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Abstract 

Cognitive biases have been known to plague the human decision-making process 

for centuries. These biases often result in suboptimal outcomes in the face of uncertainty 

which can have disastrous effects in the fast-paced environments of military operators. 

Confirmation bias, which is the inappropriate bolstering of a hypothesis or belief whose 

truth is uncertain, can be especially harmful in military operations as information 

pertinent to alternative decisions is disregarded or downplayed with respect to 

information which supports the operator’s current belief.  Presently, there are two 

measures to estimate the degree of confirmation bias: 1) importance of information and 

2) information selection. Unfortunately, these measures can be hindered by a multitude of 

subjective factors and cannot be collected fast enough to detect confirmation bias in real- 

time. This work investigates enhancing the current measures of estimating confirmation 

bias with behavior patterns and physiological variables.  

In this pilot study, the MITRE-developed Assessment of Biases in Cognition 

(ABC) was completed by 15 participants.  The ABC elicited biased behavior on decision 

making tasks while corresponding behavioral and physiological data was collected. To 

infer confirmation bias from brain activity, the relationship between 

electroencephalography (EEG) signals and behaviors associated with confirmation bias is 

modeled with machine learning. These models were utilized to classify the presence of 

confirming and disconfirming information. The artificial neural network achieved a 

classification balanced accuracy greater than 50% on two participants. However, overall 

model performance was low across all participants suggesting further research is 
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necessary. Although there was no significant difference in brain activity at the cross-

participant level between the presence of confirming and disconfirming information, 

machine learning salient features in participants with relatively high machine learning 

performance were associated with brain locations that have been related to the presence 

of confirming information. 
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CONFIRMATION BIAS ESTIMATION FROM 

ELECTROENCEPHALOGRAPHY WITH MACHINE LEARNING 

 

I. Introduction 

1.1 Motivation 

In the face of uncertainty, the human decision-making process is known to suffer 

from cognitive biases which result in suboptimal outcomes [1]. The effects of these 

suboptimal decisions in military operations can be disastrous.  In 1988, the commander of 

the USS Vincennes erroneously shot down a commercial Iran Air Flight resulting in the 

loss of 290 passengers’ lives. The commander’s error in judgement was partially 

contributed to cognitive bias which resulted in the commander relying too heavily on the 

wrong information [2].   

Decisions made in military operations are particularly prone to cognitive biases 

due to the high stress, fast paced, highly uncertain environments military operators face 

on a daily basis. With the vast expansion of available information in the 21st century, the 

speed at which information is readily accessible has drastically increased, making the 

decision-making process more cognitively challenging than ever before [3]. With this 

ever-increasing volume of information readily available to military operators, the ability 

to detect suboptimal decisions from cognitive biases is necessary. More importantly, with 

the ability to objectively detect biased decisions, catastrophes resulting from poor 

decision-making processes can be prevented. 
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1.2 Problem Statement 

Confirmation bias is the “inappropriate bolstering of hypotheses or beliefs whose 

truth is in question” [4] and is one of the most prevalent cognitive biases. This bias is 

crucial in military operations because it can result in overlooked information that is 

paramount to an optimal decision-making process. Current literature reports use of two 

measures to estimate the degree of confirmation bias: 1) information selection [5] and 2) 

importance of information [6], [7]. Unfortunately, these subjective measures can be 

hindered by a multitude of factors including evidence search strategies, evidence 

interpretation, socially acceptable outcomes, the participant’s belief of what the 

experimenter wants to hear, and participant memory capacity [8].  

This study intends to replicate the traditional confirmation bias measures of 

information selection and information importance while incorporating new behavioral 

and physiological measurements. Presently, there are no established methods to detect the 

presence of a confirmation bias in real-time as the established measures cannot be 

collected in real-time [9]. Mapping objective measurements, specifically behavioral and 

physiological, to the established behavioral measures will yield the slow and subjective 

measures unnecessary. Utilizing these mapped objective measurements, confirmation 

bias can be estimated as it is occurring, without the need for information selection and 

importance measurements. 

1.3 Research Focus 

This study will investigate decision-based confirmation bias relationships between 

behavior, self-reported information and psychophysiological signals collected when a 
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participant makes a decision while affected by confirmation bias.  By modeling the 

relationships between behavioral data and physiology measurements from participants 

making decisions, this study will document the relationships exposing objective measures 

which might be used to identify confirmation bias. 

1.4 Research Questions/Hypotheses 

RQ1: During decision-making tasks, if the participant is required to make an initial 

decision, what impact does an initial decision have on participant behavior during 

subsequent information search? 

Hypothesis: Making an initial decision before information search will result in 

bias which can be indicated by unbalanced information search behavior [4]. 

Similarly, if an initial decision is not made, there will be less bias and 

consequently a more balanced information search behavior. 

RQ2: What are the information acquisition behavior patterns associated with 

confirmation bias? 

Hypothesis: Behavior patterns associated with a confirmation bias will be 

revealed by associating biased information selection [10]  or 

information/question importance [6] with completion time, and information 

revisit.. 

RQ3: Can a machine learning classification model using physiological signals estimate 

the presence of confirming and disconfirming information with performance greater than 

random chance? 
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Research Objective: Develop a machine-learning model able to classify the 

presence of confirming information with equal-class-weighted classification 

accuracy greater than 50%. 

RQ4: Are neurophysiological signals in the right frontal lobe associated with confirming 

and disconfirming information? Are neurophysiological signals in the right frontal lobe 

salient features in a machine learning information classification model? 

Hypothesis: In contrast to disconfirming information, confirming information will 

provoke increased activity in the brain’s right frontal lobe [10] which will be 

significantly different in neurophysiological signals. The difference in activity will 

result in features associated with the brain’s right frontal lobe producing salient 

machine learning features. 

1.5 Methodology 

Biased behavior is elicited in fifteen participants through decision tasks in a 

MITRE-developed Assessment of Biases in Cognition (ABC) platform. In each decision 

task, the participant selects confirming and/or disconfirming information (relative to the 

participants initial or final decision) to make a decision. A decision task is evaluated as 

biased, if the proportion of selected confirming information is greater than the proportion 

of selected disconfirming information. During the ABC assessment, behavioral and 

physiological measures are collected, including: information selection, completion time, 

information revisit, Electroencephalography (EEG), Electrooculography (EOG), and 

Electrocardiography (ECG).  
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The collected behavioral data is investigated to determine if any significant 

behaviors are associated with biased decisions and are suitable as machine learning 

features. For machine learning, the collected EEG data is segmented using two methods: 

by task and by information. In the task dataset, a machine learning classification model is 

trained to evaluate the decision the participant makes.  The target variable is “biased” and 

the goal is to classify EEG signals as being from a biased or unbiased decision task based 

on how much of each type of information the participant selected.  In the information 

dataset, a machine learning classification model is trained to evaluate each item of 

information the participant selects.  The target variable is “confirm” and the goal is to 

classify EEG signal segments as either confirming or disconfirming, based on the 

information selected. In each dataset, the two types of features explored are a raw time 

series EEG signal, and in the frequency domain, the mean power of the five clinical 

frequency bands. All machine learning models are trained within-participant and un-

tuned cross-validation metrics are reported due to the small number of observations per 

participant. Finally, model feature saliency is evaluated to determine important features 

for estimating confirmation bias.  

1.6 Assumptions and Limitations 

1.6.1 Assumptions 

Given confirmation bias is dependent upon one’s beliefs, there are some key 

assumptions that must be made to adequately assess the degree of confirmation bias and 

label information as confirming or disconfirming. 
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 Beliefs held prior to the ABC assessment will not affect the participant’s decision 

in the decision-making tasks. If a prior belief is held, the belief will be reflected in 

the initial decision. 

 The initial decision made by the participant establishes a belief in the participant 

prior to information search. The established belief is suitable for labeling 

information as “confirm” or “disconfirm” during information search. In decision 

tasks without an initial decision, the participant’s belief is not known prior to 

information search. In these tasks, the final decision made after viewing 

information is suitable for labeling information as “confirm” or “disconfirm” 

during information search. 

 Each participant will have biased and unbiased decision tasks in the ABC 

assessment.  

 EEG activity is different in the presence of hypothesis-confirming and 

hypothesis-disconfirming information. 

 The participant is not aware of the ABC assessment content and does not have 

prior knowledge of the nature of the experiment. 

 The participant will complete the ABC assessment to the best of their ability.  

1.6.2 Limitations 

The participant demographics for the experiment were exclusively volunteers from 

the Air Force Institute of Technology. All participants were male, United States military 

or federal government civilian personnel, with at least a Bachelor’s degree. The mean age 

was 29.4 years with a standard deviation of 7.28 years. The lack of diversity in the 
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participant pool indicates the results in this work may not be generalizable outside of this 

demographic.  

 The decision tasks employed in the ABC assessment are complex decisions that 

require reading and processing large amounts of information. To prevent participant 

fatigue, the ABC assessment only consisted of fourteen decision tasks. With such a 

limited number of tasks, few observations were available from each participant. 

Additionally, there were not enough decision tasks of the same type such that a training, 

validation and test set could each include biased and unbiased decision tasks. Due to the 

small volume of observations for machine learning, a test set was not utilized for 

reporting machine learning performance metrics as is traditionally desired. All reported 

machine learning performance metrics are cross-validation metrics. To prevent inflation 

of the cross-validation metrics, this work employed only simple, un-tuned, machine 

learning implementations. With a larger dataset, machine learning models could be tuned 

and better-performing models could be developed and evaluated using a sequestered test 

set.  

1.7 Contributions 

This work contributes to decision-making research by augmenting the traditional 

measures employed to assess a biased decision with behavioral and physiological 

measurements. At the time of this work, estimating confirmation bias with machine 

learning has never been explored. Multiple facets of estimating confirmation bias through 

behavioral and physiological measurements are investigated, building a foundation for 

future work to build on. 
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The exploratory machine learning approach applied in this work indicates the best 

method for identifying the presence of confirmation bias from EEG data is to classify the 

position of information as confirming or disconfirming. On the information dataset with 

frequency features, the artificial neural network obtained above 50% baseline balanced 

accuracy on 2 of the 15 participants with the highest balanced accuracy on a participant 

being 62.6%. Although these early results are not reliable enough for operational use, 

they suggest there may be a relationship between EEG signals and the presence of 

confirming information. In addition, features from the brain area associated with the 

presence of confirming information were salient features in the highest performing 

participant models. The F4, F6, and F8 features associated with the right frontal lobe of 

the brain were one of the eight most salient features (out of 320 features) in four of the 

participants with the highest random forest classifier performance. On the task dataset 

with frequency features, no participants had a model obtain above the 50% baseline 

balanced accuracy.  

Although machine learning results on the information selection with frequency 

features dataset are only marginally better than the chance, they do suggest it is possible 

to classify the presence of confirming and disconfirming information from EEG signals. 

By classifying the position of information selected in a decision, it is possible to estimate 

a decision with confirmation bias from physiology signals by detecting when more 

confirming information is selected during decision making.  
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1.8 Preview 

This work consists of six chapters. Chapter II reviews present literature on 

confirmation bias and decision making. Specifically, it focuses on the traditional methods 

applied to detect a biased decision. Lastly, this chapter examines common machine 

learning methods utilized in EEG classification. Chapter III outlines the methodology for 

the human-subject experiment implemented to collect behavioral and physiological data 

as well as the implemented machine learning pipeline. Chapter IV discusses the analysis 

and results of the behavioral data and the machine learning performance metrics on the 

physiology data. Lastly, Chapter V concludes this work by answering the research 

questions with results and providing recommendations for future confirmation bias 

estimation research.  

 

  



10 

II. Literature Review 

2.1 Chapter Overview 

This chapter provides a summary of decision-making research on confirmation 

bias. Confirmation bias definitions, measures, and task environments used in research are 

discussed. In addition, a brief overview of applicable machine learning methods is 

provided. 

2.2 Definitions, Themes, and Concepts 

The grave impact of military decision-making can be illustrated in the early roots 

of American history. General Robert E. Lee, the commander of the Confederate forces 

was a highly successful leader, but in the battle of Gettysburg he was defeated because he 

underestimated his opponent. He was said to believe that victory would come due to his 

own doings. Many historians attribute Lee’s poor decision-making process in overvaluing 

information supporting his belief of victory due to confirmation bias [11]. A short time 

after Gettysburg, George Armstrong Custer’s decisions at the Battle of Little Bighorn in 

1876 resulted in significant loss of life with over 200 troops lost. Custer had significant 

success in the Civil War and was over-confident in his decisions against an alliance of 

Plains Indians at the Battle of Little Bighorn. Despite his plans breaking down during the 

battle, Custer anchored to his original plan and failed to reassess the situation [12]. 

Although cognitive biases have been known to result in suboptimal decisions for 

centuries, they are still prevalent in decision-making today. 

Today with an abundance of real-time information available to military operators, 

the recognition and prevention of error due to cognitive biases is even more important as 
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today’s military operators have substantial information resources at their disposal such 

that the failure to rely on this information appropriately, rather than the lack of 

information, is more likely to result in a poor decision-making process that results in an 

increased probability of an undesirable outcome. In 1988 the commander of the USS 

Vincennes received conflicting information on the type of an approaching aircraft and 

shot down Iran Air Flight 655 killing 290 passengers. The commander erroneously 

believed the aircraft to be an F-14 fighter from the Iranian Air Force. One cause of the 

error in decision is believed to be the high tension and recent incidents which caused the 

commander to suffer from confirmation bias and overvalue the information which 

supported the hypothesis that the aircraft was a hostile military airplane [2]. While this is 

one of the most prominent examples which have led to substantial loss of life, all aspects 

of military operations entail decision making. From pilots constantly assessing their 

rapidly changing state to make quick decisions, to intelligence analysts assessing 

pertinent information, to cyber analysts correctly identifying a cyber-attack, all situations 

require objective assessment of information to make timely, unbiased decisions.  

When making decisions under uncertainty, people often use heuristics, or mental 

shortcuts, to navigate and simplify complex decisions [1], [13]. For example, objects that 

are closer in distance appear more clear than objects at a far distance; consequently when 

objects are clear we often over-estimate how close the object is [1]. These innate 

strategies to use heuristics are effective part of the time, but also result in consistent 

errors [14]. This phenomenon, or unconscious error in judgement, which results in a 

suboptimal decision-making process is a cognitive bias. Cognitive biases are not only 

prevalent in arbitrary contexts, like the previous mentioned distance estimation example, 
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but are widespread in real-world contexts including, but not limited to, national policy, 

intelligence analysis, medical practices, the judicial process, and science [4].  

There are numerous cognitive biases which can significantly impact the decision-

making process. Some of the most prominent cognitive biases include anchoring, 

availability bias, and confirmation bias. The availability bias occurs when people 

over-estimate the probability of an event because of their ability to easily recollect an 

instance judged similar to the event from memory [1]. For example, people may 

overestimate the probability of winning the lottery because they can easily recall a 

memory of recent lottery winners reported on the news.  

During the pre-decision stage of the decision-making process, people tend to 

make estimates based on initial values. Anchoring bias occurs when people anchor on 

these initial estimates and fail to properly adjust these estimates in light of new 

information prior to making their final decision [1]. The canonical example of anchoring 

occurs when buying a used car: whoever makes an offer first will set the initial value. If 

the seller offers to sell the car for $8,000 the buyer may experience an anchoring bias if 

they anchor on this initial value and offer close to $8,000 despite their previous valuation 

of the car.  

Lastly, confirmation bias is the inappropriate bolstering of a believed hypothesis 

in the face of uncertainty [4]. In a police investigation, confirmation bias occurs if the 

investigating officer forms an initial hypothesis on who they believe the guilty suspect is 

and consequently only searches for evidence or overvalues evidence which supports their 

hypothesis. Confirmation bias can be especially damaging to analysts because pre-
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conceived beliefs can result in missed or misinterpreted information. For this reason, this 

work explicitly focuses on confirmation bias.  

Given cognitive biases can have a significant impact on the decision-making 

process, clearly expanding the decision-making process can help with understanding 

cognitive biases. The decision-making process can be split into three stages which are: 

1) Pre-decision 

2) Point of decision  

3) Post-decision  

The pre-decision stage is the point of basic information gathering where conditions are 

proposed and alternatives are generated. The point of decision is when one of the 

previous alternatives is chosen and commitment to the decision is made. Lastly, the post-

decision stage is when rationalization of the decision occurs and seeking of more 

information may be biased toward the previous decision [15]. Cognitive biases can occur 

at several different stages or throughout all of the stages of the decision making process, 

or even between multiple decisions [16]. For example, memory biases, which are biases 

that affect the process of recalling information, affect the pre-decision stage of the 

decision-making process. Whereas cognitive dissonance, which occurs when one has 

inconsistent thoughts about their decision and as a result believes an alternative decision 

was better, occurs in the post decision stage [13].  

The confirmation bias generally affects the first two stages of a decision. When a 

belief is held, confirmation bias is present during the pre-decision stage if basic 

information gathering is biased towards the held belief. The biased search or overvalue of 

belief confirming information then impacts the point of decision. In literature, 
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participants are generally primed to hold a belief by completing one iteration of the 

decision-making process; confirmation bias is then measured in a subsequent decision 

with respect to the first decision.  

Throughout the body of this work, the terms “confirming” and “disconfirming” are 

utilized to express the relationship between the information and a participant’s current 

belief or hypothesis. Confirming information is information that confirms or supports the 

participant’s current belief. Disconfirming information is information that contradicts or 

disconfirms the participant’s current belief. Neutral or irrelevant information is 

information that neither confirms nor disconfirms the participant’s belief. The basis of 

how one interacts and assigns value to these types of information is the crux of 

quantifying confirmation bias.  

2.3 Confirmation Bias  

2.3.1 History and Competing Definitions 

The prevalence of the confirmation bias is illustrated by one of the first 

documented accounts being over 400 hundred years ago when Sir Bacon expressed “The 

human understanding, when any proposition has been once laid down . . . forces 

everything else to add fresh support and confirmation…” [17]. Although the tendency for 

people to exhibit these behaviors have been known for decades, some of the most notable 

research began circa 1960 with the Wason abstract rule discovery experiment which 

exhibited error in hypotheses by seeking confirmatory evidence [18]. In his work, Wason 

gives participants a sequence of three numbers and states the three numbers follow some 

unspecified rule. The goal of the participants is to determine this rule by choosing 
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minimal sets of three numbers. After each set, participants are informed if the set 

conforms to the rule. At any point, participants are allowed to declare what they believe 

the rule to be. For example, suppose the governing rule the participant was supposed to 

determine was “sequences which contain only integers increasing in order of magnitude”.  

Then the experiment administrator provided the sequence “2, 4, 6” as a sequence which is 

compliant with the rule.  Next the administrator asks the participant to provide other 

sequences for validation, with the ultimate goal of determining what the rule is.  A 

participant may choose the number sequence “8, 10, 12” and the administrator would 

inform the participant the numbers conform to the rule. The participant may then choose 

the number sequence “3, 2, 1” and would be informed the numbers do not conform to the 

rule. A plausible, but incorrect rule, the participant may declare at this point is 

“sequences of even numbers in increasing order”. The participant continues this process 

of choosing sets of numbers until the correct rule is declared. Wason found participants 

who arrived at the correct rule on their first rule guess did so by testing many confirming 

and disconfirming number instances before guessing. While those who announced an 

incorrect rule in their first guess, did so by testing only a small number of confirmatory 

instances. The significance of Wason’s work is people often create erroneous hypotheses 

when only seeking confirmatory evidence. 

There are many competing definitions in confirmation bias research. This 

ambivalence in what true confirmation bias is, has led to many misconceptions and 

disagreements on empirical findings. The positive test strategy, as proposed by Klayman 

and Ha, suggests that many of the empirical findings that are classified as a “confirmation 

bias” align more closely with a positive test strategy rather than a confirmation bias. The 
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positive test strategy is articulated as: when testing a hypothesis, the tendency for people 

to seek cases that are believed to demonstrate the event rather than conditions that are 

thought to lack the event. This strategy is believed to be a good heuristic for testing the 

truth of a hypothesis despite the fact it can lead to consistent errors [19]. One important 

characteristic of this perspective, is that despite the utility of the positive test strategy, it 

is still prone to errors and can ultimately lead to confirmation bias.  

Another framework that analyzes confirmation bias is the Bayesian perspective 

proposed by Fischhoff and Beyth-Marom. The Bayesian perspective utilizes an 

inferential approach using Bayes theorem to show how the framework can be applied to 

the evaluation of hypotheses. By applying the Bayesian perspective to empirical findings 

on confirmation biases, Fischhoff and Beyth-Marom declare peoples’ intuitive inferences 

that lead to deviations from the Bayesian model are better classified with this framework 

rather than a confirmation bias.  

In a study on preferential search for hypothesis-confirming behavior, Snyder and 

Swanson conduct an experiment in which their participants are instructed to select 

questions to ask another person to test either the hypothesis that the person is an extrovert 

or the hypothesis that the person is an introvert. By participants selecting a majority of 

questions that would confirm the assigned hypothesis (extrovert or introvert), Snyder and 

Swanson conclude that people tend to have a preference for a hypothesis-confirming 

strategy in testing hypotheses [20]. Fischhoff and Beyth-Marom emphasize that, from a 

Bayesian perspective, there is no possible way to ask questions such that all of the 

possible answers would be supportive of a particular hypothesis. Therefore, asking 

questions that are seemingly supportive of a particular hypothesis is not in fact a 
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confirmation bias. From the Bayesian perspective, Snyder and Swans findings from 

asking questions that would likely confirm the hypothesis, are non-diagnostic questions; 

thus, choosing a non-diagnostic hypothesis confirming question is not confirmation bias.   

One of the most notable works on the confirmation bias is Nickerson’s research in 

which he establishes what he believes to be a confirmation bias and provides a working 

definition for present research [9],[13], [21]. Nickerson takes the confirmation bias to be 

a generic concept that entails several other notions that “connote the inappropriate 

bolstering of hypotheses or beliefs whose truth is in question” [4]. Confirmation bias can 

be motivated or unmotivated. An example of a motivated confirmation bias is when 

someone rates evidence on the effectiveness of the death penalty (confirming evidence) 

as more convincing because their opinion is the death penalty is effective, whereas an 

unmotivated confirmation bias would be if the participant had no opinion on the death 

penalty, yet rated one type of evidence as more convincing when both are equally 

supportive [22].  

Through examination of the empirical findings at the time of Nickerson’s work, 

he outlines five main findings in regards to information search.  When a hypothesis is 

favored people tend to: 

1) Restrict attention to the favored hypothesis 

2) Give preferential treatment to evidence supporting existing beliefs 

3) Look for primarily positive cases that support the hypothesis 

4) Overvalue these positive confirmatory cases 

5) See what they are looking for 
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First, people tend to restrict attention to a favored hypothesis. This narrowed 

focus will often cause the interpretation of data to be one that supports the favored 

hypothesis and leads to a failure to recognize that the evidence supports an alternative 

hypothesis more than the favored hypothesis.  

The second finding is similar to restricted attention and is the preferential 

treatment of evidence supporting existing beliefs. Preferential treatment of evidence 

materializes when one gives more importance to evidence that supports their belief than 

evidence that contradicts the belief. One may not completely ignore the unsupportive 

evidence but are less receptive and may explain away the evidence.  

Third, people tend to look for primarily positive cases, or conditions in which 

their hypothesis would be supported despite the hypothesis being related to a vested 

interest or not. These positive cases may not always be logically confirmatory, but rather 

psychologically confirmatory. Psychologically the person believes the case will confirm 

their hypothesis when in fact logical confirmatory evidence would be testing the 

hypothesis to be correct through confirming and disconfirming evidence.  

The fourth finding is overvaluing positive confirmatory instances of a hypothesis. 

This is very similar to the second finding but is different in the sense that overvaluing 

positive confirmatory instances results in the acceptance of a hypothesis with less 

confirming evidence than the rejection of the hypothesis with inconsistent evidence. For 

example, one is more likely to accept a hypothesis they favor with only two supporting 

pieces of evidence than to reject the hypothesis with four contradicting pieces of 

evidence.  
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The last of Nickerson’s general findings is people tend to see what they are 

looking for. One example of this sensation is illustrated in a study in which two groups 

watched a video of a child taking a test. In the study, one group was led to believe the 

child had a low socioeconomic background while the other group was led to believe the 

child was of high socioeconomic background. The group who believed the child had a 

high socioeconomic background rated the child has a high performing student while the 

other group rated the child as a poor performing student [4]. These effects can greatly 

impact the decision-making process and induce confirmation bias if an initial hypothesis 

is formed. This work utilizes Nickerson’s definition of confirmation bias along with his 

five findings as a working definition of confirmation bias.  

2.3.2 Theory of Confirmation Bias 

Many of theories behind the bias can be separated into two main categories: 1) 

task environment theory and 2) cognitive process theory [23]. The task environment 

theory encompasses many of the motivated heuristics, like the positive test strategy. This 

theoretical approach is formed on the basis that biases occur because a heuristic is 

misapplied and results in an error.  The heuristics are developed as adaptations to 

environments as a means of efficiency or survival, not because of one’s inability to 

process large amounts of information. For example, using the positive test strategy, if the 

task environment rarely yields a contradicting instance of the hypothesis, it is generally 

more efficient to test a confirming instance of the phenomenon. The positive test strategy 

serves well but can result in biased behavior when misapplied to an unfamiliar task 

environment. Despite the presence of the task environment theory, the majority of 

theories in literature fall under the cognitive process category.  
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The cognitive processes category encompasses numerous different theories 

ranging from cognitive limitations to cognitive dissonance. Evans postulates the 

confirmation bias stems not from a motivation to seek confirming evidence but rather 

people are unable to think of a way to falsify due to cognitive failure [24]. A similar 

theory is the structure and human thought fosters confirmatory strategies because it is 

easier to think of ways that confirm a hypothesis than the contrary [20]. Tversky and 

Kahneman’s eminent work on cognitive biases also suggests biases occur because 

cognitive limitations necessitate the use of heuristics in the decision process. In addition, 

people tend to look for similar features rather than distinctive features. In decision 

making, where it’s easier to think of a confirmatory instance of the hypothesis, the similar 

evidence is evidence that confirms the hypothesis [1], [25]. Another theory, which falls 

under the cognitive processes category, is the thought that confirmation bias occurs to 

decrease cognitive dissonance [23]. By searching for evidence that confirms the initial 

hypothesis, there will be less dissonance post decision because confirming evidence 

supports the final decision.  

While the discussed cognitive theories are by no means exhaustive, the abundance 

of theories illustrates the degree to which the underlying causes of cognitive biases are 

unknown. The ambiguity in the underlying mechanism of a confirmation bias indicates 

research with new measures to detect the presence of a bias may aid in determining the 

true underlying mechanism which results in biases. 

2.3.3 Measuring Confirmation Bias in Decision Making 

The standard approach to measuring confirmation bias in decision making is a 

three step process [5], [10], [26]. In this approach participants: 
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1) Perform a task and make an initial hypothesis. 

2) Review additional evidence or information. 

3) Make a final hypothesis. 

In the initial hypothesis stage of the experiment participants are given a summary with 

incomplete evidence. After reviewing the initial evidence, the participant is asked to form 

an initial hypothesis by way of pre-determined choices or other means. The formation of 

the initial hypothesis allows for a baseline to measure the degree of bias present in the 

ensuing information review.  

After making an initial decision, the participant is presented with some new or 

additional information that will have an impact on the participants working hypothesis. 

The new evidence is either neutral, confirming or disconfirming information with respect 

to the participant’s initial hypothesis. The presence of all types of evidence allows the 

experiment to determine if the participant’s examination of the information is neutral or 

biased. Upon completion of the information review, a final decision is made which 

allows the effect of the evidence and initial decision on the final decision to be measured.  

2.3.3.1 Information Search 

 One measure of confirmation bias is selective information search [7]. When 

experiencing confirmation bias in information search, people selectively search for 

confirming information. The degree of confirmation bias is quantified by the difference 

of confirming and disconfirming information reviewed or selected. Information search 

has been implemented as a means to measure confirmation bias in multiple decision 

making tasks including: financial decision tasks, health policies, and intelligence analysis 

[5], [27], [28]. 
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Mynatt et al. demonstrate selective information search by having participants 

attempt to discover laws governing the motion of the particle in a computer simulation. 

Initially participants interact with one environment which is oriented so the majority of 

participant’s favor one initial hypotheses. Upon making a hypothesis, participants choose 

five more environments to fire particles in. The selective information search was 

demonstrated by the fact that 70% of the participants chose to conduct further tests in 

environments that would confirm their initial hypothesis [26].  

2.3.3.2 Information Importance 

Another prominent measure of confirmation bias is the importance, or value, of 

confirming evidence [6], [7]. The degree of confirmation bias experienced manifests 

through information importance by giving higher value to confirming information than 

disconfirming information [7]. Information importance is quantified through two 

different methods by prompting participants to assess: 1) what information is most 

important to answer a given question or by 2) what information was most important in 

making a final decision.  

In assessing information importance regarding a question, participants are 

provided with a question or hypothesis to investigate. A collection of confirming and 

disconfirming statements is provided. The participant then must choose what information, 

if investigated further, would be most beneficial to answering the question. Results 

indicate people experiencing bias systemically rate confirming information as most 

important [23].  

Consistent with Oswald and Nickerson’s view on the confirmation bias, numerous 

studies use the importance of confirming and disconfirming information as a means to 
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evaluate the presence of a bias. Lehner et al. conducted a study in which they measure 

confirmation bias by importance of evidence in a complex intelligence analysis task. In 

this study, participants exhibited a positive correlation between a preferred hypothesis 

and assessment of confirming evidence. More succinctly, when a hypothesis is favored, 

confirming evidence was assessed to be more important than disconfirming evidence [6]. 

These results indicate greater assessed information importance for confirming 

information than disconfirming information may be used to measure the degree of 

confirmation bias present.  

2.3.3.3 Physiological Measurements 

Electrophysiological measurements are objective external measurements 

including electroencephalography (EEG), electrocardiography (ECG) and electrodermal 

activity (EDA).  These measurements can provide insight into neurological and 

psychological activity which is beneficial in understanding confirmation bias. One 

particular work which is unique in measuring confirmation bias is Minas et al.’s work 

which employs electrophysiological signals in addition to the traditional measures [10]. 

This work detects differences in electroencephalography (EEG) and electrodermal 

activity (EDA) associated with the presence of confirming information. Although 

electrophysiological measurements associated with confirmation bias is still in its 

infancy, these results are the first objective measurements of confirmation bias.  

2.3.3.3.1 Electroencephalography  

Electroencephalography (EEG) is the physiological measure of electrical activity 

on the scalp which captures electrical activity from the brain. EEG can be more useful 

than behavioral measures because of its high degree of sensitivity which allows 
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distinction of cognitive processes [29]. Activation of the right frontal cluster of the brain 

through EEG has been correlated with the presence of hypothesis confirming information 

compared to disconfirming and irrelevant information [10]. These results are significant 

because presently the only viable methods for measuring the presence of confirmation 

bias is through behavioral measures; subjective information importance and information 

selection. The correlation of right frontal cluster activity through EEG provides an 

objective way to detect confirmation bias and could be used to detect a bias in near-real 

time. Identifying the presence of bias from EEG signals would allow a bias to be detected 

without the current behavioral measures.  

2.3.3.3.2 Electrodermal Activity 

Electrodermal activity (EDA) is the measure of changes in electrical activity on 

the surface of the skin. EDA measures the sweat response and is a common index into the 

implicit emotional states as the measured psychophysiology variable is not contaminated 

by explicit activity [30]. The Galvanic Skin Response (GSR) is typically measured on the 

hand and this signal increases with increased sweat gland activity. GSR is a useful 

measure in decision making because it can reflect the anticipation of negative outcomes 

or unconscious emotional changes during the decision-making process [31]. Relative to 

arousal in the presence of disconfirming information, the presence of 

hypothesis-confirming information has been associated with increased arousal measured 

six seconds after confirming information onset [10]. These results indicate GSR during a 

decision-making process can provide an objective measure of emotional response to the 

presence of confirming or disconfirming information. 
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2.4 Machine Learning 

Machine learning is the science of programming computers to learn from 

data [32]. The canonical example of applied machine learning is a spam filter which flags 

emails as spam. The spam filter is a machine learning model which takes emails as an 

input and outputs if the email is spam. For the model to learn, training and validation data 

sets are used. A training set in this instance is a set of emails with a label for each email 

as spam or not spam. The training set is the data from which the model learns patterns 

which are associated with specific labels. For example, the model may learn to associate 

the words “free” and “money” in emails with the label “spam”. After training the 

machine learning model on the training data, the model performance is tested with unseen 

data or validation data. The model’s performance on the validation data can be used to 

tune parameters in the model to improve performance. Finally, the machine learning 

model’s true performance is tested on test data which has not been seen by the program 

or exploited for tuning parameters. Applying the model to the test data provides a method 

to assess expected model performance in real operation.   

Broadly speaking, machine learning problems can be categorized as supervised or 

unsupervised. In supervised learning, a label is available, whereas in unsupervised 

learning there is no label available. A label is the category an observation belongs to and 

is the output of the model. In the spam email example, every email has a label of “spam” 

or “not spam” and is supervised learning because the label of the email is known. In 

addition, problems solved with machine learning can be classification or regression 

problems. Generally, in a regression problem the goal is to predict a number or the output 

of the program is numerical in nature. For example, predicting the price of a house based 
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on features like location, size, and number of bedrooms. A classification problem is one 

with the goal of predicting a categorical output. The spam email example is a 

classification problem because the objective is to classify emails as spam or not spam. 

Using the previous definitions, the spam email detection problem is a supervised 

classification machine learning problem. The remaining portion of this section covers the 

different machine learning algorithms that are utilized in this work. 

2.4.1 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a linear method for classification which 

uses a linear decision boundary to differentiate between classes [33].  LDA has several 

advantages over other linear models which are: it is stable when classes are well-

separated, it is stable with a small number of observations, and is suitable for more than 

two classes. LDA approximates a Bayes classifier by operating on the assumptions that 

each class has an approximate Gaussian distribution with a class-specific mean vector 

and a common covariance matrix. These assumptions yield the discriminate function 

below [33]: 

𝛿𝑘(𝑥) = 𝑥 ∙
�̂�𝑘

�̂�2
−

�̂�2
𝑘

2�̂�2
+ log(�̂�𝑘) 

�̂�𝑘: mean of class k 

�̂�2: weighted average of sample variances for each K classes 

�̂�𝑘: proportion of training observations that belong to class k 

Simply stated, LDA determines the probability that observation x belongs to each class 

and assigns x the class with the highest probability based on the discriminate function.  
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 Although LDA is not the most commonly applied machine learning model in 

EEG classification, it has been shown to perform reasonably well. In the work by Binias 

et al., LDA was utilized to discriminate between EEG signals from aircraft pilots brain 

activity pre-event and post-event. In the pre-event class, pilots were focused and 

anticipating presentation of a visual cue whereas in the post-event class pilots were 

reacting to the visual cue. In classifying the pre and post-event states of brain activity of 

aircraft pilots from EEG signals, LDA performed the second best among all models with 

a mean accuracy of 73.01% for the two-class problem [34]. The LDA model for this 

application outperformed support vector machines, random forest, and k-nearest 

neighbor’s models but fell short of the artificial neural network model performance. 

These results indicate LDA should be considered in EEG classification.  

2.4.2 Random Forests 

Random forests classifier is an ensemble machine learning method which uses 

decision trees in its ensemble [32]. An ensemble method is a classifier which combines 

outputs from multiple algorithms to classify the output. Random forests are different 

from the previously discussed machine learning methods in that decision trees are the 

basis of the model which can classify linear and non-linear classes. Decision trees split 

the classes into subgroups at discrete points of distinguishing features. The random forest 

ensemble of decision trees is created by making a set number of decision trees with 

random different subsets of the available features in each tree. The use of random subsets 

of features in each tree de-correlates the trees and allows the overall prediction to be 

more reliable [33]. For any input, the random forest method averages the prediction of 
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each of the decision trees and the class with the majority of votes is the resulting class of 

the input.  

Although random forest classifiers usually do not yield as high performance as 

neural network methods in EEG classification [35], they allow salient features to be 

identified.  Random forest classification methods can provide further insight into features 

which allow for distinction between classes. Random forest classifiers have obtained an 

accuracy of 75% in a EEG binary classification problem for which the classes in 

questions were brain activity under concentration and brain activity during meditation 

[36]. While this performance is not state of the art for EEG classification, the accuracy is 

above random chance and can provide insight into salient features. 

2.4.3 Artificial Neural Networks 

In general, neural networks are formed by stacking layers of nodes on top of each 

other which allow the overall network to model non-linear relationships. These layers are 

connected to each other and have weights which are modified during the learning 

process. The weights are changed until the network correctly maps an input to the desired 

output. Initially, weights are randomly initialized and the network performs poorly. To 

measure how far the networks current mapping is from the desired output, a loss function 

is used. An optimizer then takes the measure provided by the loss function and 

implements the backpropagation algorithm to adjust the layer weights [37]. Through 

many iterations of this process, weights are adjusted until inputs are mapped to the 

desired output.  

The simplest neural network is the fully-connected neural network or artificial 

neural network (ANN). In ANNs, every node in a given layer is connected to each node 
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in the subsequent layer, which results in slow training time for large ANNs. The two 

other common types of neural networks this work utilizes are convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs).  

2.4.4 Convolutional Neural Networks 

Convolutional Neural Networks (Convnets) are a class of neural networks which 

learn local spatial patterns in the input data. These local patterns are learned by 

convolving filters with specific patterns over the input data which outputs encoded 

aspects of the input data known as feature maps. By stacking layers, the network can 

learn hierarchical patterns from the input layer [37]. To down-sample the outputs from 

convolutional layers and learn larger spatial features, a max-pooling layer conventionally 

follows a convolutional layer with a max tensor operation which halves the feature maps. 

One of the main advantages of Convnets is the weights of connected layers are shared 

across a given layer which reduces the overall parameters of the model and consequently 

training time and overfitting.  

Convnets are known for state-of-the-art performance in image classification 

because of their ability to recognize local patterns. These characteristics are frequently 

exploited for classification of brain activity from EEG signals. In classification of motor 

movements in the right hand or right foot from EEG signals for brain-computer 

interfaces, Shang et al. create sparse representations of EEG features and translate these 

features to a two-dimensional signal which is input into a Convnet. With this 

implementation of Convnets in EEG classification, an average accuracy of over 80% was 

obtained for the two-class motor movement recognition [38]. 
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2.4.4.1 Temporal Convolutional Networks 

Temporal Convolutional Networks (TCNs) are a specific CNN architecture that 

has been shown to have a longer effective memory and faster training times than RNNs 

in sequence modeling [39]. The general structure of the TCN architecture inspired by Bai 

et al. is shown in Figure 1 [39]. A dilated convolution is a convolutional layer with a 

dilated kernel. The standard convolutional layer has a dilation of 1 as illustrated by the 

first hidden layer in Figure 1(a). The second layer in Figure 1(a) has a convolutional layer 

with a kernel dilation of 2. This dilated kernel has a coarser input from the previous layer 

as the kernel is convolved over alternating nodes from the previous layer. The benefit of 

using dilated convolutions is that when dilations increase exponentially and are stacked, 

the receptive field of the model increases exponentially while the number of parameters 

increase linearly. A residual block consists of a dilated Conv1D layer with ‘causal’ 

padding, a Rectified Linear Unit (ReLU) activation layer, channel normalization, spatial 

dropout of 0.05 and a Conv1D layer with ‘same’ padding as shown in Figure 1 (b). 

Channel normalization is completed using the max activation of the ReLU activation 

layer. A skip connection from the input to the residual block is element-wise added to the 

output of residual block. This residual connection allows the linear sequential 

relationships from the input to be maintained while the Conv1D layers learn non-linear 

patterns in the data. This architecture prevents the relationship from the current time step 

and earlier time steps in the data from being lost due to a deep architecture.  
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Figure 1: TCN architecture (a) Dilated causal convolutions (b) Residual block 

2.4.5 Recurrent Neural Networks  

Recurrent Neural Networks (RNNs) are a form of neural networks which 

maintain a state or memory which allows the network to learn sequences. The internal 

state is maintained by a recurrent connection to itself which enables the network to 

process the current element of an input based on the element as well as the previously 

seen elements [37].  A major problem with traditional RNNs is they suffer from 

vanishing gradients. The vanishing gradient problem is without explicit memory blocks, 

traditional RNNs are unable to retain information from distant time steps in large 

sequences. There are two prominent types of RNNs which do not suffer from vanishing 

gradients: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). In short, 

LSTMs and GRUs allow important information from distant time steps to be used in the 

current time step predictions and irrelevant information to be forgotten [37].  

RNNs are prominently used for machine learning problems where predictions are 

sensitive to time order. The temporal aspects of EEG make classifying brain activity from 

EEG signals a natural application of RNNs. RNNs have been shown to have significant 

improvement over other machine learning methods in classifying vastly different types of 
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brain signals from EEG signals. In classification of six hand motions from a grasp-and-

lift experiment, the RNN obtained a correct classification of 94.8% across all classes 

which reduced the test error by 23.5% compared to non-RNN networks [40]. In addition, 

RNNs have also been shown to obtain the lowest test error in mental load classification 

from EEG signals. Specifically, the addition of LSTM layers in a Convnet reduced the 

test error for a four class mental load classification by 21.5% [35].  

Even more notable, LSTMs have been used in architectures to classify cross-

participant EEG brain activity of high and low workloads. Hefron et al. created a multi-

path convolutional recurrent neural network (MPCRNN) to classify EEG of brain activity 

of high and low workload with up to 86.8% accuracy on EEG from participant data 

which was unseen by the model [41]. The implemented MPRCRNN architecture 

consisted of CNNs and LSTMs, which outperformed LSTMs and CNNs by themselves. 

The application of RNNs in EEG signal classification has been shown to be versatile for 

varying types of brain activity classification; attaining state of the art performance. These 

results suggest RNNs may perform well in a biased classification task from EEG signals.  

2.5 Conclusion 

The confirmation bias is a prominent cognitive bias which results in systemic 

errors in decision-making due to the inappropriate bolstering of a believed hypothesis. 

Prior research used subjective measures to quantify confirmation bias which include 

undue information importance and information selection. These subjective methods can 

be unreliable and cannot be assessed during the decision process for real-time detection 

without disruption. Subjective measures are inherently unreliable and slow - meaning 
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real-time detection of a bias in unachievable. To objectively measure a bias, the selection 

of information with undue importance during the decision process should be quantified 

without self-reporting feedback. One possible avenue to attain an objective measure is 

through physiology signals. If specific signals can be associated with the presence or 

absence of confirmation bias, a bias can be detected without the necessity of self-

reporting assessments. Currently, there is little research on using behaviors to measure 

confirmation bias, but EEG and EDA signals have been correlated to the presence of 

preference supporting information. These findings indicate there may be credence to 

measuring a bias through physiological signals. Neural networks are the current state-of-

the-art for performance in classifying brain activity in EEG signals. This indicates neural 

networks may perform well in classifying the presence of a bias from EEG signals if 

there is specific brain activity associated with confirmation bias. Further research on 

associated physiological signals is necessary to explore the feasibility of measuring and 

detecting the presence of confirmation bias objectively.  
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III. Methodology 

3.1 Chapter Overview 

The objectives of this chapter are to outline a human-subject decision-making 

experiment and describe a machine learning approach to detect confirmation bias. The 

results of applying machine learning to the collected data will aid human machine 

teaming research in the feasibility of real-time detection of biased decisions. If biased 

decisions can be detected, human machine teaming agents may be able to aid operators 

by mitigating biased decisions. 

The next section of this chapter establishes the research questions and proposed 

hypotheses, which will be investigated. The third section outlines the decision-making 

experiment methodology using the Assessment of Bias in Cognition (ABC) test. The 

experiment methodology establishes the independent and response variables, participant 

demographics, materials, procedures and the analysis strategy. The fourth section of this 

chapter encompasses the machine learning approach that will be applied to the data 

collected from the experiment. Finally, this chapter concludes with a summary of the 

covered topics.  

3.2 Research Questions 

Present research on confirmation bias measures a bias in the decision-making 

process by priming the participant prior to the decision. This priming is either 

implemented through an initial decision prior to the measured decision or by providing an 

accepted hypothesis [20], [23]. Since people tend to look for primarily positive cases 
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which support a hypothesis, whether or not they have a vested interest [4], the initial 

priming results in confirmation bias. To model the relationships between behavioral 

measures and physiological measurements balanced data is essential for high 

performance models. Consequently, collecting data on biased and unbiased decisions is 

necessary for robust models. This yields the following question and hypothesis: 

Research Question 1: During decision-making tasks, if the participant is required 

to make an initial decision, what impact does an initial decision have on 

participant behavior during subsequent information search?  

Hypothesis: Making an initial decision before information search will result in 

bias which can be indicated by unbalanced information search behavior [4]. 

Similarly, if an initial decision is not made, there will be less bias and 

consequently a more balanced information search behavior. 

To assess research question one, the Assessment of Biases in Cognition (ABC) will 

contain decision-making tasks with and without initial decisions. This will allow 

information search following an initial decision to be compared to information search 

without an initial decision. The proportion of confirming information selected in both 

types of decision-tasks will be compared for statistical significance to answer research 

question one.  

The importance of subjective information assessment and selection are the current 

standards in measuring the presence of a confirmation bias during information acquisition 

and decision-making [4], [28], [5]. Associating additional behavior patterns with the 

standard information selection behavior allows for robust bias detection. Using models to 

mimic and predict the patterns of behavior associated with confirmation bias allows for a 
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quantitative understanding of what techniques and behaviors are associated with the 

presence of a confirmation bias.  In light of these considerations, the alluring benefits of 

creating such models leads to the ensuing investigative question and hypothesis: 

Research Question 2: What are the information acquisition behavior patterns 

associated with a confirmation bias?  

Hypothesis: Behavior patterns associated with a confirmation bias will be 

revealed by associating biased information selection [10]  or 

information/question importance [6] with completion time, and information 

revisit. 

To assess research question two, the behavior patterns in information search time and 

information revisit will be associated with biased information search or 

information/question importance. If there are apparent trends between a specific behavior 

pattern and biased information search or information/question importance, statistical 

significance will be tested to determine if an information acquisition behavior can be 

associated with confirmation bias.  

In determining the feasibility of bias detection from physiological signals, the 

performance of machine learning models for modeling such relationships is paramount. A 

model with high performance is desirable in predicting bias from physiological signals. 

This yields the following question and hypothesis: 

Research Question 3: Can a machine learning classification model using 

physiological signals estimate the presence of confirming and disconfirming 

information with performance greater than random chance? 
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Research Objective: Develop a machine learning model able to classify the 

presence of confirming information with equal-class-weighted classification 

accuracy greater than 50%. 

To assess research question three, multiple machine learning models will be developed 

and tested for balanced accuracy greater than 50%. Although models with a balanced 

accuracy of 50% is not reliable enough for operational use, this elementary objective was 

used to determine if modeling the relationship between electroencephalography signals 

and biased behavior is possible. 

To understand the underlying neurophysiological mechanisms associated with 

subjective information value and information selection, metrics will be mapped to 

neurophysiological measurements. These mappings will allow neurophysiological 

patterns associated with confirming and disconfirming information to be identified.  The 

suitability of applying neurophysiological techniques in this domain are demonstrated by 

Minas et al.’s neurophysiological work which associated the activation of the brain’s 

right frontal lobe with the presence of preference-supporting information. These results 

yield the following question and hypothesis: 

Research Question 4: Are neurophysiological signals in the right frontal lobe 

associated with confirming and disconfirming information? Are 

neurophysiological signals in the right frontal lobe salient features in a machine 

learning information classification model? 

Hypothesis: In contrast to disconfirming information, confirming information will 

provoke increased activity in the brain’s right frontal lobe [10] which will be 

significantly different in neurophysiological signals. The difference in activity will 
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result in features associated with the brain’s right frontal lobe being salient 

machine learning features. 

To assess research question four, cross-participant time series signals of confirming and 

disconfirming information will be compared for statistical difference. In addition, salient 

features associated with the brain’s right frontal lobe in the random forest models will be 

explored.  

3.3 Experiment 

The decision-making experiment will require the participant to complete a 

modified MITRE-developed Assessment of Biases in Cognition (ABC) [42] test while 

physiological measurements are collected. The ABC tests for behavior elicitation of 

numerous biases. This experiment uses a modified version of the ABC assessment which 

only contains behavior-elicitation tasks associated with confirmation bias. In addition, 

half the decision tasks included an initial decision while half did not (see Section 3.3.1.1 

for justification details).  

ABC elicits confirmation bias behavior in two paradigms: 1) information search 

decision making, and 2) evaluation/weighting of evidence/questions. The information 

search decision making paradigm is developed from research studies on confirmation 

bias in information search behavior [23], [43]. Tasks in this paradigm follow a three-step 

approach:  

1) Participant makes and records an initial decision,  

2) Participant selects additional information and,  

3) Participant makes and records a final decision.  
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The additional information presented consists of confirming and disconfirming 

information relative to the participant’s initial decision. Confirmation bias is quantified 

by the proportion of selected confirming information.  

ABC utilizes a fictitious snack stand decision-making task to elicit biased 

behavior. In the snack stand task, participants must choose between opening a snack 

stand that sells either organic snacks or diet snacks, as illustrated in Figure 2. After 

assessing an initial decision, the participant is presented with 8 information headings; half 

support organic snacks and half support diet snacks as seen in Figure 3. The participant 

chooses information they would like to obtain more information on to make a final 

decision. Figure 4 illustrates a piece of information selected by the participant. After 

completing the information search, participants make a final decision, which concludes 

the task. ABC contains two additional fictitious “Stand” scenarios in which the decision 

is on opening two different types of bakery and two different types of exercise classes.  
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Figure 2: Snack Stand Decision Making Task 

 

Figure 3: Snack Stand Information Search 
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Figure 4: Snack Stand Selected Information 

ABC also utilizes a second type of task in the information search decision-making 

paradigm known as a “Comparison” task. For this “Comparison” task, participants 

compare and choose between two products. In example, as seen in  

Figure 5, the participant must choose between two types of cars. After assessing 

an initial decision, the participant is presented with an unbalanced set of product 

comments. The comments are unbalanced by having more comments that support the 

participant’s initial product decision. The participant must click on a comments header to 

display the comment. The comments position on each product is indicated by a green 

thumb up or red thumbs down (illustrated in Figure 6).  To encourage effortless mental 

reactions, a fake monetary incentive and time limit is implemented [42]. Each comment 

the participant selects costs $1, which incentivizes only selecting comments deemed most 

important. These pressures are to increase the type of thinking that is conducive to biased 

behavior [42]. The level of confirmation bias in each task is quantified by the proportion 
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of selected confirming comments. ABC implements three additional product 

“Comparison” decision tasks of the same form which include choosing between types of 

cruises, music festivals, and gyms.  

 

 

Figure 5: Car Comparison Decision Making Task 
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Figure 6: Car Comparison Information Search 

The evaluation/weighting of evidence/questions paradigm is developed from 

research studies on confirmation bias in selecting questions or evidence to evaluate a 

specified hypothesis. Findings indicate people tend to select questions that would confirm 

the hypothesis when experiencing a confirmation bias [20]. Tasks in this paradigm 

present a fictitious scenario with a question and a hypothesis. The participant is presented 

with a list of evidence/questions to choose from; half of which confirm the hypothesis 

while the other half disconfirm. The participant chooses which evidence/questions are 

most important to answer the question presented in the scenario. A confirmation bias is 

quantified by selecting more confirming evidence/questions than disconfirming. ABC 

presents two scenarios in this paradigm. In one, the participant assumes the role of an 

intelligence analyst (Figure 7) and must select evidence that is most important to 

investigate to properly answer the question.  The next scenario, the participant assumes 

the role of a human resources employee (Figure 8). The participant is tasked to select 

questions to assess a job applicant’s specific attributes. Half of the questions confirm the 

attribute of concern, while the other half disconfirm the attribute. ABC contains three 

intelligence analyst tasks and four human resources tasks.  
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Figure 7: Intelligence Analyst Evaluation of Evidence Paradigm 

 

Figure 8: Human Resources Evaluation of Questions Paradigm 

The complete outline of ABC tasks and their respective paradigm implemented in this 

experiment are in Table 1. 
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Table 1. ABC Tasks and Confirmation Bias Paradigm 

Task Paradigm* Task Quantity  Task Versions 

Stand ISDM 3  Snack, Bakery, Exercise Class 

Comparison ISDM 4   Cruises, Music Festival, 

Working Out 

Intelligence 

Analyst 

EWEQ 3 Three events in intelligence 

analyst role 

Human Resources EWEQ 4 Four tasks in human resources 

role 
*ISDM: Information Search Decision Making, EWEQ: Evaluation/Weighting of Evidence/Questions 

3.3.1 Variables 

3.3.1.1 Independent Variables 

Both biased and unbiased decisions are desired for a robust model of the 

relationship between physiological data and confirmation bias. The variability of 

presence of a belief primer (initial decision/accepted hypothesis) in decision tasks will be 

used to create biased and unbiased decisions. In the Stand and Comparison tasks, 

approximately half of the tasks will have no initial decision. In the Intelligence analysis 

tasks, two of the three tasks will not have an accepted hypothesis.  

Another independent variable implemented in the ABC test is the amount of 

confirming/disconfirming information present. In the product Comparison tasks, more 

confirming information is present than disconfirming information, while all other tasks 

have equal amounts of confirming and disconfirming information. The unbalanced 

information was shown to induce a biased behavior [42]. The independent variables with 

varying levels in the experiment are listed in Table 2. 

 



46 

Table 2: Independent Variable Summary 

Independent Variable Measurement precision Settings Predicted effects 

Initial Decision Present or Absent [Present, 

Absent] 

Absent = less biased 

information search 

Accepted Hypothesis Present or Absent [Present, 

Absent] 

Absent = less biased 

information value 

Amount of 

confirming/disconfirming 

information 

0-100% ratio of 

confirming/disconfirming  

[50, 80] Higher ratio of 

confirming 

information = more 

biased information 

search 

3.3.1.2 Response Variables 

Information selection and questions/evidence importance are response variables 

used to quantify the presence of confirmation bias. The association of the physiological 

response variables with the presence of confirmation bias is the objective of this 

experiment. The response variables in this study are categorized into the following three 

groups: 1) presence of a confirmation bias 2) behavioral patterns and 3) physiological 

signals  

The presence of a bias can be indicated by the participant’s behavior, as observed 

through selection of information or importance of evidence/questions. When a participant 

selects more confirming than disconfirming information during the information search 

phase of a decision task, the decision is labeled as biased.  Similarly, when a participant 

values more confirming evidence or questions than disconfirming the decision task is 

biased.  

Behavior patterns may also be different for participants experiencing a bias than 

those who are not.  The response variables concerning behavioral patterns are: 

information search time, information revisits, information selection, and 
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evidence/question importance. Information search time is the time participants spend 

performing the information search portion of a task and may be indicative of a 

confirmation bias if only confirming information is sought. Information revisits is the 

cumulative number of times information is revisited during information selection of a 

task. This behavior could show uncertainty in the information selected and may be 

associated with confirmation bias. Information selection is quantified by the number of 

confirming and disconfirming pieces of information selected. Throughout this work, 

information selection is quantified by the proportion of selected confirming information 

to selected information. Lastly, evidence/question importance is the proportion of 

selected confirming evidence/question to selected evidence/questions. All of these 

behaviors may be different when the participant is experiencing a confirmation bias. 

Physiological signals include EEG, ECG and EOG. EEG includes physiological 

measurements taken over the entire head. Correlation of subject information selection 

(confirming, disconfirming) with patterns in EEG measurements will be used to 

determine associated electrophysiological responses to confirming and disconfirming 

information. These correlations may be used to detect and quantify the presence of a bias. 

ECG includes physiological measurements across the chest and capture heart rate. EOG 

includes eye movement and blinks which can be used to measure attention as well as for 

removing eye artifacts from EEG. All collected response variable for this experiment are 

outlined in Table 3. 
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Table 3. Response Variables 

Response 

variable 

Normal Operating 

Level and Range 

Measurement 

Precision 

Relationship to 

objective 
Information 

Selected 

(categorical) 

[“confirming”, 

“disconfirming] 

1 piece of 

information 

Degree of confirmation 

bias 

Question/Evidence 

Importance 

(categorical) 

[“confirming”, 

“disconfirming”] 

1 question 

/piece of 

evidence 

Degree of confirmation 

bias 

Initial Decision 

(categorical) 

[Choice 1, Choice 2] Subjective Establish belief 

Final Decision 

(categorical) 

[Choice 1, Choice 2] Subjective Decision Task 

EEG (numerical) 0-131 Hz at 500 

samples/sec 
0.7 𝜇𝑉 RMS 

from 1-50 Hz 

Delta: < 6 Hz 

Theta: 7-11 Hz 

Alpha: 12-15 Hz 

Beta: 16-22 Hz 

Gamma: 22-30 Hz 

ECG (numerical) 60-100 beats/min at 

rest 

Beats/min Stress/workload 

EOG (numerical) Mean = 17 

blinks/minute 

 

0.7 𝜇𝑉 RMS 

from 1-50 Hz 

Movement, visual 

attention 

Information Search 

Time 

(numerical) 

0-500 seconds  1 second Behavior  

Mouse Clicks 

(numerical) 

1-20 clicks 1 click Behavior 

Information 

Fixation Time 

(numerical) 

0-500 seconds 1 second Behavior 

 

3.3.1.3 Constant Factors 

Within the ABC test, constant factors include the structure of the test and the 

information presented for tasks. Each participant will take the same ABC test. The test is 

anticipated to last no more than 60 minutes for completion. This short test period is 

expected to mitigate the effects of fatigue on the participants decision-making behaviors. 

In addition, each task will have confirming and disconfirming information present. This 
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allows a confirmation bias to be quantified. A summary of the factors that will remain 

constant are outlined in Table 4.  

Table 4. Constant Factors Summary 

Factor Desired experimental 

level 

How 

controlled? 

Anticipated effects? 

Task Count 14 Decision Tasks  Standard ABC 

test format 

Mitigate 

fatigue/balanced 

distribution of biased 

decisions 

Information 

Type  

Presence of both 

confirming/disconfirming 

information 

Standard ABC 

test format 

Despite the presence 

of both types of 

information, a bias 

will occur 

 

3.3.1.4 Nuisance (Confounding) Factors 

In human-subject experiments, many uncontrolled factors can influence results. 

Human-subjects are naturally complex and highly variable. Table 5 outlines the expected 

nuisance factors and the strategy of mitigation. 
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Table 5. Nuisance Factor Summary 

Nuisance Factor Strategy Anticipated Effects 

Learning Effect: Test 

progression may result in 

decreasing information 

search time, which would 

make information search 

time a poor behavioral 

measure. 

Instruction are 

provided with each 

decision task and the 

tasks do not require 

outside knowledge 

to complete. 

A minor decrease in 

information search time may 

be exhibited by participants 

due to task familiarity, but 

because of the simple nature 

of the decision tasks the time 

will be negligible.  

Misinterpretation of 

instructions: Confusion on 

tasks could lead to undesired 

brain activity and false 

measure of confirmation 

bias. 

Instruct participant 

to read instructions 

clearly prior to 

beginning each task. 

Some participants may not 

follow instructions, but a 

majority of participants will 

read and follow instructions. 

Unbalanced distribution of 

biased and unbiased 

decisions will make 

associating physiological 

signals with bias difficult. 

Test is composed of 

tasks with primers 

and without primers. 

Tasks with primers will 

cause a unbalanced 

information search while 

task without primers will 

cause a balanced information 

search. 

Participants external belief 

reflected in tasks: If 

participant does not believe 

either of the available 

decisions, all information 

would be disconfirming and 

result in erroneous results. 

Prime participants 

belief by making 

initial decision or 

presenting accepted 

hypothesis 

Some participants will likely 

have external beliefs 

reflected in the decision 

process, but most 

participants have a decision 

option which reflects their 

belief.  

3.3.1.5 Known/Suspected Interactions 

During the decision-making process, people tend to make estimates based on 

initial values. In this experiment, this estimate is the initial decision made prior to 

information search. Anchoring bias occurs when people anchor on these initial estimates 

and fail to properly adjust their decision [25]. Given participants may anchor on their 

initial decision, there will likely be anchoring bias in addition to confirmation bias 

present in the tested decision-making tasks.   
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3.3.1.6 Test Matrix 

tasks. 

Table 6 outlines the test matrix for the experiment used for all participants. Each 

version of the tasks (Stand, Comparison, Evaluate Evidence, and Evaluate Questions) is 

distributed throughout the test to maintain participants’ focus. In addition, the presence of 

a primer is distributed across the tasks. Lastly, it is important to note that while there are 

only nine tasks listed, the intelligence analyst (Intel) and human resources (HR) tasks 

have three and four subtasks respectively. Including the subtasks, the ABC test consists 

of 14 tasks. 

Table 6: Test Matrix 

Task Form (version) Primer Degree of 

Confirmation Bias 

1 Stand (Snack)  Present High 

2 Comparison (Car) Absent Low 

3 Evaluate Evidence (Intel-Analyst) Present (1/3 

subtasks) 

High/Low 

4 Stand (Bakery) Present High 

5 Comparison (Music) Absent Low 

6 Evaluate Question (HR-Dept) Present High 

7 Comparison (Working out) Present High 

8 Stand (Exercise) Absent Low 

9 Comparison (Cruises) Present High 

3.3.2 Participants 

Fifteen United States military and government civilian personnel participated in 

the study. All participants were male with ages between 21 and 51 with a mean age of 

29.4, median of 28 and standard deviation of 7.28. All participants had a Bachelor’s 

Degree or higher and used computers daily in their job. With the exception of one outlier, 

all participants obtained “fair” or better sleep quality of 5 to 9 hours. The one outlier 
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obtained 0 to 4 hours of “very poor” quality sleep prior to participation in the study. 

Inclusion criteria included the ability to operate a computer mouse, be at least 18 years of 

age, and be a US citizen. Exclusion criteria included visual impairments preventing 

viewing a computer screen, the inability to operate a computer mouse, and specific motor 

perceptual, or cognitive conditions that preclude operating a computer. Prior to beginning 

the experiment, participant consent was obtained. Due to placement location of the ECG 

sensors, additional participant consent was collected and the participants were allowed to 

self-apply the sensors if they chose. Participants did not receive compensation for their 

participation in the study.  

3.3.3 Materials 

The ABC Test software used in this experiment is a modified version of the 

MITRE-developed ABC Test Delivery Platform [42]. The original software was 

modified to allow collected physiological data to be time stamp marked according to 

specific events during test administration. These event makers in the physiological data 

allow for proper post processing to correlate test events with physiological signals. The 

modifications otherwise have no impact on the test interface or implementation which 

allows this experiment to benefit from the extensively tested ABC test interface [42]. 

Aside from the two computers required for test administration and physiological data 

collection, other necessary equipment includes the three physiological sensors, which are 

covered in further detail in the ensuing sections.  
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3.3.3.1 ABC Test 

The ABC Test is administered through a web browser. The test delivery platform 

requires PostgreSQL 9.3 database and Apache Tomcat 8 server to be installed. Specific 

software configuration details can be found in the ABC User Manual [44]. The database 

contains the test content and stores all collected data when the test is administered. The 

ABC test software Web Application Resource (WAR) file resides on the Tomcat server 

and is accessible through a web browser by navigating to “localhost:8080/stiEditor”. 

Figure 9 shows the notional software configuration on test administration computer. 

Although remote test administration of the ABC test is possible, the collection of 

physiological data requires the test to be administered on the computer that the server and 

database resides. For this experiment, the ABC software was modified to connect to the 

Cognionics trigger hardware through USB on the computer the software resides. Further 

details on events marked in the physiological data through the trigger hardware is 

provided in Section 3.3.3.1.2.  
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Figure 9: Notional Software Configuration of Test Administration Computer 

3.3.3.1.1 Interface 

After the test administrator entered the participant ID, the participant began the 

test be clicking the “Begin” button. Each page in the test has instructions for the 

respective task. The “Submit” button is greyed out and disabled until the task is 

completed. All answers in the test are submitted with mouse clicks through radio buttons 

or check boxes. As the participant completes the test, their progress is indicated in the top 

left corner of the interface. Their progress is indicated by the current test number out of 

the total tests i.e. Test 1 of 9 as shown in Figure 10. The “Test” progress is synonymous 

with this works “Tasks” in the Table 6. Additionally, the Test Time Elapsed for the entire 

ABC test is displayed in the top right corner of the interface.  
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Figure 10: ABC Test Interface 

3.3.3.1.2 Timing Database and Triggers 

The collection of physiological signals while the ABC test is administered 

requires a two-computer set-up. The ABC test is administered on the assessment 

computer while the physiological measurements are collected and logged on the 

physiological collection computer as illustrated in Figure 11. The assessment computer is 

connected to trigger hardware through USB, which communicates wirelessly with the 

data acquisition unit (DAQ). The triggers sent from the Assessment computer mark the 

EEG data to associate events with EEG signals in post-processing. Events in the ABC 

test that send a marker through the trigger include test begin, page load, mouse click, 

submit answer and test end. The DAQ is physically connected to the EEG cap on the 

participant and wirelessly sends triggers from the Assessment computer and EEG signals 

from the EEG cap to the physiological collection computer. The physiological collection  
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Collection computer also receives other collected physiological signals like ECG and 

EOG through a physically connected Auxiliary Module.  

 

 

Figure 11: Two Computer Physiological Measurement Collection Set-up 

3.3.3.2 Physiological Recording Devices. 

The Cognionics Mobile-72 system was used for all physiological data collection. 

The Mobile-72 system collects 64 EEG voltage channels as well as 8 auxiliary channels 

for ECG and EOG. The Cognionics EEG cap shown in Figure 12 is fitted onto the 

participant to collect brain activity through EEG. The 64 EEG electrode locations are 

based on the International EEG 10-20 electrode placement. For proper EEG data 

collection, the electrodes on the cap must have high conductance with the participant’s 

head. To increase conductance, gel is applied to the electrodes until the impedances are 

below 100K ohms.  
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Figure 12: Cognionics EEG Cap 

The vertical and horizontal EOG electrode locations are shown in 

Figure 13 and the ECG electrode locations are shown in Figure 14. The experiment 

administrator attaches the EOG electrodes. For privacy reasons, the participant is 

instructed on ECG electrode placement and attaches electrodes in a private room if 

desired.  

 

Figure 13: Vertical and Horizontal Electrooculography Node Locations 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi5naKg8czVAhUkxoMKHdWACFYQjRwIBw&url=http://www.cognionics.com/index.php/products-2/hd-eeg-systems/72-channel-system&psig=AFQjCNFPzNINGol8bXSUkncz_DsWb9rijA&ust=1502461951111137
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Figure 14: 3-Lead Electrocardiograph (ECG) Node Locations 

3.3.4 Procedures 

The pre-experiment procedure includes conducting the informed consent 

briefing/completing the informed consent document (ICD), assigning a participant 

number, measuring the participants head size for proper EEG cap sizing and scheduling 

the experiment session, as shown in Figure 15. The experiment session was no more than 

two hours in length to prevent participant fatigue. The period includes behavioral and 

physiological signal measurements of participants while they complete the assessment. 

Pre- and post-testing questionnaires were given to each participant on the experiment 

day. 

 

Figure 15: Pre-experiment Procedure 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiX9rK78MzVAhVL64MKHd0ZD8wQjRwIBw&url=https://thoracickey.com/cardiac-monitoring-and-cardiopulmonary-resuscitation/&psig=AFQjCNECPvE_WAzOnZc7Pgy2_fGKnjAMbw&ust=1502461696172033


59 

 

 

Figure 16: Testing Session Sequence 

 

Each participant individually completed the testing day activity sequence (Figure 16).  

Participants were scheduled at different times, in 2-hour blocks to allow for adequate 

preparation, task completion, and cleanup. Upon completion of the experiment, 

participants were asked to not discuss the nature of the task to prevent bias induction in 

participants who had not completed the experiment. 

3.3.5 Data Collection 

ABC response data collection is completed using a PostgreSQL database. The 

ABC interface exports each participant’s test data from the database into a .csv file. 

Recorded data includes the following events with time stamps: test start, page load, 

answer and mouse clicks as illustrated in Figure 17.  
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Figure 17: Example Raw Data Output from ABC Test 

Each event includes attributes which indicate the current task, question, and item for the 

respective event. All electrophysiological signals are collected by Cognionics Data 

Acquisition Software and saved in the Biosemi (.BDF) file format. Unique triggers mark 

the electrophysiological time-series data at the time of important stimulus onset or 

participant actions. In Figure 18, the markers indicate a single choice (5376), answer 

submission (4352) and page load (512). 
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Figure 18: Example EEG Data Plot with Trigger Markers 

3.3.6 Analysis Strategy 

Data collected from the ABC test will be analyzed using statistical packages in 

Python. Machine learning analysis of collected physiological data is covered in the 

machine learning pipeline section of this chapter (Section 3.4). The main objectives for 

analysis of the ABC test data are to 1) quantify degree of confirmation bias for each task, 

2) analyze behavior patterns associated with confirmation bias, and 3) assess if 

physiological signal activity in the brain’s right frontal lobe is associated with confirming 

information. 

The degree of confirmation bias in each task is quantified by calculating the 

proportion of selected confirming to disconfirming information/questions.  A proportion 

greater than 0.5 indicates confirmation bias while a proportion less than 0.5 indicates 
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unbiased tasks. A proportion closer to one indicates a higher degree of confirmation bias. 

To analyze the effect of an initial decision on subsequent information search, a Wilcoxon 

Signed-Rank test will be used. This will test for a difference in the proportion of 

confirming information in tasks with an initial decision compared to tasks without an 

initial decision. The Wilcoxon Signed-Ranks test will be utilized because each participant 

will complete tasks with and without an initial decision and the data is not necessarily 

normally distributed. Each decision-task with an initial decision will be compared to 

decision tasks without an initial decision. The paired input will be a participant’s 

proportion of confirming information in each task. The statistical significance for these 

tests will be critical to answering research question 1 (Section 3.2).  

 As a data exploration step, the behavioral data will be plotted using histograms to 

determine if there are any trends associated with bias. If there are any apparent trends in 

the behavioral data, regression models will be created to model the relationship between 

information revisit, information search time, and degree of confirmation bias. A notional 

graph illustrating a possible linear relationship between task completion time and degree 

of confirmation bias is shown in Figure 19. If a similar relationship between response 

time or information revisit and degree of confirmation bias appears in the data, these 

behaviors will be implemented in the machine learning models for predicting bias.  
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Figure 19: Notional Linear Model of Response Time and Confirmation Bias 

Lastly, time series signals across participants will be compared to assess if increased 

activity in the brain’s right frontal lobe is associated with confirming information. To 

analyze the difference between the two information conditions, a nonparametric 

statistical test using Monte Carlo permutations with cluster corrections in EEGLab will 

be performed on the time series signals of confirming information and disconfirming 

information across all participants [45]. EEG channels associated with the brain’s right 

frontal lobe, specifically F2, F4, F6 and F8, at the time interval of 100ms to 400ms 

following stimulus onset will be explored [10].  

3.4 Machine Learning Pipeline 

This section outlines the end-to-end supervised machine learning (ML) pipeline 

employed to analyze and create models from collected physiological data. Unless 
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otherwise specified, all the steps in the machine learning pipeline are within-participant. 

For this work, within-participant means a model is trained on data from a single 

participant and the performance metrics are measured using data from that same 

participant. The diagram in Figure 20 is a modified version of Raschka’s pipeline [46] 

and provides a visual representation of the pipeline used in this methodology. The 

pipeline begins with the data preprocessing steps necessary to transform the collected raw 

EEG data into an ML-ready format. Next, cross-validation is implemented as a sampling 

technique. After data preparation, models are trained on each cross-validation fold and 

performance metrics are analyzed. One important aspect of this applied pipeline is all 

performance metrics are cross-validation metrics because of the dataset sizes. For this 

reason, there was no hyper-parameter optimization or test dataset. The ensuing sections 

cover the technical details of each step in the pipeline in further detail.  
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Figure 20: Machine Learning Pipeline 

3.4.1 Data Preprocessing  

Upon completion of the experiment in Section 3.3, the collected raw 

physiological data was in a BDF file format. During EEG collection, the data acquisition 

device was observed to sporadically malfunction. Given this was a pilot study, the data 

was still utilized. The noise due to the malfunctioning device was removed to the furthest 

extent possible, but may still result in poor EEG data. The raw EEG data of each 

participant was cleaned using EEGLab version 14.1.1 [47] according to Makoto’s 

preprocessing pipeline, [48]. The preprocessing pipeline performed on the raw EEG data 

of each participant included the following steps:  
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 Down sample data from original 500 Hz sampling frequency to 250 Hz. 

 High-pass filter at 1 Hz to remove baseline drift with a basic finite impulse 

response (FIR) filter. 

 Import International 10-20 system channel information. 

 Remove line noise with CleanLine EEGLab plugin. 

 Reject bad channels using Automatic channel rejection using kurtosis with 

a Z-score threshold max of 5. 

 Interpolate removed channels to prevent bias during referencing to 

average. 

 Re-reference data to the average. 

 Perform Independent Component Analysis (ICA) to determine eye-blink 

components. Adjust rank to account for removed channels. 

 Remove components associated with eye-blink artifacts using 

icablinkmetrics plugin with the vertical EOG channel for eye-blink artifact 

reference [49].   

After preprocessing, the data was segmented in EEGLab using two different 

approaches: 1) segmentation by task, 2) segmentation by information selection. The first 

method of data segmentation was to segment the data by task. In this approach, the EEG 

data corresponding to the information search portion of each of the 14 tasks was 

separated into a new file. Segmenting by task yielded one file for each individual task 

producing 14 separate files per participant.  

The second method of data segmentation was to segment the data by information 

into epochs. When segmenting the data by information selection, each epoch was a two-
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second window of data centered on when the participant selected information throughout 

the entire assessment. Any overlapping epochs were discarded from the dataset. For this 

method of segmentation, information selection across all tasks were epoched. Segmenting 

by information selection produced one file per participant.  

Following segmentation, noisy data was rejected by visual inspection in EEGLab. 

Epochs with a large amount of noise relative to the entire dataset were rejected. An 

example of rejected noisy data is shown in Figure 21.  

 

Figure 21: Two Visually Rejected Epochs in a Segment of EEG Data. 

3.4.1.1 Time Series Feature Extraction 

When segmenting the data by task, one file contains the information search 

portion of a single task. For example, if a participant spent 120 seconds on the 

information search of the first task, the respective file contains 120 seconds of EEG data. 

To prepare each segmented task for machine learning, a sliding window extracted smaller 

sequences from the larger segment. The implemented sliding window has two adjustable 

parameters: window size and step. The window size is the size of sequence extracted 
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from the larger segment. The step is the time points the window moves to extract the next 

sequence. For example, a task of 120 seconds at a sample rate of 250 Hz contains 30,000 

frames. A sliding window with a window size of two seconds or 500 frames, and a step 

size of two seconds creates 60 two-second non-overlapping epochs from the 120 second 

task. This process created multiple epochs from one task. When segmenting the data by 

information selection, the segmentation process created two-second epochs, so a sliding 

window was not necessary. For time series classification, each epoch is an observation 

and each observation has 64 features which correspond to the EEG electrodes. 

3.4.1.2 Frequency Feature Extraction 

Epochs were transformed to the time-frequency domain using MATLAB. A 

complex Morlet wavelet was implemented for the time-frequency transformation due to 

the transient nature of EEG time-series data. This frequency transformation resulted in 

each epoch having the power spectral density of the standard clinical frequency bands: 

delta (1-6 Hz), theta (7-11 Hz), alpha (12-15 Hz), beta (16-22 Hz), and gamma (22-30 

Hz) [29]. The mean of the power spectral density for each observation was then 

calculated. With mean power of the five frequency bands for a 64 electrode EEG cap this 

produced 320 features per subject. These features were inputs to the ML model as a 

single observation.  

3.4.2 Datasets 

Although there is originally one EEG recording per subject after collection, 

through the multiple data segmentation and feature extraction techniques there were four 

distinct datasets for ML: 



69 

1) Time Series Signal per Task 

2) Frequency Features per Task 

3) Time Series Signal per Information Selection 

4) Frequency Features per Information Selection 

The Time Series Signal per Task dataset consists of epochs from each task. Any 

individual epoch only contains data from one task. The label for each individual epoch is 

“biased” or “unbiased”. If the epoch is from a decision-task in which the participant was 

biased, the label is 1, otherwise the label is 0 which is indicative of unbiased task; see 

Section 3.4.2.1 for details on how tasks are quantified as biased or unbiased. Because a 

participant was either biased or unbiased for an entire task, all epochs from the same task 

for any participant have the same label. For example, all epochs from a biased decision-

task have the label 1, while all epochs from an unbiased decision-task have the label 0. 

The ML problem for this dataset is a many-to-one binary classification in which the goal 

is to classify a time series sequence of EEG data as biased or unbiased. The input has the 

shape (batch size, time steps, features). Batch size is variable and is the number of 

observations. Time steps is the number of frames in the epoch and is equal to the window 

size of the sliding window. Features is equal 64 and corresponds the number of EEG 

channels since the epoch is of a time series sequence of EEG data.  

The Frequency Features per Task dataset is labeled in the same manner as the 

time series signal per task. The main difference between these two datasets is that instead 

of the dataset being time series sequences in each epoch, the dataset is the mean power of 

the clinical frequency bands of the time series sequence. The time-frequency 

transformation converts the time series sequence into a single mean value. The ML 
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problem for this dataset is one-to-one binary classification to classify an observation as 

biased or unbiased. The input shape into a ML model is (batch size, features). Batch size 

is variable and is the number of observations in the input. Features is the mean power of 

each of the five clinical frequency bands at each EEG channel. A single observation 

contains 320 features due to every channel in 64-channel EEG data having the mean 

power of each of the five clinical frequency bands.  

The Time Series Signal per Information Selection dataset consists of time series 

data when a participant selected a piece of information during a decision-making task. 

Each epoch is labeled as “confirm” or “disconfirm”. A label of 1 indicates the 

information is confirming, while a 0 indicates the information was disconfirming, see 

Section 3.4.2.1 for further details on labeling information as confirming or disconfirming. 

The dataset consists of information selection across all decision-tasks. The ML problem 

for this dataset is a many-to-one binary classification in which the classification goal is to 

classify information as confirming or disconfirming. The input for this dataset has the 

shape (batch size, time steps, features) which is identical to the time series signal per task 

dataset.  

The Frequency Features per Information Selection dataset is the frequency 

transformation of the time series EEG information selection dataset. This dataset is 

labeled in the same manner using “confirm” or “disconfirm” as labels. The ML problem 

for this dataset is a one-to-one binary classification of classifying a selected piece of 

information as confirm or disconfirm. The time-frequency transformation of the time 

series sequence converts the sequence to a single mean quantity. The input shape for this 

dataset is (batch size, features). Features is the mean power of each of the five frequency 
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bands across the epoch at each of the 64 EEG channels resulting in 320 features per 

observation.  

3.4.2.1 Dataset Labels 

There are two different “truth” labels for the datasets: bias and confirm. The bias 

label is a binary classification label for a two-class problem in which a one represents a 

biased task and a zero represents an unbiased task. The bias label was employed for 

datasets in which the data was segmented by task. Each individual task is labeled based 

on the proportion of confirming information the participant selected in the task. If the 

proportion of confirming information is greater than the proportion of disconfirming 

information, the entire task is labeled as biased or assigned a one, otherwise the task is 

labeled as unbiased or zero.  

The confirm label is a binary label for a two-class problem in which a one 

represents the information confirms the participant’s belief and a zero indicates the 

information disconfirms the participant’s belief. The confirm label was employed for the 

datasets in which the data was segmented by information. When categorizing information 

in a task as confirming or disconfirming with respect to the participant’s belief, the 

participant’s belief must be known. Usually, the participant’s initial decision is used as a 

way to tease out or establish the participant’s belief [5], [6], [10]. Given one independent 

variable in the experiment design was to create a version of each task form without an 

initial decision to create a more balanced information search, the participant’s final 

decision was used as the participant’s belief for these tasks. Table 7 outlines the 

participant’s decision used to establish the participant’s belief in each task. For the 
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“Evaluate Evidence” and “Evaluate Questions” form of task, there was no initial or final 

decision, but rather the participant selected evidence or questions that were by nature 

confirming or disconfirming relative to the question/evidence in the task.  

Table 7. Decision used to establish belief 

Task Form (version) Decision used to 

establish belief 

1 Stand (Snack)  Initial 

2 Comparison (Car) Final 

3 Evaluate Evidence (Intel-Analyst) Evidence Selected 

4 Stand (Bakery) Initial 

5 Comparison (Music) Final 

6 Evaluate Questions (HR-Dept) Questions Selected 

7 Comparison (Working out) Initial 

8 Stand (Exercise) Final 

9 Comparison (Cruises) Initial 

 

In the “Stand” form of tasks, only confirming or disconfirming information was 

present. The two decision options were mutually exclusive such that confirming 

information for choice one was disconfirming for choice two, and vice versa. Only 

selected information was included when determining the proportion of confirming 

information.  

For the “Comparison” form of tasks, there were two mutually exclusive choices 

for a decision and four types of information present: 1) supportive of participant’s choice; 

2) unsupportive of other choice; 3) supportive other choice; 4) unsupportive of 

participant’s choice. The first two types of information were categorized as confirming 

since these types of information supported the participant’s choice either directly or 

indirectly. The last two types of information were categorized as disconfirming. Only 
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selected information was included when determining the proportion of confirming 

information.  

The “Evaluate Evidence” tasks present a key question and the participant selects 

four of the most important pieces of evidence in answering the question. Four pieces of 

evidence confirm the key question, while four disconfirm the key question. The 

proportion of confirming evidence was determined by the quantity of selected confirming 

evidence.  

The “Evaluate Questions” tasks followed a similar approach except participants 

were presented with a definition of a personality trait, which was critical for success in a 

simulated job. The participant assumed the role of a human resources employee and 

selected five questions they believed would provide the best information about whether 

or not a candidate would have the desirable personality trait. The proportion of 

confirming questions was determined based on the quantity of confirming questions the 

participant selected out of the five total questions chosen by the participant. 

3.4.2.2 Challenges of EEG 

When applying ML to EEG data there are few important factors to consider. First, 

EEG signals have a poor signal-to-noise ratio: the data has significant amounts of noise 

and outliers [50]. Although the employed pre-processing steps aim to reduce such signal 

noise, each individual epoch still contains significant amounts of noise. A large number 

of observations is necessary to obtain high performance in ML due to this significant 

noise. Secondly, EEG signals are of high dimensionality because features can be 

extracted from multiple channels over different time steps [50]. The 320 features for the 
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datasets that use the five frequency bands demonstrate the high dimensionality. The 

frequency features per information selection dataset only contains 40-90 observations per 

participant, while the frequency feature per task dataset only contains 200-800 total 

observations per participant. For these datasets the curse of dimensionality will become a 

factor in training models. Necessary steps to prevent overtraining must be considered in 

the ML approach to the outlined EEG classification problems.  

3.4.3 Approach 

With the datasets in mind, there are two general ML problems on hand: many-to-

one binary classification and one-to-one binary classification. The goal of the many-to-

one binary classification problem is classifying a time series of EEG data. Depending on 

the dataset, the target variable for classifying the time series is either confirm or bias. Due 

to deep learning model’s high performance in sequence classification, deep learning 

methods were used for many-to-one binary classification. The deep learning models 

which were evaluated for this task are long short-term memory (LSTM) and temporal 

convolutional networks (TCN) because of their near state-of-the-art performance in 

sequence classification [39]. For the one-to-one binary classification random forest (RF), 

linear discriminate analysis (LDA) and fully connected artificial neural networks (ANN) 

were explored. Multiple ML models were implemented for each dataset as an exploratory 

approach for the EEG analysis in this work.  

3.4.3.1 Machine Learning Models 

In light of random forest’s ability to select the best features, all 320 features were 

used. Rather than tuning max features and max depth, set values were used to prevent 
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overfitting. Max depth was set to a value of 10 which was based on the training accuracy. 

Max features were set to be 10% of the total number of observations. The features were 

limited to reduce dimensionality because of the small dataset size. Max features for each 

participant varied and ranged from 4 to 9. Finally, each participant’s model was trained 

on each cross-validation fold using these parameters with 500 trees. 

LDA was utilized because of its stability with a small number of observations 

[33]. Generally, feature selection is implemented through an iterative approach to reduce 

the dimensionality for LDA but unfortunately this was not possible when reporting cross-

validation metrics. To help account for the high dimensionality without selecting 

features, the LDA shrinkage parameter was set to ‘auto’ and the solver was set to ‘lsqr’. 

These settings improve the LDA estimation of covariance matrices for datasets with high 

dimensionality [51].  

A simple artificial neural network (ANN) with three fully connected layers was 

implemented. An ANN was selected because of its relative simplicity to other deep 

learning models. The ANN model design choices were selected through exploration by 

observing training accuracy with the goal of ensuring the models could adequately learn 

the training data. The model with the simplest architecture and lowest training time 

meeting the aforementioned goal was implemented for the final model. Optimizers which 

were explored included Stochastic Gradient Descent, RMSProp and Adam. Learning 

rates of 0.1, 0.01 and 0.001 were also explored. Layer units of 32, 64, 128, 256 and 512 

with a depth of 1 to 5 were explored.  

As outlined in Figure 22, the layers of the implemented ANN include a fully 

connected Dense layer with 512 units and a rectified linear unit (ReLu) activation 
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function followed by a dropout layer of 0.2. This sequence repeats two times. The input 

and output of each layer has the shape (None, 512). The final layer is a fully connected 

Dense layer with 1 unit and a sigmoid activation function which serves as the output of 

the model. The sigmoid output of the final layer represents the probability of the input 

being one. The model used Adam optimizer with a learning rate of 0.001 and a binary 

cross entropy loss function. The implemented ANN model had 427,521 trainable 

parameters  

 

Figure 22: Fully Connected Artificial Neural Network Architecture Diagram 

The implemented TCN model architecture is shown in Figure 23. The final TCN 

model was inspired by Bai et al.’s architecture [39] and was created through an iteration 

of experiments in varied kernel size, dilations, optimizers, learning rates and stacks while 

monitoring training accuracy. Early stopping monitoring training accuracy was 

implemented to allow the TCN to train until 100% training accuracy was achieved. The 

model with the simplest architecture and lowest training time meeting the aforementioned 

goal was implemented for the final model. The final TCN model had a kernel size of 6, 
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residual blocks with dilations of 1, 2, 4 and 8 filters in each convolution layer. A stack for 

this architecture consists of four residual blocks with the specified dilations. Overall, the 

model contained one stack of residual blocks yielding a model with 119,425 parameters. 

The rectified linear unit (ReLU) activation function was used after each dilated 

convolutional layer followed by channel normalization and spatial dropout of 0.05. The 

final layer is a fully connected layer with one unit and a sigmoid activation function. 

Given the problem was binary classification, binary cross entropy was utilized as the loss 

function. Finally, the model has an Adam optimizer with a learning rate of 0.002 and clip 

norm of 1. 

 

Figure 23: Temporal Convolutional Network architecture diagram. 

The implemented LSTM architecture is shown in Figure 24 and was inspired by  

Popov and Fomenkov’s architecture [40]. The LSTM model was twice the size of the 
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TCN with 213,761 trainable parameters. The first hidden layer of the LSTM model was 

identical to the TCN by using a Conv1D with a kernel size of 10, dilation of 1, and 64 

filters. The final dense layer was also identical with one unit and a sigmoid activation 

function. The LSTM model consisted of one LSTM layer with 64 units, dropout of 0.2 

and recurrent dropout of 0.2. The LSTM layer does not return a sequence, which allows 

the model to return the one value rather than a sequence. The LSTM model also had the 

same Adam optimizer with a learning rate of 0.001 and the same binary cross entropy 

loss function. 

 

Figure 24: LSTM architecture diagram 

3.4.3.2 Training Analysis 

To create a model with high performance on a binary classification task, it is 

necessary to include observations in the training split with the target variable present (i.e. 

a label of 1) as well as observations with the absence of the target variable (i.e. label of 

0). Including both forms of the target variable allows the model to learn important 

features during the presence and absence of the target variable. One of the main 
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challenges with the task datasets is the unbalanced distribution of data. As shown in 

Table 1, the experiment contains three types of the Stand decision-task, four types of the 

Comparison decision-task, three of the Intel, and four of the HR. Ideally, the training, 

validation, and test sets should each have the presence and absence of the target variable 

for each form of the decision-tasks present in the dataset. With the distribution of tasks, it 

is not possible to have such a distribution of the target variable in a training, validation 

and test set without separating observations from the same tasks. In addition, the 

distribution of classification for every task varies for each participant. For example, if a 

participant was biased on two of the three “Stand” decision-tasks it is not possible to train 

and test on observations with the presence and absence of the target variable. Thus, any 

test performance for such a distribution of data is inadequate in reporting the true 

performance of a model.  

Another challenge with the information selection datasets is the small quantity of 

observations. Depending on the participant, the number of observations range from 40 to 

90. Such a small samples size makes test results less significant. Using a test split of ten 

percent yields only four to eight test observations and if the model classifies one of these 

observations incorrectly, the performance of the model drastically changes. Also of 

concern with such a small dataset is the potential of overtraining. These considerations 

lead to following training and performance evaluation approach. 

To compensate for the aforementioned limitation cross-validation was utilized to 

report model performance. In the task datasets, a leave one task out cross validation 

(LOTOCV) approach was implemented. In LOTOCV, observations from an entire task 

were left out of the training set and used as a validation observation. This resulted in 14-
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fold cross-validation. The models were fit with the training set, and validation 

performance was evaluated with observations from the one task left out. This process was 

repeated until every task had been used as the validation task once. For the information 

selection datasets, a standard 10-fold cross-validation was applied. Unless otherwise 

specified, the reported performance throughout this work is the mean validation 

performance of all iterations of the cross-validation process. 

A downside to using cross-validation to evaluate performance of the models is the 

model cannot be both tuned and evaluated using the validation set. Using the validation 

set to tune the models would cause information leakage and result in inflated 

performance metrics during evaluation. Although not ideal, to create suitable models, the 

batch size and model structure were tuned by observing the training accuracy. Early 

stopping with the criteria of 100% training accuracy was utilized for model training to 

ensure models could learn the dataset.  

3.4.3.2.1 Cross-Participant 

Within-participant machine learning results are usually better than cross-

participant results because there is less variability in a single participant’s data than 

across multiple subjects. The benefit of creating cross-participant models is that there is 

more data to train models and a high performing model is more robust because it 

generalizes well across multiple participants. To determine if cross-participant models 

can benefit from the increased data with hyper-parameter optimization, cross-participant 

models will be explored on the highest performing within-participant dataset. 

For the cross-participant training, a train, validation and test dataset approach was 

applied. In this approach, 12 participants were used as a train set, two participants were 
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used as a validation set for hyper-parameter optimization and finally the model 

performance was measured on the remaining participants sequestered data. This process 

was repeated 15 times so that every single participant’s data was the test set. The same 

hyper-parameters explored for within-participant models were tuned for cross-participant. 

The major difference being the hyper-parameters were optimized using the validation 

dataset accuracy rather than the training accuracy. This process allowed for cross-

participant test performance to be reported rather than cross-validation performance as 

was reported for within-participant models.  

3.4.3.3 Performance Analysis 

To measure the ML model’s performance, classification accuracy is observed. 

Accuracy provides a measure of how well each model performs across both classes. With 

the class imbalance another beneficial performance metric is balanced accuracy. 

Balanced accuracy accounts for the class imbalance and is the average recall obtained on 

each class. This metric provides better insight into model performance on both classes. 

To provide more clarity on the type of classification errors, confusion matrices will be 

employed (Figure 25). Confusion matrices allow the true positive rate (TPR), true 

negative rate (TNR), false positive rate (FPR) and false negative rates (FNR) to be 

visually observed which provides insight into what type of classification errors the model 

is making.  
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Figure 25: Notional Confusion Matrix for Model Performance on Bias Detection 

 

Since accuracy and confusion matrices are dependent upon tuning the threshold used to 

classify a model’s probability output, the measure which will be used to determine the 

overall best model is the Area Under the Receiver Operating Characteristic Curve 

(AUROC) as shown in Figure 26. A ROC curve is created by plotting a model’s TPR vs. 

FPR at many possible classification thresholds. An AUROC of 1.0 indicates a model of 

high performance. AUROC will be used to determine how well the relationships in the 

data for classifying bias or information selection from EEG signals is modeled. 

 In addition to performance metrics another important aspect of performance 

analysis is error analysis. For the information selection datasets, the main focus for error 

analysis will be on analyzing how classification errors are associated with a specific task. 

If confirming and disconfirming information from specific tasks consistently produce 

classification errors, then models may not be generalizing across tasks in the assessment. 

For the task datasets, the main focus of error analysis will be on data segmentation. There 

are numerous ways to segment epochs from the entire task. For future work, it is 
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necessary to determine if observations should only be taken from the information search 

portion of a task or the entire task. 

 

 
 

Figure 26: Notional Receiver Operating Characteristics Curve Summary 

3.5 Summary 

In summary, this chapter outlined the methodology for a human-subject decision-

making experiment and established a ML pipeline to estimate confirmation bias or 

information selection. The decision-making experiment consisted of participants 

completing a modified ABC test, which elicits biased behavior in nine decision tasks. 

The test was modified to only elicit confirmation bias as well as to time synchronize the 

collected physiological data. Analysis methods to quantify the degree of confirmation 

bias in each task was established. In addition, methods to model relationships between 

behaviors and biased decisions were designed. Finally, the complete machine learning 

pipeline was devised which covered everything from raw data preprocessing and feature 

extraction to model design and performance analysis.  
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IV. Analysis and Results 

4.1 Chapter Overview 

This chapter provides in-depth analysis of the results obtained from the experiment 

outlined in Chapter 3. Results include behavioral measures of confirmation bias collected 

during the ABC assessment. Section 4.2 describes the subjective results of the 

assessment, which includes information search patterns, the effects of an initial decision 

on information search, evidence and question importance, completion time, and 

information revisits. These results provide support for answering investigative questions 

one and two (see Section 3.2). Section 4.3 describes non-subjective measures, covering 

results associated with the electrophysiological data collected during the assessment. 

Results in this section describe the machine learning performance metrics of classifying 

electroencephalography (EEG) signals as well as the more traditional EEG time series 

analysis. These results provide justification in answering investigative questions three 

and four (see Section 3.2).    

4.2 Behavioral Analysis and Results 

Behavioral analysis entails all non-physiological components recorded by the 

ABC assessment. Behaviors of interest include: 

 Information Search 

 Evidence/Question Importance 

 Completion Time 

 Uncertainty  
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Information search and evidence/question importance are the measures used to quantify 

the degree of bias present in each respective task. In tasks, which require information 

search, the effect of making an initial decision prior to the information search is analyzed 

to determine if the desired effect of a more balanced information search was achieved. In 

addition, the cross-participant mean level of bias for each type of task is analyzed to 

determine if different types of task are more practical to create high and low levels of 

bias. It is important to note the levels of confirmation bias quantified in these results are 

not directly comparable to the results reported by MITRE [42]. MITRE reports an overall 

bias score for each of the different elicited biases, whereas this work reports only a 

confirmation bias score for each task.  

Multiple aspects of completion time are of interest including completion time of 

the information search portion of a decision task, and time to complete the entire 

assessment. These aspects of completion time are analyzed to determine if they are 

associated with the degree of bias in a task and across tasks.  Lastly, uncertainty is 

measured by mouse re-clicks and could indicate a participant’s indecisiveness by a 

participant’s tendency to select different information multiple times. All the described 

behavioral measures are investigated for being correlated with biased information search 

in the following sections.  

4.2.1 Information Search 

In the ABC assessment, the Stand and Comparison form of tasks had the 

participant perform information search to complete the task. With three versions of the 

Stand task and four versions of the Comparison task, this yielded seven tasks where the 
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participant was instructed to search through information. Information for these tasks was 

composed of confirming and disconfirming information relative to their initial decision. 

For tasks without an initial decision, the information was confirming and disconfirming 

relative to their final decision. Table 8 shows the mean and standard deviation of the 

proportion of confirming information selected during the information search portions of 

the Stand tasks and the Comparison task for each participant. Figure 27 shows the cross-

participant mean proportion of confirming information for the Stand and Comparison 

tasks with 95% confidence intervals. The Stand tasks overall cross-participant mean 

proportion of confirming information selected is 0.52 (standard deviation of 0.25) and the 

Comparison tasks is 0.65 (standard deviation of 0.24). These results indicate that on 

average during the information search portion of these decision-tasks, participants 

selected more confirming information than disconfirming information.  

 

Figure 27: Cross-participant Information Selection 
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From a machine learning perspective, there are several results of interest in the 

information search patterns. In particular, in the Stand tasks participant 3097 had a mean 

proportion of 0.50 with a standard deviation of 0.00. Using a threshold of greater than 

0.50 to classify a task as biased would yield all three of the Stand tasks as unbiased. 

Similarly, for the same subject the Comparison task mean proportion is 1.00 with a 

standard deviation of 0.00 yielding all four comparison tasks as biased. A machine 

learning classifier with the goal of classifying a task as biased will not likely perform 

well on this participant because every observation from the Stand form of tasks is 

identical and every observation from the Comparison form of tasks are identical. Ideally, 

each form of task should have a similar number of biased and unbiased tasks. 

Table 8: Information Proportion in Information Search Tasks 

 

 

Participant ID 

Stand Task:  

Confirming Info Proportion 

Comparison Task:  

Confirming Info Proportion 

Samples Mean Stand Dev Samples Mean Stand Dev 

1234 17 0.56 0.08 36 0.68 0.12 

1962 8 0.22 0.16 12 0.47 0.17 

3097 20 0.50 0.00 10 1.00 0.00 

3914 15 0.60 0.14 48 0.67 0.00 

4818 16 0.36 0.05 40 0.65 0.03 

4960 13 0.64 0.10 23 0.65 0.09 

6809 24 0.50 0.00 30 0.72 0.11 

6910 7 0.72 0.21 19 0.75 0.18 

6920 20 0.51 0.07 28 0.77 0.08 

7344 11 0.44 0.08 10 0.56 0.41 

7590 12 0.83 0.24 21 0.50 0.13 

7914 20 0.58 0.12 48 0.67 0.00 

7958 4 0.33 0.47 7 0.67 0.50 

7960 10 0.39 0.28 24 0.49 0.30 

9646 18 0.67 0.24 23 0.58 0.10 

Cross-Participant 215 0.52 0.25 379 0.65 0.24 
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4.2.1.1 Initial Decision Effect on Information Search 

In an attempt to create a balanced distribution of biased and unbiased tasks, the 

experiment manipulated the independent variable of the presence of an initial decision 

prior to information search; see Table 6 for an outline of the independent variable. In the 

Stand form tasks, one task did not have an initial decision while two tasks had an initial 

decision. With only three total tasks, statistical tests were not feasible and thus the 

observed trends are observational. Across all participants, the mean proportion of 

selected confirming information in Stand tasks with an initial decision is 0.47 (standard 

deviation of 0.24), while the mean confirming proportion for Stand tasks without an 

initial decision is 0.64 (standard deviation of 0.22). Figure 28 illustrates these means with 

95% confidence intervals.  

 

Figure 28: Stand Task Proportion Confirming Information 

These results suggest when participants made an initial decision prior to 

conducting information search, the participants selected less confirming information 

compared to tasks without an initial decision. These findings were not the results that 
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were hypothesized in research question one. It was expected that making an initial 

decision would result in a more balanced information search because information search 

is conducted post-decision which is when rationalization of the decision occurs and 

seeking of more information may be biased toward the previous decision (see Section 

2.2). A possible explanation for the more balanced information search post-decision is 

equal amounts of confirming and disconfirming information were present which may 

have caused participants to question their decision. Cognitive dissonance occurs in the 

post-decision phase of the decision-making process and occurs when one has inconsistent 

thoughts about their decision and as a result believes an alternative decision was better. 

With no choice being favored over the other based on the amount of information present, 

participants may have experienced cognitive dissonance and thus explored more 

disconfirming information. 

4.2.2 Evidence/Question Importance 

In the ABC assessment, two forms of tasks did not contain an information search 

step in the decision task. These tasks elicited biased behavior by having participants 

select evidence or questions they believed were most important in completing the task. 

The forms of tasks that elicited bias by evidence and question importance were the Intel 

and the Human Resources (HR) tasks respectively. In these tasks, the participant’s goal is 

to answer questions and the tasks contained evidence/questions either confirming or 

disconfirming with respect to the question. With three Intel tasks and four HR tasks, the 

assessment contained seven tasks that elicited biased behavior by the participant’s value 

of evidence/questions.  
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The degree of confirmation bias in a task is the proportion of confirming 

evidence/questions selected by the participant. Table 9 shows the mean and standard 

deviation of the proportion of confirming evidence/questions for all participants in the 

Intel and HR tasks. Figure 29 shows the cross-participant mean proportion of confirming 

evidence/questions for the Intel and HR tasks with 95% confidence intervals. The Intel 

tasks’ cross-participant mean proportion of confirming evidence in the Intel task is 0.71 

(standard deviation of 0.17) and the HR tasks’ is 0.59 (standard deviation of 0.16). The 

results indicate participants tended to select more evidence that confirmed the questions 

asked in the Intel tasks, but only slightly more confirming questions in the HR tasks.  

 

Figure 29: Cross-participant Evidence/Question Importance 
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Table 9: Information Proportion in Evidence/Question Importance Tasks 

 

An interesting observation of the data in Table 9 is the much lower standard 

deviation for the evidence/question importance tasks (Intel and HR) compared to the 

information search tasks (Stand and Comparison). The lower standard deviation for the 

Intel and HR task is likely due to the set number of evidence/questions selected by the 

participant. The participant could only select four/five pieces of evidences/questions 

respectively. On the contrary, in the Stand and Comparison tasks the participant had to 

select at least one piece of information but was free to select as many pieces of 

information that were available. The smaller standard deviation for the evidence/question 

importance tasks indicate a machine learning bias classifier may not perform well on 

these tasks given the data is unbalanced.  

 

Participant ID 

Intel Tasks:  

Confirming Info Proportion 

HR Tasks:  

Confirming Info Proportion 

Samples Mean Stand Dev Samples Mean Stand Dev 

1234 4 0.92 0.12 5 0.50 0.17 

1962 4 0.58 0.12 5 0.70 0.10 

3097 4 0.92 0.12 5 0.60 0.00 

3914 4 0.83 0.12 5 0.50 0.22 

4818 4 0.67 0.12 5 0.50 0.10 

4960 4 0.67 0.12 5 0.50 0.10 

6809 4 0.58 0.12 5 0.70 0.10 

6910 4 0.58 0.12 5 0.40 0.14 

6920 4 0.67 0.12 5 0.75 0.09 

7344 4 0.83 0.12 5 0.60 0.14 

7590 4 0.58 0.12 5 0.60 0.14 

7914 4 0.75 0.00 5 0.70 0.10 

7958 4 0.83 0.12 5 0.65 0.17 

7960 4 0.50 0.00 5 0.65 0.17 

9646 4 0.67 0.12 5 0.55 0.17 

Cross-Participant 60 0.71 0.17 75 0.59 0.16 
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4.2.2.1 Provided Hypothesis Effect on Evidence Importance 

In an attempt to create a more balanced distribution of biased and unbiased 

questions, the independent variable for the Intel task was the presence or absence of an 

accepted hypothesis. The HR tasks did not have any control variable manipulation in the 

assessment due to the tasks lack of a hypothesis or decision primer. In each Intel task, the 

participant selected important evidence to answer a question. Along with the evidence, an 

accepted hypothesis was provided to give the participant a specific stance on the subject. 

In two of the three Intel tasks, the accepted hypothesis was absent. The mean proportion 

of confirming evidence selected for Intel tasks without an accepted hypothesis is 0.71 

(standard deviation of 0.17) and with an accepted hypothesis is 0.70 (standard deviation 

of 0.16). Figure 30 illustrates these means with 95% confidence intervals. 

 

Figure 30: Intel Task Proportion Confirming Evidence 

The lack of difference of means between the two groups suggests the intended 

effects did not occur for the Intel tasks. Both groups had almost identical measures 

despite the lack of hypothesis in one group. A possible cause of the lack of disparity 
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between the groups could be due to the rigid constraint in how many pieces of evidence 

the participant could choose. Participants could have only wanted to choose less than four 

pieces of evidence, but the constraint could have resulted in more evidence selected and 

thus different confirming proportions. Regardless, the only conclusion that can be drawn 

from these results is the absence of a hypothesis compared to the presences of a 

hypothesis did not affect a participant’s value of evidence in the Intel tasks.  

4.2.3 Completion Time  

Analysis of participant behavioral data was completed to explore all collected 

data. The subjective information search and evidence/questions importance results in the 

previous sections provide a means to measure level of confirmation bias, but analysis of 

the behavioral data may provide further insight into behavioral characteristics associated 

with confirmation bias. The first aspect of completion time explored was the cross-

participant completion time for each of the 14 tasks. Identifying any trends in the 

completion time across participants could indicate if completion time is a valuable 

behavior in characterizing biased behavior. Figure 31 shows the cross-participant mean 

completion time for each task in the assessment.  
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Figure 31: Cross-participant Task Mean Completion Time 

The task label along the horizontal axis corresponds to a tasks relative order in the 

assessment i.e. Stand Task 1 appeared before Stand Task 2 and Stand Task 3, but not 

necessarily before Comparison Task 1, see Table 6 for the overall order of tasks in the 

assessment.  

Apparent in Figure 31 the mean completion time for each type of task decreases 

with the order of the presented task. A one-way ANOVA was applied to each task of the 

same type to determine if the mean completion time was statistically different. The Stand 

(F = 10.49 p = 0.002), Comparison (F = 3.55 p = 0.02), and HR (F = 4.46 p = 0.007) 

tasks all had statistical significance while the Intel task (F = 0.71 p = 0.49) did not. To 

analyze if the mean task completion time decreased with respect to the order of the 

presented task, a left tail paired t-test was utilized. The first input into the t-test was the 

set of participant completion times on Stand task 1 and the second input was the paired 

set of participant completion times on Stand task 3. This effectively tests if the participant 

completion time on Stand task 3 was smaller than Stan task 1. The difference of the 



95 

means for Stand task 1 and Stand task 3 is 109.36 seconds and is statistically significant 

(t = -5.48, p = 0.00004) with a significance level of 0.05. The difference of the means for 

Comparison task 1 and Comparison task 4 is 25.13 seconds and is statistically significant 

(t = -2.75 p = 0.007) with a significance level of 0.05. Similarly, the HR task with a mean 

difference of 31.21 seconds between the first and last HR task were statistically 

significant (t = -4.38, p = 0.003). The only task without a decrease in completion time 

with respect to task order was the Intel task which had a mean difference of 11.14 

seconds between the first and last task and was not statistically significant (t=-1.62, p = 

0.06).  

A possible explanation for the observed trend of decreasing task completion time 

with the order of the task is a learning effect occurred. As participants became more 

familiar with a task, they were able to learn the task and complete the task more quickly. 

Another possible explanation for the observed decreasing completion time is the inherent 

completion time is different for each task. The information associated with each task was 

not identical in length which may have resulted in different completion time. To rule out 

this as a possible cause, future work should alternate the task order for each participant. 

Regardless of what caused the trend in completion time, the observed trend is a 

confounding effect and is the dominating effect on completion time. For completion time 

to be associated with confirmation bias, completion times should be relatively the same 

with respect to order which would allow analysis on the effects of bias on completion 

time. Due to these confounding effects, models were not created to associate completion 

time with bias. 
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The results displayed in Figure 31 encompass the entire decision task, which 

includes the scenario instructions, initial decision, information search, and final decision. 

If the observed trend is due to a learning effect, the first type of each task could result in a 

longer completion time because the participant is reading the scenario instructions 

whereas in subsequent tasks reading instructions may not be necessary. In an attempt to 

reduce this effect on completion time, the completion time for only the information 

search and final decision portion of the task were analyzed. Figure 32 shows completion 

time for the information search portion of the Stand tasks and Comparison tasks. The 

Intel and HR tasks were not included because there was not an information search portion 

of the tasks.  

 

 

Figure 32: Cross-participant Information Search Completion Time 

As shown in Figure 32 the decreasing trend in completion time is still apparent as the 

order of task increases. The difference in mean completion time between tasks is reduced 

compared to the entire task, but the decrease trend still appears in information search 
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completion time. With the apparent confounding variables in completion time, further 

analysis was focused on other behavioral data.  

4.2.4 Information Revisits   

Participants utilized the computer mouse to select information in the information 

search tasks and to record their decisions. All mouse clicks used to select a piece of 

information or choose an answer were recorded by the ABC assessment platform. 

Information revisits, or selecting information multiple times prior to making a decision 

could be indicative of the participants increased uncertainty. Information revisits for this 

analysis is the cumulative number of times the participant reselects a piece of information 

and is calculated for a given task with the following formula: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑣𝑖𝑠𝑖𝑡𝑠 =  𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑢𝑠𝑒 𝐶𝑙𝑖𝑐𝑘𝑠 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

As a data exploration step, the mean cross-participant information revisits on each task 

was presented in a histogram with 95% confidence interval using a normal distribution as 

shown in Figure 33. 
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Figure 33: Cross-Participant Information Revisits for each Task 

At the cross-participant level, information revisits appear to be a rather low value and 

does not appear to be useful. The only apparent trend in the data is that the HR tasks had 

a higher mean information revisits, but the high variability shown by the 95% confidence 

intervals indicates this was not consistent across participants. 

To analyze if there is an association with the participant’s uncertainty and 

proportion of confirming information or evidence/questions selected at the participant 

level, the correlation coefficient between a participant’s information revisits and 

confirming proportion was measured. Figure 34 illustrates the confirming proportion of 

selected information plotted against the information revisits for participant 7958.  
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Figure 34: Confirming Information vs. Information Revisits  

Of the 15 participants, only two showed correlation between information revisits and 

proportion of confirming information. Participant 1234 and participant 7958 had a 

correlation coefficient of -0.52 and 0.42 respectively. Although these coefficients appear 

to indicate a relationship between excessive information revisits and proportion of 

confirming information, a majority of the tasks had zero information revisits. Participant 

1234 only had information revisits on three tasks and participant 7958 only had 

information revisits on two tasks as shown in Figure 34. The mean number of 

information revisits for all participants across the Stand, Intel and HR tasks is 0.63 with a 

standard deviation of 1.38. The lack of information revisits across all tasks indicate the 

behavioral response of information revisits is not suitable for association with bias in the 

respective decision tasks.  
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4.3  Electroencephalography Analysis and Results 

4.3.1 Machine Learning: Task Dataset 

In the early data exploration stages, there were apparent patterns in the Task 

datasets that were not ideal for achieving high performance with machine learning 

methods. The most prominent pattern in this dataset is the imbalance of decision-tasks 

labeled as biased. The most drastic imbalance being 89% of the observations biased for 

participant 7914 and the least being 39% biased for participants 1962. Table 10 displays 

the number of observations and the distribution of biased observations for each 

participant. 

Table 10: Task Datasets Class Distribution 

 

 

 

 

 

 

 

 

 

 

Due to the imbalance of data, the machine learning results for this dataset are expected to 

be highly dependent on the participant and their specific distribution of data. For 

Participant ID Observations Positive Class (%) 

1234 642 0.694 

1962 570 0.397 

3097 427 0.763 

3914 457 0.722 

4818 585 0.553 

4960 528 0.733 

6809 811 0.488 

6910 295 0.463 

6920 444 0.754 

7344 472 0.712 

7590 521 0.510 

7914 370 0.890 

7958 403 0.564 

7960 379 0.411 

9646 612 0.448 
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example, participant 3097’s Comparison tasks are all classified as biased meaning when 

any comparison task is used to measure validation accuracy it will likely be near 100%. 

Whereas in participant 1234, only Comparison task 1 is unbiased so when Comparison 

task 1 is used as the validation task the accuracy will be near 0% because the models 

were trained with only biased Comparison tasks.  

4.3.1.1 Time Series Features 

The Task dataset with time series features is the Time Series Signal per Task 

dataset referred to in Section 3.4.2. For this dataset, an observation is a 2-second time 

series signal (500 frames at 250 Hz) segmented from the information search portion of a 

task. There are 64 features, which are the 64 EEG electrode locations positioned on the 

participants head. The labels for this dataset is “bias” or “unbiased”. The total number of 

observations vary by participant, ranging from 295 to 811 observations. The results 

reported in this section are cross-validation performance metrics. The cross-validation 

implemented is a leave one task out cross-validation resulting in 14 validation folds.  

The TCN and LSTM models implemented for the Time Series Signal per Task 

dataset were trained using early stopping, based on 100% training accuracy, for a 

maximum of 10 epochs. On average, the TCN models trained for 7.3 epochs and the 

LSTM models trained for 6.5 epochs. With the TCN average time per epoch being 2 

seconds and each participant having 14 models trained, the average TCN training time 

per participant was 204 seconds. The LSTM average time per epoch was 6 seconds, 

which yielded an average training time of 546 seconds per participant. Despite the 
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training time difference between the models, both the TCN and LSTM were able to 

obtain 100% accuracy on the training data as displayed in Figure 35. 

 

Figure 35: Participant 7958 (A) TCN Training Curves (B) LSTM Training Curves 

The left images (labeled A) of Figure 35 correspond to the TCN model while the 

right images (labeled B) correspond to the LSTM model. Both models for this specific 

participant obtain similar validation accuracies of approximately 10%, indicating both 

models are unable to correctly classify the validation data correctly. 

 The poor performance illustrated in the training curve is also reflected in the 

overall accuracy of the models. The accuracy plot in Figure 36 shows the mean leave one 

task out cross-validation classification accuracy for each participant. The red bar 

represents the majority class percentage or the baseline accuracy if all decision-tasks 

were classified as the majority class. The green and purple bars are the TCN and LSTM 
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overall accuracies. The error bars on the TCN and LSTM bars represent the 95% 

confidence interval using a normal distribution.  

 

Figure 36: Time Series Signal per Task Model Accuracy 

Among 15 participants, the TCN model only achieved a mean accuracy greater than the 

baseline accuracy on participant 6910, but the TCN mean accuracy of 0.634 ± 0.150 on 

this participant was not statistically significant (95% Normal Confidence Interval). The 

LSTM model did not achieve a mean accuracy greater than baseline accuracy on any 

participants. These results suggest it is not possible to estimate the presence of 

confirmation bias on this task using the EEG data segmentation and feature techniques in 

the Time Series Signal per Task dataset. 

 In a dataset with a class imbalance, overall accuracy can be a skewed metric for 

evaluating model performance. Balanced accuracy accounts for the class imbalance and 

is the average recall obtained on each class. This metric provides better insight into 

model performance on both classes and is necessary since both biased and unbiased task 

estimation is necessary. The reported balanced accuracy on the Task datasets is the 



104 

balanced accuracy of all model predictions from each cross-validation step rather than the 

mean balanced accuracy at each cross-validation step. Since the validation fold only 

consists of observations from the same task all validation observations have the same 

label. Reporting the mean balanced accuracy would be the same metric as overall 

accuracy. The balanced accuracy displayed in Figure 37, shows models were able to 

obtain a balanced accuracy greater than 50% on two participants: 6910 and 6920. On 

participant 6910, the TCN obtained a balanced accuracy of 0.674 and the LSTM balanced 

accuracy was 0.501. For participant 6920, only the LSTM obtained balanced accuracy 

greater than 50% with an accuracy of 0.552.  

 

Figure 37: Time Series Signal per Task Model Balanced Accuracy 

Accuracy and balanced accuracy represent the possible performance metrics at 

specific thresholds. The area under the receiver operating characteristic curve (AUROC) 

of a model shows how well a model learns the relationships in the dataset. Figure 38 

displays the AUROC for the TCN and LSTM for each participant.  
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Figure 38: Time Series Signal per Task Model AUROC 

The average AUROC across all participants for the TCN and LSTM models were 0.351 

and 0.322 indicating the models had low performance on the dataset.  

Observing the confusion matrices (Figure 39) for the top two performing 

participants in balanced accuracy illustrates the impact of unbalanced data on the model 

performance. Participant 6910’s data was 46% biased and is reflected in the results by 

both models predominantly predicting “Not Biased”. Participant 6920’s data was 75% 

biased and is reflected in both models predominantly predicting biased.  The poor model 

AUROC and lack of consistent model performance across all participants indicates either 

the time series of the EEG data or the method of segmenting the data by task with the 

label of biased or unbiased is not an appropriate method for measuring confirmation bias.  

Since observations for this dataset are from the entire information search portion 

of a decision task, the fundamental assumption is there is a consistent difference in brain 

activity between biased and unbiased during the entire decision-making process. One 

theoretical explanation of cognitive biases which directly counters this assumption is the 



106 

neuroscientific perspective. The neuroscientific perspective relates the occurrence of 

various cognitive biases to principles that are characteristic of biological neural networks 

and consequently are a result of the neural characteristics of the brain [13]. This 

perspective conjects that cognitive biases occur in the same neural networks as motor 

functions and thus there is no distinguishable brain activity relating to a biased decision. 

While the lack of high performance for this dataset does not indicate the neuroscientific 

perspective on cognitive biases is true, if there is no distinctive brain activity directly 

from biases, estimating confirmation bias on this dataset would not work.  
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Figure 39: Confusion Matrices of (Left) TCN, (Right) LSTM 

4.3.1.2 Mean Frequency Power Features 

The mean frequency power features on the task dataset is Frequency Features per 

Task dataset referred to in Section 3.4.2. In this dataset, the features are the mean power 

of the five frequency bands at each electrode in the 64 electrode EEG cap, totaling 320 

features. The frequency feature extraction (described in Section 3.4.1.2) was 

implemented on the 2-second time series signal from the Time Series Signal per Task 

dataset in the previous section. For this reason, the observations, data distribution, and 
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leave one task out cross-validation were identical to the Time Series Signal per Task 

dataset in the previous section. 

Given the mean frequency power features were extracted from the same two-

second time series in the previous section, results were expected to be similar but 

possibly better due to the specific frequency extraction. The ANN trained for a maximum 

of 10 epochs with early stopping based on training accuracy resulting in an average of 3.5 

epochs. With 14 models trained per participant and an average epoch time of 1 second, 

the average ANN training time was 49 seconds per participant. The overall accuracy for 

the ANN, LDA, and RFC models is shown in Figure 2Figure 40. All models performed 

similarly across participants with the mean accuracy of LDA being 0.540, RFC 0.532 and 

the ANN 0.531. LDA performed the best across participants with accuracy above 

baseline on participants 3097, 4960, 6920. Unfortunately, none of these accuracies were 

significantly greater than baseline (95% Normal Confidence Interval). RFC obtained 

better than baseline accuracy on participants on 3097 and 6920 but were also not 

significantly greater than baseline (95% Normal Confidence Interval). Lastly, the ANN 

only performed better on participant 6920 and was not significantly greater than baseline 

(95% Normal Confidence Interval). Although the overall accuracy for any participant 

was not statistically significant, the mean frequency power features appear to perform 

marginally better on the task dataset than the time series feature.  
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Figure 40: Frequency Features per Task Model Accuracy  

 The improved performance of the frequency feature over the time series feature is 

also reflected in the balanced accuracy metric (Figure 41)  with at least one model 

achieving greater than 50% balanced accuracy on participants 4960, 6920, and 7960. The 

ANN model had the highest balanced accuracy of 0.596 on participant 6920, which was 

also the highest performing participant in the time series feature for the LSTM model. 

Both the LDA and ANN performed above 50% accuracy on participant 7960, which was 

not a high performing participant for the time series feature. The change in performance 

across features indicates the time series feature may not be optimal for classifying bias 

from EEG signals.   
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Figure 41: Frequency Features per Task Model Balanced Accuracy  

The average AUROC across all participants for LDA, RFC, and the ANN were 

0.356, 0.259, and 0.340 respectively. Although the AUROC for each model indicates low 

model performance as displayed in Figure 42, the ANN achieved an AUROC of 0.785 for 

participant 6920. This outlier in performance is likely due to the highly imbalanced data.  

 

Figure 42: Frequency Features per Task Model AUROC  
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As shown in Figure 43, the confusion matrix for the ANN model on participant 6920 

indicates the model is over classifying the “bias” label class. The classification imbalance 

is due to participant 6920’s dataset being highly imbalanced with 75% labeled “biased”. 

The high AUROC for participant 6920 indicates with a proper training, validation, and 

test set, tuning the classification threshold may obtain greater accuracy and balanced 

accuracy. Despite this performance anomaly, the AUROC across all participants is low. 

Although the frequency features performed marginally better than the time series 

features, performance was still under the desired baseline of 50% balanced accuracy. If 

there is no constant difference in brain activity under biased and unbiased decision during 

the decision-making process as proposed in the neuroscientific theory of cognitive biases, 

then the EEG signals under both conditions are likely similar. With no distinctive 

difference between the EEG signals, the machine learning models would be unable to 

distinguish between the two labels “biased” and “unbiased” resulting in worse than 

chance performance. For this reason, even though there were multiple more ways to 

investigate the Task dataset, the poor performance and limited time constraints led the 

investigator to focus on the Information dataset in Section 4.3.2.  
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Figure 43: ANN Task Frequency Confusion Matrix  

4.3.2 Machine Learning: Information Selection Datasets 

The Information datasets consists of EEG signals when the participant selected 

confirming and disconfirming information. Compared to the Task datasets, the 

Information Selection datasets were much more balanced as shown in  

Table 11. The positive class is the class label “confirm” and is the majority class 

across all participants. The highest percentage of positive class was 0.746 for participant 

3097 while the lowest was 0.557 for participant 7344. The machine learning challenge 

for this dataset is the number of observations rather than a data imbalance; as illustrated 

in Table 11 participant 3914 has the most observations with 93 and participant 7958 has 

the least with 42. 
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Table 11: Information Selection Datasets Class Distribution 

 

 

4.3.2.1 Time Series Features 

The information selection dataset with time series features is the Time Series 

Signal per Information Selection dataset referred to in Section 3.4.2. One observation is a 

2-second (500 frames at 250 Hz) time series signal centered on when a participant selects 

a piece of information. There are 64 features, which are the 64 EEG electrode locations 

positioned on the participant’s head. The labels are either “confirm” or “disconfirm” and 

are the position of the information relative to the participant’s belief in a task. The 

number of observations and data balance is displayed in Table 11. The ensuing 

performance metrics are metrics from 10-fold cross-validation performed on within 

Participant ID Observations Positive Class (%) 

1234 78 0.615 

1962 53 0.585 

3097 59 0.746 

3914 93 0.677 

4818 70 0.586 

4960 66 0.621 

6809 71 0.606 

6910 62 0.597 

6920 75 0.680 

7344 61 0.557 

7590 65 0.569 

7914 61 0.672 

7958 42 0.643 

7960 67 0.582 

9646 71 0.563 
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participant data. The cross-validation was a stratified split so each fold approximately 

represented the overall data distribution of “confirm” and “disconfirm” labels.  

The implemented TCN and LSTM models for Time Series Signal per Information 

Selection dataset were trained with early stopping monitoring the training accuracy for 

maximum of 10 epochs. The TCN trained for an average of 4.3 epochs with an average of 

1 second per epoch. The LSTM trained for an average of 5.6 epochs with an average of 

10 seconds per epoch. With 10-fold cross-validation, the average training time per 

participant for the TCN was 43 seconds while the LSTM was 560 seconds. As expected 

with a small dataset, both models easily obtained a 100% accuracy on the training data as 

displayed in the training curves in Figure 44.  

 

 

Figure 44: (A) TCN Training Curves (B) LSTM Training Curves 
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 The overall accuracy for the TCN and LSTM models is shown in Figure 45. Of all 

the 15 participants, the TCN model mean accuracy was only greater than baseline 

accuracy on participant 6920. The TCN model achieved an accuracy of 0.682, but the 

difference between baseline was not significant (95% Normal Confidence Interval). One 

observable difference between the Task and the Information datasets is the much smaller 

95% confidence interval error bars for the mean accuracy of the Task dataset. The tighter 

confidence interval is reflective of the more balanced classes in the Information dataset.  

 

Figure 45: Time Series Information Selection Model Accuracy 

Although the TCN and LSTM models were unsuccessful in obtaining higher than 

baseline accuracy in all but one participant, the balanced accuracy metric was greater 

than 50% for at least one of the models in seven participants (Figure 46). Considerably 

greater than the two participants for the Task dataset, the balanced accuracy metric 

indicates the Information dataset may be more suitable for machine learning. The TCN 

model appears to perform better than the LSTM across the participants by performing 

better than 50% balanced accuracy on six participants, while the LSTM only has five 
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above 50%. Unfortunately, the TCN only performed significantly greater than the 50% 

balanced accuracy baseline on participant 6920 (95% Normal Confidence Interval). To 

further interpret the classification error difference between the models the confusion 

matrices (Figure 47) on participant 1234 shows both models perform identical on the 

disconfirm class, but the LSTM model mislabels more confirm observations as 

disconfirm. Overall, model performance observations cannot be made because neither 

model was tuned, but the TCN appears to perform consistently better at the default 

settings used for balanced accuracy. 

 

Figure 46: Time Series Information Selection Model Balanced Accuracy 
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Figure 47: Confusion Matrices (A) TCN, (B) LSTM 

Despite the fact that from the balanced accuracy metric the TCN model appeared 

to perform much better, the mean AUROC across all participants for the TCN was 0.464 

and the LSTM was 0.453. As shown in Figure 48, both the TCN and LSTM AUROCs 

vary per participant.  

 

Figure 48: Time Series Information Selection Model AUROC  
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The increased mean AUROC for both the LSTM and TCN on the Time Series Signal per 

Information Selection dataset relative to the Time Series Signal per Task dataset indicate 

the models fit the underlying relationships between the target variable and the features 

better. Overall, time series classification performance was increased for the Time Series 

Signal per Information Selection dataset compared to the Time Series Signal per Task 

dataset, but the still low mean AUROC for both models indicate the time series features 

do not capture the relationships in the data well.  

4.3.2.1.1 Time Series Analysis 

To provide further insight into the machine learning performance on the time 

series features, the cross-participant time series signals were observed. Event-related 

potentials (ERPs) are commonly used in neuroscience research to compare brain activity 

between different stimulus. Event-related potentials (ERPs) are voltages created by the 

brain when experiencing particular stimuli [52]. The time series signals in this work were 

not necessarily stimulus-locked since the EEG signals correspond to when the 

participants clicked on a piece of information. For this reason, this analysis refers to the 

averaged time series signals as time series analysis, but is identical to an ERP except the 

stimulus lock. As outlined in Section 3.3.6, the difference between cross-participant time 

series signals from confirming and disconfirming information was tested for statistical 

significance at the -200 ms to 800 ms time window for the F2, F4, F6 and F8 EEG 

electrodes. The examined cross-participant time series signals are displayed in Figure 49. 

In the F4 location there appears to be increased potential for the confirming signal at 

approximately 275ms relative to disconfirming information. As for the F2 and F8 
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locations, the presence of disconfirming information appears to have heightened activity 

compared to confirming information. There does not appear to be any drastic differences 

between the two types of information at the F6 location. Despite these noticeable 

differences at the F2, F4 and F8 locations, there were no significant differences between 

the time series signals of the two information types (nonparametric statistical test using 

Monte Carlo permutations with cluster corrections, alpha=0.01). 
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Figure 49: Cross-participant Time Series Signals of Information Type 

The lack of difference in the time series signals for confirming and disconfirming 

information can help explain why the machine learning models performed poorly. 

Additionally, the cross-participant time series signals are extremely noisy which indicates 



121 

there is a significant amount of noise in each participants time series signal. As a data 

exploration step, the time series signals of the features associated with the right frontal 

region of the brain were observed for participants which had high and low model 

performance. Two participant time series signals were observed: participant 6809 and 

1962. Participant 6809 had an RFC AUROC of 0.679 while participant 1962 had an RFC 

AUROC of 0.300 As seen in Figure 50, the relatively higher performing participant had 

increased activity at the F8 location at approximately 500 ms for confirming information 

compared to disconfirming information. Whereas for the low performing participant 

1962, the time series signal appears much noisier and there are no differentiable trends 

between the two conditions. These results indicate the poor machine learning results were 

likely caused by noisy EEG data.   
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Figure 50: Within-Participant Time Series Signals of Information Type  

4.3.2.2 Mean Frequency Power Features 

The mean frequency power features on the information selection dataset is 

Frequency Features per Information Selection dataset referred to in Section 3.4.2. In this 

dataset, the features are the mean power of the five frequency bands at each electrode in 

the 64 electrode EEG cap, totaling to 320 features. The frequency feature extraction 
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(described in Section 3.4.1.2) was implemented on the 2-second time series signal from 

the Time Series Signal per Information Selection dataset in the previous section. Like the 

Time Series Signal per Information Selection dataset, a 10-fold stratified cross-validation 

was implemented to produce the ensuing results.  

Due to the increased accuracy of the frequency features over the time series 

features in the Task dataset, it was hypothesized that the frequency features would 

outperform the time series features in the Information dataset. The mean accuracy across 

all participants for the LDA, RFC, and ANN was 0.539, 0.559 and 0.617 respectively. 

The within-participant mean cross-validation accuracy for each participant is displayed in 

Figure 51. Overall mean accuracy was greater than baseline accuracy for at least one type 

of model in seven of the fifteen participants. Although the number of participants with 

accuracy greater than baseline accuracy was greatly improved from one to seven 

compared to the time series features, only one participant’s mean accuracy was 

statistically significant. The difference in the ANN mean accuracy of 0.777 ± 0.082 (95% 

Normal Confidence Interval) and the baseline accuracy of 0.642 on participant 7958 was 

statistically significant. The considerably smaller confidence intervals and statistical 

significance in accuracy on one participant indicate the Information dataset with the 

frequency features may be the highest performing dataset and feature combination 

explored. 
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Figure 51: Frequency Information Selection Model Accuracy  

The balanced accuracy metric (Figure 52) shows if the model is performing better 

than random chance of 0.50. At least one model achieved greater than 0.50 balanced 

accuracy on 10 of the 15 participants. The ANN achieved the highest balanced accuracy 

of 0.627 on participant 6809, but LDA achieved balanced accuracy greater than 0.50 on 

nine participants whereas the ANN only achieved greater on seven participants. Despite 

achieving balanced accuracy above 0.50 on 10 of the 15 participants, the difference 

between the balanced accuracy and baseline were only significant on two participants. 

The ANN balanced accuracy was significantly greater than the baseline on participants 

6809 and 7960 (95% Normal Confidence Interval). The performance above random 

chance across multiple participants indicates there is a relationship between the frequency 

features and the target variable, but the lack of consistent significant difference for the 11 

participants indicates more data is likely necessary. It is also important to note, there is a 

17% chance of incorrectly obtaining significance on at least two participants (See 

Appendix A: Balanced Accuracy Incorrect Significance for explanation). In addition, the 
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balanced accuracy of 62% and 58% on participants 6809 and 7960 are not reliable 

enough for operational use. 

 

Figure 52: Frequency Information Selection Model Balanced Accuracy  

Confusion matrices for the model with the highest balanced accuracy were 

analyzed to determine how classification errors vary for a model across participants.  

Figure 53 shows the ANN confusion matrices for participant 6809 and 7958. Participant 

6809 has a balanced performance on both disconfirm and confirm class with 53.6% of the 

disconfirm observations being classified correctly and 67.4% of the confirm observations 

being classified correctly. Participant 7958 class performance is drastically different with 

40.0% of the disconfirm class being classified correctly and 96.3% of the confirm class 

being classified correctly. The strikingly different class performance can partially be 

explained by the different class distribution (Table 11). Participant 6809’s data was 

60.6% of the confirm class while participant 7958’s was 64.3%, but the drastic difference 

is largely due to the observation size difference. Participant 6809 had 71 observations to 
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participant 7958’s mere 42 observations. The effect of the small number of observations 

is shown by the drastic differences in the model performance across participants.  

 

 

Figure 53: ANN Confusion Matrices 

The mean AUROC across all participants for LDA, RFC, and the ANN were 

0.493, 0.485, and 0.521 respectively. The AUROC for each model on each participant is 

displayed in Figure 54. One interesting observation is the participants with the highest 

AUROC in the frequency feature models, were not the same as the time series models 

(Figure 48).  
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Figure 54: Frequency Information Selection Model AUROC 

The mean AUROC for the Frequency Features per Information Selection is much greater 

than the Frequency Features per Task. The mean AUROC across all participants for 

LDA, RFC, and the ANN on the Frequency Features per Task dataset (Figure 42) with 

was 0.356, 0.259, and 0.340 respectively. The increased AUROC for the Frequency 

Features per Information Selection dataset indicates the method of estimating confirming 

and disconfirming information to measure confirmation bias is more suitable for machine 

learning than estimating a biased and unbiased task with the collected EEG data. 

Regardless of the improved model performance for the Frequency Features per 

Information Selection dataset, the small sample size for each participant is reflected in the 

low performance metrics across the participants.  

4.3.2.2.1 Feature Importance 

Model performance metrics are necessary for determining how well machine 

learning techniques can model relationships between features and target variables, but 

feature importance provides crucial details on the specific relationships in the features 
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being used by the machine learning models. Random Forest Classifier (RFC) is useful 

because it provides feature importance when fitting the data. Activation of the right 

frontal portion of the brain that has been associated with the presence confirming 

information. This region of the brain corresponds to the F2, F4, F6 and F8 features of this 

dataset. Table 12 shows top ten features based on the number of times a frequency feature 

appears in a participants 50 most important features. No feature locations correspond to 

the expected brain location of activity as illustrated in Figure 55. 

Table 12: Salient Features across all Participants 

Feature Location/Frequency Count 

O1/Delta 7 

F1/Theta 7 

C2/Delta 7 

TP9/Gamma 6 

PO8/Delta 6 

PO7/Delta 6 

O2/Theta 6 

C3/Delta 6 

C1/Theta 6 

FT8/Beta 6 
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Figure 55: EEG Electrode Locations with Salient Features 

To analyze what features were common among RFC which had the highest performance 

on participants, common features among participants with an RFC AUC greater than 0.50 

were analyzed. With this limitation, common features among the nine participants were 

explored. Table 13 shows the features and the number of times the channel appeared in 

the top 50 most important features for a participant with the specified threshold of RFC 

performance.  
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Table 13: Salient Features in Top performing Participant Models 

Feature Location/Frequency Count 

F1/Theta 7 

C2/Delta 5 

AFz/Alpha 5 

TP9/Gamma 4 

F8/Beta 4 

F6/Theta 4 

PO8/Delta 4 

O2/Theta 4 

C3/Delta 4 

C1/Theta 4 

 

 

Figure 56: EEG Electrode Locations and Salient Features with High Performance 

Two features corresponding to the right frontal area of the brain, F8 and F6, appeared 

four times in the top 50 features across the nine participants. Not only did one of the F2, 

F4, F6 and F8 features appear in the top 50 most important features, but at least one of 
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the expected features were at least one of the top eight most important features in four of 

the participants with the highest RFC performance (Figure 57).  Participants 4960 and 

7958 both had the F8 beta frequency as the eighth and fifth most important feature 

respectively. While participant 6910 had F4 alpha as the sixth most important feature and 

participant 7344 had F6 theta as the eighth most important feature. The lack of consistent 

feature importance across all participants indicates either the machine learning techniques 

were not able to associate expected brain activity with the target variable or the expected 

brain activity was not consistent across participants. Due to the expected features being 

present in the eight most important features across four of the participants with the 

highest RFC performance, the lack of common features across all participants may be due 

to the small number of observations for each participant.  
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Figure 57: Top Ten RFC Salient Features 

4.3.2.2.2 Frequency Analysis 

Event-related spectral perturbations (ERSP’s) show the change in amplitude of 

the EEG frequency spectrum as function of time [53]. Minas et al. associated a decrease 

in log power between 8 -15 Hz with the presence of confirming information [10].  

Although ERSP’s do not directly translate to the machine learning features as it is an 

average compared to single trials, observing the ERSP’s can help provide insight into 

whether or not the expected brain activity is present on the averaged signal.  

To analyze the machine learning performance with frequency features, cross-

participant non-phase locked event-related spectral perturbation (ERSP) showing the 
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difference of confirming information and disconfirming information at the salient feature 

electrode locations were created (Figure 58). The color scales represent the log power 

(dB) difference between confirming and disconfirming signal frequencies. Dark blue 

indicates decreased power in the confirming signal relative to the disconfirming signal 

whereas dark red indicates increased power in the confirming signal. The frequency scale 

ranges from 1 to 30 Hz to be consistent with the frequencies utilized as features in the 

machine learning and the time ranges from -200ms to 400ms as the decrease in alpha log 

power for confirming information was observed at stimulus onset to 500ms. For the 

confirming information at the F2 location, there appears to be a decrease in power around 

10 Hz from 100ms to 400ms but in the F4 location, there does not appear to be any 

drastic decrease in confirming power in the 8-15 Hz range. Both the F6 and F8 locations 

appear to have a decrease in power in the 5 – 10 Hz range from 0ms to 200ms for 

confirming information. Although there appears to be some trends in the ERSP’s that are 

in line with previous findings, there was no statistical difference between confirm and 

disconfirm ERSP’s (nonparametric statistical test using Monte Carlo permutations with 

cluster corrections, alpha=0.01). This lack of difference at the cross-participant level is 

likely due to noisy brain activity. Due to the nature of the ABC test, participants were 

free to select information when desired which may have resulted in participants 

deliberation and selection of information to not lineup. If this occurred, the brain activity 

associated with each information type would not be consistent, resulting in noisy EEG 

signals.  
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Figure 58: Salient Features Non-Phase Locked ERSP 

4.3.2.2.3 Cross-Participant 

The results reported in the previous sections of this chapter are within-participant 

cross-validation results as described in Section 3.4. Since the Frequency Features per 

Information Selection dataset had the best model performance, cross-participant models 

were explored on this dataset as outlined in Section 3.4.3.2.1. This dataset had 994 

observations across all participants in which 62% is the positive class or the “confirm” 

label. A train, validation, test approach as applied in which models were trained on 12 

participants, validated with 2 participant’s data and a single participant was used as a test 

dataset. This process was repeated so that each participant was the test set. The ensuing 

results are performance metrics on the test dataset. 
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The balanced accuracy for cross-participant test performance is displayed in 

Figure 59. The participant number along the horizontal axis is the participant which was 

utilized as the test set. A balanced accuracy above the baseline 50% was achieved on 12 

of the 15 participants by at least one model. The mean test balanced accuracy (with a 

95% confidence interval) for the LDA, RFC and ANN models was 0.496 (± 0.013), 0.493 

(± 0.022) and 0.507 (± 0.021). Although above 50% balanced accuracy was obtained on 

12 participants, the mean test balanced accuracy was not significantly greater than 50% 

balanced accuracy (95% confidence interval). The highest balanced accuracy was 0.589 

and was obtained by the ANN on participant 6910.  

 

Figure 59: Cross-Participant Model Balanced Accuracy  

To compare the cross-participant model performance with the within-participant 

model performance, the AUROC was examined. The mean cross-participant AUROC for 

LDA, RFC, and the ANN were 0.489, 0.493, and 0.498 respectively. The cross-

participant model AUROC was marginally smaller than the within-participant AUROC 



136 

for the LDA, RFC and ANN which was 0.493, 0.485, and 0.521 respectively. The cross-

participant AUROC for each participant as the test dataset is displayed in Figure 60. 

 

Figure 60: Cross-Participant Model AUROC  

The highest AUROC obtained on a single test participant was 0.628 and was obtained by 

the RFC on participant 7590. These results indicate that models can perform well on the 

dataset, but the lack of consistent results across all test participants may be due to a 

multitude of factors. In addition to the small amount of data per participant, one factor 

which could be affecting the poor cross-participant performance is some participants may 

have noisy data. For example, as shown in Figure 54, all within-participant models 

performed poorly on participant 1962 with an AUROC below 0.31. When data is 

combined for cross-participant models, this noisy data can reduce performance.  

4.4 Error Analysis 

One hypothesized source of error in the model classification for the Frequency 

Features per Information Selection dataset was the task type from which the confirming 
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and disconfirming information was selected from. This dataset consists of information 

from all of the tasks and if models could not generalize across the different types of tasks 

the combination of tasks could be a source of the low model performance. To analyze the 

classification errors contributed to each task, classification errors across all participants 

were summed. The number of observations from each task which contributed to the total 

observation classification error was then determined as a percentage of the total 

classification error. The task error distribution for the RFC is displayed in Table 14. 

Table 14: Task Classification Error Distribution for RFC 

Task Percent of all 

observations (%) 

Percent of observations 

with errors (%) 

Stand 19.8 25.5 

Comparison 27.3 31.2 

Intel 18.3 14.8 

HR 30.7 32.5 

While only the RFC error analysis is displayed, all classifiers had nearly identical results. 

The RFC performed the best on the Intel tasks and the worst on the Stand tasks with the 

Intel task having a lower distribution of observations in the errors and the Stand task 

having a higher distribution. Although the errors vary by task, the task distribution of 

classification errors is fairly close to the task distribution among all observations. These 

results suggest the task source of the information is not a main cause of the classification 

errors.  

4.5 Summary 

Contrary to the hypothesized effects that decision tasks with an initial decision 

would result in more unbalanced information search, they actually appeared to result in 

more balanced information search. Stand tasks with an initial decision resulted in a more 
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unbalanced information search compared to Stand tasks without an initial decision. This 

trend could be due to participants experiencing cognitive dissonance after making an 

initial decision.  

The behavioral patterns of information selection or information/question 

importance were used to quantify the presence of confirmation bias in a task. These 

behaviors were used to measure a participant’s level of bias on a task by finding the 

proportion of selected confirming information. Both task completion time and 

information search completion time behavior patterns were explored for association with 

biased behavior. In the early data exploration stages, a significant trend was observed in 

the task completion times of the Stand, Comparison and HR tasks. The trend resulted in 

reduced completion time as the order of the task increased in the ABC assessment. In 

addition, the information search completion time of the Stand and Comparison tasks were 

also affected by this decreasing trend in completion time. For these reasons, further 

association with completion time and confirmation were not explored. A participant’s 

information revisits was also explored for association with biased behavior but no 

significant trends were observed. 

The machine learning balanced accuracy metrics for all four explored datasets are 

displayed in Table 15. The first four columns of results are within-participant cross-

validation results, while the final column is cross-participant test results. Each column 

corresponds to the results for the highest performing model for the respective dataset. The 

two datasets associated with segmenting the data by task performed rather poorly. The 

Frequency Features per Information Selection had the highest model performance, 

achieving model performance significantly greater than 50% baseline on participants 
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6809 and 7960. The cross-participant models obtained test performance greater than 

baseline on four participants, but the mean test accuracy across all participants was not 

significantly greater than baseline.  

Table 15: Machine Learning Summary of Balanced Accuracy Results 

 

 

 

 

The low machine learning performance in the information selection datasets may 

be a result of the fact that there is no statistical difference between the cross-participant 

time series signals of confirming and disconfirming information. Despite the lack of 

significance between the two conditions, the expected brain activity was present in 

Participant 

ID 

Time Series 

per Task 

Frequency 

per Task 

Time Series 

per Info. 

Frequency 

per Info. 

Cross-Participant 

Frequency per 

Info. 

1234 - - ↑ - - 

1962 - - ↑ - - 

3097 - - - - - 

3914 - - ↑ ↑ ↑ 

4818 - - - - ↑ 

4960 - ↑ ↑ ↑ - 

6809 - - - ↑* - 

6910 ↑ - - ↑ - 

6920 ↑ ↑ ↑* ↑ ↑ 

7344 - - - - - 

7590 - - - - - 

7914 - - ↑ - ↑ 

7958 - - - ↑ - 

7960 - ↑ - ↑* - 

9646 - - - - - 

Legend 

- below 50% 

↑ above 50% 

↑* above 50% and  

significant (if applicable) 
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participant 6809 which had one of the best model performances. In addition, at least one 

of the expected features were one of the top eight most salient features in four of the 

participants with the highest RFC performance. 
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V. Conclusions and Recommendations 

5.1 Conclusions of Research 

This research was successful in investigating decision-based cognitive bias 

relationships between behavior, self-reported information and psychophysiological 

signals collected when a participant conducts a decision affected by confirmation bias. 

These relationships were investigated by examining significant behaviors associated with 

a biased task, as well as exploring machine learning methods to detect confirming and 

disconfirming information in a task. Detecting the processing of confirming and 

disconfirming information can allow subjective detection of confirmation bias by 

determining when confirming information is inappropriately sought in decision making. 

In addition, time series signals and machine learning models’ salient features were 

utilized to explore brain activity associated with confirming and disconfirming 

information. 

The first relationship investigated in this work was the effect of making an initial 

decision on subsequent information search, specifically in the Stand task. This 

relationship was investigated to answer research question one (see Section 3.2)  and was 

hypothesized that the absence of an initial decision prior to information search would 

result in more balanced information search compared to making an initial decision. 

Contrary to this hypothesis, findings indicate when participants did not make an initial 

decision prior to information search, the participants information search was less 

balanced. Across all participants, the Stand tasks without an initial decision appeared to 

result in a higher proportion of selected confirming information compared to Stand tasks 
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with an initial decision. In the Intel task the relationship between the presence of an 

accepted hypothesis and evidence importance was investigated. Across all participants 

there did not appear to be an effect on evidence importance between Intel tasks with and 

without an accepted hypothesis.  

Research question two was focused on quantifying a participant’s level of 

confirmation bias in each ABC assessment task and subsequently associating behavior 

patterns with high levels of bias. The level of bias in the Stand and Comparison tasks 

were quantified by the proportion of confirming information selected for which the cross-

participant mean level of bias was 0.52 and 0.65 respectively. The level of bias in the 

Intel and HR tasks were quantified by the proportion of confirming evidence and 

questions selected for which the cross-participant mean level of bias was 0.71 and 0.59 

respectively. Behavior patterns in task and information search completion time were 

investigated for association with levels of bias in each task. Unfortunately, task order had 

a significant impact on completion time and thus was not investigated further for 

association with confirmation bias. Lastly, patterns in information revisits were also 

explored for association with bias. But there were no significant patterns across all 

participants. Regarding this focus of research, confirmation bias was successfully 

quantified for each task but no significant patterns in behaviors were associated with the 

level of bias. 

To investigate research question three (see Section 3.2) multiple machine learning 

avenues were explored to determine if a machine learning classification model can detect 

the presence of confirming and disconfirming information with performance greater than 

random chance. Machine learning models were able to obtain a within-participant cross-
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validation balanced accuracy above 50% on 10 of the 15 participants, but only two 

participants were significantly greater. Despite the overall low performance, the highest 

balanced accuracy on a single participant was only 62.6% which was obtained on 

participant 6809 by the ANN. In addition, the highest within-participant area under the 

ROC for a model across all participants was 51.2% and was obtained by the ANN. Cross-

participant machine learning was also explored on the Frequency Features per 

Information Selection Dataset to increase the amount of training data and allow model 

tuning. Model test balanced accuracy was greater than 50% on four participants, with the 

highest achieved test balanced accuracy being 58.9% obtained by the ANN on participant 

6910. But none of the three explored model’s mean cross-participant balanced accuracy 

was significantly greater than 50%, indicating performance was not consistent across 

participants. Overall machine learning model performance was rather low. Further 

machine learning exploration with a larger within-participant dataset is necessary to 

determine the highest achievable test performance with model tuning.  

Two methods were employed in this work to determine if neurophysiological 

signals in the right frontal lobe are associated with confirming and disconfirming 

information: machine learning salient features, and averaged time series signals. Salient 

features in the random forest classier were explored, but no features associated with brain 

activity in the right frontal lobe appeared to be significant in all 15 participants. Despite 

the lack of feature consistency across all participants, at least one feature associated with 

the expected brain location was among the eight most important features in four 

participants. These four participants were also among the participants with the highest 

random forest model performance. These results indicate a random forest model which 
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uses a feature associated with the right frontal lobe of the brain is likely to have higher 

model performance than a model which does not use such features. Comparison of cross-

participant time series signals for confirming and disconfirming information also had 

similar results. There was no significant difference in the cross-participant time series 

signals of the two types of information at EEG locations associated with the brains right 

frontal region. But within-participant time series signals of the participant with the 

highest model performance appeared to have increased brain activity in the presence of 

confirming activity. Although no conclusions can be drawn at the cross-participant level, 

participants with high model performance appear to have some of the expected brain 

activity in time series signals and salient features associated with the expected brain 

activity.  

5.2 Significance of Research 

Traditional methods of estimating confirmation bias employ subjective, self-report 

methods to measure a decision-task with bias. These methods are not suitable for 

estimating bias in real-time due to the inherent delay and subjectivity of the measures. 

With the crucial effect biases can have in military operations, a more robust, dynamic 

method of estimating bias is necessary. The results in this work support the potential for 

objective measurement of confirmation bias through neurophysiological measures. The 

machine learning models achieved within-participant performance above the baseline 

balanced accuracy of 50% on 2 of the 15 participants, which indicates classifying 

confirming and disconfirming is feasible, but did not meet this works objective of at least 

three participants above 50%. In addition, model features associated with brain activity in 
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right frontal lobe were one of the eight most salient features in four participants. These 

results indicate the machine learning models could be using the expected brain activity to 

differentiate between confirming and disconfirming information. However, not all 

participants had consistent machine learning results and prominent features associated 

with the expected brain region. Future work is necessary to generate more data 

observations for machine learning with a closer focus on classifying information as 

confirming or disconfirming using frequency features. 

5.3 Recommendations for Future Research 

5.3.1 ABC Assessment Changes 

For this work, minimal modifications were made to the ABC assessment to 

prevent tampering with literature-backed decision tasks (see Section 3.3 for implemented 

assessment modifications). In the early stages of data exploration, it was apparent that the 

assessment was not optimal for physiological data collection or machine learning. The 

data generated from the ABC assessment was not ideal for machine learning because of 

the small number of observations generated. The maximum information that could have 

been selected by a participant is 144, with the actual number ranging from 42 to 93 across 

the participants. For a within-participant model the number of observations per 

participant is insufficient for a proper train, validation, test data split.  

One possible approach to generate more observations is to either double the 

number of decision tasks in the ABC assessment. This would likely double the number of 

observations to approximately 84 to 186 observations per participant. The disadvantage 

of doubling the number of decision tasks is the subject participation time would double 
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and fatigue could produce poor physiological results. A different method to improve the 

number of observations which should also be explored is to only use one type of decision 

task for all 14 decision tasks. This would allow a biased and unbiased decision task to be 

used in a train and test set for machine learning.  

Another approach to generate more observations is to have participants complete 

a pre-assessment that could provide more observations. A possible approach is to 

generate 150 sentences on controversial topics which confirm or disconfirm a stance on 

the given topic. The pre-assessment would present one sentence at a time for ten seconds 

to the participant. After the ten seconds, the participant would have five seconds to 

determine if they agree, disagree, or are neutral regarding the sentence. The pre-

assessment approach would generate 150 observations (labeled as confirming, 

disconfirming or neutral) while only adding approximately 37.5 minutes to participation 

time.  One potential disadvantage with the pre-assessment, is the brain activity present 

could be different than the brain activity in a complex decision task. But as long as the 

brain activity is similar enough with the same activation from confirming information it 

would provide more observations with minimal added participation time.  

The structure of the decision tasks in the ABC assessment was not optimal for 

physiological data collection because it allowed participants to read information without 

selecting it and participants could quickly click through information. The research 

investigator observed participants during the assessment and some general trends were 

noticed. First, on the Comparison tasks some participants displayed comments by 

clicking through all comments at once, despite the goal of minimizing the number 

selected comments. When this occurred, the participant’s deliberation of each piece of 
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information was not in sync with when they selected the comment. These observations 

were removed from the machine learning datasets making an already small dataset even 

smaller. Secondly, in the Intel and HR tasks participants generally read each 

question/evidence and then made their selections all at once. Since the 

electrophysiological data was time-locked to when the participant selected the 

questions/evidence the brain activity during the deliberation may have been missed.  

To prevent the misalignment of the participant’s information deliberation and the 

time-stamped physiological data, only one piece of information in a task should be 

displayed at a time. The ABC assessment would display how many pieces of information 

are available for a given task, but display only one piece of information until the 

participant chooses to proceed to the next piece of information. Once every piece of 

information is reviewed by the participant, the participant could freely review all 

information. Structuring the decision tasks in this manner would ensure the participant is 

only deliberating on one piece of information during the time that piece of information is 

displayed. A shortcoming to this structure is the decision task would not mimic 

information search in a real-world decision. Despite this limitation, the changed structure 

may show greater machine learning performance is achievable prior to replication in a 

near real-world decision task. 

 Finally, because the earliest task took far longer than subsequent tasks, and 

because the first task of each type took longer than the remaining tasks of each type, a 

training session for each of the task types prior to the experiment would help reduce the 

effect of not being familiar with the task on the true duration of the participant’s activity 

in assessing information and making decisions.  Additionally, to de-trend the way 
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learning effect perturbs task completion time, the task order within the ABC assessment 

should be counterbalanced. Changing the order of presented tasks for each participant 

would determine if inter-task differences in completion time are due unfamiliarity or 

because of the differences in duration of the participant’s behavior task within the task.  

Implementing this change could allow completion time to be associated with 

confirmation bias. 

5.3.2 Machine Learning  

With the limited number of observations per participant, the machine learning 

methods in this work were cursory and were mainly used to determine if the problem was 

suitable for machine learning. With a proper sized dataset, a train, validation and training 

set should be used for model tuning. Utilizing model tuning, multiple machine learning 

models could be compared to show if one model is best for the problem domain. In 

addition, with more complex, tuned models, a higher model performance is likely 

achievable. Thus, future work should explore generating a new dataset with a significant 

increase in observations.  

While a larger dataset would likely improve performance, there are still multiple 

machine learning facets that can be explored further on these datasets. This work focused 

on mean power spectral density of the clinical frequencies and the raw time series signals 

as features. Recent research on cognitive workload estimation from EEG has shown 

variance of power spectral density as a significant feature [54]. Consequently, using 

variance in addition to the mean power spectral density may show improvement in 

performance. Another avenue that could be explored is the approach utilized on the task 
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dataset. This work implemented a classification approach to estimate a decision-task as 

biased. An alternative approach could use a regression problem in which the proportion 

of confirming information is estimated. The regression approach could improve 

performance by predicting the actual proportion of confirming information instead of the 

simplified biased or unbiased method in this work. 

5.3.3 Physiological Measures 

Although this work focused on EEG analysis, EOG and ECG were also collected. 

Analysis of these physiological measures could show relationships with confirmation 

bias. In addition, galvanic skin response (GSR) should be collected in future work. 

Increased arousal measured through GSR at six seconds after information onset has been 

associated with hypothesis confirming information compared to disconfirming 

information [10]. Unfortunately, this work had no GSR-sensing equipment. Associating 

increased arousal with presence of decision-confirming information, relative to 

disconfirming information, may help quantify the presence of information confirming the 

participant’s belief. In addition, operationalizing the participant’s emotional response 

when they select confirming and disconfirming in thel information search portion of the 

ABC assessment could be an added feature in the machine learning models.  A greater 

overall emotional response to information correlated with increased brain activity of the 

right frontal portion of the brain could boost machine learning performance immensely. 

However, some decision task design changes to the current ABC assessment may be 

necessary to capture proper GSR responses. Currently, the ABC assessment allows 

participants to freely select information at any time. Although, this method closely 
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mirrors a complex decision, it is not suitable for ensuring a six second GSR response can 

be associated with selected information. Participants could select multiple pieces of 

information within a six second window which could cause GSR responses to overlap. 

For recommended task changes to improve physiological data collection, see Section 

5.3.1.  

In addition to the aforementioned measures, utilizing functional near-infrared 

spectroscopy (fNIRS) to associate brain activity with confirmation bias measures should 

also be explored. fNIRS is a non-invasive optical imaging technique which measures 

blood flow response to brain activity [55]. fNIRS tends to provide better spatial but lower 

temporal resolution than EEG and can also be less susceptible to noise artifacts [56]. 

fNIRS has been utilized to associate activation in the dorsolateral prefrontal cortex with 

working memory [57] and has shown promise for investigating decision making [58]. 

Utilizing fNIRS in future work could augment collected EEG with better spatial 

information that could be beneficial in classifying information.  

5.3.4 Participant Selection for Future Trials 

As noted in the limitations (Section 1.6.2) the participant demographics for this 

work were not diverse. To validate the results of this work on a larger scale, a more 

diverse participant pool should be solicited. Both males and females and a wider range of 

ages, backgrounds, education levels, and diversity in other factors should be included. 

Given the goal of this work is estimating confirmation bias in general decision-tasks a 

specific population is not necessary, but this work could also be replicated with a targeted 

population. This would determine if there are specific behaviors or physiological 
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measures associated with confirmation bias in a specific task like intelligence analysis or 

cyber defense analysis.  

5.4 Summary 

This work explored estimating confirmation bias in decision making through 

subjective measures by classifying EEG signals from decision-confirming or 

disconfirming information. The machine learning performance objective measured by 

balanced accuracy was not met as only 2 of the 15 participants obtained above 50% 

balanced accuracy, indicating subjective estimation of confirmation bias may be feasible 

but more work is necessary. In addition, features associated with brain locations that have 

been related to the presence of confirming information, were salient features for 

participants with the highest model performance. But the lack of consistent performance 

across participants indicate experiment design changes are necessary for improved 

performance. Experiment design changes are not only necessary for improved 

physiological signal collection, but also so information acquisition behavior patterns can 

be associated with confirmation bias. If the explored confirmation bias estimation 

performance can be improved, suboptimal decisions due to confirmation bias could be 

detected and prevented.  
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Appendix A: Balanced Accuracy Incorrect Significance 

The binomial probability formula below gives the probability of exactly k success in n 

trials [59]: 

𝐶(𝑛, 𝑘) 𝑝𝑘 𝑞𝑛−𝑘 

𝑛: number of independent trials 

𝑘: number of successes 

𝑝: probability of success 

𝑞: probability of failure (1 − p) 

With an alpha of 0.05 in a 95% confidence interval, there is a 5% probability of obtaining 

incorrect significance by random chance on any given participant. Using the binomial 

probability formula above, with 15 participants there is a 46.3% chance of obtaining 

incorrect significance on exactly zero participants, 36.6% chance on exactly one 

participant, and a 13.5% chance on two participants. The probability of obtaining 

incorrect significance on more than two participants is one minus the sum of these 

probabilities and is 3.6%. Therefore more than two participants must be significantly 

above 50% balanced accuracy to obtain a significance with an alpha of 0.05. 
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Appendix B: IRB Approval Letter 
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Appendix C: Abbreviated Informed Consent Document 
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Appendix D: Pre-Experiment Questionnaire 
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Appendix E: Post-Experiment Questionnaire 
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