
A cooperative approach for distributed task execution in autonomic clouds?

Michele Amoretti
Centro Interdipartimentale SITEIA.PARMA,

Università degli Studi di Parma, Italy
michele.amoretti@unipr.it

Alberto Lluch Lafuente, Stefano Sebastio
IMT Institute for Advanced Studies Lucca
{alberto.lluch,stefano.sebastio}@imtlucca.it

Abstract—Virtualization and distributed computing are two
key pillars that guarantee scalability of applications deployed in
the Cloud. In Autonomous Cooperative Cloud-based Platforms,
autonomous computing nodes cooperate to offer a PaaS Cloud
for the deployment of user applications. Each node must
allocate the necessary resources for customer applications to
be executed with certain QoS guarantees. If the QoS of an
application cannot be guaranteed a node has mainly two
options: to allocate more resources (if it is possible) or to
rely on the collaboration of other nodes. Making a decision
is not trivial since it involves many factors (e.g. the cost of
setting up virtual machines, migrating applications, discovering
collaborators). In this paper we present a model of such
scenarios and experimental results validating the convenience
of cooperative strategies over selfish ones, where nodes do not
help each other. We describe the architecture of the platform
of autonomous clouds and the main features of the model,
which has been implemented and evaluated in the DEUS
discrete-event simulator. From the experimental evaluation,
based on workload data from the Google Cloud Backend, we
can conclude that (modulo our assumptions and simplifications)
the performance of a volunteer cloud can be compared to that
of a Google Cluster.

Keywords-cloud computing; autonomic clouds; autonomous
systems; volunteer computing; distributed tasks execution;

I. INTRODUCTION

The success of open-source cloud platforms and the wide
adoption of the cloud technology in its various incarnations
(SaaS, PaaS, and IaaS) by individual users, public institutions
and private companies, is opening new scenarios where
autonomous cloud entities (e.g. cloud sites) can interact
with each other. Prominent examples are the Volunteer
Computing paradigm [1], and its various evolutions [2], [3],
which promote the idea of what may be called Autonomous
Cooperative Cloud-based Platforms (ACCPs).

The provisioning of cloud-based application execution
services in ACCPs poses several challenges: (i) The execution
service is subject to Service Level Agreements (SLAs) that
impose QoS requirements to be monitored and optimized; (ii)
Optimization criteria are critical for both the provider (who
may have policies like minimizing the number of active
resources) and for the customer (who may be interested
in the best QoS/price ratio); (iii) ACCPs are inter-cloud
systems made of several, heterogeneous autonomous clouds,

?Research supported by the European Integrated Project 257414 ASCENS.

each with its own resources, goals, management policies and
rules which may even forbid some forms of cooperation (see
e.g. [4]); (iv) ACCPs are highly dynamic and open: partic-
ipants can leave and join, the performance of applications
may vary. Self-adaptive mechanisms are crucial to tackle
such dynamism; and (v) Resource-awareness is crucial to
devise flexible and performant solutions: PaaS entities need
to cooperate with their underlying IaaS.

Each participant of an ACCP must allocate the necessary
resources for customer applications to be executed with
certain QoS guarantees. If the QoS of an application is
compromised a node has mainly two options: to use more
computational resources (e.g. requesting the underlying IaaS
layer to startup a new VM) or to rely on the collaboration
of other nodes (e.g. requesting the remote execution of
part of the application). This decision is not trivial since
it involves many factors, including the cost of setting up
virtual machines, migrating applications and discovering
collaborators.
Contribution. We propose a model for ACCPs instantiated
and validated in a concrete case study (namely, the SCIENCE
CLOUD [3]), together with the evaluation of a cooperative
approach. The experimental evaluation is supported by
DEUS [5] a general-purpose, discrete event simulator, that
has been successfully applied for the modeling and simulation
of various other complex systems. Our evaluation exploits
real workload data from the Google Cluster dataset [6] and
provides estimations of the performance of various coopera-
tion strategies for different SCIENCE CLOUD configurations
showing that collaborative strategies tend to perform better
than selfish ones, in particular for large number of nodes.
Synopsis. §II introduces our case study. §III presents our
model of ACCPs, describing some of the main ingredients we
envisage to face the challenges (i–v) mentioned above, with a
focus on our case study. §IV reports our experimental evalu-
ation. §V summarizes some recent research efforts regarding
task mobility, interoperability and agent-based architectures
for cloud computing. §VI includes some concluding remarks
and outlines our current and future research efforts.

II. CASE STUDY: THE SCIENCE CLOUD

The SCIENCE CLOUD [3] is an ACCP being developed
within the European project ASCENS [7] with the aim of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

App

IN

App

PN

PR

VR

PN

App

VR

PN

PR

Figure 1. The SCIENCE CLOUD architecture.

creating a decentralized platform for sharing computational
resources in scientific communities. It provides distributed
application execution as its main functionality. Participants
contribute with their desktops, mobile devices, servers, or
virtual machines by running Platform Nodes (PNs) on
them. PNs communicate with each other and may form
aggregations (called ensembles) to collaborate in order to
run their applications in a robust and performant way, so to
satisfy their QoS constraints.

Although the SCIENCE CLOUD is essentially a sort of
volunteer computing platform, there may be autonomous parts
under the control of commercial or academic entities. This
means that each PN may have different goals or policies in
what regards the use and sharing of computational resources.

Fig. 1 schematizes an instance of the SCIENCE CLOUD
with three PNs . One of the PNs runs over ordinary physical
resources (PR), while the rest rely upon a possibly shared
cloud infrastructure providing virtual resources (VR). Indeed,
the SCIENCE CLOUD can be seen as a PaaS, whose nodes
possibly run on top of IaaS nodes (INs).

A PN is a volunteer node that decides the amount of
resources it wants to share in the network and based on this
decision, creates an application environment like a sandbox
or a virtual machine (VM). PNs running on top of an IN
can resize their application environments, for instance by
scaling-up the VMs (actually, the case we have considered
here) or to instantiate other VMs. The rest of the PNs cannot
resize their application environments (as shown in Fig. 1).

The main role of a PN is to provide a service for executing
applications. In this paper we assume applications to be sets
of independent tasks to be executed with a certain QoS,
specified by a SLA. In particular, we consider SLAs that
impose a certain deadline for the execution of each task.

The adaptivity logic of each PN should take care of
reacting to conditions that may compromise the SLA of the
applications, such as overload or shutdowns. The adaptivity
logic can act on two levels: (i) on the platform level,
by migrating part of the applications to other PNs (thus
balancing load or compensating for lost PNs), and (ii) on
the infrastructure level, by requesting new resources (e.g.
VMs) to adapt to an excess of load. The latter is of course

Cloud Site A

PN A

Cloud Site C

Cloud Site B

PN C

PN B

Figure 2. Example of ACCP network.

only available for PNs running over an IN (most typically a
server, rather than mobile devices) with a suitable actuator
interface.

In order to take the right decisions, the adaptivity logic
relies on the knowledge each PN has, which consists of what
the PN knows about itself, about its infrastructure (e.g. CPU
load, available memory), and about other PNs (e.g. acquired
through the network).

In order to cooperate, PNs communicate over the network.
The protocol followed by these communications must enable
PNs to find one another and establish links, for example
by means of discovery mechanisms. Furthermore, PNs must
be able to query others for knowledge and distribute their
own. Finally, the protocol must support exchange of data
and applications.

III. MODEL

We present here a modular and extensible model of ACCPs,
exemplified with the SCIENCE CLOUD case study. Our
presentation follows the structure of the system illustrated in
Fig. 1: applications are executed on top of PNs, which rely
either on virtual resources provided by an underlying INs
or directly on physical resources. PNs communicate over a
platform-level overlay network that relies upon an underlying
network such as the Internet.

Here we focus on some of the challenges outlined in
Section I, we will consider also the rest in a future work.

Each PN running on top of an IN is modeled as a
G/G/m/K queue, where G means that task arrivals and
service times have generic distributions, m is the number
of VMs/PMs in each node, and K is the maximum number
of tasks in the system (1 being executed, K − 1 waiting in
an FCFS queue) [8]. The rest of the PNs are modeled as
G/G/1/K queues since they cannot resize their resources.

A. Applications

We model applications as sets of independent tasks, defined
by their duration and their degree of parallelism. Our model

assumes that tasks durations are fixed and that nodes are
able to perfectly predict their duration. Moreover, we assume
a perfect linear speed-up for the parallelism.

Definition 3.1 (task): A task is a tuple 〈δ, ρ, µ〉, where δ ∈
R+ is the task duration (expressed in cycles), ρ ∈ N+∪{∞}
is the degree of parallelism of the task and µ ∈ N+ ∪ {∞}
is the memory requirement of the task.

A degree of parallelism ρ means that the a task with
duration δ can be ideally executed in a CPU with ρ
computational units (e.g. processors) in time δ/ρ.

Actually, we assume that applications generate task ex-
ecution requests to the underlying PaaS platform. In our
model task execution requests are defined by a task and a
termination deadline (from the SLA).

Definition 3.2 (task execution request): A task execution
request is a tuple 〈δ, ρ, µ, τa, τd〉, where 〈δ, ρ, µ〉 is a task,
τa ∈ R+ is the task arrival date, and τd ∈ R+ is its
termination deadline.

B. Virtual and Physical Resources

We model both virtual and physical resources uniformly as
VMs. The main feature of such VMs will be their CPUs as
our main concern is the running time of applications, which
we consider to be compute intensive (rather than data- or
communication-intensive), i.e. their running time depends
essentially on the amount and properties of the CPUs.

Definition 3.3 (CPU): A CPU is defined by its frequency
φ ∈ N+, expressed in GHz.

We consider resources to be machines modeled just as
sets of homogeneous CPUs (that is, with identical frequency
and number of cores).

The execution time e(T,M) required for completing a task
T = 〈δ, ρ〉 on a machine M whose CPUs have frequency φ
is defined by the following equation:

e(T,M) =
δ

φ ·min{ρ, |M |}
(1)

That is, we divide the duration of one single CPU (δ/φ)
by the maximum degree of parallelism that can be exploited,
which is bounded by both the amount of available CPUs
(|M |) and the parallelism degree of the task (ρ).

A task can be executed on a machine only if the memory
requirement constraint is satisfied:

µ ≤ RAM(M) (2)

where RAM(M) represents the amount of available
memory on a machine M .

A machine M accepts a task T in its queue only if it can
respect the task deadline.

These equations are used not only as a model of actual
execution time, but also as the model that PNs use in their
estimations (see Section III-E).

App

IN

VR

Monitor Execute

Analyze

PaaS Node

Knowledge

Plan

Figure 3. Architecture of a PN.

C. Network

In general, PNs can communicate with each other in
arbitrary ways as they are all connected to the Internet. Of
course, the need to identify PNs willing and able to share part
of the application load calls for adequate logical structures
such as overlay networks. At the moment we are considering
a simple overlay network that exploits the structure of ACCPs.

In particular, we assume that ACCPs are structured into
cloud sites as illustrated in Fig. 2. Each PN resides on exactly
one site. Some PNs (denoted with squares) can be considered
as stable nodes (e.g. data centers) while others (denoted with
circles) are nodes that can dynamically join or leave the
platform (most typically, PNs without an underlying IN).

PNs are organized in hierarchical overlay networks, where
nodes of different cloud sites can establish a direct commu-
nication links, with the mediation of supernodes.

If a cloud site contains an PN running on top of an IN
such as a data center, it will act as a supernode for the rest
of the nodes of the same cloud site. The rationale is that to
such PN can enjoy better uptime and resources.

Cloud sites without data centers are organized in random
topologies. Several strategies can be used to select super
nodes of such sites: from classical leader election strategies
to more specific ones. For example, an idea could be to use
strategies that give more chances to be elected to sites with
longer online presence (i.e. more stable nodes) or those who
share more resources (i.e. the more collaborative nodes).

We assume that the time required by ordinary communi-
cation (e.g. sending requests and replying) can be neglected.
Instead, we assume that the time needed to migrate a task
from a PN in Cloud Site u to a PN in Cloud Site v depends
on the distance between u and v.

D. IaaS Nodes

INs are essentially modeled by a set of physical resources.
They have no particular logic, except for to faithfully serve the

requests of the PNs they support: i.e. providing them virtual
machines built out from their pool of physical resources.

E. PaaS Nodes

As already mentioned, PNs can be supported or not by
an underlying IN. PNs without infrastructure correspond to
participants using mobile devices or personal desktops that
join and leave the platform in a volunteer manner and their
presence is not assured during time. PNs with infrastructure
are stable nodes consisting of cloud-based data centers that
participate to the platform in a permanent manner.

Internally, PNs are structured according to IBM’s reference
architecture for autonomic systems [9], as illustrated in Fig. 3.
Brifely, each PN monitors applications, resources and the
environment, analyzes its status, devises plans to improve
its execution, and enacts those plans. A Knowledge base
supports this cycle of activities.

Monitor and knowledge: The incoming arrows in Fig. 3
denote the sources of information that the monitoring activity
uses to enrich the knowledge. In particular, PNs monitor (i)
the load of their resources (e.g. the load of virtual or physical
machines); (ii) the performance perceived by the application
(e.g. ratio of task execution requests whose SLA has been
satisfied), and (iii) its environment (e.g. its partner PNs). All
the monitored data is collected into the knowledge base.

Effectors: PNs can act at three layers as denoted by
the outcoming arrows in Fig. 3. At the infrastructure layer,
new resources can be requested to the underlying IN (if
present). At the platform layer, remote PNs can be requested
for executing tasks. At the application layer, tasks can be
migrated to other PNs.

Analyze/Plan: The analysis and planning activities have
to deal with two major issues: the allocation of local resources
to execute tasks locally and the distribution of tasks among
collaborating PNs.

Regarding the first issue, we assume that PNs provide
exclusive, isolated application execution environments by
scheduling the execution of tasks or sub-tasks sequentially.
Of course we can use more complex scheduling mechanisms
but a comparison of different scheduling strategies is out of
the scope of this paper.

We consider different degrees of cooperation among PNs.
A selfish PN sends requests for remote task execution when
local resources are not sufficient, but rejects all external
requests. Instead, a volunteer PN always accepts external
requests, when locally available resources are sufficient. We
assume that each PN has a set of known PNs in its knowledge
base. Several strategies for building and maintaining such
knowledge can be found in the literature but we assume here
a simple one based on a fixed pre-defined set.

In between the two opposite strategies, there is a partial
volunteering scheme for which a PN may decide to accept
or reject a task execution request, depending on the result

of the following the test:

currentMissRate ≤MissRateTolerance (3)

where the MissRateTolerance constitutes the volunteering
degree and the currentMissRate is the current rate of
discarded tasks due to the inability to fulfill their deadlines.
The MissRateTolerance is used by PNs to ensure their own
QoS. Clearly, the extreme miss rates of 0 and +∞ correspond
to the selfish and volunteer strategies, respectively.

IV. SIMULATIONS

This section presents our model implementation and evalu-
ation by means of the discrete event simulator DEUS, which
is shortly described in §IV-A. Next (§IV-B) we describe the
configuration of the scenario under evaluation. The rest of the
section is devoted to reporting and discussion of results. All
our experiments have been run on an a laptop equipped with
a 2.0 Ghz Quad Core CPU and 8 GB of RAM. Our simulator
and the configuration files of the experiments are available for
download at http://code.google.com/p/deus/downloads/list.

A. DEUS in a nutshell

Several free or commercial discrete event simulation tools
are available, but no one appears to be sufficiently generic and
flexible to support the analysis of complex systems at every
scale such as the ones under study in this paper. DEUS [5] is
a novel general-purpose, open-source simulation environment,
characterized by extreme ease of use and flexibility.

DEUS is multi-platform, being developed in Java. Its API
allows developers to implement (by sub-classing) (i) nodes,
i.e. the entities which interact in a complex system, leading
to emergent behaviors such as humans, pets, cells, robots
or intelligent agents; (ii) events, e.g. node births and deaths,
interactions among nodes, interactions with the environment,
logs and so on; and (iii) processes, either stochastic or
deterministic ones, constraining the timeliness of events.

A node may represent a dynamic system characterized
by a set of possible states, whose transition functions may
be implemented either in the source code of the events
associated to the node, or in the source code of the node itself.
Multi-scale modeling of complex system can be achieved
by defining nodes of different complexity and connecting
them. DEUS comes with a library of predefined, common
processes, and many others can be implemented by the user.

B. Simulated scenario

We describe here the main characteristics of the scenario
used in the experiments. We focus on two main aspects: the
network and the workload models. As a matter of fact each
simulation run has two stages: one for generating the network
configuration (cloud sites and participants), and another one
for evaluating the actual activity period.

The configuration of the SCIENCE CLOUD includes a
variable number (from 1, 000 to 10, 000) of stable PNs, each

Table I
DISTRIBUTION OF TASK ATTRIBUTES

size duration (hours) CPU (cores) RAM (GBs) Deadline max offset (minutes) Poisson mean arrival (milliseconds)
small 0− 0.4 1 0− 0.5 5 200 (20% of max duration)
large 1− 12 1− 4 1− 4 288 600 (40% of max duration)

Table II
DISTRIBUTION OF NODE ATTRIBUTES

type of node CPU frequency (GHz) CPU (cores) RAM (GBs) Number of nodes
PN without IN 1− 2 1− 6 0.1− 2 1, 000− 10, 000
PN with IN 1− 3 2− 32 2− 6 7 (in different sites)

one having an identifier that specifies its cloud site. Every
site is managed by a PN (possibly running on top of an IN)
which is elected as supernode. The supernode receives task
execution requests from PNs of its cloud Site, and from the
supernodes of remote cloud Sites. Each supernode maintains
an index of the PNs of its cloud site, which are in charge of
notifying the supernode of their status (online, going offline).

We consider the presence of 10 different cloud Sites, 7
of which are managed by an IN supernode and the others
rely only on PNs. The PNs that are not on top of INs are
less computationally powerful (see Table II). The cost for
transferring a task between two neighbor Cloud Sites (i.e.
the cost of a hop) is set to 1% of the maximum duration
of a small task. In this manner also small tasks have the
possibility to be transferred to another Site. We consider the
communication overhead for data transferring within a Cloud
Site to be negligible.

For the workload characterization, our main reference is
the Google Cloud Backend [6] (arguably the largest cloud
backend on the planet) described in [10]. There, tasks are
characterized according to their duration, CPU requirements
and memory requirements, each abstracted as either small
(s) or large (l). Typical examples of long-running tasks are
user-facing ones (which run continuously so as to respond
quickly to user requests) and compute-intensive ones (such
as processing web logs). Examples of short-running tasks are
highly parallel operations such as index lookups, searches and
Map-Reduce operations. We have considered that in the Map-
Reduce paradigm the short tasks (Map-task) are mainly the
result of a single parallelized job, the Reduce operation cannot
be done if every Map-task has not terminated its execution.
Thus, tasks that belong to a parallelized operation must finish
sooner, not to lose the advantage of parallelism, therefore we
have assumed that short tasks have a more stringent deadline
requirement. In the Google Cloud Backend, the task attributes
are uniformly distributed within the intervals (grouped by
qualitative coordinates) reported in Table I. Tasks with short
duration dominate the task population (being the 66%).

The Google Cluster dataset [6] provides obfuscated in-
formation about the real hardware characteristics of Google
cluster nodes: every reported value is normalized to the capac-
ity of the best cluster node. Another obfuscated information

relevant for the purpose of our work regards QoS properties
such as deadlines. For these reasons we have made some
assumptions. We consider that the CPUs of the cluster used
have a frequency of 1 GHz. Table I summarizes the task
characteristics.

The duration of the simulated scenario is of 7 hours (with
a granularity of milliseconds), the same of the Google Cluster
traces dataset [6].

Arrival processes are Markovian, i.e. the interarrival
time between two consecutive tasks can be modeled as
an exponential random variable with mean value equal to
100 ms for large tasks and 50 ms for small tasks. The
simulated scenario considers the queue models we mentioned
in § III, namely PNs running on top of an IN are modeled
as M/G/m/ +∞ queues, while the rest of the PNs are
modeled as M/G/1/ +∞ queues. A task is accepted for
execution by a PN only if the latter is able to guarantee its
completion within its deadline, otherwise the task is discarded.
A completed task marks a hit for the PN on which it has
been executed.

Following the above arguments, we have assumed that
small tasks are more latency dependent, thus they have a
deadline equal to the 20% of their maximum duration. Instead,
long tasks are less restrictive on their execution, so their
deadline is the 40% of their duration.

We considered the following performance parameters (an
adapted selection from [11]).

• Hit + Running Rate —Defined as the relative amount
of tasks that have completed or are still running with
the certainty that their deadline will be satisfied. The
Hit + Running Rate measures how good the system is
satisfying the QoS requirements imposed by the users.
We measured the Hit + Running Rate for small tasks,
large tasks and both types together.

• Rate of Refused Requests for Remote Execution —
Defined as the relative amount of refused requests over
the total number of sent requests. This performance
indicator measures the overhead introduced by sending
requests to overloaded or selfish PNs, until a PN willing
to accept the request is found.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
T

a
s
k
s

Miss Rate Tolerance

1000 PNs

4000 PNs

7000 PNs

10000 PNs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
L

a
rg

e
 T

a
s
k
s

Miss Rate Tolerance

1000 PNs

4000 PNs

7000 PNs

10000 PNs

Figure 4. Hit + Running Rate of tasks (left) and large tasks (right), for different values of the miss rate tolerance and with different numbers of PNs.

C. Results

In the following we have discussed the mean results
obtained after five simulations where the variances affect
only the third decimal digit. We first measured the effect of
changing the miss rate tolerance in the cooperation strategy.

Apart from the basic common configuration we described
above, it is worth mentioning that every PN uses the same
strategy with exactly the same miss rate tolerance (although
the DEUS simulation tool allows to define groups of peers
with different strategies). We have performed parametric
simulations, to study the behavior of the system for different
strategy configurations.

In Fig. 4 (left), 4 (right) and 5 (left) we report the Hit
+ Running Rate for all, large, and small tasks, respectively.
The values are plotted considering the miss rate tolerance on
the horizontal axis. Each graphic includes plots for different
numbers of PNs.

Obviously, the higher the number of nodes, the better the
performance of the system is in terms of Hit + Running
Rate. The results show the superiority of the volunteer
approach. We can also observe that almost all the small
tasks are completed, when the number of PNs is equal or
higher than 7, 000 and the cooperation strategy tends to
the volunteer approach. Large tasks have more difficulties
in finding an adequate PN that can execute it, due to
their higher requirements in terms of CPU cycles. The
overall performance is acceptable because small tasks are
the majority.

In all cases we can see that the performance in terms
of hit rate is almost stabilized, starting from a miss rate
tolerance equal to 0.3. For higher values, the performance is
not appreciably improved.

In Fig. 5 (right) we report the Rate of Refused Requests
for Remote Execution. We see that generally the number of
refused requests is lower, when the number of PNs increases.
This happens because, by increasing the number of PNs,

it is more likely to find an unloaded node that can accept
the remote request for execution. In this figure there is not
a single point of split-up related to a value of miss rate
tolerance (like in the previous three figures). However, over
7, 000 PNs the number of refused requests increases because
the added PNs are not those that are not on top of INs, i.e.
they might be able to execute small tasks but in general
they might not be able execute large ones. The number of
INs is 7 in all experiments, as described in the beginning
of Sec. IV-B. Thus, increasing the number of PNs without
IN means decreasing the likelihood to find a node able to
execute large tasks and hence increasing the number of
request refusals for such tasks.

In a second experiment, we measured the impact of
changing the migration cost, i.e. the cost for remote execution
among sites. We have considered different values for the
migration cost with the only constraint of still allowing to
execute tasks in the most far site. Recall that the deadline of
small tasks is 10% of their maximum duration. The parameter
of migration cost is varied throughout the maximum duration
of small tasks with an increasing step of 0.05% up to 0.25%.
The results show that the hit rate is only slightly affected
by the variation of migration cost. The performance on the
refused message rate follows the behavior of the previous
three plots.

We also measured the impact of varying the deadline.
Obviously, by relaxing the deadline we augment the like-
lihood for a PN to execute the task while respecting its
QoS requirements. As we already said, in the previous two
experiments we considered a deadline of 0.2% (288 seconds)
of the maximum duration for small tasks and of 0.4% (17,280
seconds) for large tasks. We have changed these parameters
with linear increments of the amount of the base case, for
the two types of tasks. For small tasks this means that we set
the deadlines to 0.2%, 0.4%, 0.6% and so on. For large tasks
instead we set the deadline factors to 0.4%, 0.8%, 1.2%,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
S

m
a

ll
T

a
s
k
s

Miss Rate Tolerance

1000 PNs

4000 PNs

7000 PNs

10000 PNs

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

R
a

te
 o

f
R

e
fu

s
e

d
 R

e
q

u
e

s
ts

 f
o

r
re

m
o

te
 e

x
e

c
u

ti
o

n

Miss Rate Tolerance

1000 PNs

4000 PNs

7000 PNs

10000 PNs

Figure 5. Hit + Running Rate of Small tasks, for different values of the miss rate tolerance and with different numbers of PNs (left), and Rate of Refused
Requests for Remote Execution of the tasks, for different values of the miss rate tolerance and with different numbers of PNs (right).

etc. We obtained only a slight, less significant increment of
the hit rate. The reason is that, as we showed in the first
experiment, the system has just reached the saturation of
satisfaction on small tasks and misses are mostly due to lack
of memory on PNs to execute large tasks. They hence do
not benefit for milder deadlines. The behavior for the rate
of refused requests follows the ones showed in the previous
two experiments.

V. RELATED WORK

One of today’s main concerns for cloud-based service
providers is the increasing number of world-wide application
service consumers. To deal with this problem, IaaS providers
have established data centers in multiple geographical loca-
tions to provide redundancy and ensure reliability in case
of site failures. For example, Amazon has data centers in
the US (e.g. one in the East Coast and another in the West
Coast) and Europe. Recently, the idea of introducing seamless,
automatic mechanisms for scaling hosted services across
those geographically distributed data centers has become
popular, not only in theory but also in practice. For example,
Amazon EC2 Spot Instances allow customers to bid on
unused Amazon EC2 capacity and run those instances for
as long as their bid exceeds the current Spot Price, that
changes periodically based on supply and demand. However,
such Inter-Cloud [12] raises many challenges concerning
federation, security, interoperability, vendors’ lock-ins, trust,
legal issues, QoS, monitoring, and billing.

Such challenges are already under investigation by the
research community. Our approach to cooperation strategies
and autonomic mechanisms in ACCPs is our humble con-
tribution to this field, but there are of course many other
approaches that are worth considering. Due to lack of space
we mention here the most relevant to our approach, focusing
on three of its differentiating features: (i) task mobility, (ii)
interoperability, and (iii) agent-based architecture.

Some researchers are already approaching the technical
issues in managing the entire bundle of services, providing
Routing-as-a-Service [13] and of moving VMs over wide
area networks without losing service [14].

Erdil [11] proposes information proxies as an enabling
mechanism for interoperability in federated clouds, because
of two equally important characteristics of proxies: (i) ability
to bypass administrative barriers, and (ii) capability to
improve dissemination performance with respect to various
performance parameters. Moreover, the author shows that
using no hierarchical organization and picking proxy nodes
randomly leads to effective system behavior, measured based
on several success criteria, including dissemination overhead,
redundant message ratio, and average edge count.

The Clouds-Using-Agents paradigm [15] has been ad-
vocated as a convenient way to tackle the complexity of
cloud systems. Examples of this paradigm applied to service
management in Inter-Cloud systems include Reservoir [16],
Cloudbus [12], and SORMA [17]. In Reservoir, individual
Service Manager agents interact co-operatively towards a
Service Manifest. In Cloudbus, cloud brokers interact with
the cloud coordinator. In SORMA, cloud brokers interact
with bidders and sellers.

One step beyond, Mearns et al. [18] propose a bundled
service provider agent architecture, which can negotiate on
the open service market. This approach aims to also optimize
the utilization of the providers infrastructure, while reducing
the risk of failure to users through total service management.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we highlighted the advantages of cooperative
approaches in Inter-Cloud environments, such as ACCPs.
We proposed a general architecture and its simulation-based
evaluation, based on the SCIENCE CLOUD [3] case study
under a model of realistic workload taken from the Google
Cluster dataset [6].

Our simulator can be used to estimate the performance
of ACCPs either at run-time (for prediction purposes) or
at early-prototyping phases (for designing purposes). For
instance, from the presented experimental evaluation we can
conclude that (modulo our assumptions and simplifications)
a volunteer cloud with 7, 000 PNs may obtain a comparable
performance to the Google Cluster consisting of 11, 000
nodes with higher capacity.

We believe that one of the main factors that impact
the performance of volunteer approaches is the dissemina-
tion of load information, which helps overloaded PNs to
quickly identify the most promising PN when looking for
support. Therefore, we are investigating solutions based on
semistructured peer-to-peer overlay networks, which provide
efficient node discovery and knowledge sharing. We will also
investigate more sophisticated and efficient decentralized task
allocation strategies.

In the current version of our work we have considered
that all tasks are independent. Tasks dependencies can lead
to different and non trivial problems such as more stringent
deadline constraints (e.g. some tasks may not be scheduled
if other tasks have not finished their execution). We plan to
add to our simulator the concept of job or workflow, that
relates one or more tasks, possibly following the Google
Cluster Workload Traces but also considering more general
applications. In a future work we shall consider more detailed
and sophisticated models, in particular for which regards
parallelism issues and task durations. Regarding the latter
we will use different task duration models (e.g. according to
stochastic distributions) and prediction capabilities.

The analytical modeling of P2P network dynamics is
indeed a complex task, and in what regards P2P-based cloud
systems, we are taking into account the recent and relevant
literature.

We have planned, as a future work, to refine our model
according to real testing with the SCIENCE CLOUD [3].
Moreover, we will refine the model and its realization in the
DEUS simulator, by adding different P2P dynamics, Cloud-
related costs (e.g. the time to put on and tear down a VM),
and with a comparison of different task distribution strategies.
Additionally, we will consider the impact on performances
of different supernode election strategies.

REFERENCES

[1] D. P. Anderson, “Volunteer computing: the ultimate cloud,”
ACM Crossroads, vol. 16, no. 3, pp. 7–10, 2010.

[2] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa,
“Volunteer computing and desktop cloud: The cloud@home
paradigm,” in IEEE International Symposium on Network
Computing and Applications, july 2009, pp. 134–139.

[3] “The science cloud platform,” http://svn.pst.ifi.lmu.de/trac/scp/.

[4] “What is google app engine?” https://developers.google.com/
appengine/docs/whatisgoogleappengine.

[5] “Distributed Systems Group, DEUS project homepage,” http:
//code.google.com/p/deus/.

[6] J. L. Hellerstein, “Google cluster data,” Google research blog,
Jan. 2010, posted at http://googleresearch.blogspot.com/2010/
01/google-cluster-data.html.

[7] “European integrated project ASCENS (autonomic service
component ensembles),” http://www.ascens-ist.eu/.

[8] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing
Networks and Markov Chains, 2nd ed. Wiley, 2006.

[9] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, pp. 41–50, 2003.

[10] A. Mishra, J. Hellerstein, W. Cirne, and C. Das, “Towards
Characterizing Cloud Backend Workloads: Insights from
Google Compute Clusters,” ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 4, pp. 34–41, 2010.

[11] D. C. Erdil, “Autonomic cloud resource sharing for intercloud
federations,” Future Generation Computing Systems, 2012.

[12] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud:
Utility-oriented federation of cloud computing environments
for scaling of application services,” in 10th International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2010), 2010, pp. 13–31.

[13] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862–
876, 2010.

[14] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhanc-
ing dynamic cloud-based services using network virtualization,”
ACM SIGCOMM Computer Communication Review, vol. 40,
no. 1, pp. 67–74, 2010.

[15] D. Talia, “Cloud computing and software agents: Towards
cloud intelligent services,” in WOA, ser. CEUR Workshop
Proceedings, G. Fortino, A. Garro, L. Palopoli, W. Russo, and
G. Spezzano, Eds., vol. 741. CEUR-WS.org, 2011, pp. 2–6.

[16] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres,
M. Ben-Yehuda, W. Emmerich, and F. Galan, “The reservoir
model and architecture for open federated cloud computing,”
IBM Journal of Research and Development, vol. 53, no. 4, pp.
1–11, 2009.

[17] J. Nimis, A. Anandasivam, N. Borissov, G. Smith, D. Neu-
mann, N. Wirstrom, E. Rosenberg, and M. Villa, “Sorma
- business cases for and open grid market: Concept and
implementation,” in 5th international workshop on Grid
Economics and Business Models (GECON ’08.), 2008, pp.
173–184.

[18] H. Mearns, J. Leaney, A. Parakhine, J. Debenham, and
D. Verchere, “An autonomic open marketplace for inter-cloud
service management,” in 4th IEEE International Conference on
Utility and Cloud Computing (UCC 2011), 2011, pp. 186–193.

