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Abstract

A cross-docking terminal is a relevant node within a distribution chain. Actually, at this intermediate logistic platform between suppliers and
retailers, incoming flows of possible different commodities are consolidated into single shipments, with respect to the retailers’ orders, and directly
delivered, skipping thus the storage phase. In such a context the synchronization of the inbound and outbound trucks is a necessary condition to
guarantee fast and congestion-free transshipment operations. In this paper we propose a Mixed Integer Linear Program and a heuristic algorithm
for managing the loading and discharging operations, with the aim of minimizing the completion time of the whole transshipment process.
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1. Introduction and related works

In the last two decades, cross-docking strategies have gained
a key role in logistics industries. As underlined in [9], nowadays
customers, in a broad sense, have become even more volatile
and impatient than before. This high pressure by customers,
calling for fast deliveries of their orders, is completely dumped
on suppliers and manufacturers, in general. However, distribu-
tion processes based on cross-docking strategies present bene-
fits both for customers and suppliers.

A cross-docking terminal is a logistic platform, where prod-
ucts arriving by inbound trucks, are arranged with respect to
customers’ requirements and loaded into the outbound trucks,
possibly skipping the storage phase or at most being stored for
a short amount of time (typically less than 24 hours). By re-
ducing the inventory costs, cross-docking have a positive effect
for the suppliers, given that it allows to reduce the distribution
costs. On the other hand, the absence of the inventory phase
in the distribution process allows to reduce the customers’ lead
times, so having positive effects also on them. In some sense,
cross-docking can be viewed as the counterpart, on the logistic
side, of the well established Just in time strategy in production
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planning, where the objective of reducing as much as possible
the inventory levels is pursued.

The scientific literature on cross-docking problems is very
wide, and also a summary analysis goes behind the aim of
this paper. We refer the interested reader to the review papers
[2, 11, 3, 8]. We just want to underline that, among all the prob-
lems arising in the management of a cross-docking terminal, in
this paper we are concerned with one of the most relevant ones
at the operational decision level, that is the synchronization of
inbound and outbound trucks, also known as truck scheduling
problem.

Generally, truck scheduling problems can be divided into
two main classes: scheduling of inbound trucks, while it is as-
sumed that the outbound trucks are already scheduled or as-
signed on a midterm horizon; scheduling of inbound and out-
bound trucks. Our problem belongs to the second class. There-
fore, our aim is the coordinate scheduling of the inbound and
outbound trucks at a cross-docking terminal, with the objective
of minimizing the time needed to complete all the required op-
erations. As in [4, 7], we consider a basic layout constituted
by two doors (or gates), one for the discharging and one for
the loading operations. However, differently from the previous
cited papers, the transshipment flows between inbound and out-
bound trucks are explicitly considered as part of the decision
problem, while in [4, 7] they are assumed to be known.

The paper is organized as follows. In Section 2 we detail
the problem and provide a mixed integer linear program. The
Lagrangian decomposition technique is discussed in Section 3,2351-9789 c© 2020 The Authors. Published by Elsevier B.V.
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bIstituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche , Via P. Bucci 7-8C, 87036 Rende (CS), Italy

Abstract

A cross-docking terminal is a relevant node within a distribution chain. Actually, at this intermediate logistic platform between suppliers and
retailers, incoming flows of possible different commodities are consolidated into single shipments, with respect to the retailers’ orders, and directly
delivered, skipping thus the storage phase. In such a context the synchronization of the inbound and outbound trucks is a necessary condition to
guarantee fast and congestion-free transshipment operations. In this paper we propose a Mixed Integer Linear Program and a heuristic algorithm
for managing the loading and discharging operations, with the aim of minimizing the completion time of the whole transshipment process.

c© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing.

Keywords: scheduling; heuristic; logistics

1. Introduction and related works

In the last two decades, cross-docking strategies have gained
a key role in logistics industries. As underlined in [9], nowadays
customers, in a broad sense, have become even more volatile
and impatient than before. This high pressure by customers,
calling for fast deliveries of their orders, is completely dumped
on suppliers and manufacturers, in general. However, distribu-
tion processes based on cross-docking strategies present bene-
fits both for customers and suppliers.

A cross-docking terminal is a logistic platform, where prod-
ucts arriving by inbound trucks, are arranged with respect to
customers’ requirements and loaded into the outbound trucks,
possibly skipping the storage phase or at most being stored for
a short amount of time (typically less than 24 hours). By re-
ducing the inventory costs, cross-docking have a positive effect
for the suppliers, given that it allows to reduce the distribution
costs. On the other hand, the absence of the inventory phase
in the distribution process allows to reduce the customers’ lead
times, so having positive effects also on them. In some sense,
cross-docking can be viewed as the counterpart, on the logistic
side, of the well established Just in time strategy in production

∗ Corresponding author. Tel.: +39-0984-494709 ; fax: +39-0984-494781
E-mail address: monaco@dimes.unical.it (M. Flavia Monaco).

planning, where the objective of reducing as much as possible
the inventory levels is pursued.

The scientific literature on cross-docking problems is very
wide, and also a summary analysis goes behind the aim of
this paper. We refer the interested reader to the review papers
[2, 11, 3, 8]. We just want to underline that, among all the prob-
lems arising in the management of a cross-docking terminal, in
this paper we are concerned with one of the most relevant ones
at the operational decision level, that is the synchronization of
inbound and outbound trucks, also known as truck scheduling
problem.

Generally, truck scheduling problems can be divided into
two main classes: scheduling of inbound trucks, while it is as-
sumed that the outbound trucks are already scheduled or as-
signed on a midterm horizon; scheduling of inbound and out-
bound trucks. Our problem belongs to the second class. There-
fore, our aim is the coordinate scheduling of the inbound and
outbound trucks at a cross-docking terminal, with the objective
of minimizing the time needed to complete all the required op-
erations. As in [4, 7], we consider a basic layout constituted
by two doors (or gates), one for the discharging and one for
the loading operations. However, differently from the previous
cited papers, the transshipment flows between inbound and out-
bound trucks are explicitly considered as part of the decision
problem, while in [4, 7] they are assumed to be known.

The paper is organized as follows. In Section 2 we detail
the problem and provide a mixed integer linear program. The
Lagrangian decomposition technique is discussed in Section 3,2351-9789 c© 2020 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing.

Available online at www.sciencedirect.com

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

International Conference on Industry 4.0 and Smart Manufacturing (ISM 2019)

Managing loading and discharging operations at cross-docking terminals
M. Flavia Monacoa,∗, Marcello Sammarrab

aDipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, Via P. Bucci 44E, 87036 Rende (CS), Italy
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that is followed by the description of the Lagrangian heuristics
in Section 4. Numerical results are discussed in Section 5. Fi-
nally, conclusions are drawn in Section 6.

2. Mathematical Model

We consider a cross-docking terminal with one door at both
inbound and outbound sides. A truck at a time can be processed
at the docking doors. The products shipped from a given set of
inbound trucks have to be unloaded at the first door, sorted on
the basis of the customer demands, moved across the dock, and
then loaded onto a set of outboubd trucks, at the second door.
We assume, as it is usual in this context, that all trucks are ready
at the beginning of the planning horizon, their processing times
are known, while the transshipment time inside the terminal is
negligible. Moreover, preemption in the unloading/loading of
each truck is not allowed. Therefore, the processing of an out-
bound truck cannot start before the unloading of all inbound
trucks carrying loads for it has been completed. The problem is
to decide the unloading and loading sequences of the trucks so
as to minimize the completion time of the whole process, that
coincides with the time at which the last outbound truck has
been completely loaded and can leave the terminal (makespan).

Here is the list of the notation we adopt to formulate the
truck-scheduling problem.

Nomenclature

Main Notation

I Set of inbound trucks, |I| = n
J Set of outbound trucks, |J| = m
P Set of products shipped from the inbound to the out-

bound trucks, |P| = c
K Set of sequence positions at the inbound gate, |K| = n
K1 K \ {1}
H Set of sequence positions at the outbound gate, |H| =

m
H1 H \ {1}
ti Processing time of the inbound truck i ∈ I
τ j Processing time of the outbound truck j ∈ J
MI Sum of the inbound trucks processing times, MI =∑

i∈I ti
M Sum of all trucks processing times, M = MI+

∑
j∈J τ j

dip quantity of product p ∈ P delivered by truck i ∈ I
r jp quantity of product p ∈ P required by truck j ∈ J
up

i j maximum quantity of product p ∈ P transferable
from i ∈ I to j ∈ J, up

i j = min{dip, r jp}

We define the following decision variables:

Nomenclature

Decision Variables

xik = 1 if the truck i ∈ I is the k−th one in the inbound
sequence, 0 otherwise

y jh = 1 if the truck j ∈ J is the h−th one in the outbound
sequence, 0 otherwise

zp
i j ≥ 0 quantity of product p ∈ P shipped from truck i ∈ I

to truck j ∈ J
vp

i j = 1 if a strictly positive amount of product p ∈ P is
shipped from i ∈ I to j ∈ J, 0 otherwise

S I
i ≥ 0 starting processing time of the truck i ∈ I

CI
i ≥ 0 completion time of the truck i ∈ I

S O
j ≥ 0 starting processing time of the truck j ∈ J

CO
j ≥ 0 completion time of the truck j ∈ J

Cmax the makespan, Cmax = max j∈J{CO
j }

Note that the variables S I
i and S O

j have been introduced for
sake of readability, even though they are redundant (see con-
straints (5) and (9) in the model). With the above notation, the
Mixed Integer Linear Model for the truck-scheduling problem
under investigation is the following:

Z = min Cmax (1)∑
k∈K

xik = 1 i ∈ I (2)

∑
i∈I

xik = 1 k ∈ K (3)

S I
i ≥ CI

l − MI(2 − xik − xl k−1) i � l ∈ I, k ∈ K1 (4)

CI
i = S I

i + ti i ∈ I (5)∑
h∈H

y jh = 1 j ∈ J (6)

∑
j∈J

y jh = 1 h ∈ H (7)

S O
j ≥ CO

l − M(2 − y jh − yl h−1) j � l ∈ J, h ∈ H1 (8)

CO
j = S O

j + τ j j ∈ J (9)∑
j∈J

zp
i j = dip i ∈ I, p ∈ P (10)

∑
i∈I

zp
i j = r jp j ∈ J, p ∈ P (11)

zp
i j ≤ up

i jv
p
i j i ∈ I, j ∈ J, p ∈ P (12)

S O
j ≥ +CI

i − MI(1 − vp
i j) i ∈ I, j ∈ J, p ∈ P (13)

Cmax ≥ CO
j j ∈ J (14)

xik ∈ {0, 1} i ∈ I, k ∈ K (15)
y jh ∈ {0, 1} j ∈ J, h ∈ H (16)
vp

i j ∈ {0, 1} i ∈ I, j ∈ J, p ∈ P (17)
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zp
i j ≥ 0 i ∈ I, j ∈ J, p ∈ P (18)

S I
i ≥ 0 i ∈ I (19)

S O
j ≥ 0 j ∈ J (20)

In this model, constraints (2) and (3) are the standard assign-
ment constraints. They impose that each inbound truck i is as-
signed to one and only one position k in the sequence of trucks
to be discharged at the inbound door. Constraints (4) and (5) al-
low to compute the completion times for the inbound trucks
I. In particular, constraints (4) ensure that S I

i is not smaller
than CI

l , whenever l and i are consecutive in the inbound se-
quence; otherwise they are redundant. Constraints (6) and (7)
are the same as (2) and (3) for the truck sequence at the out-
bound door. Constraints (8) and (9) play the same role of (4)
and (5), since they are needed to compute the completion times
of the outbound trucks J. Note that, since M is an upper bound
on Cmax, constraints (8) are trivially satisfied for each pair of
trucks that are not consecutive in the outbound sequence. Equa-
tions (10) and (11) are the flow conservation constraints, and
ensure that all the products entering the cross-docking centre
will be correctly delivered to the outbound trucks. Constraints
(12) logically link z’s and v’s variables, imposing that zp

i j = 0 if
product p is not sent from the inbound truck i to the outbound
truck j; conversely, if vp

i j = 1, then the flow variable zp
i j cannot

be greater than up
i j. Constraints (13) are the cross-docking con-

straints. They impose the correct relation between the start pro-
cessing time of the outbound truck j and the completion time of
the inbound truck i, whenever they are involved in the exchange
of some products, while they are redundant when vp

i j = 0. Fi-
nally, constraints (14) are the definition of the objective function
(1), and (15) - (20) define the domain of the variables.

3. The Lagrangian Relaxation of the model

It is easy to recognize that relations (13) play the role of
coupling constraints, that is complicating constraints in a La-
grangian Relaxation framework. If they are relaxed and dual-
ized in the objective function, the resulting problem will de-
compose in three subproblems. To this aim, let λ be a vector of
Lagrangian multipliers associated to constraints (13), such that
λ

p
i j ≥ 0, ∀i ∈ I, j ∈ J, p ∈ P, λp

i j = 0 if up
i j = 0. The Lagrangian

relaxed problem is the following:

ZLR(λ) = min

Cmax +
∑
i, j,p

λ
p
i j

(
CI

i − MI(1 − vp
i j) − S O

j

)


s.t. (2) − (12), (14) − (20)

(21)

It is well known that, for each choice of the Lagrangian multi-
pliers vector λ ≥ 0, the optimal value of the Lagrangian relaxed
problem provides a lower bound on the optimal value of prob-
lem (1)-(20), i.e.: Z ≥ ZLR(λ).

Defining

ρi =
∑
j∈J

∑
p∈P
λ

p
i j ∀i ∈ I ρ = (ρ1, . . . , ρn)� (22)

σ j =
∑
j∈J

∑
p∈P
λ

p
i j ∀ j ∈ J σ = (σ1, . . . , σm)� (23)

s =
∑
j∈J

σ jτ j − MI
∑
i∈I

∑
j∈J

∑
p∈P
λ

p
i j (24)

the optimal value of the Lagrangian Relaxed problem (21) can
be written in the following form:

ZLR(λ) = s + ZI
LR(ρ) + ZO

LR(σ) + MIZT
LR(λ) (25)

where ZI
LR(ρ), ZO

LR(σ) and ZT
LR(λ) are, respectively, the optimal

values of the following three subproblems:

PI(ρ)


ZI

LR(ρ) = min
∑
i∈I
ρiCI

i

s.t. (2) − (5), (15), (19)
(26)

PO(σ)


ZO

LR(σ) = min

Cmax −
∑
j∈J

σ jCO
j


s.t. (6) − (9), (14), (16), (20)

(27)

PT (λ)


ZT

LR(λ) = min
∑
i∈I

∑
j∈J

∑
p∈P
λ

p
i jv

p
i j

s.t. (10) − (12), (17), (18)
(28)

PI(ρ) is a single machine scheduling problem at the inbound
door: 1||∑i wiCi, where wi = ρi and Ci = CI

i , i ∈ I (we note, in
passing, that constraints (4) and (5) can be omitted). Therefore,
its optimal solution is obtained applying the Weighted Shortest
Processing Time (WSPT) [10].

Similarly for the outbound door, PO(σ) is a single machine
scheduling with a non standard objective function: 1||(Cmax −∑

j w jC j), where wj = σ j and C j = CO
j , j ∈ J. However, it

is possible to prove that, whenever
∑

j∈J σ j ≤ 1, the optimal
schedule can be computed by applying the Weighted Longest
Processing Time (WLPT) rule [10], while the problem is un-
bounded from below when

∑
j∈J σ j > 1.

3



478	 First Author  et al. / Procedia Manufacturing 42 (2020) 475–482
Monaco and Sammarra / Procedia Manufacturing 00 (2019) 000–000 4

Finally, subproblem PT (λ) is a multi-commodity transporta-
tion problem with variable upper bound constraints, that natu-
rally separates into c = |P| single commodity problems, one for
each product p ∈ P. For a fixed p ∈ P, the problem is to move
the product p from the inbound trucks i ∈ I, each with a given
supply dip, to the outbound trucks j ∈ J, each demanding r jp,
satisfying supply and demand constraints. If a positive amount
of commodity p is transported from i to j, then it can not exceed
up

i j, and a fixed cost λp
i j has to be paid. The objective function

to minimize is the sum of the fixed costs. Therefore each sin-
gle commodity subproblem is a pure fixed charge transportation
problem [1, 6], and thus it is hard to be solved to optimality, due
to its combinatorial structure. A heuristic procedure for solving
PT (λ) for a given p ∈ P is described in [1]. It consists in relax-
ing constraints (12), solving a standard transportation problem
with unit transportation costs wp

i j = λ
p
i j/u

p
i j, and then setting

vp
i j = 1 if at least one unit of product p is transported from i to

j.

4. Lagrangian heuristics

Solving PI(ρ), PO(σ), and PT (λ) for a given set of non neg-
ative Lagrangian multipliers, such that

∑
i jp λ

p
i j ≤ 1 (see the

discussion on PO(σ) in the previous Section), we get the La-
grangian solutions x, CI , y, CO, z, and v. If CI , CO, and v satisfy
constraints (13), they also give a feasible solution to the model
(1)-(20), of value C̄max = max j∈J

{
CO

j

}
.

In case CI , CO, and v violate some of the relaxed con-
straints (13), a feasible solution can be obtained computing
ȳ, C̄O, C̄max by very simple recovering heuristics and setting
x̄ = x, C̄I = CI , v̄ = v, z̄ = z. In the first recovering heuris-
tics H1, the Lagrangian solution y,CO is transformed in a fea-
sible solution simply by increasing the completion time of each
outbound truck by the same amount, while taking the same se-
quence provided by y. In the second recovering heuristics H2,
the outbound trucks are first sorted by the earliest starting pro-
cessing times which are compatible with the cross-docking con-
straints, and then re-scheduled. The steps of H1 and H2 are de-
tailed in Algorithms 1 and 2 reported in Appendix A.

Our Lagrangian heuristics LH consists in solving, within an
iterative scheme, the Lagrangian sub-problems PI(ρ), PO(σ),
and PT (λ), executing the recovering algorithms H1 and H2,
and varying the Lagrangian multipliers at each iteration. By this
way many feasible solutions to the cross-docking problem de-
fined by model (1)-(20) are generated and, at the end, LH re-
turns the best one among them. We use the following rule for
varying the Lagrangian multipliers from iteration r to iteration
r + 1:

λ
p
i j(r + 1) = max

{
0, λp

i j(r) + t(r)γp
i j(r)
}

(29)

In equation (29), γp
i j(r) is defined by

γ
p
i j(r) = −S O

j (r) +CI
i (r) − MI(1 − vp

i j(r)) (30)

and t(r) is a step-size defined as

t(r) = α
C∗max − LB(r)√∑
i∈I

∑
j∈J

∑
p∈P
γ

p
i j(r)2

(31)

where α is a smoothing parameter, LB(r) is the lower bound
returned by solving the Lagrangian problem (21) at the r-th it-
eration, and C∗max is the best makespan found so far. Observe
that γp

i j(r) is the negative of the slack variable in the (i, j, p)
constraint (13) at the current Lagrangian solution, and corre-
sponds to the (i, j, p) component of a subgradient vector of the
Lagrangian function evaluated at the current solution [5]. From
this point of view, LH is actually a subgradient algorithm for
maximizing ZLR(λ) in problem (21), that is for solving the so
called Lagrangian Dual problem. Therefore, LH returns also
the best lower bound, which allows to measure the quality of
the best computed feasible solution. The pseudocode of LH is
reported in Algorithm 3 of Appendix A.

5. Numerical results

5.1. Description of the test suite

To test our algorithm, we have considered two sets of in-
stances A and B. As for the set A, it consists of 250 instances
of different dimensions in terms of n and m. For each possible
dimension, 10 instances are considered. The instances of the
set A have been proposed in [7] for a truck scheduling problem
where the transshipment plan is already known, and therefore
for a problem that is substantially different from the one we are
dealing with. However, these instances can be turned into suit-
able instances fitting the model and the algorithm presented in
this paper. Such a transformation is detailed in Appendix B.
We summarize in Table 1 the dimensions of the instances in A,
after the procedure of transformation, and we refer the reader
to the above cited paper for further details. Here we just remark
that ti, i ∈ I and τ j, j ∈ J are uniformly distributed in the range
1 to 10.

Table 1. Dimensions of instances in the set A.

|I| |J| |P| Total instances

A1 n = 5 m ∈ {3, 4, 5, 6, 7} c = m 50
A2 n = 10 m ∈ {6, 8, 10, 12, 14} c = m 50
A3 n = 20 m ∈ {12, 16, 20, 24, 28} c = m 50
A4 n = 40 m ∈ {24, 32, 40, 48, 56} c = m 50
A5 n = 60 m ∈ {36, 48, 60, 72, 84} c = m 50
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Since the instances of Set A are intrinsically representative
of a particular and easier case of our truck scheduling prob-
lem, we have generated a new set of instances (set B), where
the products arriving by the inbound trucks must be optimally
transferred to the outbound trucks. The set B consists of three
subsets of 40 instances each, differing in the values of n, m, and
c as detailed in Table 2. To obtain the test suite B, the values
of n, m, c of each row in Table 2 have been fully combined
each other. Then, for each possible combination, 10 different
instances have been generated by choosing

• ti, i ∈ I and τ j, j ∈ J uniformly distributed in the range 1
to 10;
• dip, i ∈ I, p ∈ P uniformly distributed in the range 0 to

1000;
• r jp, j ∈ J, p ∈ P uniformly distributed in the range 0 to∑

i∈I dip, in such a way that
∑

i∈I dip =
∑

j∈J r jp, p ∈ P;

Table 2. Dimensions of instances in the set B.

|I| |J| |P| Total instances

B1 n ∈ {10, 15} m ∈ {10, 15} c = 3 40
B2 n ∈ {15, 20} m ∈ {15, 20} c = 5 40
B3 n ∈ {30, 40} m ∈ {30, 40} c = 7 40

5.2. Implementation details

The LH Algorithm has been coded in C++ and Cplex 12.8
has been used for benchmarking purposes. We have ran the ex-
periments on a machine equipped with a 3.1 GHz CPU and
16GB of RAM, giving Cplex one hour of time limit and let-
ting the LH Algorithm to perform at most 500 iterations. The
initial Lagrangian multipliers have been set as follows

λ
p
i j(0) =



1
nmc

∀i ∈ I, j ∈ J, p ∈ P : up
i j > 0

0 otherwise

so ensuring that their sum does not exceed one. The smoothing
parameter α in equation (31) has been chosen equal to 10−6. We
finally recall that in solving the Lagrangian Relaxation prob-
lem, the sub-problem PT (λ) can not be solved to optimality. As
disclosed in Section 3, we solve a relaxation of PT (λ) instead,
that is a standard transportation problem. To this aim we have
adopted one of the well known algorithms for determining a
basic feasible solution to a transportation problem, in particular
the greedy one.

5.3. Discussion of the numerical results

In order to evaluate the effectiveness of the proposed La-
grangian heuristics, we compare the results obtained by LH

with those returned by Cplex. In particular this comparison is
done in terms of the quality of the solutions returned by the
two methods and in terms of computation times. We report in
Figures 1 and 2, as average values attained on ten instances of
the same dimension, the best objective function values (Upper
Bound - UB), along with the best lower bounds (LB) on the
optimal makespan, computed by Cplex and LH. The average
computation times, for each subsets of instances, are summa-
rized in Table 3.

Looking at Figure 1, we observe that Cplex and LH have
basically the same behaviour for 3 ≤ c ≤ 32, as far as the up-
per bounds are concerned. In particular, for 3 ≤ c ≤ 7, i.e.
for the A1 instances, the best upper bound and the best lower
bound values computed by Cplex coincide, meaning that for
these set of instances Cplex always returned the optimal solu-
tion. This fact is confirmed by the computation times for the
A1 instances in Table 3. On the same instances LH performs
as well as Cplex in terms of UB values, while the Lagrangian
lower bound is smaller than the best lower bound computed by
Cplex. Starting from the smallest instances in the set A2, the
quality of the solutions returned by Cplex deteriorates and the
number of optimal solutions drastically reduces. Actually, for
these instances Cplex returns four optimal solutions and no op-
timal one in all the remaining instances of set A (see also Table
3 ). For c ≥ 32 our algorithm outperforms Cplex in terms of
both UB and LB values, by an amount that increases as the in-
stance dimension increases. In particular, from Figure 1 it is
evident that the best lower bound returned by Cplex is really
weak and, as a consequence, the corresponding optimality gap
results to be very high. On the contrary, the Lagrangian LB re-
turned by LH is significantly higher, so producing lower values
of the optimality gap and, therefore, a more accurate estimation
of the solution quality.

Table 3. Average computation time (seconds).

Set Cplex LH

A1 1.53 0.06
A2 3483.87 0.38
A3 3600.00 3.83
A4 3600.00 48.42
A5 3600.00 221.15

B1 3565.49 0.19
B2 3600.00 0.71
B3 3600.00 6.09

Passing to the results on the set B, we note that (see Figure
2) Cplex exhibits the same behaviour observed on instances of
comparable size in set A. Actually, it is able to find only one op-
timal solution in subset B1, while in all the other cases it reaches
the imposed time limit returning solutions with very high opti-
mality gaps. Conversely, the behaviour of LH on the instance
set B is not so similar to the one observed for instances of set
A. In particular, on the smallest size instances the UB values
computed by LH are slightly worse than those of Cplex, while
the opposite relation holds for the largest instances of the subset
B3. The difference between the two UB values, independently

5
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Fig. 1. Comparison of numerical results on Set A instances.
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Fig. 2. Comparison of numerical results on Set B instances.

on its sign, is moderate. Of course, the less satisfactory results
of LH on Set B are due to the poor accuracy we use in solving
the subproblem PT (λ) (see discussion on this issue in Section 3
and subsection 5.2 ). However this drawback is widely counter-
balanced both by the computation times and the values of the
Lagrangian lower bounds. Actually, in very short computation

times (never reaching seven seconds) LH is able to compute
feasible solutions of certified good quality.

6. Conclusions

In this paper we have presented Mixed Integer Linear Pro-
gram and a Lagrangian heuristic algorithm for a truck schedul-
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ing problem at a cross-docking terminal. By means of La-
grangian Relaxation of the model, we have been able to de-
compose the problem into three independent subproblems: two
scheduling problems at the inbound and outbound doors of
the terminal, and a multicommodity fixed charge transportation
problem. Including suitable repairing heuristics in a subgradi-
ent algorithm scheme, we have designed a Lagrangian heuris-
tic procedure and tested it on a wide set of instances. Numeri-
cal results have shown the effectiveness of our approach, both
in terms of quality of the computed solutions and computation
time.

Appendix A. Pseudocodes of heuristics H1, H2, and LH

Algorithm 1 Recovering Heuristics H1(CI , y,CO, v)
1: ∆max = 0
2: for all i ∈ I, j ∈ J, p ∈ P do
3: if vp

i j = 1 and CI
i −CO

j + τ j > ∆
max then

4: ∆max = CI
i −CO

j + τ j

5: for all j ∈ J do
6: C̄O

j = CO
j + ∆

max

7: C̄max = max j∈J

{
C̄O

j

}

8: return ȳ = y , C̄O, C̄max

Algorithm 2 Recovering Heuristics H2(CI , y,CO, v)
1: for all j ∈ J do
2: ∆min

j = max
i∈I
p∈P
{CO

i | v
p
i j = 1} /* minimum feasible starting

processing time for truck j */
3: Sort the outbound trucks j ∈ J in increasing order of the

corresponding ∆min
j

4: Schedule the outbound trucks j ∈ J with respect to the
previous sorting; compute C̄O and ȳ accordingly.

5: C̄max = max j∈J

{
C̄O

j

}

6: return ȳ , C̄, C̄max

Algorithm 3 Lagrangian Heuristics LH
1: LB = −∞ /* Lower bound provided by the Lagrangian

problem */
2: x∗, CI∗, y∗, CO∗, z∗, v∗, C∗max = +∞ /* Best solution */
3: x̄, C̄I , ȳ, C̄O, z̄, v̄, C̄max /*Solution returned by H1 and

H2*/
4: x(r), CI(r), y(r), CO(r), z(r), v(r) /* Lagrangian solution

at iteration r */
5: r = 0
6: for all i ∈ I, j ∈ N, p ∈ P do
7: λ

p
i j(0) = 0 /* initialize the multipliers*/

8: while r ≤ MaxNumberO f Iterations do
9: Compute ρ and σ

10: if
∑

j∈J σ j > 1 then
11: r = MaxNumberO f Iterations
12: else
13: Solve PI(ρ), PO(σ), PT (λ), getting x(r), CI(r), y(r),

CO(r), z(r), v(r)
14: Set x̄ = x(r), C̄I = CI(r), z̄ = z(r), v̄ = v(r)
15: (ȳ, C̄O, C̄max)=H1(CI(r), y(r),CO(r), v(r))
16: if C̄max < C∗max then
17: C∗max = C̄max, x∗ = x̄, CI∗ = C̄I , y∗ = ȳ, CO∗, z∗ = z̄,

v∗ = v̄
18: (ȳ, C̄O, C̄max)=HA2(CI(r), y(r),CO(r), v(r))
19: if C̄max < C∗max then
20: C∗max = C̄max, x∗ = x̄, CI∗ = C̄I , y∗ = ȳ, CO∗, z∗ = z̄,

v∗ = v̄
21: Update the Lagrangian multipliers by eq. (29)
22: r = r + 1
23: return x∗, CI∗, y∗, CO∗ , z∗, v∗, C∗max, LB

Appendix B. The instance set A

The set of instances A has been proposed in [7], for a cross-
docking problem with one inbound and one outbound door,
where the transshipment flows of commodities between in-
bound and outbound trucks are fixed. That is, for each outbound
truck j ∈ J the subset I j ⊆ I of inbound trucks sending some
load units to j is known. With reference to our model (1)-(20),
under this setting constraints (10), (11), (12) and the involved
variables z and v are useless, while constraints (13) become

S O
j ≥ CI

i ∀ j ∈ J, i ∈ I j (B.1)

It is easy to transform the instances A so as they can be adopted
by our model and algorithm. The transformation procedure pre-
serves the original dimensions in terms of |I| = n and |J| = m,
while creating suitable values for |P| = c and for dip, r jp, i ∈
I, j ∈ J, p ∈ P. It is described in Algorithm 4.

7
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Algorithm 4 Instance transformation
1: |P| = |J| = m
2: for all ∈ I, p ∈ P do
3: dip = 0
4: for all j ∈ J, p ∈ P do
5: r jp = 0
6: for all j ∈ J do
7: r j j = |I j|;
8: for all j ∈ J, i ∈ I j do
9: di j = di j + 1

Basically, Algorithm 4 returns an instance for our truck
scheduling problem, starting from an instance defined in [7],
such that:

• the number of products is equal to the number of out-
bound trucks, and each product is required by one and
only one outbound truck.
• each inbound truck carries at most one unit of each prod-

uct.
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