390 research outputs found

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    A cooperative approach for distributed task execution in autonomic clouds

    Get PDF
    Virtualization and distributed computing are two key pillars that guarantee scalability of applications deployed in the Cloud. In Autonomous Cooperative Cloud-based Platforms, autonomous computing nodes cooperate to offer a PaaS Cloud for the deployment of user applications. Each node must allocate the necessary resources for customer applications to be executed with certain QoS guarantees. If the QoS of an application cannot be guaranteed a node has mainly two options: to allocate more resources (if it is possible) or to rely on the collaboration of other nodes. Making a decision is not trivial since it involves many factors (e.g. the cost of setting up virtual machines, migrating applications, discovering collaborators). In this paper we present a model of such scenarios and experimental results validating the convenience of cooperative strategies over selfish ones, where nodes do not help each other. We describe the architecture of the platform of autonomous clouds and the main features of the model, which has been implemented and evaluated in the DEUS discrete-event simulator. From the experimental evaluation, based on workload data from the Google Cloud Backend, we can conclude that (modulo our assumptions and simplifications) the performance of a volunteer cloud can be compared to that of a Google Cluster

    Semantic validation of affinity constrained service function chain requests

    Get PDF
    Network Function Virtualization (NFV) has been proposed as a paradigm to increase the cost-efficiency, flexibility and innovation in network service provisioning. By leveraging IT virtualization techniques in combination with programmable networks, NFV is able to decouple network functionality from the physical devices on which they are deployed. This opens up new business opportunities for both Infrastructure Providers (InPs) as well as Service Providers (SPs), where the SP can request to deploy a chain of Virtual Network Functions (VNFs) on top of which its service can run. However, current NFV approaches lack the possibility for SPs to define location requirements and constraints on the mapping of virtual functions and paths onto physical hosts and links. Nevertheless, many scenarios can be envisioned in which the SP would like to attach placement constraints for efficiency, resilience, legislative, privacy and economic reasons. Therefore, we propose a set of affinity and anti-affinity constraints, which can be used by SPs to define such placement restrictions. This newfound ability to add constraints to Service Function Chain (SFC) requests also introduces an additional risk that SFCs with conflicting constraints are requested or automatically generated. Therefore, a framework is proposed that allows the InP to check the validity of a set of constraints and provide feedback to the SP. To achieve this, the SFC request and relevant information on the physical topology are modeled as an ontology of which the consistency can be checked using a semantic reasoner. Enabling semantic validation of SFC requests, eliminates inconsistent SFCs requests from being transferred to the embedding algorithm.Peer Reviewe

    Smart Mobility for All: A Global Federated Market for Mobility-as-a-Service Operators

    Get PDF
    International audienceMulti-modal travelling is a common phenomenon. However, planning multi-modal journeys is still an unstructured and time-consuming experience for customers: they lose time assembling a comprehensive plan out of disparate data, spread over a multitude of information systems — each corresponding to a different company responsible for one of the legs in the journey. Also transport operators are affected by the sparsity of the transportation market, as they might lose potential customers who could not find or know about their services. In this paper, we propose Mobility as a Service (MaaS) as a solution to such problems. Key element of MaaS is that MaaS operators can aggregate solutions of multiple providers to deliver dynamic, transparent multi-modal travels to their users, who experience transportation as managed directly by a single operator. However, given the volume and sparsity of the transportation market, we argue that MaaS operators cannot rely on one-to-one, custom contracts of usage with single mobility operators. Instead, we envision the creation of platforms that automatise the marketing of services for mobility among many mobility providers. In this work, we detail the required features of a general software platform for such a MaaS market. In particular, we provide a precise definition of MaaS through the MaaS Stack — a tiered view of the components needed by entities to join the MaaS market. Then, through the lens of the MaaS Stack, we elicit the features of an enabling software platform. Finally, to validate our approach, we present a compliant prototype, called SMAll, and discuss its main design choices, among which: i) how SMAll supports the creation of a federation-based MaaS market and ii) how microservices — an emerging architectural style that fosters cohesiveness and minimality of components — enhance flexibility and let the platform and the services of its members efficiently scale according to dynamic demands

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Large-Scale Data Management and Analysis (LSDMA) - Big Data in Science

    Get PDF
    • …
    corecore