828 86400 34.49 24.37 626520 86403
10x5x75 95 29.26 22.92 4761122 86400 29.68 13.68 7865677 86400
11x5x75 105 33.81 25.71 4337157 86400 32.86 20.75 1420341 86400
12x5x75 134 29.54 26.67 3640776 86400 34.23 28.36 71930 86400
12x6x75 116 25.86 14.66 6085621 86400 28.45 23.28 555489 86400
15x6x75 179 39.89 33.52 1962730 86400 37.60 38.78 5 86400
15x7x75 159 33.94 28.30 2414206 86400 32.26 35.91 10 86400
20x10x75 211 30.81 30.33 12390 86400 - - 0 86400
50x30x75 - - - 0 86400 - - 0 86400
Average 32.30 23.85 86400.00 31.88 23.23 80636.00

Table 4.5, summarize the results of branch and cut algorithm (B&C) presented in Sec-

tion 3.1. We compare its results with the average results obtained from solving Formulation

1 and Formulation 1. For that, we report the final gap, the number of nodes explored, and

the CPU time. For the majority of instances, B&C algorithm leads to a weaker Final gap

and more computational time. From this experiment, we conclude that adding constraints

13 to Formulation 1 while exploring the enumeration tree does not improve the perfor-

mance of the commercial solver.

Table 4.6 summarizes the results for each constrictive algorithm and dispatching rule,

where we report the maximum, average, and minimum percentage of deviation which we

compute as %d = 100× (Opt− UB)/Opt. Moreover, UB is the upper bound obtained by

the algorithm and Opt is the best solution reported obtained throughout the experiments,

%dmax, %davr, and %dmin are the maximum, average, and minimum percentage deviation,

respectively, obtained for a given algorithm and dispatching rule. To obtain the ranking

index value for the composted dispatching rule CDR we setA = {P, |L|, TP},KP = 0.25,

K|L| = 10, and KTP = 0.35, for the SSC. Also, we set A = {P, |L|, TP}, KP = 0.25,
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Table 4.5: Results of B&C Algorithm.
B&C Average Formulation-(1,2)

instance Final gap Nodes CPU time gap Nodes CPU time
8x4x25 0.00 105 1 0.00 298 2
8x4x35 0.00 492 5 0.00 451 6.5
8x4x50 0.00 1151473 6412 0.00 981226 10770
8x4x75 19.04 5101464 86402 4.00 4285546 57577.5
9x4x25 0.00 0 7 0.00 0 1
9x4x35 0.00 86 3 0.00 199 9
9x4x50 0.00 271466 5689 0.00 422520 6067.5
9x4x75 26.04 918894 86400 21.45 5188345 86401
10x4x25 0.00 3 1 0.00 0 2
10x4x35 0.00 4180 73 0.00 41784.5 774.5
10x4x50 13.55 1886701 86400 15.26 3577369 86401.5
10x4x75 29.41 757021 86400 26.89 3945674 86401.5
10x5x25 0.00 0 1 0.00 0 2
10x5x35 0.00 660 23 0.00 316.5 22.5
10x5x50 0.00 0 22 0.00 244.5 59
10x5x75 22.11 623356 86400 18.30 6313400 86400.5
11x5x25 0.00 2671 81 0.00 1712 23.5
11x5x35 0.00 421730 6635 0.00 602173.5 13558.5
11x5x50 17.57 2086236 86400 14.74 4926209 86400
11x5x75 25.71 475421 86400 23.23 2878749 86400
12x5x25 2.17 5047509 86400 0.00 861144 14791.5
12x5x35 14.29 1489298 86400 13.02 1517362 86400
12x5x50 20.69 1627756 86400 18.93 3202874 86400
12x5x75 25.00 85498 86400 27.51 1856353 86400
12x6x25 0.00 34 8 0.00 641 21.5
12x6x35 15.38 2644226 86400 13.33 2172991 86400
12x6x50 16.88 1372664 86400 15.46 5316668 86400
12x6x75 17.24 461151 86400 18.97 3320555 86400
15x6x25 14.29 1230570 86400 14.29 2405010 86400
15x6x35 4.71 860961 86400 5.88 2808217 86400
15x6x50 27.97 59095 86400 25.00 1819155 86400
15x6x75 41.58 16256 86400 36.15 981367.5 86400
15x7x25 0.00 3615974 78952 0.00 1533718 38989
15x7x35 16.67 1700115 86400 11.86 2957499 86400
15x7x50 14.74 124914 86400 16.84 1534798 86400
15x7x75 31.10 21561 86400 32.11 1207108 86400

20x10x25 7.69 890111 86400 6.25 993492 86400
20x10x35 0.00 3902 4677 0.00 86139 45062
20x10x50 25.55 7633 86400 12.04 33067 86400
20x10x75 32.73 3851 86400 30.33 12390 86400
50x30x25 - - 86400 - - 86400
50x30x35 - - 86400 - - 86400
50x30x50 - - 86400 - - 86400
50x30x75 - - 86400 - - 86400
Average 12.05 57313.45 10.55 55321.45
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K|L| = 10, and KTP = 0.4 for the ISC algorithm. It is clear from the results that ordering

trucks in nonincreasing order dominates its inverse. Also, the composite dispatching rule

outperforms all other rules and LSP comes in the second place.

Table 4.6: Results of constructive algorithms and dispatching rules
LSP SPT MNLT LNLT BTAL STAL CDR

SSC
%dmax 29.63 48.24 22.22 50.94 30.77 50.59 18.52
%davr 11.03 30.56 13.37 28.44 14.08 27.19 10.19
%dmin 0.00 11.68 5.22 12.00 3.33 12.63 0.00

ISC
%dmax 24.53 33.33 35.29 35.85 29.63 40.67 24.07
%davr 12.09 20.70 16.48 20.11 15.67 21.61 11.56
%dmin 3.05 9.47 5.08 6.29 8.12 5.33 2.00

Table 4.7 summarizes the results for SSCLS and ISCLS algorithms using two dispatch-

ing rules: SPT and CDR. The header line is the dispatching rule used by the algorithm. For

each rule, the table demonstrates the average percentage deviation and the average running

time (in seconds). Moreover, for each algorithm, the table shows the average and the max-

imum values obtained after solving all the instances. For the composite dispatching rule,

we used the same setting used in the previous experiment. The results show that SSCLS

performs better than ISCLS in terms of both percentage of deviation and running time.

Also, the composite dispatching rule outperforms the largest process time first rule. Based

on these results, we used the composite dispatching rule to order trucks in metaheuristics.

Table 4.7: Results of composite heuristics algorithms
LSP CDR

instance d% Time d% Time

SSCLS
Max 8.33 106.00 6.76 170.00
Avr 2.60 4.95 2.45 7.66

ISCLS
Max 9.09 172.00 9.26 175.00
Avr 3.64 7.16 3.37 7.59

Table 4.8 summarizes the results from the GRASP and ILS metaheuristics algorithm.

For each instance, we run each algorithm 50 times and then we report the average, maxi-

mum, and minimum percentage deviation. In both metaheuristics, trucks are ordered based
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on the composite dispatching rule using equations (17) and (18). To control the ILS algo-

rithm we set po = 0.05, pmax = 0.30, and δ = 0.05. On the other hand, to control the

GRASP, we set αo = 0.7, αmin, and δ = 0.95. The results show that both metaheuristics

provide high-quality solutions in a reasonable amount of time. In average ILS obtains up-

per bounds that are 1.04 % away from the best-known solution. On the other hand, GRASP

is away by 1.58%. Also, in terms of maximum deviation, both metaheuristics deviate at

most by 6.25% of the best known upper bound. In all criteria, ILS performs better than

GRASP. ILS performs better than GRASP on the majority of the considered instances.

Table 4.9 provides an overall comparison and summarizes the results of SSC, SSCLS,

ILS, GRASP, and results obtained by the solver. Our objective is to analyze and compare

the quality of the solution generated by each method and the computational time. We report

the best results from the solver using both formulations. The table shows that both meta-

heuristics are able to obtain better solutions than CPLEX for 11 instances. SSC provides an

upper in less than a second for all instances with an average gap of 10.2 % and a maximum

gap of 18.5 %. Also, experiments show that SSC performance is related to the size of the

instance and the ratio of the number of trucks to the number of doors. Instances with more

trucks tend to perform better in term of percentage deviations. On the other hand, worst

performance comes from the instances with the smallest number of trucks. Also, better

performance is expected when we have lower ratio of the trucks to doors.

SSCLS obtains better solution that SSC. By exploring the neighborhoods, the algorithm

can reduce the gap by up to 11.76 %. The SSCLS heuristics obtain better solutions on

the cost of increasing the computational time. For all instances with less than 50 trucks,

the computational time are less than two seconds, whereas, for instances with 50 trucks

computational time is more than 29 seconds. The of the quality of solutions obtain from

the metaheuristics are better than the SSC and SSCLS heuristics in term of percentage of

deviation. However, metaheuristics need more computational effort for obtaining these
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Table 4.8: Results of metaheuristics algorithm.
ILS GRASP

instance Opt %dAvr %dMax %dMin CPU %dAvr %dMax %dMin CPU
8x4x25 27 2.44 3.70 0.00 0.04 3.04 3.70 0.00 0.06
8x4x35 43 0.23 2.33 0.00 0.04 0.42 2.33 0.00 0.06
8x4x50 59 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.08
8x4x75 75 0.00 0.00 0.00 0.08 0.03 1.33 0.00 0.06
9x4x25 33 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.1
9x4x35 48 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.1
9x4x50 54 0.85 3.70 0.00 0.1 4.48 5.56 0.00 0.12
9x4x75 95 0.02 1.05 0.00 0.14 1.60 3.16 0.00 0.14

10x4x25 34 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.12
10x4x35 51 0.35 1.96 0.00 0.14 3.06 3.92 0.00 0.14
10x4x50 76 0.95 2.63 0.00 0.16 2.37 3.95 0.00 0.18
10x4x75 117 0.94 1.71 0.00 0.26 1.23 1.71 0.00 0.28
10x5x25 35 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.1
10x5x35 44 2.05 4.55 0.00 0.1 4.23 4.55 0.00 0.14
10x5x50 69 0.00 0.00 0.00 0.16 0.43 1.45 0.00 0.18
10x5x75 95 0.00 0.00 0.00 0.2 0.00 0.00 0.00 0.22
11x5x25 36 2.11 2.78 0.00 0.16 2.50 2.78 0.00 0.18
11x5x35 53 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.22
11x5x50 74 2.00 4.05 0.00 0.26 3.03 5.41 0.00 0.26
11x5x75 105 1.28 1.90 0.00 0.34 1.77 2.86 0.95 0.38
12x5x25 46 0.00 0.00 0.00 0.22 0.13 2.17 0.00 0.28
12x5x35 63 1.59 3.17 0.00 0.26 3.21 4.76 1.59 0.3
12x5x50 87 1.79 3.45 1.15 0.38 2.41 3.45 1.15 0.42
12x5x75 130 1.55 3.08 0.00 0.54 2.51 3.85 0.00 0.54
12x6x25 41 0.00 0.00 0.00 0.18 1.95 2.44 0.00 0.24
12x6x35 52 1.50 3.85 0.00 0.26 1.65 1.92 0.00 0.3
12x6x50 76 2.29 3.95 0.00 0.36 2.66 3.95 1.32 0.38
12x6x75 115 0.82 0.87 0.00 0.46 0.87 0.87 0.87 0.48
15x6x25 56 2.07 3.57 0.00 0.56 2.89 3.57 0.00 0.68
15x6x35 85 1.11 2.35 0.00 0.72 1.34 2.35 0.00 0.82
15x6x50 115 1.46 2.61 0.00 1.02 1.51 2.61 0.00 1.06
15x6x75 175 1.47 2.86 0.57 1.44 1.45 2.29 0.00 1.5
15x7x25 46 2.35 4.35 0.00 0.5 2.30 4.35 2.17 0.66
15x7x35 71 2.34 2.82 1.41 0.7 2.45 2.82 0.00 0.78
15x7x50 94 1.28 2.13 0.00 0.9 2.00 3.19 1.06 0.96
15x7x75 156 0.64 1.28 0.00 1.38 0.69 1.28 0.64 1.38

20x10x25 64 3.56 6.25 1.56 1.72 4.19 6.25 1.56 2.08
20x10x35 90 2.29 3.33 0.00 2.3 2.44 3.33 1.11 2.64
20x10x50 119 2.18 3.36 0.84 3.24 1.92 2.52 0.84 3.44
20x10x75 197 0.68 1.02 0.00 4.6 0.84 1.02 0.51 4.9
50x30x25 150 0.00 0.00 0.00 117.14 0.00 0.00 0.00 127.68
50x30x35 199 0.70 1.01 0.00 169.36 0.90 1.51 0.00 176.82
50x30x50 291 0.67 1.03 0.34 223.8 0.72 1.03 0.00 227.98
50x30x75 441 0.20 0.45 0.00 297.38 0.29 0.45 0.00 310.96
Maximum 441.00 3.56 6.25 1.56 297.38 4.48 6.25 2.17 310.96
Average 95.05 1.04 1.98 0.13 18.91 1.58 2.38 0.31 19.78
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solutions. The solver obtained the optimal solution for 18 instances. Out of that, ILS

obtained the optimal solution for 10 instances and GRASP obtained the optimal solution

for eight instances. In general, ILS performs better than GRASP. In term of average, ILS

provides a better solution than GRASP in less amount of time.

For testing assumptions of the model, we conduct two experiments. In the first one,

we analyze the importance of including internal transportation time in the model. In the

second one, we analyze the benefits of synchronizing the truck assignment decision with

the truck scheduling decision. The first test tries to answer the question, should we include

the internal transportation time or should we neglect it? To answer this question, we present

three cases. In the first case, we assume that the decision maker neglects the internal

transportation time at the cross-dock terminal. In the second, we assume that he includes

the transshipments time. Finally, we assume the decision maker overestimate the internal

transportation time.

Tables 4.10, 4.11, and 4.12 summarize the analysis of the internal transportation as-

sumption. The first column is the door index. The second column contains the inbound

doors schedule followed by the outbound doors schedule. Let (m, t) denotes the truck

schedule, where m is the truck index and t the starting time of the truck m. C̄max denotes

makespan resulted of a given case. Cmax denotes the actual makespan that is resulted op-

timal solution of our model. The last column contains the percentage deviation obtained

for each policy. The first case assumes that the distance between inbound and outbound

doors are zero. The second case corresponds to the original problem. The final case dou-

bles the distance between between inbound door and outbound door. The results show that

in both cases neglecting and over estimating the internal transportation time between time

results in change of outputs. Also, in the case of neglecting the transpiration time, trucks

scheduling and assignment are entirely changed. Also, this case leads to 8.3% deviation

from optimal solution. In the other hand, overestimating the internal transportation costs
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Table 4.9: Overall Comparison
Const-1 COMP H1 ILS GRASP CPLEX Best

instance Opt %d %d Time %davr avrTime %davr avrTime %davr avrTime
8x4x25 27 18.52 3.70 0.00 2.44 0.04 3.04 0.06 0.00 1.00
8x4x35 43 11.63 2.33 0.00 0.23 0.04 0.42 0.06 0.00 4.00
8x4x50 59 5.08 1.69 0.00 0.00 0.06 0.00 0.08 0.00 6412.00
8x4x75 75 1.33 0.00 0.00 0.00 0.08 0.03 0.06 0.00 86400.00
9x4x25 33 9.09 0.00 0.00 0.00 0.06 0.00 0.10 0.00 1.00
9x4x35 48 14.58 2.08 0.00 0.00 0.08 0.00 0.10 0.00 1.00
9x4x50 54 12.96 5.56 0.00 0.85 0.10 4.48 0.12 0.00 5689.00
9x4x75 95 12.63 2.11 0.00 0.02 0.14 1.60 0.14 0.00 86400.00

10x4x25 34 5.88 0.00 0.00 0.00 0.08 0.00 0.12 0.00 1.00
10x4x35 51 13.73 3.92 0.00 0.35 0.14 3.06 0.14 0.00 73.00
10x4x50 76 14.47 2.63 0.00 0.95 0.16 2.37 0.18 0.00 86400.00
10x4x75 117 13.68 3.42 0.00 0.94 0.26 1.23 0.28 1.71 86400.00
10x5x25 35 2.86 0.00 0.00 0.00 0.08 0.00 0.10 0.00 0.00
10x5x35 44 15.91 4.55 0.00 2.05 0.10 4.23 0.14 0.00 8.00
10x5x50 69 8.70 0.00 0.00 0.00 0.16 0.43 0.18 0.00 20.00
10x5x75 95 3.16 1.05 0.00 0.00 0.20 0.00 0.22 0.00 86400.00
11x5x25 36 16.67 5.56 0.00 2.11 0.16 2.50 0.18 0.00 13.00
11x5x35 53 11.32 0.00 0.00 0.00 0.16 0.00 0.22 0.00 6635.00
11x5x50 74 13.51 6.76 0.00 2.00 0.26 3.03 0.26 0.00 86400.00
11x5x75 105 18.10 6.67 0.00 1.28 0.34 1.77 0.38 0.00 86400.00
12x5x25 46 6.52 4.35 0.00 0.00 0.22 0.13 0.28 0.00 9571.00
12x5x35 63 11.11 3.17 0.00 1.59 0.26 3.21 0.30 0.00 86400.00
12x5x50 87 14.94 3.45 0.00 1.79 0.38 2.41 0.42 0.00 86400.00
12x5x75 130 16.92 2.31 0.00 1.55 0.54 2.51 0.54 1.54 86400.00
12x6x25 41 12.20 0.00 0.00 0.00 0.18 1.95 0.24 0.00 6.00
12x6x35 52 11.54 3.85 0.00 1.50 0.26 1.65 0.30 0.00 86400.00
12x6x50 76 9.21 3.95 0.00 2.29 0.36 2.66 0.38 0.00 86400.00
12x6x75 115 5.22 1.74 0.00 0.82 0.46 0.87 0.48 0.87 86400.00
15x6x25 56 12.50 3.57 0.00 2.07 0.56 2.89 0.68 0.00 86400.00
15x6x35 85 16.47 2.35 0.00 1.11 0.72 1.34 0.82 0.00 86400.00
15x6x50 115 11.30 1.74 0.00 1.46 1.02 1.51 1.06 0.87 86400.00
15x6x75 175 13.14 1.71 1.00 1.47 1.44 1.45 1.50 2.29 86400.00
15x7x25 46 15.22 0.00 0.00 2.35 0.50 2.30 0.66 0.00 77796.00
15x7x35 71 9.86 2.82 0.00 2.34 0.70 2.45 0.78 0.00 86400.00
15x7x50 94 7.45 3.19 0.00 1.28 0.90 2.00 0.96 1.06 86400.00
15x7x75 156 13.46 3.21 0.00 0.64 1.38 0.69 1.38 1.92 86400.00
20x10x25 64 10.94 4.69 0.00 3.56 1.72 4.19 2.08 0.00 86400.00
20x10x35 90 6.67 2.22 1.00 2.29 2.30 2.44 2.64 0.00 4677.00
20x10x50 119 9.24 1.68 0.00 2.18 3.24 1.92 3.44 0.84 86400.00
20x10x75 197 3.05 2.03 1.00 0.68 4.60 0.84 4.90 7.11 86400.00
50x30x25 150 0.00 0.00 29.00 0.00 117.14 0.00 127.68 - 86400.00
50x30x35 199 3.52 1.51 48.00 0.70 169.36 0.90 176.82 - 86400.00
50x30x50 291 2.06 1.37 87.00 0.67 223.80 0.72 227.98 - 86400.00
50x30x75 441 1.81 0.91 170.00 0.20 297.38 0.29 310.96 - 86400.00
Maximum 441.00 18.52 6.76 170.00 3.56 297.38 4.48 310.96 - 86400.00
Average 95.05 10.19 2.45 7.66 1.04 18.91 1.58 19.78 - 55538.82

51



Table 4.10: Results of case 1: neglecting the internal transportation time
door inbound Schedule outbound Schedule C̄max Cmax %d

0 (8 0), (3 12) (1 12), (8 19), (2 24)

33 39 8.3%
1 (10 0), (7 12) (10 17), (4 24)
2 (5 0), (0 13), (1 20) (5 13), (9 25)
3 (9 0), (2 6) (7 12), (0 20)
4 (4 4), (6 8) (3 17), (6 26)

Table 4.11: Results of case 2: including the transshipment time
door Inbound Schedule outbound Schedule C̄max Cmax %d

0 (2 0), (7 11) (1 20), (2 27)

36 36 0.0%
1 (10 0), (9 12) (0 15), (4 27)
2 (3 0), (8 3) (10 14), (7 21), (6 29)
3 (6 0), (4 9), (1 19) (3 18), (9 27)
4 (5 0), (0 17) (5 18), (8 30)

Table 4.12: Results of case 3: over estimating the transshipment time
door inbound schedule outbound schedule C̄max Cmax %d

0 (8 0), (9 12), (1 19) (1 22), (4 29)

39 37 2.8%
1 (6 0), (7 9) (3 20), (2 30)
2 (2 0), (0 11) (10 17), (7 24), (6 32)
3 (3 0), (5 3) (0 19), (9 31)
4 (10 0), (4 12) (8 21), (5 26)
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results in 2.5% deviation from the optimal solution.

The last experiment analyzes the effects of synchronizing the assignment and schedul-

ing decisions. It answers the question, is it beneficial to synchronize the assignment and

scheduling decisions? To answer this question, we solve a desynchronize model and com-

pare the result of that with the results of our model. In the desynchronize model, we assume

that the decision maker first assigns trucks to doors and then schedules trucks at each door.

In the first stage, the objective is to minimize internal transportation time. In the second

stage, the objective is to minimize the makespan and we assume that doors have capacities.

Let p̄ denotes the average process time. We consider three scenarios each with a differ-

ent capacity, In scenario one, we set the capacity to cap = 2.5 ∗ p̄. In scenario two, we set

cap = 3 ∗ p̄. Finally, in scenario three, we set cap = 4 ∗ p̄. The results of this experiment

are summarised in table 4.13, The result shows that synchronized leads to better decisions

compared the desynchronized mode.

Table 4.13: Results of desynchronize model
Capacity door inbound schedule outbound schedule C̄max %d

2.5p̄

0 (10 0), (3 12) (7 17), (9 28)

38 5.6%
1 (9 0), (5 6) (10 18), (0 25)
2 (7 0), (0 12) (1 21), (3 28)
3 (2 0), (6 11) (2 16), (5 24)
4 (1 0), (8 4), (4 16) (4 16), (6 24), (8 30)

3p̄

0 (6 0), (1 9)

43 19.4%
1 (5 0) (3 19), (6 28), (4 34)
2 (8 0), (7 12) (0 18), (2 34)
3 (2 0), (3 11), (4 14), (9 22) (8 14), (5 23), (9 35)
4 (0 0), (10 3) (10 20), (1 27), (7 34)

4p̄

0 (5 0), (2 13), (1 24) (8 16), (1 26), (0 33), (2 45)

54 50.0%
1 (4 0), (0 4), (7 7), (6 19), (3 29) (5 20), (4 34), (3 42)
2 (8 0), (10 12), (9 24) (9 25), (6 32), (7 38), (10 46)
3
4
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Chapter 5

Conclusion

In this thesis, we studied the truck to door scheduling problem. The problem is to assign

and schedule trucks to doors in a way that minimizes the makespan. We considered that the

internal transportation time inside the terminal in an essential factor for making these deci-

sion. To obtain a better decision, truck to door assignments and truck scheduling decisions

are made simultaneously. We presented several dispatching rules and presented a com-

posite dispatching rule. We used these dispatching rules to develop several heuristics and

metaheuristics. We presented constructive heuristics, local search procedures, compound

constructive local search heuristics algorithms, and two metaheuristics algorithms.

We presented and solved two mathematical formulations using the commercial software

CPLEX and presented computational experiments. We found that neither formulation dom-

inates the other. Also, we observed that the complexity of the problem is directly related to

the density of the flow matrix between in inbound trucks and outbound trucks. For the 75%

flow, CPLEX was not able to solve most of the considered instances. Also, for the largest

instance with 50 inbound trucks and 50 outbound trucks, we run out of memory before the

solver started solving the problem. We found that heuristics algorithms were successful in

finding a good quality solution. Also, the metaheuristic provides near to optimal solutions

and in some cases the optimal solution. For some cases where CPLEX could not find the
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optimal solution, the metaheuristics algorithm was able to generate better upper bounds.

Among the two metaheuristics, we found that the Iterated Local Search provides better

solutions.

For future research, several directions are possible. More work could be done on the

solution methodology for both exact and heuristic algorithms. One could use the structure

of the problem to decompose the problem into several problems and then implement a

hybrid heuristic or metaheuristic. Also, several objective functions could be adapted to

the model such as the number of tardy trucks, total weighted earliness, and lateness of the

trucks, and total completion time.
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Peter Bodnar, René de Koster, and Kaveh Azadeh. Scheduling trucks in a cross-dock with

mixed service mode dock doors. Transportation Science, 51(1):112–131, 2015.

Nils Boysen. Truck scheduling at zero-inventory cross docking terminals. Computers &

Operations Research, 37(1):32–41, 2010.

Nils Boysen and Malte Fliedner. Cross dock scheduling: Classification, literature review

and research agenda. Omega, 38(6):413–422, 2010.

56



Nils Boysen, Malte Fliedner, and Armin Scholl. Scheduling inbound and outbound trucks

at cross docking terminals. OR spectrum, 32(1):135–161, 2010.
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