1,323 research outputs found

    A Review on Quantitative Approaches for Dock Door Assignment in Cross-Docking

    Get PDF
    Cross docking is a relatively new technique in supply chain operations. It offers limited storage time to maximize the efficiency of goods transshipment. Efficient operation of a cross docking system requires an appropriate coordination of inbound and outbound flows, accurate planning and dynamic scheduling.  The planning strategies at cross docking terminals, which are receiving growing attention today, are the truck-to-door assignment and destination to door assignment problems. This paper provides a comprehensive literature review of quantitative approaches in dock door assignment problems of cross docking planning. The contributions of this paper are to identify the gap of knowledge in operational levels mainly in dock door assignment and to point out the future research direction in cross docking

    Design and Analysis of Efficient Freight Transportation Networks in a Collaborative Logistics Environment

    Get PDF
    The increase in total freight volumes, reducing volume per freight unit, and delivery deadlines have increased the burden on freight transportation systems of today. With the evolution of freight demand trends, there also needs to be an evolution in the freight distribution processes. Today\u27s freight transportation processes have a lot of inefficiencies that could be streamlined, thus preventing concerns like increased operational costs, road congestion, and environmental degradation. Collaborative logistics is one of the approaches where supply chain partners collaborate horizontally or/and vertically to create a centralized network that is more efficient and serves towards a common goal or objective. In this dissertation, we study intermodal transportation, and cross-docking, two major pillars of efficient, cheap, and faster freight transportation in a collaborative environment. We design an intermodal network from a centralized network perspective where all the participants intermodal operators, shippers, carriers, and customers strive towards a synchronized and cost-efficient freight network. Also, a cross-dock scheduling problem is presented for competitive shippers using a centralized cross-dock facility. The problem develops a fast heuristic and meta-heuristic approach to solve large-scale real-world problems and draws key insights from a cross-dock operator and inbound carrier\u27s perspectives

    Models and Algorithms for Inbound and Outbound Truck to Door Scheduling

    Get PDF
    Cross-docking is a logistic strategy that facilitates rapid movement of consolidated products between suppliers and retailers within a supply chain. It is also a warehousing strategy that aims at reducing or eliminating storage and order picking, two of which are known to be major costly operations of any typical warehouse. This strategy has been used in the retailing, manufacturing, and automotive industries. In a cross-dock, goods are unloaded from incoming trucks, consolidated according to their destinations, and then, loaded into outgoing trucks with little or no storage in between. In this thesis, we address an integrated cross-dock door assignment and truck scheduling problem in which the assignment and sequencing of incoming trucks to strip doors and outgoing trucks to stack doors is optimized to minimize the total time to process all trucks. We present a mixed integer programming formulation to model this problem and some valid inequalities to strengthen the formulation. We also present two metaheuristics to obtain high quality solutions in reasonable CPU times. These algorithms use a mix of composite dispatching rules, constructive heuristics, local search heuristics which are embedded into a greedy randomized adaptive search procedure (GRASP) and an iterated local search (ILS). Results of computational experiments are presented to assess the performance of the proposed algorithms, in comparison with a general purpose solver

    A Cross-Docking Approach for Farfetch Global Delivery

    Get PDF
    Farfetch is an e-commerce platform with a exponential growth in the last years, but this company has a particular type of business. Farfetch does not hold stock, everything that its sold on farftech.com comes from partners, that are boutiques spread all over the world, that sell high-end fashion articles, that do not have an online presence and relay on Farfetch to have a global reach. When a client buys on ff.com, if more than one item is purchased, they can come from different boutiques placed in different points, for instance, one can belong to a Portuguese partner, and the other can be shipped from an Italian boutique. When this happens, the client will receive two different boxes, arriving at different times, with different tracking information, and this has a huge impact on the client satisfaction and the need to improve the client satisfaction originate the theme for this dissertation. The main objective of this thesis is building a cross-docking strategy to gain knowledge about this strategy, that is something new in the company, identifying the variables with the most impact in cross-docking, and what are Farfetch's limitations on implementing this type of logistics strategy. The project will study this approach to two different markets, one for the Chinese Market, and the second will be a Transatlantic Bridge between Europe and the United States of America. To develop this strategy the software used is AnyLogic, a simulation tool based on agents and discrete-time events, that allow simulating not only the operations inside the cross-dock but also control every agent involved in the process, for example, the operators

    Ordonnancement de camions dans une plateforme logistique : complexité, méthodes de résolution et incertitudes

    Get PDF
    La problématique dite de crossdocking a été source de beaucoup d'attention ces dernières années dans la littérature. Un crossdock est une plateforme logistique favorisant, par une synchronisation efficace des camions entrants et sortants, une rotation rapide des produits, le volume de produits stockés devant être le plus faible possible. Le crossdocking soulève de nombreux problèmes logistiques, dont notamment celui de l'ordonnancement des camions entrants et sortants sur les quais de la plateforme. L'objectif classiquement considéré dans la littérature pour ce problème est la minimisation du makespan, critère très répandu en d'ordonnancement. Pour le crossdocking néanmoins, minimiser la date de départ du dernier camion ne garantie pas nécessairement une bonne synchronisation des camions et le makespan ne semble donc pas être l'objectif le plus pertinent. Pour répondre au besoin de synchronisation et favoriser les rotations rapides, notre travail propose alternativement de minimiser la somme des temps de séjour des palettes dans le stock. Nous étudions d'abord la version déterministe de ce problème d'ordonnancement. Sa complexité est détaillée selon différentes hypothèses pour identifier les éléments menant à sa NP-difficulté. Différentes méthodes de résolutions sont proposées. Une méthode classique de programmation linéaire en nombres entiers utilisant des variables de décision indexées par le temps. Une famille d'inégalités valides est également proposée et exploitée dans un algorithme avec ajout itératif de coupes. Des méthodes basées sur la programmation par contraintes sont enfin proposées. Une analyse comparative de ces différentes méthodes est proposée. Dans un deuxième temps, nous étudions une version non-déterministe de notre problème d'ordonnancement dans laquelle des incertitudes sur les dates d'arrivée des camions sont introduites sous la forme d'intervalles de temps équiprobables. Une méthode d'ordonnancement proactive-réactive utilisant le concept de groupes d'opérations permutables est proposée pour faire face aux incertitudes. Des groupes de camions permutables sont séquencés et affectés aux quais puis, durant l'exécution d'ordonnancement, en fonction de la réalisation des dates d'arrivée, un ordre est choisi dans chaque groupe à l'aide d'un algorithme réactif.Crossdocking has received a lot of attention in the literature in recent years. A crossdock is a logistic platform that promotes rapid product turnover through efficient synchronization of incoming and outgoing trucks, with the volume of products stored being kept as low as possible. Crossdocking raises many logistical problems, including the scheduling of incoming and outgoing trucks on the platform's docks. The classical objective considered in the literature for this problem is the minimization of the makespan, a very common criterion in scheduling. However, for crossdocking, minimizing the departure date of the last truck does not necessarily guarantee a good synchronization of the trucks and the makespan does not seem to be the most relevant objective. In order to meet the need for synchronization and to help fast rotations, our work proposes alternatively to minimize the sum of the pallets' sojourn times in the warehouse. We first study the deterministic version of this scheduling problem. Its complexity is detailed under different assumptions to identify the elements leading to its NP-hardness. Different solution methods are proposed. A classical integer linear programming method using time-indexed decision variables. A family of valid inequalities is also proposed and exploited in an algorithm with iterative addition of cuts. Finally, methods based on constraint programming are proposed. A comparative analysis of these different methods is proposed. In a second step, we study a non-deterministic version of our scheduling problem in which uncertainties on truck arrival dates are introduced in the form of equiprobable time intervals. A proactive-reactive scheduling method using the concept of permutable operation groups is proposed to cope with the uncertainties. Groups of permutable trucks are sequenced and assigned to the docks and then, during the scheduling run, based on the realization of arrival dates, an order is chosen in each group using a reactive algorithm

    Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products\u27 Unit Costs Delivered to the Final Customers

    Get PDF
    This study aims at proposing a decision-support tool to reduce the total supply chain costs (TSCC) consisting of two separate and independent objective functions including total transportation costs (TTC) and total cross-docking operating cost (TCDC). The full-truckload (FT) transportation mode is assumed to handle supplier→customer product transportation; otherwise, a cross-docking terminal as an intermediate transshipment node is hired to handle the less-than-truckload (LTL) product transportation between the suppliers and customers. TTC model helps minimize the total transportation costs by maximization of the number of FT transportation and reduction of the total number of LTL. TCDC model tries to minimize total operating costs within a cross-docking terminal. Both sub-objective functions are formulated as binary mathematical programming models. The first objective function is a binary-linear programming model, and the second one is a binary-quadratic assignment problem (QAP) model. QAP is an NP-hard problem, and therefore, besides a complement enumeration method using ILOG CPLEX software, the Tabu search (TS) algorithm with four diversification methods is employed to solve larger size problems. The efficiency of the model is examined from two perspectives by comparing the output of two scenarios including; i.e., 1) when cross-docking is included in the supply chain and 2) when it is excluded. The first perspective is to compare the two scenarios’ outcomes from the total supply chain costs standpoint, and the second perspective is the comparison of the scenarios’ outcomes from the total supply chain costs standpoint. By addressing a numerical example, the results confirm that the present of cross-docking within a supply chain can significantly reduce total supply chain costs and total transportation costs

    Application of Tabu Search to Scheduling Trucks in Multiple Doors Cross-Docking Systems

    Get PDF
    RÉSUMÉ : Cette recherche focus sur l’amélioration des cross-dockings en vue d’augmenter les niveaux de performance du service et de réduire les coûts. l’algorithme de la recherche avec tabous est étudiée pour trouver la séquence optimale d’entrée et sortie des remorques au cross-docking. L’objectif de cette recherche est de maximiser le nombre total de transferts directs entre le fournisseur et une destination finale commune de livraison. Dans les stratégies de distribution actuelles, l’objectif est de synchroniser les chaines du fabricant et du client. Le cross-docking implique de recevoir les produits d’un fournisseur pour plusieurs clients et d’occasionnellement consolider cela avec les produits d’autres fournisseurs pour des destinations finales de livraison communes. En résumé, l’approche examinée dans cette recherche donne une occasion significative pour l’amélioration des opérations au Cross-docking par la réduction du stockage des produits.----------ABSTRACT : Today’s supply chain management performance has been affected by continuously increasing pressure of market forces. The pressure of market includes demands on increased flow of products and throughput with less amount of storage, also customers demand for more products with lower operational costs and more value-added services provided to customers. Supply chain is responsible in cost reduction and service levels increase by providing transshipments across its members. However supply chain has to face fluctuations of demands with the short available lead times. Physical problem of warehouse limitations and also inventory costs and shipping affect the performance of supply chain. In today’s distribution strategies, the main goal is to provide a synchronization of customer chains and the suppliers. The objective is to reduce the inventory buffering between customers and suppliers. The idea of cross-docking is to receive different goods from a manufacturer for several end destinations and possibly consolidate the goods with other manufacturer’s items for common final customers; then ship them in the earliest possible time. The focus of this research effort is to improve cross-dock operations with the goal of increasing the service performance levels and reducing costs. Specifically, metaheuristics algorithm of Tabu search is investigated for finding optimal sequence of incoming and outgoing trailers at cross-docks. This thesis reviews available research literature on cross-dock operations. Tabu search for the truck scheduling problem is presented along with results. Tabu search algorithm is investigated for the truck scheduling problem in the multiple doors cross-docking with unknown incoming and outgoing sequences. The objective of this research is to maximize the total direct transfer of products from a supplier to common final delivery destinations. The algorithm is implemented in C++ and analyzed using different problem instances. The results gained from algorithm of Tabu search are compared with other iterative heuristic descent method. The results indicate that the Tabu search performs significantly better than the descent method for large problem instances. In general, the results present that a metaheuristic algorithm of Tabu search for multiple or single door cross-docking offers thelargest potential for improvement. In summary, the approach explored in this research offers significant opportunity to improve cross-dock operations through reducing storage of products
    • …
    corecore