122 research outputs found

    Confirmation Bias Estimation from Electroencephalography with Machine Learning

    Get PDF
    Cognitive biases are known to plague human decision making and can have disastrous effects in the fast-paced environments of military operators. Traditionally, behavioral methods are employed to measure the level of bias in a decision. However, these measures can be hindered by a multitude of subjective factors and cannot be collected in real-time. This work investigates enhancing the current measures of estimating confirmation bias with additional behavior patterns and physiological variables to explore the viability of real-time bias detection. Confirmation bias in decisions is estimated by modeling the relationship between Electroencephalography (EEG) signals and behavioral data using machine learning methods

    On the Exploration of FPGAs and High-Level Synthesis Capabilities on Multi-Gigabit-per-Second Networks

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 24-01-2020Traffic on computer networks has faced an exponential grown in recent years. Both links and communication equipment had to adapt in order to provide a minimum quality of service required for current needs. However, in recent years, a few factors have prevented commercial off-the-shelf hardware from being able to keep pace with this growth rate, consequently, some software tools are struggling to fulfill their tasks, especially at speeds higher than 10 Gbit/s. For this reason, Field Programmable Gate Arrays (FPGAs) have arisen as an alternative to address the most demanding tasks without the need to design an application specific integrated circuit, this is in part to their flexibility and programmability in the field. Needless to say, developing for FPGAs is well-known to be complex. Therefore, in this thesis we tackle the use of FPGAs and High-Level Synthesis (HLS) languages in the context of computer networks. We focus on the use of FPGA both in computer network monitoring application and reliable data transmission at very high-speed. On the other hand, we intend to shed light on the use of high level synthesis languages and boost FPGA applicability in the context of computer networks so as to reduce development time and design complexity. In the first part of the thesis, devoted to computer network monitoring. We take advantage of the FPGA determinism in order to implement active monitoring probes, which consist on sending a train of packets which is later used to obtain network parameters. In this case, the determinism is key to reduce the uncertainty of the measurements. The results of our experiments show that the FPGA implementations are much more accurate and more precise than the software counterpart. At the same time, the FPGA implementation is scalable in terms of network speed — 1, 10 and 100 Gbit/s. In the context of passive monitoring, we leverage the FPGA architecture to implement algorithms able to thin cyphered traffic as well as removing duplicate packets. These two algorithms straightforward in principle, but very useful to help traditional network analysis tools to cope with their task at higher network speeds. On one hand, processing cyphered traffic bring little benefits, on the other hand, processing duplicate traffic impacts negatively in the performance of the software tools. In the second part of the thesis, devoted to the TCP/IP stack. We explore the current limitations of reliable data transmission using standard software at very high-speed. Nowadays, the network is becoming an important bottleneck to fulfill current needs, in particular in data centers. What is more, in recent years the deployment of 100 Gbit/s network links has started. Consequently, there has been an increase scrutiny of how networking functionality is deployed, furthermore, a wide range of approaches are currently being explored to increase the efficiency of networks and tailor its functionality to the actual needs of the application at hand. FPGAs arise as the perfect alternative to deal with this problem. For this reason, in this thesis we develop Limago an FPGA-based open-source implementation of a TCP/IP stack operating at 100 Gbit/s for Xilinx’s FPGAs. Limago not only provides an unprecedented throughput, but also, provides a tiny latency when compared to the software implementations, at least fifteen times. Limago is a key contribution in some of the hottest topic at the moment, for instance, network-attached FPGA and in-network data processing

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    Detecting Software Attacks on Embedded IoT Devices

    Get PDF
    Internet of Things (IoT) applications are being rapidly deployed in the context of smart homes, automotive vehicles, smart factories, and many more. In these applications, embedded devices are widely used as sensors, actuators, or edge nodes. The embedded devices operate distinctively on a task or interact with each other to collectively perform certain tasks. In general, increase in Internet-connected things has made embedded devices an attractive target for various cyber attacks, where an attacker gains access and control remote devices for malicious activities. These IoT devices could be exploited by an attacker to compromise the security of victim’s platform without requiring any physical hardware access. In order to detect such software attacks and ensure a reliable and trustworthy IoT application, it is crucial to verify that a device is not compromised by malicious software, and also assert correct execution of the program. In the literature, solutions based on remote attestation, anomaly detection, control-flow and data-flow integrity have been proposed to detect software attacks. However, these solutions have limited applicability in terms of target deployments and attack detection, which we inspect thoroughly. In this dissertation, we propose three solutions to detect software attacks on embedded IoT devices. In particular, we first propose SWARNA, which uses remote attestation to verify a large network of embedded devices and ensure that the application software on the device is not tampered. Verifying the integrity of a software preserves the static properties of a device. To secure the devices from various software attacks, it is imperative to also ensure that the runtime execution of a program is as expected. Therefore, we focus extensively on detecting memory corruption attacks that may occur during the program execution. Furthermore, we propose, SPADE and OPADE, secure program anomaly detection that runs on embedded IoT devices and use deep learning, and machine learning algorithms respectively to detect various runtime software attacks. We evaluate and analyse all the proposed solutions on real embedded hardware and IoT testbeds. We also perform a thorough security analysis to show how the proposed solutions can detect various software attacks

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Communicating the Unspeakable: Linguistic Phenomena in the Psychedelic Sphere

    Get PDF
    Psychedelics can enable a broad and paradoxical spectrum of linguistic phenomena from the unspeakability of mystical experience to the eloquence of the songs of the shaman or curandera. Interior dialogues with the Other, whether framed as the voice of the Logos, an alien download, or communion with ancestors and spirits, are relatively common. Sentient visual languages are encountered, their forms unrelated to the representation of speech in natural language writing systems. This thesis constructs a theoretical model of linguistic phenomena encountered in the psychedelic sphere for the field of altered states of consciousness research (ASCR). The model is developed from a neurophenomenological perspective, especially the work of Francisco Varela, and Michael Winkelman’s work in shamanistic ASC, which in turn builds on the biogenetic structuralism of Charles Laughlin, John McManus, and Eugene d’Aquili. Neurophenomenology relates the physical and functional organization of the brain to the subjective reports of lived experience in altered states as mutually informative, without reducing consciousness to one or the other. Consciousness is seen as a dynamic multistate process of the recursive interaction of biology and culture, thereby navigating the traditional dichotomies of objective/subjective, body/mind, and inner/outer realities that problematically characterize much of the discourse in consciousness studies. The theoretical work of Renaissance scholar Stephen Farmer on the evolution of syncretic and correlative systems and their relation to neurobiological structures provides a further framework for the exegesis of the descriptions of linguistic phenomena in first-person texts of long-term psychedelic selfexploration. Since the classification of most psychedelics as Schedule I drugs, legal research came to a halt; self-experimentation as research did not. Scientists such as Timothy Leary and John Lilly became outlaw scientists, a social aspect of the “unspeakability” of these experiences. Academic ASCR has largely side-stepped examination of the extensive literature of psychedelic selfexploration. This thesis examines aspects of both form and content from these works, focusing on those that treat linguistic phenomena, and asking what these linguistic experiences can tell us about how the psychedelic landscape is constructed, how it can be navigated, interpreted, and communicated within its own experiential field, and communicated about to make the data accessible to inter-subjective comparison and validation. The methodological core of this practice-based research is a technoetic practice as defined by artist and theoretician Roy Ascott: the exploration of consciousness through interactive, artistic, and psychoactive technologies. The iterative process of psychedelic self-exploration and creation of interactive software defines my own technoetic practice and is the means by which I examine my states of consciousness employing the multidimensional visual language Glide

    Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace

    Get PDF
    The symposium Vision-21: Interdisciplinary Science and Engineering in the Era of Cyberspace was held at the NASA Lewis Research Center on March 30-31, 1993. The purpose of the symposium was to simulate interdisciplinary thinking in the sciences and technologies which will be required for exploration and development of space over the next thousand years. The keynote speakers were Hans Moravec, Vernor Vinge, Carol Stoker, and Myron Krueger. The proceedings consist of transcripts of the invited talks and the panel discussion by the invited speakers, summaries of workshop sessions, and contributed papers by the attendees
    corecore