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Chapter 1

Introduction

Just as the microscope empowered our naked eyes to see cells, microbes, and viruses,
thereby advancing the progress of biology and medicine; or as the telescope opened
our minds to the immensity of the cosmos and has enabled humankind to explore and
understand the space in spectacular detail, in the current century, ComputingScope
(computational "instruments" for "viewing" and analyzing data) will help success-
fully decipher and navigate another infinite: the staggeringly complex multi-modal
(text, image, video, and sensors) information in all facets of our lives. [1]

This work has been written in the context of widespread use of technologies
and paradigms of the Industry 4.0, or also initially called smart manufacturing.
Answering to the need of a unique value standard for the company, valid from
shareholders to stakeholders, the same context sees the birth of the Industry 5.0 idea.

1.1 Author’s background

This manuscript is the result of the doctoral program in "Management, Production
and Design" that I approached with a master’s degree in mathematical engineering
obtained from the same university, the Polytechnic University of Turin. During these
years of doctoral studies and research grants, the topics addressed and with published
scientific results are as follows:

• Machine Learning (ML) methods and hybrid forecasting systems for Predictive
Maintenance, [2] [3] [4] [5]
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• analytical models and simulation methods for cycle time, throughput and
energy consumption optimization for automated warehouse systems, [6] [7]
[8] [9]

• functional integration between Manufacturing Execution Systems and Enter-
prise Resource Planning (ERP) and Product Lifecycle Management (PLM)
systems toward a new factory knowledge, [10] [11] [12] [13] [14]

• design and simulation of a Battery Swapping System (BSS) for Electric Vehi-
cles (EVs). [15]

During the same years, I have been involved in the following research projects.

• Safe&Green Intralogistic System with 4.0 integrations (SaGrIS4.0) be-
longing to the MESAP polo. The aim of the project was to integrate the
innovative ESMARTSHUTTLE®SAFE prototype with the high-efficiency
automated warehouse within a manufacturing plant in order to allow real-time
management of all data collected in the plant and to increase its overall effi-
ciency from both an economic and energy perspective. From an economic
point of view, the integration will both avoid costly downtime due to inefficient
warehouse management and reduce product picking and shipping times by
optimizing warehouse utilization based on production data. From an energy
perspective, the use of the ESMARTSHUTTLE®system, which requires much
lower energy consumption than conventional handling systems, will achieve
significant energy efficiency. The innovative automated warehouse integrated
into the production plant has been implemented in a pasta production and
storage system.

• Hierarchical Open Manufacturing Europe (HOME), an European project
searching for solutions for environments where the aggregate information is
there, but not where it is needed, when it is needed, who needs it. This makes it
extremely complex to ensure the economic, social, environmental, and energy
sustainability of manufacturing in sectors that are centuries old (automobile)
or more (textile). The overall goals of the project are seemingly simple: to
make manufacturing lean, smart, aware, and sustainable. The project places at
the center of any manufacturing conversion process the human being, who is
the entity that determines its success or failure. That is why the name of the
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project: Hierarchical, because it does not refer to social organization, but to
information systems architecture, as an alternative to anarchic architectures,
in which each sector of manufacturing has its own database-administrative,
commercial, productive-not communicating with each other; Open, to free the
shop floor from the "Babel" of proprietary protocols that prevent the transfer
of innovation; and Manufacturing Europe, because the project aspires to be a
model for the entire manufacturing industry, not only Italian, but European,
because for the first time we can consider ourselves a single market of evolved
consumers, with over 500 million people.

• CAPTure aNd foStEr additive manufacturing knowlEdge for luxury in-
dustry (CAPT’N’SEE), co-funded by the European Union, is a training
program dedicated to professionals willing to enhance their expertise in the
use of Additive Manufacturing (AM) technologies. The project is particularly
addressed two core steps of the AM value chain that have been neglected so
far: the AM early design stages, and the Manufacturing Execution Systems
(MES) stage allowing real-time control of processed parts.

1.2 Motivations of the research

The main motivation of the research is the desire to investigate hybrid systems
and their application in the manufacturing sector. Taking the different research
projects discussed as examples, different types of models were used depending on
the data available, the complexity of the system, and the type of analysis to be
performed. It is also true that in many case studies different models have been
applied in order to obtain the same estimates of variables values, so much so that
comparisons between such models have been used as a technique for verifying the
developed model: for example, discrete-event simulation methods have been used
to verify the analytical models used to estimate cycle time, throughput, and energy
consumption of average handling and its standard deviation for automated warehouse
systems, or different techniques have been used to map and describe the resources
of an enterprise information system according to the level of detail needed. These
examples are just a few of the various research works in the literature that use an
approach that can be considered a hybrid approach to modeling.
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This thesis work aims to propose a method or rather a framework for designing
an information system that not only includes, but integrates different modeling
techniques in order to optimize the stages of mapping the information flows of the
system and describing the knowledge needed in order to achieve the awareness that
can guide toward optimal choices. Such hybrid systems, i.e., hybrid model systems,
turn out to be an interesting research topic as they are widely used even though the
scientific literature provides neither a clear definition and comprehensive results
regarding their benefits over single models and under different hybridization choices.
Another important open research question specifically concerns system knowledge
and, in particular, how to integrate so-called prior knowledge and how to structure a
framework that provides for the addition of new knowledge sources over time. [1]

The main scientific contribution that this work seeks to bring, therefore, is a
proposal for a design method that promotes to the reader, or accentuates, hybrid
thinking, that is, designing an information system by considering different models,
separately and simultaneously, in order to obtain more reliable descriptions and
predictions of the state of the system, ensuring greater resilience of the system
as it is able to exploit the strengths of different prediction models. This certainly
pushes research efforts toward the concepts of Enterprise Information Systems (EISs)
and Knowledge-Based Systems (KBSs), and thus toward the study of how to use
different information mapping techniques and different approaches of variables
modeling (the main ones being data-driven and those based on laws of physics,
analyzing how integrate human-driven ones, i.e., variables models based completely
on manufacturing human know-how).

Hybrid modeling, considering different modeling techniques, aim to avoid the
unscrupulous use of one single family of models that are often non-sustainable.
It is unequivocal that the sustainable manufacturing needs an appropriate digital
information system that has (or that is design with) an awareness of the enterprise’s
objectives and the impact of its use by the enterprise’s resources. Today it is required
that this awareness is increasingly comprehensive and effective, in other words,
that it follows the 5.0 vision by making use (or being able to make use) of all 4.0
technologies. In order to guarantee the sustainability, an hybrid model has to consider
the impact due to energy consumption or hardware production and installation, but
often the non-sustainability is also due to maintenance costs or the inability of
humans to use the system.
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Since it is necessary to introduce the concept of sustainability in the choice of
models to be used, it is evident that it is not enough to think exclusively in terms of
mapping information flows and cognitive processes (based and therefore generating
knowledge), but it is necessary that a Cyber-Physical System (CPS) possess the
ability to finalize these cognitive processes to increase the effectiveness and add the
value of business processes. This ability requires a function that can be associated
with the human concept of judgment: both the judgment of society, or how a subject
relates to global objectives, and judgment towards oneself, or how the same subject
judges itself on the basis of its own personal objectives. Considering the need of
such smart CPS, from 2020, the Commission department of Research and Innovation
has published several documents on the European vision of Industry 5.0, i.e., the era
where industries are focused on challenges for society, including the preservation of
resources, climate change and social stability. In this sense, the subject’s wisdom
could be described by Industry 5.0’s own points, that, nowadays, according the
European view, can be resumed by the pillars of human-centrality, sustainability and
resilience. The Figure 1.1 shows few results obtain on the Scopus platform related to
the concept of smart manufacturing and Industry 5.0.

Fig. 1.1 Scopus research: results related to the individual and intersecting concepts of
Industry 5.0 and smart manufacturing.
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1.3 Aim of the research

The aim of this work is contributing to the research concerning concepts and tech-
niques used to manage the enterprise digital information, i.e., to power it by produc-
ing or making available data and to use that information to create a manufacturing
enterprise that can be considered sustainable in this era: the dawn of the 5.0 industrial
philosophy. This work concerns the formalization and application of a framework
based on hybrid models and with the aim of creating digital twins [16] of products
and manufacturing processes, to provide them with explicit knowledge. The work
assumes that the cooperation between formal models of explicit knowledge and
data driven algorithms could contribute to the efficacy and efficiency in cognitive
processes, as a whole. In particular, this framework is design to be focused on
manufacturing processes and products and on (i) effectively managing the history
of data relating to them, (ii) comprehensively describing the current condition of
these entities, and (iii) accurately estimating future states, in order to support the
manufacturing decision-making activity.

In detail, this thesis is a work dealing with (i) awareness Knowledge-Based
Systems (KBSs) and (ii) hybrid systems as base concepts for designing a digital
platform aiming of supporting a specific physical manufacturing environment. The
model proposed by this work is based on these two concepts and, basically, it is a
theoretical formalization of a digital platform belonging to a Cyber-Physical System
(CPS) that uses hybrid models in order to achieve a 5.0 wisdom, i.e., in order to
promote and follow a 5.0 awareness as digital component of information management
for a generic 4.0 manufacturing system. The hierarchical structure of the 4 levels
of Data, Information, Knowledge and Wisdom (DIKW) is proposed as a method
capable of (i) making use of data-lakes, information flows and knowledge processes
to make conscious decisions, with wisdom for the precisely, and (ii) developing the
concept of hybrid system by characterizing the 4 hybrid subsystems: hybrid data
sources, DB and computer networks hybrid models, hybrid models for estimating
state variables, and hybrid decision support methods.

Case-study applications are presented in order to test the robustness of the
proposed framework in terms of generality and specificity in the manufacturing
sector. Another expected outcomes related to the proposed framework is its evident
contribution towards a 5.0 smart manufacturing. The main contribution of the
case study is investigating on the synergy between Physics-Based (PB) models
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Fig. 1.2 Representation of the weight put on types of information in different modeling
paradigms inspired on a review work about hybrid modeling and Industry 4.0 (the Industry
5.0 scenario is considered enabled by hybrid modeling techniques of recent years). [17]

and Machine Learning (ML) or completely data-driven models. Since PB models
require few data only to calibrate the effectiveness of the understanding of the system
dynamics, and ML models are completely data-based, the aim is to develop a hybrid
model that can work with significant performance already at the beginning of the
data acquisition activity, thanks to the physics approach, and improve as the data
increasing, thanks ML to algorithms. The equilibrium shown by the Figure 1.2 is
hypothesized mainly based on this synergy.

1.4 Research questions

1.4.1 RQ1: concerning Industry 5.0

Is the DIKW-schema able to support the design of a Decision Support System
(DSS) integrated in a 5.0 smart manufacturing context?

Actually, the size of the scientific literature regarding the current Industry 5.0 does
not justify a full interest on the subject. In any case, the concepts of sustainability,
resilience and human-centrality are clear pillars from which to build a variables
system on which decision-making processes are based to achieve a system able of
managing changes in the factory and in the system in which such factory operates,
thanks to the collaboration with the human resources of the factory, and in order to
make the manufacturing CPS sustainable. That literature regarding the Industry 5.0
underlines the need to find a way to incorporate into the design of AI services some
sort of overall vision of the enterprise that can guide AI decisions with factors that
include the welfare of broader systems, even broader than the enterprise system itself.
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In this sense, the DIKW pyramid is a proposal along these line, where the wisdom
subsystem represents (i) a concept that drives designers to include such universal
factors as the target of the service to be developed, and (ii) a general component
common to all the services in the factory in order to create a common vision followed
by all digital agents, and non-digital agents, who are able to make effective decisions
within the factory.

In order to answer this question, this work contains the description of the follow-
ing research activities:

• literature review on the DIKW schema,

• literature review on the Industry 5.0,

• framework design towards 5.0 view trough the DIKW principle,

• case study on a Total Productive Maintenance (TPM) system in order to test
the applicability of a DIKW agent-based model.

1.4.2 RQ2: concerning hybrid systems

What can be a formal and comprehensive definition of hybrid systems employed as
manufacturing decision support components?

The second research question refers primarily to the definition of hybrid system
and both the analysis of the literature and the proposed framework contribute for the
answer to such question: in the literature the use of this term is employed in different
ways and occasionally even in conflicting ways. Continuing, the second research
question also refers to how to measure the contribution of a hybrid system, which are
the models to use in such system and which is its structure, i.e., how these models
are integrated.

In order to answer this question, this work contains the description of the follow-
ing research activities:

• literature review on hybrid systems,

• discussion of the hybridization referred to data bases, information systems and
Knowledge-Based Systems (KBSs) in order to provide a more comprehensive
definition,
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• analysis of the human cross-disciplinarity characteristic as a fundamental
component of each digital components involved in a Decision-Support System
(DSS),

• case study focused on physics-based and (sensors) data-driven hybrid model
for KBSs.

1.4.3 RQ3: concerning (human) manufacturing prior knowledge

The third research question reads as follows:

Is hybrid modeling a paradigm that standardize the use of human prior knowledge
in manufacturing decision support systems? If so, how?

The third question investigates how to integrate human prior knowledge in the
framework and how to structure such framework in order that it is able to generate
new knowledge and to receive knowledge from new sources over time.

In order to answer this question, this work contains the description of the follow-
ing research activities:

• literature review on hybrid systems,

• discussion of the hybridization referred to Knowledge-Based Systems (KBSs),

• analysis of the human cross-disciplinarity characteristic as a fundamental
component of each digital components involved in a Decision-Support System
(DSS),

• theoretical proposition of the human prior knowledge involved with simulation,
physics-based and (sensors) data-driven models in hybrid KBSs.

1.5 Thesis outline

The thesis consists of the following five chapters.

1. Introduction The first chapter has introduced the background of the author,
the motivations and the aim of the research and the research question.
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2. Manufacturing context. In the second chapter there is a quick introduction
to the main manufacturing concepts on which this thesis is based: lean manu-
facturing from which is important to understand variables and methodologies
to eliminate wastes, Enterprise Information Systems (EISs) focusing on ERP,
PLM, MES and their integration, Industry 4.0 and its technologies, and finally
the Industry 5.0 and the European manufacturing view.

3. Design framework for smart data-driven manufacturing services. The
chapter is regarding the description of the proposed hybrid wisdom-based
framework. It includes an analysis of manufacturing processes and the op-
portunities they offer for the proposed framework. After giving basic notions
about agent-based system, DIKW-structures and hybrid modeling, the element
of the framework, the agent, is presented with DIKW levels, the hybrid struc-
ture of which is subsequently discussed level by level. Finally, a proposal of
framework evaluation metrics and the expected impacts in Industry 4.0 and
Industry 5.0 is provided.

4. HW-TPM system for CNC machine tools. The fourth chapter is focused on
the application of the framework to design a Tool Condition Monitoring (TCM)
system for a Total Productive Maintenance (TPM). Results obtain with a real
case application are provided on milling process: monitoring and optimize the
changeover of the milling cutters using open data for results replication.

5. Conclusions. The last chapter (i) provides the summary of the work, (ii) gives
conclusive remarks, (iii) discusses the research questions by discussing the
results from theory and case studies also from a holistic point of view, and (iv)
gives guidelines for future improvements for the proposed frameworks and
about new case studies.



Chapter 2

Manufacturing context

The aim of this chapter is to clarify definitions, standards, and theory used in the
whole treatment. This treatment is specific in the manufacturing context where the
affirmation of 4.0 paradigms, Information Technologies (ITs) and where the 5.0
philosophy is emerging.

Smart manufacturing can be defined as the extensive application of computer-
integrated manufacturing and advanced intelligence systems to enable rapid man-
ufacturing of new products, dynamic response to product demand, and real-time
optimization of manufacturing production and supply-chain networks. [18] Smart
manufacturing is considered as the evolution of Intelligent Manufacturing (IM),
where IM being knowledge-based, whereas smart manufacturing is data-driven and
knowledge-enabled. Smart manufacturing uses Artificial Intelligence (AI) techniques
to learn directly from data and assist decision making, in contrasts with the "expert
system" approach that aims to mimic the rules from human experts with the help of
analysts who translate human rules and context expertise into software models. [19]
[20]

The term smart manufacturing is thus a concept peculiar to this fourth industrial
revolution and it sets the goal for process and IT platform designers to achieve. In the
next paragraphs, in addition to dealing with this concept narrowly related to Industry
4.0 and the Cyber-Physical System (CPS), the lean philosophy is first introduced
which is a manufacturing philosophy that chronologically anticipates this revolution
but today represents a paradigm synergistic to Industry 4.0 as shown by several
works in the literature. Finally, in that chapter, the very young concept of the fifth
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industrial revolution is also presented. The industry 5.0 is the result of the volunteer
of scientists and industrialists to decide the best general vision or approach for the use
of 4.0 technologies, paying attention to the issues of human-centric, sustainability,
and resilience.

2.1 Lean manufacturing

The term lean was designed in 1992 by researchers of MIT Womack and Jones, in
their best-seller book "The Machine that Changed the World", [21] outlining the
system of production that allowed the Japanese company Toyota’s results clearly
superior to all competitors in the world Since then, thousands of excellent organi-
zations in the world have adopted the lean model, as in the services industry, as
applicable to all operational processes, not only strictly productive, but also logistical,
administrative, or product design and development.

Lean is a set of principles, methods, and techniques for the management of
operational processes, which aims to increase the value perceived by the end user and
to systematically reduction of the waste. This is only possible with the involvement
of people committed to continuous improvement. The goal of Lean Production is
"do more with less and less": less time, less space, less effort, fewer machines, and
less material.

2.1.1 Lean principles and 3MUs

Lean Thinking emphasizes how the lean, as well as a method to be applied, is first
and foremost a mindset, a way of thinking that inspires the same method. Lean is
based on five principles:

1. value, i.e., the starting point is always the definition of the value from the
perspective of the customer. Value is only what the customer is willing to pay,
all the rest is waste, and should be deleted,

2. mapping, i.e., o eliminate waste must "map" the value stream, which outline
all the activities that make up the operating process distinguishing between
those value-added and non-value-added,
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3. flow, i.e., the process of value creation is seen as a flow, which must slide in a
continuous manner, with the relative reduction of the throughput time (lead
time) of the material,

4. production "pulled", i.e., customer satisfaction means producing only what
he wants, when he wants and only what he wants. The production is so
"stretched" by the customer, rather than "push" from the producer,

5. perfection, i.e., perfection is the benchmark to which you must strive endlessly
through continuous improvement, and corresponds to the complete elimination
of waste.

3MUs (muda, mura and muri) is a lean management tool designed to cut waste,
and improve processes and work flow:

• muda, i.e., any activity that consumes resources (including time) but creates
no value for a customer,

• mura, i.e., variation in the operation of a process not caused by the end
customer,

• muri, i.e., overburden on equipment, facilities, and people caused by Mura
and Muda.

Given some of the major reasons project fail are planning and execution driven.
Therefore, 3MUs diagnostic tool can be used, both, at planning and execution stages
to improve the quality of project performance. We explain this below with some
possible uses. However, following is neither an exhaustive nor a perfect list of items
that can be done using the philosophy of 3MUs. Hence, the list should be taken as
an illustration for explanation purposes.

Using muda principle will mean not to do the following:

• assigning work without matching relevant experience and skills to the task
needs,

• designing new tools and templates rather than looking for possibilities of using
the available tools,

• assigning more resources than the effort requirements or work needs,
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• assigning requirements gathering work to someone with no knowledge and
prior experience of similar projects,

• asking a new team member to work on creating Work Breakdown Structure,
activity definition and sequencing, and resource estimations,

• assign someone with no experience and knowledge of risk planning and
management,

• taking a tick box approach to assigning resources to roles,

• only involving few selected team members in risk and quality management
and not involving the entire team.

Using mura principle, the aim will be to avoid discrepancies, interruptions and
irregularities in work flow. It could mean doing several things such as ensuring:

• setting project norms and behaviors requirements at the start of the project,
and diligently making sure that all team members know them and abide by
them,

• having clearly delineated reporting relationships, roles and responsibilities,

• using project dashboard and charts to monitor work on regular basis,

• ensuring digital systems, and other resources at the physical location of project
work are smoothly functioning,

• having work flow charts displayed at a prominent location for clarity of under-
standing,

• having troubleshooting and escalating procedures worked out and disseminated
among the team members for their use in case of any potential situations,

• having back-up plan for key resource attrition to avoid disruptions to workflow
if anyone of them leave the project mid-way,

• having clear Human resource policies that delineate rewards and consequences
procedures,

• having a balanced workloads for team members,
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• have clear procedures for resolving complaints and concerns,

• ensuring stable decision making rather than making decisions on fly and rolling
them back latter

• having leaders that command respect,

• ensuring motivation and commitment of team members is maintained,

• ensuring that any changes to procedures should be well considered, consulted
and implemented by involving and informing all concerned.

Using muri principle, the aim will be to avoid development of situations that
cause stress to team members and process flows. Muri, typically, is an outcome
when things are not done as per the principles of muda and mura

Looking at the above list of items for how 3MUs can be potentially used in
management and decision making aspects of project management, one gets the
feeling that most of these items can be implemented with least documentations and
purely active involvement and engagement of team members.Given the leanness of
documentation and lightweight processing, it seems that 3MUs is a tool that allow
Small (or better Smart) efforts for potentially Big benefits.

The key elements of lean production can be represented in the so-called "House
of Lean" shown by the Figure 2.1. The four pillars, which will be described later, are:
(i) Just-In-Time (JIT), (ii) autonomation (jidoka), (iii) Total Productive Maintenance
(TPM or productive maintenance), and (iv) Workplace Organization (WO).

At the base of the pillars there are two fundamental concepts: (i) standardization
(standard work), which makes extensive use of visual management, and (ii) con-
tinuous improvement (kaizen), which relies on technical specifications of problem
solving.

It is important to emphasize that the goal of lean production is rigorously and
systematically strive for total cancellation of waste ("zero-vision"), not to its simple
reduction. Each pillar has its own target zero: zero inventory for JIT, zero defects
for jidoka, zero changeover for TPM, and zero inefficiencies for WO. These lenses,
which help to achieve zero waste (muda), they become perceived value to the
customer in terms of quality, cost and time.
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Fig. 2.1 The "Lean House".

2.1.2 Seven wastes (muda)

It is wasteful everything that consumes resources, in terms of cost and time, but
without creating value for the customer. In Japanese culture, the concept of waste
(muda) has a meaning similar to the western ethic of sin, and is therefore a strong
motivation to avoid it. They are further classified into seven types:

1. transportation, i.e., when you move resources (materials), and the movement
does not add value to the product,

2. inventory, i.e., cases where companies overstock themselves in order to
manage unexpected demand, production delays, quality, or other problems,
however, this does not meet customer’s needs and don’t add value, increasing
storage and depreciation costs,

3. motion, i.e., movements of resources (employees or machinery) and products,

4. waiting, i.e., whenever goods or tasks are not moving, the "waiting waste"
occurs,
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Lean methods
Waste type JIT JIDOKA TPM WO
Overproduction ⋆⋆⋆ ⋆ ⋆
Defects ⋆ ⋆⋆⋆ ⋆ ⋆
Inventory ⋆⋆⋆ ⋆
Motion ⋆ ⋆⋆ ⋆⋆⋆
Transportation ⋆⋆⋆
Over-processing ⋆ ⋆⋆ ⋆⋆⋆
Waiting ⋆⋆⋆ ⋆⋆⋆

Table 2.1 Waste types and lean method to remove them. [22] [23]

5. overproduction, i.e., producing more means that you exceed customer’s
demand, which leads to additional costs,

6. over-processing, i.e., on doing work that does not bring additional value, or it
brings more value than required,

7. defects, i.e., phenomena that can cause rework, or even worse, they can lead
to scrap

Lean aims to eliminate waste through four main methods, which are described in
the Table 2.1.

2.1.3 Just-In-Time (JIT) management and 5s methodology

The Just-In-Time (JIT) is a logistics and production method whose aim is to produce
and deliver to the customer: (i) only thing required, (ii) only when required, and
(iii) only what is required. Together with the autonomation, the JIT is the main
pillar of lean production, as it gives speed and flexibility to the system logistics
and production and results in progressive reduction of all types of waste as shown
by the Table 2.1. In particular, with the Just-In-Time are obtained remarkable
reductions of (i) throughput time (lead time) and (ii) space of establishment, needed
to contain the flow of production and inventories, due to the reduction of waste from
overproduction, unnecessary escort and transportation.

The basic rules of JIT are:

• do not produce if the customer does not require,
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• level the question,

• connect all processes to customer demand with simple visual tools (kanban).

The proper functioning of the JIT strongly depends on the simultaneous applica-
tion of all the principles, methods and techniques lean, as this gives the necessary
stability to the system. The main operational elements of a Just-In-Time are:

• continuous flow,

• the production "pulled" by the customer (pull system),

• leveling of production (heijunka).

Lean manufacturing or "continuous flow" provides for the progressive reduction
of the lot size, tending ideally equivalence "1 lot = 1 unit", i.e., the production
and movement of a piece at a time (one-piece-flow). In this way, the production
flows continuously, without interruption, expectations and semi-finished goods
warehouses. The approach of the work stations also reduces wastage of handling.
The pull system is a method for controlling the flow of materials based on systematic
replenishing only of what is actually consumed. The production is "pulled" (pull)
by the client, in the sense that each processing step occurs only if requested by
the step of downstream processing. Moreover, the manufacturing processes are
"leveled" as there is a constant distribution of workloads between successive stations.
In order to make more regulate the activity of a production line, it is necessary to
(i) to regulate the demand of the customer (if possible), through leveling deliveries
(level selling), and (ii) to regulate the production, through the leveling of the same
(heijunka), obtained with the frequent production of small batches of each product
alternating with small lots of other products. This will make it easier (i) adapting
quickly to changes in demand and (ii) reducing excessive loads.

5S is a workplace organization method that uses a list of five Japanese words:
seiri, seiton, seiso, seiketsu, and shitsuke. These have been translated as "sort", "set
in order", "shine", "standardize", and "sustain". The list describes how to organize
a work space for efficiency and effectiveness by identifying and storing the items
used, maintaining the area and items, and sustaining the new organizational system.
The decision-making process usually comes from a dialogue about standardization,
which builds understanding among employees of how they should do the work.
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Japanese
name English 5s English 5C Features

Seiri Sort Clear Sort out unnecessary items from the
workplace and discard them.

Seiton Set in order Configure Arrange necessary items in good or-
der so that they can be easily picked
up for use.

Seisio Shine Clean and
check

Clean the workplace to make it free
from dust, dirt and clutter.

Seiketsu Standardize Conformity Maintain high standard of house
keeping and workplace organiza-
tion.

Shitsuke Sustain Custom and
practice

Train and motivate people to follow
good housekeeping disciplines in au-
tonomous way.

Table 2.2 Key activities for effective 5S implementation at the workplace.
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In some applications, 5S has become 6S, the sixth element being safety (safe).
[24] Generally, five 5S phases are considered and they are explain Table 2.2.

2.1.4 Autonomation (jidoka)

The autonomation (Jidoka), also described as "intelligent automation" [25] or "au-
tomation with a human," is a preventive method of quality management, in which
operators and machines will self-activate to identify abnormal processes, understand-
ing the causes and eliminate them quickly. The effectiveness of autonomation from
the ability to detect errors before they become defective product to stop the process if
necessary, and to make visible the causes of the problems as soon as they occur, thus
facilitating the deletion. The main typologies of errors are faulty parts assembling
or processing, incorrect positioning, wrong quantities, materials lack, assembling
omission, tool settings, wrong identification, slowness, and lack of supervision.

In lean production autonomation the importance significantly higher automation
because only the systematic elimination of anomalies can allow continuous flow
pulled by the customer’s own JIT, as well as making possible large increases in
productivity processing multi-machine and multi-process. The autonomation aims
to achieve zero defects, then 100% quality, as no customer is willing to tolerate a
defective product. It goes well beyond the traditional statistical approach to quality,
which is limited to reduce defects by a percentage "acceptable", but does not aim to
eliminate them altogether. In industrial production, accept a defect of 0.1% (one per
thousand) is to accept a dangerous landing per day at an international airport.

The principle tool of autonomation is the poka-yoke that means fail-safe”. The
Poka-Yoke (P-Y) is a set of devices, mechanisms, or simple expedients designed to
prevent errors from becoming defects. They are based on a logic of defect prevention
and quality management at the source. They are most effective when they allow
absolute control, provide immediate feedback, they are simple, rugged, reliable,
economical, and when they require special attention by the operator. It is preferable
that such solutions are designed already in the development phase of the product and
the process. The fault-tolerant systems allow management of errors and defects in
a very short time ("short cycle") than the traditional quality control ("long cycle").
The poka-yoke are classified according to several criteria:
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• criterion of effectiveness, i.e., (i) PY of error prevention and control at the
source prevents the error, (ii) PY fault prevention prevents the error becomes
defect, and (iii) PY detection detects when the defect has already occurred,
but allows you to limit the number and, in any case, do not ever get to the
customer,

• use policy, i.e., (i) P-Y control manages production downtime and (ii) P-Y
warning alerts the operator with sounds or lights,

• criterion of the problem, i.e., (i) P-Y product detects anomalies in the product
and (ii) P-Y process detects process abnormalities,

• criterion of operation, i.e., (i) P-Y contact works by contact with the product,
(ii) P-Y for fixed values verifies compliance with a standard number of parts
or events, and (iii) P-Y for sequence of operations (motion-step) checks the
correct repetition of an operation.

In addition to the numerous possibilities offered by modern sensor technology,
creativity, technical and organizational design allows an infinite number of simple
solutions poka-yoke, suitable for both production processes for operational risks.

2.1.5 Total Productive Maintenance (TPM)

Equipment management has gone through many phases. The progress of mainte-
nance concepts over the years is explained below:

• Breakdown Maintenance (BM) refers to the maintenance strategy where
repair is done after the equipment failure o stoppage,

• Preventive Maintenance (PM) is a kind of physical check up the equipment
to prevent equipment breakdown,

• Predictive Maintenance (PdM) is often referred to as Condition Based Main-
tenance (CBM) where maintenance is initiated in response to a specific equip-
ment condition or performance deterioration,

• Corrective Maintenance (CM) is the concept to prevent equipment failures
is further expanded to be applied to the improvement of equipment so that
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the equipment failure can be eliminated (improving the reliability) and the
equipment can be easily maintained,

• Maintenance Prevention (MP) starts at the design stage of a new equipment
with the strategic aim at ensuring reliable equipment, easy to care for and user
friendly, so that operators can easily retool, adjust, and otherwise run it,

• Reliability entered Maintenance (RCM) is a structured and logical process
for developing or optimizing the maintenance requirements of a physical
resource in its operating context to realize its “inherent reliability”, where
“inherent reliability”,

• Productive Maintenance (PrM), i.e., the most economic maintenance that
raises equipment productivity,

• Computerized Maintenance Management systems (CMMS) assist in man-
aging a wide range of information on maintenance workforce, spare-parts
inventories, repair schedules and equipment histories,

• Total Productive Maintenance (TPM) is the subject of this section.

The Total Productive Maintenance (TPM) is a continuous improvement program
that concerns the effective and efficient use of machines and plants. With this
new approach, the responsibility for the maintenance of the systems is extended to
multiple levels and it is for not only the maintenance but also, and above all, to direct
operators. They are involved in the maintenance, improvement projects and simple
repairs, all of which become part of their routine. For example, operators dealing
daily to lubricate, clean and check the machines they use.

The productive maintenance is the most economic maintenance that raises equip-
ment productivity. The aim of this concept is to increase the productivity of an
enterprise by reducing the total cost of the equipment over the entire life, i.e., during
design, fabrication, operation and maintenance, and minimizing the losses caused
by equipment degradation. Productive maintenance can be consider as performing
preventive maintenance, corrective maintenance, and maintenance prevention trough
the entire life cycle of the equipment used in the factory. [26] [27]

The TPM is a methodology originating from Japan to support its lean manufactur-
ing system, since dependable and effective equipment are essential prerequisite for
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implementing lean manufacturing. [28] It has been widely recognized as a strategic
weapon for improving manufacturing performance by enhancing the effectiveness of
production facilities: a production-driven improvement methodology that is designed
to optimize equipment reliability and ensure efficient management of plant assets.
TPM comprises:

• maximizing equipment effectiveness through optimization of equipment avail-
ability, performance, efficiency and product quality,

• establishing a preventive maintenance strategy for the entire life cycle of
equipment,

• covering all departments such as planning, user and maintenance departments,

• involving all staff members from top management to shop-floor workers,

• promoting improved maintenance through small-group autonomous activities.

The emergence of TPM is intended to bring both production and maintenance
functions together by a combination of good working practices, team-working and
continuous improvement. TPM is about communication, it mandates that plant
operators, maintenance specialists, and production engineers collectively collaborate
and understand each other’s language. Moreover, strategic TPM implementation can
also facilitate achieving the following organizational manufacturing priorities and
goals:

• productivity, i.e., reducing unplanned stoppages and breakdown improving
equipment availability and productivity, and providing customization with
additional capacity, quick change-over and design of product,

• quality, i.e., reducing quality problems from unstable production, reducing
in field failures through improving quality, and providing customization with
additional capacity, quick change-over and design of product,

• cost, i.e., life cycle costing, efficient maintenance procedures, supporting
volume, mix flexibility, and reducing quality and stoppage-related wastes,

• delivery, i.e., supporting of JIT efforts with dependable equipment, improving
efficiency of delivery, speed, and reliability, and improving line availability of
skilled workers,
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• safety, i.e., improving workplace environment, realizing zero accidents at
workplace, and eliminating hazardous situations,

• morale, i.e., significant improvement in kaizen and suggestions, increasing
employees’ knowledge of the process and product, improving problem-solving
ability, increasing in worker skills and knowledge, and employee involvement
and empowerment.

In addition, TPM implementation in an organization can also lead to realization
of intangible benefits in the form of improved image of the organization, leading to
the possibility of increased orders. After introduction of autonomous maintenance
activity, operators take care of machines by themselves without being ordered to.
With the achievement of zero breakdowns, zero accidents and zero defects, operators
get new confidence in their own abilities and the organizations also realize the
importance of employee contributions towards the realization of manufacturing
performance. [29]

The basic practices of TPM are often called the pillars or elements of TPM, and
the entire edifice of TPM is built and stands on eight pillars. [30] TPM paves way
for excellent planning, organizing, monitoring and controlling practices through its
unique eight-pillar methodology. TPM initiatives, as suggested and promoted by
Japan Institute of Plant Maintenance (JIPM), involve an eight pillar implementation
plan that results in substantial increase in labor productivity through controlled
maintenance, reduction in maintenance costs, and reduced production stoppages
and downtimes. The core TPM initiatives classified into eight TPM pillars or activ-
ities for accomplishing the manufacturing performance improvements include (i)
autonomous maintenance, (ii) focused maintenance, (iii) planned maintenance, (iv)
quality maintenance (v) education and training, (vi) office TPM, (vii) development
management, and (viii) safety, health and environment. [31] [32] [33] Table 2.3 de-
picts detailed maintenance and organizational improvement initiatives and activities
associated with the respective TPM pillars.

The main tool of a TPM system is the Single-Minute Exchange of Die (SMED),
i.e., a part of a larger strategy and suite of loss reduction tools that are best aligned
with TPM priorities as understood through OEE losses. This resource refers to the
theory and techniques for performing set-up operations, since, to meet customer
demand through batch size reduction, it is important that the operator’s work to
ensure changeover times are reduced and changeover quality improved. Starting a
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Fostering operator skills
Autonomous
maintenance (i) Fostering operator ownership and (ii) perform clean-

ing, lubricating, tightening, adjustment, inspection,
and readjustment on production equipment

Focused
improvement (i) Systematic identification and elimination of 16

losses, (ii) working out loss structure and loss miti-
gation through structured why-why and Failure Mode
and Effects Analysis (FMEA), (iii) achieve improved
system efficiency, and (iv) improved Overall Equip-
ment Effectiveness (OEE) on production systems

Planned
maintenance (i) Planning efficient and effective Preventive Mainte-

nance (PM), Predictive Maintenance (PdM), and Time-
Based Maintenance (TBM) systems over equipment
life cycle, (ii) establishing PM check sheets, and (iii)
improving Mean-Time-To-Failure (MTBM) and Mean-
Time-To-Repair (MTTR)

Quality
maintenance (i) Achieving zero defects, (ii) tracking and addressing

equipment problems and root causes, and (iii) setting
3M (machine/man/material) conditions

Education and
training (i) Imparting technological, quality control, interper-

sonal skills, (ii) multi-skilling of employees, (iii) align-
ing employees to organizational goals, and periodic
skill evaluation and updating

Safety, health
and environment (i) Ensure safe working environment, (ii) provide ap-

propriate work environment, (iii) eliminate incidents
of injuries and accidents, and (iv) provide standard
operating procedures

Office TPM (i) Improve synergy between various business func-
tions, (ii) remove procedural hassles, (iii) focus on
addressing cost-related issues, and (iv) apply 5S in
office and working areas

Development
management (i) Minimal problems and running in time on new

equipment, (ii) utilize learning from existing systems
to new systems, and (iii) maintenance improvement
initiatives

Table 2.3 Issues addressed by various TPM pillar initiatives.
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SMED system from the perspective of a TPM culture is about operator involvement
in the reduction of waste in the value stream. Becoming more agile as a result, for
example being able to quickly respond to changes in the market and customer orders
at short notice.

Shigeo Shingo recognizes eight techniques [34] that should be considered in
implementing SMED:

1. separate internal from external setup operations,

2. convert internal to external setup,

3. standardize function, not shape,

4. use functional clamps or eliminate fasteners altogether,

5. use intermediate jigs,

6. adopt parallel operations (see image below),

7. eliminate adjustments,

8. mechanization.

Fig. 2.2 Four implementing stages of the SMED method.
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These techniques considers that an external setup can be done without the line
being stopped whereas internal setup requires that the line be stopped. The same
author suggests [35] that SMED improvement should pass through four conceptual
stages as shown by the Figure 2.2: A) ensure that external setup actions are performed
while the machine is still running, B) separate external and internal setup actions,
ensure that the parts all function and implement efficient ways of transporting the
die and other parts, C) convert internal setup actions to external, and D) improve all
setup actions.

Getting started with SMED is straightforward, usually improvements are low
cost no cost and involve operators working together with colleagues to develop
standardized activities through a formal project plan, and this ensures the greatest
level of success and repeatability. Contrary to the perception the best solutions
are not machine redesigns and implementing high tech solutions. Work flow and
workplace management coupled with visual management are the first places to start
in any SMED system, there will be a lot of low hanging fruit that can provide you
with quick wins.

2.1.6 Standardization, visual management, and problem solving

The value stream mapping is the graphical representation of the steps of the flow of
materials and information that leads to a product from order to delivery. This tool
allows you to find an immediate visual and waste, and improvement opportunities.
The method involves tracking before the map of the current state (as is), and then
propose changes to be included in the map of the future state (to be).

Handling and production of materials or components between successive stages
of processing is authorized by the kanban (card). It provides information visual,
simple and comprehensive that indicate: what, when and how much to produce, the
destination of the output required, necessary materials and semi-finished products,
and any other useful information. The kanban allows the continuous flow of supply,
thus constituting the main instrument to implement the Just-In-Time.
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2.2 Enterprise Information Systems

An Enterprise Information System (EIS) is any kind of information system which
improves the functions of enterprise business processes by integration. This means
typically offering high quality of service, dealing with large volumes of data and
capable of supporting some large and possibly complex organization or enterprise.
An EIS must be able to be used by all parts and all levels of an enterprise. [36].

EISs provide a technology platform that enables organizations to integrate and
coordinate their business processes on a robust foundation. An EIS is currently used
in conjunction with customer relationship management and supply chain manage-
ment to automate business processes. An EIS provides a single system that is central
to the organization that ensures information can be shared across all functional levels
and management hierarchies. An EIS can be used to increase business productivity
and reduce service cycles, product development cycles and marketing life cycles. It
may be used to amalgamate existing applications. Other outcomes include higher
operational efficiency and cost savings.

2.2.1 Enterprise Resource Planning (ERP) systems

Enterprise resource planning (ERP) is the integrated management of main business
processes, often in real time and mediated by software and technology. ERP is
usually referred to as a category of business management software—typically a suite
of integrated applications that an organization can use to collect, store, manage, and
interpret data from many business activities. ERP provides an integrated and contin-
uously updated view of core business processes using common databases maintained
by a database management system. ERP systems track business resources—cash,
raw materials, production capacity—and the status of business commitments: orders,
purchase orders, and payroll.

The Gartner Group first used the acronym ERP in the 1990s [37] to include the
capabilities of material requirements planning (MRP), and the later manufacturing
resource planning (MRP II), as well as computer-integrated manufacturing. Without
replacing these terms, ERP came to represent a larger whole that reflected the evolu-
tion of application integration beyond manufacturing. [38] Not all ERP packages
are developed from a manufacturing core: ERP vendors variously began assembling
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their packages with finance-and-accounting, maintenance, and human-resource com-
ponents. By the mid-1990s ERP systems addressed all core enterprise functions.
Governments and non–profit organizations also began to use ERP systems. [39]

2.2.2 Manufacturing Execution Systems (MESs)

The first organization which defined the tasks to be dealt by a MES was the Man-
ufacturing Enterprise Solutions Association (MESA), a US “global community of
manufacturers, producers, industry leaders, and solution providers who are focused
on driving business results from manufacturing information”. MESA provided the
following list of 11 functionalities [40], combined with each other, they can form a
MES solution.

1. Resource allocation and status. Manage and monitor resources, including
staff, machines, tools and make available the documents necessary to start the
working operations. Further, set up the equipment, and reserve resources and
dispatch orders in order to meet the target objectives.

2. Operations/detail scheduling. Identify the optimal sequence planning based
on priorities and resources availability, in order to minimize setups and down-
time.

3. Dispatching Production Units. Manage the flow of production units (e.g.
jobs, batches or lots), and adjust it in real-time as events (e.g. reworking
operations) occur on the shop-floor.

4. Document control. Manage and control the information significant for the
production process (work instructions, drawings, specifications, environmental
compliance requirements, safety instructions, etc.) as well as the "as planned"
and the "as is" information. Historical data are saved; the information must be
accessible to the staff at the right time and right place.

5. Data collection/acquisition. Data related to the production can be collected
both automatically or manually, and used to track deviations.

6. Labor management. Provide the updated status of the personnel, store the
staff working hours, the criteria to manage absences, holidays, etc, as well as
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the ability to perform tasks. This package can be used to evaluate the cost of
activities, and may interact with the ERP to optimize resources allocation.

7. Quality management. Measure production data and analyze them in real-
time, aiming at ensuring product quality and identify in advance issues and
criticalities. Actions to correct the issue can be included, as well as tools
for process control (such as Statistical Process Control or Statistical Quality
Control) and for the management of inspections and offline analyses.

8. Process management. Monitor the production process; alarm management
functions can be included and automatic corrections or decision support tools
can be integrated to correct and improve process activities.

9. Maintenance management. Track the use of operating material to plan peri-
odic and preventive maintenance tasks, ensuring their availability according
to the scheduled activities. The system also stores the chronology of past
interventions to support problem diagnosis and the execution of maintenance
actions.

10. Product tracking and genealogy. Record all the production data across the
entire manufacturing chain, to ensure that the position of each item can be
identified in real-time as well as its manufacturing history (e.g. components
suppliers, lot and serial number, operators working on it, and alarms).

11. Performance analysis. Produce user-friendly, complete reports containing
process and product information (e.g. resources availability and utilization,
cycle times, and no-compliance) and a comparison with the past history and
the expected performance, to support the assessment of production efficiency
and the detection of issues.

Later, in the 2000s, the standard ISA 95 has been issued by the International
Society of Automation. In this standard, a functional hierarchy model consisting in
five levels is defined:

• level 4: business planning and logistics,

• level 3: manufacturing operations and control,

• levels 2, 1, 0: batch, continuous, discrete control.
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The level 0 indicates the manufacturing process, the level 1 indicates manual
sensing, sensors and actuators used to monitor the process, while the level 2 indicates
the control activities that keep the process stable or under control. These tasks are
not addressed in the ISA 95 standard: this document is mainly concerned with the
activities for levels 3 and 4, and with their interface for data exchange. Activities in
level 4 include tasks for business management, which are usually performed by an
ERP. Conversely, level 3 is related to production management: the functionalities
of this level correspond to the list of 11 tasks shown above. The standard ISA 95
has been adopted and extended by the International Electrotechnical Commission,
named "IEC62264: Enterprise-control system integration." Currently, this standard
consists in 5 parts:

1. "models and terminology" describes the level 3 activities, and the interfaces
within level 3 and between levels 3 and 4,

2. "objects and attributes for enterprise-control system integration" specifies
generic interface content exchanged between manufacturing control functions
and other enterprise functions,

3. "activity models of manufacturing operations management" defines activity
models of manufacturing operations management that enable enterprise system
to control system integration,

4. "objects models attributes for manufacturing operations management
integration" defines object models and attributes exchanged between the
manufacturing operations management taking place in the level and previous
defined,

5. "business to manufacturing transactions" defines business to manufacturing
transactions and manufacturing to business transactions.

A schematic of the hierarchy model levels, the associated company levels, and
the corresponding supporting IT tool is provided in Figure 2.3. Further, a graphical
indication about the time-scales and the detail of the transmitted information is given.
The time scale for the planning provided by the ERP is in the order of weeks-months;
the more detailed schedule elaborated by the MES involves events in the order of
hours-days; the phenomena occurring at the shop-floor have lower time-scales, in
the order of minutes or hours. Conversely, on the shop-floor a huge quantity of data
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can be acquired. Such data must be analyzed and transformed into a smaller amount
of information to be transmitted to the business level, in order to have a complete
and exhaustive picture and take proper tactical decisions.

Fig. 2.3 MES positioning within an industrial framework. [41]

2.2.3 Product Lifecycle Management (PLM) systems

The Product Lifecycle Management (PLM) provides a philosophy approach and
a management methodology for product development and information exchange
mainly with the production and process control areas. Three main works have been
analyzed to produce this section. [42] [43] [44]

It is a concept and set of systematic methods that attempts to control the product
data, that are divided in:

• definition that are physical and functional properties,

• life cycle that is the sequence of the product stages in the order-delivery
process,

• metadata that are "information about information," i.e. the description of the
product data structure.

The main concepts involved in the PLM are terms and abbreviations, models of
product and information, type of product or type of information object, practices and
principles, related processes (product information management), and instructions.
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The PLM involves a hierarchy structure of item, where the item is a product, an
element, a module, a component, a material, a service, a document, or a software. It
is an EIS that integrates the functions of the whole company as shown by Figure 2.4.
According to Kenneth McIntosh, the "PLM can be the operational frame of CIM".

Fig. 2.4 The PLM system often creates a wide totality of functions and properties with which
to support the different processes involved in the creation, recording, updating, distribution,
utilization, and retrieval of information.

The PLM main features are as follow:

1. item management, i.e., information about the status of the item and of the
processes related to the creation and the maintenance of the item,

2. product structure management and maintenance, i.e., managing the rela-
tionships (network structure) between items.

3. user privilege management, i.e., who can do what?

4. product data storing management, i.e., maintaining information about states,
versions and changes,

5. information retrieval, i.e., how simplify the access to it?
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6. change management,

7. configuration management, i.e., product customization,

8. tasks management and messages, i.e., workflow management to improve the
communication,

9. file and document management,

10. information loss avoiding,

11. backup management,

12. history/system log, i.e., product process traceability,

13. file vault, i.e., network system and hardware.

Considering the history of the term, PLM can be defined as the new integrated
business approach that, with the help of IT, implements an integrated, cooperative,
and collaborative product information management along the different phases of its
life cycle. In this sense, the PLM includes:

• a strategic orientation to the creation of value "on" and "through" the "product",

• the application of a collaborative approach for the valorization of the core-
competences of different actors,

• the use of a consistent number of IT solutions for the practical implementation
of the consequent coordinated, integrated and secure management of all the
information necessary for the creation of value.

The metadata base is needed to maintain the structure of the whole system. The
task of the metadata base is to handle relationships between individual pieces of
product data, the structure of the information, and the rules and principles needed to
ensure the systematic recording of the information. The application carries out the
PLM functions of information and metadata base management and appears to the
user as a variety of different user interfaces. The PLM application usually also acts
as a link between different applications and systems within the sphere of PLM.

The PLM concept promises to provide support for the product’s entire life-
cycle, from the first conceptualization to the disposal of its last instance. The
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Fig. 2.5 Example of a PLM system architecture.

volume, diversity, and complexity of information describing the product will increase
correspondingly. In the literature, there are many proposals of framework for product
information management that can access, store, serve, and reuse all the product
information throughout the entire life-cycle. Research is needed to identify and
model all the necessary components of an effective framework of PLM that includes
standards and conceptual Application Program Interface (API) between all such
components and the other information systems involved in the product life-cycle
(and, generally speaking, in the manufacturing CPS of a plant). It is clear that design
and manufacturing process are the main functionalities for a sustainable production:
such components inter-operate by exchanging product information clearly associated
with a Big Data environment, and such product information modeling frameworks
need to support such "horizontal" information exchanges as readily as the "vertical"
exchanges among other PLM systems, components of a MES, and any intermediary
systems, such as Product Data Management and ERP systems. [45]

In a concise definition, PLM is the commercial activity of managing the products
of a company throughout its life-cycle, from the first idea of a product until it is
removed and discarded most effectively. [43] Further, PLM may mean a techno-
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logical solution that encompasses different and complementary tools to promote
collaboration between stakeholders in order to support the product life-cycle’s effec-
tive management. Although PLM concepts are more commonly found in traditional
manufacturing companies, their concepts can also be found in other business profiles
such as startups. [46]

Concluding, considering the 4.0 era, it seems that the overlap, or a more compre-
hensive integration of the Fourth Industrial Revolution, Sustainable Development
to Product Lifecycle Management, may promote innovation, more robust outcomes
in a long-term business perspective. Research efforts are dedicated to find elements
that can support the use of 4.0 technologies in Product Lifecycle Management with a
strong background in Sustainable Development, concept that will soon be integrated
into a 5.0 perspective. Examples of forces driving the 4th Industrial Revolution
to PLM with sustainability purposes identified by the literature are concepts and
approaches like flexibility (which means focusing without losing flexibility), dura-
bility and Big-Databases that may increase the product lifetime, reduce the amount
of the product in circulation in combination with maintenance and refurbishment
operations. [47] Further, 4.0 technologies allow the identification of new markets
and the product will be more competitive in the market and more profitability for
the enterprises who adopt this type of technology approach. The sustainability is a
crucial factor for innovation, competitiveness and survival in these uncertain times.
However, there are many barriers to integrating technologies, which have their imple-
mentation challenges when considered isolated. Lack of information and knowledge
about technologies and sustainability, availability of appropriated equipment, human
resources engagement and lack of skills are some of the main challenges faced by
PLM for Sustainability adopters. [48] A systematic review in the literature selects
12 works in the literature texts that are successful examples where every enterprise
has been ready to choose the work method that better fits its profile. [47]

2.2.4 Discussion about ERP-MES-PLM integration

One of the pillars of Industry 4.0 is the integration among data coming from different
systems. The machines of a manufacturing plant are starting to be connected,
following the Industrial Internet of Things (IIoT) paradigm. Currently, the usage
of IoT is limited to analyze shop floor behavior by monitoring the environment
parameters. [49] However, the most significant challenge is integrating the main IT
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management systems towards a Horizontal and Vertical integration expressed by the
concept of Industry 4.0. Particularly, the integration of PLM, ERP and production
systems guarantee the full control over the whole product life-cycle and among all
functional offices of the company. It’s an end-to-end process where data will flow
seamlessly across different departments within the company, thus breaking the walls
between the different functional areas in a company. An example of an architecture
of integration between PLM, MES and ERP is given by a central system called
Knowledge Base System (KBS). KBS consists, in this example, of a database in
addition to the individual databases of each system. It is a structured central database
in which the IT systems can transfer and withdraw the necessary information. It’s a
bi-directional data flow between the IT systems and the KBS as shown in Figure 2.6.
The proposed architecture will allow to collect all the information related to the new
component in the KBS system, which helps to perform analysis on a product data.
This analysis of product data helps in finding the patterns of different products of a
same family, which will reduce the time for the product and process design and able
to monitor the performance in the production line. To design such architecture, we
have to observe the functional framework in one-of-a-kind production and the data
flows among the PLM, MES and ERP.

Fig. 2.6 Conceptual architecture of the knowledge base system. [11]

The generic functional framework in OKP is shown in Figure 2.6. The Customer
Relationships Management (CRM) module of the ERP systems manages pre-sales
activities and sends information about to the PLM system in order to accept, refuse
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of plan the shop order comparing similar product history. This information is
sent by the ERP to and retrieved by the PLM from the KBS in order to reducing
the time in product planning phase and improving the cost estimation in OKP.
When the product is defined, and when a production order is approved, the PLM
system provides the best receipt (processes description) for the product and share the
information with the ERP system and the MES. The MES gives the order command
to the shop floor to build a prototype and checks for any design modifications and
sharing such information with the PLM trough the KBS until the prototype meets
all the quality requirements. At this moment the MES provides the bill of materials
(BOM) information to the ERP for the resources allocation powered by the Material
Requirement Planning (MRP) and Supplier Resources Management (SRM) modules
in order to satisfy the customer demand. Once everything is setup, production
process will start and the final product will be controlled by ERP system for the
delivery to the customer. KBS as a system gives continuous feedback to the MES for
any performance improvement in production line. [11]

The KBS, basically, is a database with APIs that makes possible the communica-
tion among the systems and provides a PLM-MES (product-process) information
that represents an extract mainly of the one stored in MESs and PLM ones like
shown in Figure 2.7. ERP system generates product specifications and stores data in
the entity Product. Product Model(s) entity, which is a PLM item, generates one or
more models for this product and each model consists of one or more parts (BOM).
Manufacturing Process Plan is a PLM entity that defines the parameters of a produc-
tion cycle for a product model and the corresponding entity called Manufacturing
Operations defines the kind of operation, required resources and machines. It shares
the relationship with list of operations entity which contains predefined operation
details. On the other hand, MES entities called Production Request and Production
Planning, help to define the production cycle and can be divided into one or more
secondary orders. Production Request contains the data of a production orders and
Production Planning consists of data to manage the programming of operations
of an individual cycle relative to a particular order. One of the key entity of the
MES is Production Status because it contains information about the progress of the
production. This entity evaluates the data en-tries to the Physical machine entity.
Each one of the Physical Machine entity can have associated at most one Production
Status. The Check Start Output entity is linked to the Check Start Machine, which
imposes certain controls to monitor before using a machine. Final product entity
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provides information about the status of a set of by-products and/or final products.
This entity evaluates the statements saved in Production Status at time intervals,
obtaining as a result the status of the articles declared: good, scrap or re-cycle. Final
delivery entity, which is a ERP item, stores the data of final products labeled as good
and delivered to the customer.

Fig. 2.7 Entity-Relationship diagram in KBS DB. [11]

Specific APIs are developed in order to allow the communication between such
systems: the connectivity is crucial to implement the data flow, the Internet of Things
is all about connectivity and API is a central concept of this technology. Currently
REST and MQTT API’s are predominantly in use. REST (REpresentational State
Transfer) is designed as request/response that communicates over HTTP and MQTT
(Message Queuing Telemetry Transport) is designed as publish/subscribe that com-
municates over TCP/IP sockets or WebSockets. In REST, requests made to an
application URL and will obtain a response with a payload formatted in HTML,
XML, JSON, or some other format. The REST API is a request/response model,
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i.e., it is possible to set the repeat mode to an entity based-on time frame for the
request/response depending on the priority. For example, Machine model or Machine
Check start entities in PLM are static data to store in KBS which requires less priority
compare to Manufacturing Process Plan or Manufacturing Operations. Other works
on the integration of such systems were developed by the author of this paper and
the research team in order to investigate technological and management limitations
and opportunities. [10] [11] [12] [13] [14]

2.3 Industry 4.0 and Cyper-Physical Systems (CPSs)

In recent years, Industry 4.0 has attracted great attention from both manufacturing
companies and service systems. On the other hand, there is no certain definition of
Industry 4.0 and naturally, there is no definite utilization of the emerging technologies
to initiate the transformation of Industry 4.0. Mainly, Industry 4.0 is comprised of
the integration of production facilities, supply chains and service systems to enable
the establishment of value added networks. Thus, emerging technologies such as big
data analytics, autonomous (adaptive) robots or collaborative robots (cobots), cyber
physical infrastructure, simulation, horizontal and vertical integration, Industrial
Internet, cloud systems, additive manufacturing and augmented reality are necessary
for a successful adaptation. The most important point is the widespread usage
of Industrial Internet and alternative connections that ensure the networking of
dispersed devices. As a consequence of the developments in Industrial Internet, in
other words Industrial Internet of Things (IIoT), distributed systems such as wireless
sensor networks, cloud systems, embedded systems, autonomous robots and additive
manufacturing have been connected to each other. Additionally, adaptive robots and
CPS provide an integrated, computer-based environment that should be supported by
simulation and three-dimensional (3D) visualization and printing. Above all, entire
system must involve data analytics and miscellaneous coordination tools to conduct
a real time decision making and autonomy for manufacturing and service processes.
While constructing the framework, network of sensors, real-time processing tools,
role-based and autonomous devices are interpenetrated with each other for real-time
collection of manufacturing and service system data. For successful implementation
of Industry 4.0 transformation, three core and nine fundamental technologies are
required to be the part of the entire system.
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2.3.1 Additive Manufacturing, mass customization and 4.0 de-
sign

Additive Manufacturing (AM) is a set of emerging technologies that produces three
dimensional objects directly from digital models through an additive process, par-
ticularly by storing and joining the products with proper polymers, ceramics, or
metals. In details, additive manufacturing is initiated by forming Computer-Aided
Design (CAD) and modeling that arranges a set of digital features of the product
and submit descriptions of the items to industrial machines. The machines perform
the transmitted descriptions as blueprints to form the item by adding material layers.
The layers, which are measured in microns, are added by numerous of times until
a three-dimensional object arises. Raw materials can be in the form of a liquid,
powder, or sheet and are especially comprised of plastics, other polymers, metals,
or ceramics. [50] In this respect, AM is comprised of two levels as software of
obtaining 3D objects and material acquisition side.

AM is emerging as an important manufacturing process and a key technology
for developing innovative products. However, in order to support and promote
this complex but often beneficial technology, adequate EISs entirely dedicated to
this manufacturing process are needed. During AM, a large amount of data is
generated, exchanged, and used from which to draw information about materials,
design patterns, processes, and measurements. This is where process knowledge
comes from: in fact, while data about a single part is essential for its traceability,
if collected in a methodical way, the history of thousands of components can be
analyzed to streamline or automate all phases of the part lifecycle. A scenario that
enhances even more the ability to manage such data is Mass Customization (MC):
[51] [52] [53] a scenario in which AM plays a key role. To make this strategy
sustainable, in addition to the use of more flexible technologies, it is necessary to
have an integrated management of all the information produced by the company and
the ecosystem in which it operates.

The latest technological developments introduced by Industry 4.0 have increased
the amount of information linked to a production process or value stream, from
obtaining raw materials to a saleable product. The figure 2.8 shows the traditional
product design paradigm in opposition to the one that supports mass customization,
where customer requirements are considered after the design process. Thanks to this
different management of the information provided by the customer, it is possible to
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Fig. 2.8 Traditional product design paradigm.

change the product model enough to have a customized good but avoiding the design
of the model from scratch. The figure 2.9 shows the mapping of the information flow
during the customization process supported by additive manufacturing. The com-
pany’s tasks begin with the development of the general parametric model containing
both the bill of materials and the parametric CAD model, as well as the machining
and optional assembly components. The customer comes into play with the supply of
the specific parameters of the individual product, after which he approves or rejects
the variant proposed by the company based on price and delivery time: (a) rejection
leads to the creation of a further variant or suspension of the order, while, (b) with
an approval, on the other hand, the process continues with the upload of the final
variant data through the PLM platform and a G-code file of the model is generated
to produce the part and complete the order.

A shared database, capable of supporting design, production, and all life cycle
processes, is a complex resource to design, develop and maintain. In an additive
manufacturing scenario, this complexity may be even greater due to the volume and
low repeatability of process and quality data. In order to deal with the criticality of
the management of the information baggage that characterize the AM, an information
system that is based on the product life cycle, like the PLM, is therefore required. It
has three basic functional objectives:
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Fig. 2.9 Map of the information flow during the customization process supported by additive
manufacturing.

• to offer a standardized protocol for data interoperability in order to share
relevant information as each product continues in its life cycle

• integrate all life cycle processes by providing a consistent flow of data within
a heterogeneous framework

• coordinate information and data in an open, lightweight, and extensible form.

For the development of an AM plan involving several 3D printers, it is necessary
to use a multi-layer model due to the many interconnected processes. The figure 2.10
shows an example of an architecture in which several modules of the most common
ERP solutions on the market are considered. Once the customer order is accepted,
the available production resources are determined, including employees, materials
and production equipment. In order to obtain information on the required production
resources, a machine code is generated, based on the type of production facility, so
the production process is simulated to determine how many resources are required
and the duration of the process. This data is linked to the CAD model and the specific
machine, as production plants of the same type can have different parameters. A
revision of a product coincides with a complete new input of the production resources
required for the model. Requirements for production are calculated from the bill of
materials and sales orders. Production is planned by optimizing the level of machine
utilization. The grouping module handles a set of components to be completed
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simultaneously as required for assembly. Parts can be assigned to the same machine
with the help of a nesting algorithm or distributed to different printers and the start-up
of a production plant is managed through the MES.

Fig. 2.10 Example of an ERP architecture solution dedicated to the development of an AM
plan involving several 3D printers

The figure 2.11 shows schematically a possible integration structure of MES with
the Design For Additive Manufacturing (DFAM) process. The MES supports the
development of prediction and simulation models that are based on and validated by
feedback from a set of sensors. The improved models thus better support DFAM,
for example, in decision support for part orientation, which has a strong impact
on quality. Secondly, information from the laboratory floor can also be used for
further adjustments of the part geometry. Finally, MES supports the optimization of
manufacturing routes and machine parameters through the use of histories of different
variables that may influence the manufacturing process, concerning deposition and
material. Thus, MES can improve the additive process, contribute to knowledge
creation in a mass customization scenario and streamline the trial and error process.
Improving the knowledge process results in better predictability and quality of
output. This, in turn, can change the economic balance between traditional and
additive manufacturing, making the latter cost-effective even for larger batch sizes.
In addition, sensors can be used to monitor parameters related to the energy impact
of the process, such as nozzle temperature and energy required. Giving a last
consideration about MESs, it should be noted that the use of MES could be much
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more significant in high-value productions, such as the production of aeronautical,
bio-mechanical or jewelry components.

Fig. 2.11 Example of integration structure of MES with the Design For Additive Manufactur-
ing (DFAM) process.

The development and the industrial adoption of additive technologies is leading to
a scenario in which the entire product development chain is digitized: from the initial
design of products to the simulation and optimization of manufacturing processes
and the maintenance of assets and products using sensor systems. One of the
challenges brought by the organization of the AM value chain is the development of
information systems that can help decision making but also support data management
in a consistent and coherent way. To support decision making and address data
management issues, a formal, shared, and explicit representation of expert knowledge
and processes is required, whose semantics can be processed by information systems:
a widely used example is given by ontologies. [54] The Guide to Principal to Rule
(GPR) is the main guide to the development of design rules in additive manufacturing
on which several ontologies have been based, formalizing the use of concepts,
primitive concepts, modules, and rules. Focusing on the analysis of manufacturing, it
is possible to structure factory knowledge into three related categories as in the figure
2.12, which shows a possible ontology structure that maintains the three components
of the GPR. Although it is a simple example, this knowledge representation results
in a business asset that can:

• promote the application of design principles,
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• reduce ambiguities and inconsistencies,

• support the creation of new principles,

• and model knowledge as a set of modular components in relation to each other.

In the figure 2.12, the basic entities, i.e., concepts, are represented as rectangles
and grouped into macro-modules used to formulate product and process design
rules. Arrows indicate the relationships between the concepts. Product design is
the definition of the design features and geometric parameters of the component.
Process design, on the other hand, is the process and material parameters. The term
manufacturing features refers to the intermediate class between product and process
design that is responsible for modeling manufacturing constraints such as tolerances,
thicknesses, space constraints or support structures. They represent a description
of the admissibility domain of additive processes as the geometric regions of the
component change. KBSs in the additive industry store information in databases
designed often using ontologies like the one discussed. It is critically important to
design a database with thinking about how to manage factory knowledge from which
knowledge can be derived to support business decisions, whether dictated by human
insights or artificial intelligence algorithms.

Fig. 2.12 .

Today, companies are increasingly trying to improve the organization and capi-
talization of their informative assets and, in particular, the know-how of their human
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resources. This knowledge management activity, in fact, has become a crucial com-
ponent for the sustainability of a company in today’s Industry 4.0 context. The
additive industry, to reap the benefits of its processes, is forced to deal with increas-
ingly complex product design, process optimization and production management.
For example, in product design, Mass Customization, a favorable scenario for the
AM, requires a deep knowledge of the dependencies between the variables involved
for a rapid response to continuous and increasingly complex changes in product
requirements. Assuming sufficient information to obtain the required knowledge,
the knowledge extraction process is done through specifically designed information
system components. The main requirement for such components is to simplify user
access to information in many cases until generating knowledge not directly required.
A component designed with this purpose potentially supports the wisdom of an
enterprise, i.e., supports the decisions of the human resources of that enterprise or,
especially for operational decisions such as nesting activities, makes those decisions
automatically by replacing the human being.

Machine Learning (ML), therefore, can support human decisions and provides a
knowledge base on which to set up automated decisions based primarily on concepts
specific to operations research. Overall, ML has had a positive impact on the
prospects for adopting AM and improving its value proposition. That said, most of
the ML applications for AM are not yet robust or reliable enough to be adopted in
industry but the advancement in research is rapid and bodes well for rapid deployment
of these technologies as additive process adoption increases. Artificial Intelligence
(AI) models, as well as being an essential tool to support human decisions, can be
developed in order to automate business decisions, which consists in automating the
entire process that goes from the acquisition of data until the transformation of the
extracted information from them into a physical action impacting the process.

OKP

design montagna

2.3.2 Main technologies

Adaptive robotics (cobots) are robots intended for direct human robot interaction
within a shared space, or where humans and robots are in close proximity. As a con-
sequence of the combination of microprocessors and AI methodologies, the products,
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machines and services become smarter in terms of having not only the abilities of
computing, communication, and control, but also having autonomy and sociality.
In this regard, adaptive and flexible robots combined with the usage of artificial
intelligence provide easier manufacturing of different products by recognizing the
lower segments of each parts. This segmentation proposes to provide decreasing
production costs, reducing production time and waiting time in operations. Addi-
tionally, adaptive robots are useful in manufacturing systems especially in design,
manufacturing and assembly phases. [55] For instance, assigned tasks are divided
into simpler sub-problems and then are constituted a set of modules in order to solve
each sub-problem. At the end of each sub task completion, integration of the modules
to reach an optimal solution is essential. One of the sub technologies underlying
adaptive robots can be given from co-evolutionary robots that are energetically au-
tonomous and have scenario based thinking and reaction focused working principle.
[56]

Cyber-Physical System (CPS) can be explained as supportive technology for
the organization and coordination of networking systems between its physical infras-
tructure and computational capabilities. In this respect, physical and digital tools
should be integrated and connected with other devices in order to achieve decentral-
ized actions. In other words, embedded systems generally integrate physical reality
with respect to innovative functionalities including computing and communication
infrastructure. [57] In general, an embedded system obtains two main functional
requirements: (i) the advanced level of networking to provide both real-time data
processing from the physical infrastructure and information feedback from the digital
structure, and (ii) the intelligent data processing, decision-making and computational
capability that support the physical infrastructure. [58] For this purpose, embedded
systems consist of RTLS technologies, sensors, actuators, controllers and networked
system that data or information is being transformed and transferred from every de-
vice. In addition to that, information acquisition can be derived from data processing
and data acquisition in terms of applying computational intelligence supported by
learning strategies such as case based reasoning.

Cloud based operating is another essential topic for the contribution of networked
system integration in Industry 4.0 transformation. The term “cloud” includes both
cloud computing and cloud based manufacturing and design. Cloud manufacturing
implies the coordinated and linked production that stands “available on-demand”
manufacturing. Demand based manufacturing uses the collection of distributed
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manufacturing resources to create and operate reconfigurable cyber-physical manu-
facturing processes. Here, main purpose is enhancing efficiency by reducing product
life-cycle costs, and enabling the optimal resource utilization by coping with variable-
demand customer focused works. [59] [60] Comprehensively, cloud based design
and manufacturing operations indicate integrated and collective product develop-
ment models based on open innovation via social networking and crowd-sourcing
platforms. [59] [60] As a consequence of the advancements in cloud technologies
such as decreasing amount of reaction times, manufacturing data will increasingly
be practiced in the cloud systems that provide more data-driven decision making for
both service and production systems. [61]

Virtual Reality (VR) and Augmented Reality (AR) are called virtualization
technologies and they are entitled the integration of computer-supported reflection
of a real-world environment with additional and valuable information. [62] In
other words, virtual information can be encompassed to real world presentation
with the aim of enriching human’s perception of reality with augmented objects
and elements. [63] For this purpose, existing VR and AR applications associate
graphical interfaces with user’s view of current environment. The essential role of
graphical user interfaces is that users can directly affect visual representations of
elements by using commands on appeared on the screen and interacts with these
menus referenced by ad-hoc feedbacks.

Simulation is the imitation of the operation of a real-world process or system
over time. Before the application of a new paradigm, system should be tested and
reflections should be carefully considered. Thus, diversified types of simulation
including discrete event and 3D motion simulation can be performed in various
cases to improve the product or process planning. [64] For example, simulation
can be adapted in product development, test and optimization, production process
development and optimization and facility design and improvement.

Data analytics and Artificial Intelligence (AI) express the use of techniques
and methodologies for massive utilization of the large masses of available data. In
consequence of the manufacturing companies start to adopt advanced information
and knowledge technologies to facilitate their information flow, a huge amount
of real-time data related to manufacturing is accumulated from multiple sources.
The collected data which is occurred during R&D, production, operations and
maintenance processes is increasing at exponential speed. [65] In particular, data
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integration and processing in Industry 4.0 is applied for improving an easy and highly
scalable adaptation for data flow based performance analysis of networked machines
and processes. [66] Data appears in large volume, needed to be processed quickly
and requires the combination of various data sources in diversified formats. For
instance, data mining techniques have to be used where data is gathered from various
sensors. This information assists the evaluation of current state and configuration
of different machinery, environmental and other counterpart conditions that can
affect the production as seen in smart factories. The analysis of all such data may
bring significant competitive advantage to the companies that they are able to be
meaningfully evaluate the entire processes. [67]

Communication and networking or Industrial IoT (IIoT) can be described as
a link between physical and distributed systems that are individually defined. Using
communication tools and devices, machines can interact to achieve given targets,
focus on embedding intelligent sensors in real-world environments and processes.
IIoT relies on both smart objects and smart networks and also enables physical
objects integration to the network in manufacturing and service processes. In other
words, major aim of IIoT is to provide computers and machines to see and sense
the real world applications that can provide connectivity from anytime, anywhere
for anyone for anything. Considering manufacturing advancements supported by
communication and networking technologies, manufacturing industries are ready
to improve the production processes with big data analytics to take the advantage
of higher compute performance with open standards and achieve the availability of
industry know-how in advance. [68] As a result of the penetration of manufacturing
intelligence, manufacturers can be able to enhance quality, increase manufacturing
output. This knowledge provides better insights for detecting root cause of production
problems and defect mapping, monitor machine performance and reduce machine
failure and downtime. Therefore, IIoT or communicative systems are not only
considered as a technology of Industry 4.0 but also evaluated as a “cover” that
contains many features from Industry 4.0 tools.

These technologies require a fundamental structure for the successful imple-
mentation. Therefore, RTLS and RFID technologies, cyber security, sensors and
actuators and mobile technologies are the infrastructure for supportive technologies.

RTLS and RFID technologies mean real-time location system and radio fre-
quency identification. Smart Factory has some critical operations such as smart
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logistics, transportation and storage by satisfying efficient coordination of embedded
systems and information logistics. These operations include identification, location
detection and condition monitoring of objects and resources within the organization
and across company using Auto-ID technologies. The aggregation and processing
of the real time data gathered from production processes and various environmental
resources assist the integration of organization functions and enables self-decision
making of the machines and other smart devices. Thus, RFID and RTLS may gen-
erate value in manufacturing and logistics operations [69] as described the basic
concepts of real time monitoring systems in the following way:

• identification—especially RFID with single and bulk reading,

• locating—RTLS like GPS and others,

• sensing, e.g. temperature and humidity sensors.

Cyber security is the protection of computer systems and networks from in-
formation disclosure, theft of, or damage to their hardware, software, or electronic
data, as well as from the disruption or misdirection of the services they provide. As
mentioned in previous sections, Industry 4.0 transformation requires intensive data
gathering and processing activities. Thus, security of the data storage and transfer
processes is fundamental concepts for companies. The security should be provided
in both cloud technologies, machines, robots and automated systems considering the
following issues:

• data exportation technologies security,

• privacy regulations and standardization of communication protocols,

• personal authorization level for information sharing,

• detection and reaction to unexpected changes and unauthorized access by
standardized algorithms.

To avoid the results of these issues, operational recovery, end-user education, network
security and information security should be ensured by cyber incident response, criti-
cal operation recovery and authorization level detection programs. Other preventive
actions can be access controls of user account, firewalls, intrusion detection systems
and penetration tests that use the vulnerability scanners.
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Sensors and actuators are the basic technology for embedded systems as entire
system obtains a control unit, usually one or more micro-controller, which monitor
the sensors and actuators that are necessary to interact with the real world. In
industrial adaptation of Industry 4.0, embedded systems similarly consist of a control
unit, several sensors and actuators, which are connected to the control unit via field
buses. The control unit conducts signal processing function in such systems. As
smart sensors and actuators have been developed for industrial conditions, sensors
handle the processing of the signal and the actuators independently check production
current status, and correct it, if necessary. These sensors transmit their data to a
central control unit, e.g. via field buses. In this respect, sensors and actuators can be
defined as the core elements for entire embedded systems. [70]

Mobile technologies made a significant progress after these devices were first
introduced and are now so much more than just basic communication tools. These
devices ensure the internet enabled receiving and processing of large amounts of
information and are provided with high quality cameras and microphones, which
again allow them to record and transmit information.

2.3.3 Autonomy and digital twin

With the coming of big data-driven manufacturing era, many new technologies,
such as internet of things (IoT), big data, service-oriented technology, and cloud
computing, have been employed in PLM. However, the current technologies mainly
focus on physical product data rather than the data from virtual models. On the one
hand, data generated in various phases of the whole product lifecycle may form the
information island between different phases of product lifecycle. And on the other
hand, a lot of duplicate data exists in different phases of product lifecycle and leads to
resources waste and data sharing inefficiency. Besides, the interaction and iteration
between big data analysis and various activities in the whole product lifecycle are
relatively absent. To solve the problems, digital twin, with the characteristics of
ultra-high synchronization and fidelity, convergence between physical and virtual
product, etc., has high potential application in product design, product manufacturing,
and product service. [71] [72]

In order to be able to respond quickly to unexpected events without central
re-planning, future manufacturing systems will need to become more autonomous.
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Autonomous systems are intelligent machines that execute high-level tasks without
detailed programming and without human control. They know their capabilities
(that are modeled as “skills”) and their state. They are able to decide between a set
of alternative actions, orchestrate and execute skills. In order to make this happen,
the autonomous systems will need access to very realistic models of the current
state of the process and their own behavior in interaction with their environment in
the real world – typically called the “Digital Twin”. [16] Autonomy provides the
production system with the ability to respond to unexpected events in an intelligent
and efficient manner without the need for re-configuration at the supervisory level.
Lastly, ubiquitous connectivity such as the Internet of Things facilitates closing of the
digitalization loop, allowing next cycle of product design and production execution
to be optimized for higher performance.

The concept of using “twins” is rather old. It dates back to NASA’s Apollo
program, where at least two identical space vehicles were built to allow mirroring
the conditions of the space vehicle during the mission. One vehicle remaining on
earth was called the twin. The twin was used extensively for training during flight
preparation. During the flight mission it was used to simulate alternatives on the
earth based model, where the available flight data were used to mirror the flight
conditions as precise as possible, and thus to assist the astronauts in orbit in critical
situations. In this sense, every kind of prototype, which is used to mirror the real
operating conditions for simulation of the real time behavior, can be seen as a twin.
[73] [74]

As a key enabling technology with the characteristics includes interactive feed-
back between cyberspace and physical space, data fusion and analysis, iterative
optimization for decision-making, the digital twin has been a research hot-spot of
intelligent manufacturing. [75] [72] [71] In the scientific literature, searching for pa-
pers with the expressions digital twin and wisdom in the title, keywords, or abstract,
there are only 10 articles about this issue and all published from 2020 onward. It is
clear from this work that the digital twin is a technology that involves more than just
a set of knowledge regarding a physical resource. For the digital twin, therefore, it
is necessary to structure an architecture that involves a layer referring to decision
making as well as the knowledge necessary to be able to make those decisions with
as much awareness as possible. Digital twin is an important technology for realizing
concepts such as digitalization, intelligence, and service. It integrates the attributes
of multi-physics, multi-scale and multi-discipline, has real-time synchronization,
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faithful mapping, high fidelity and other characteristics, can accurately reflect and
predict the real state of the physical world, and predict future development trends
in advance. [76] Organizations are intensely developing digital twins to correctly
and efficiently answer questions about the history and behaviour of physical systems.
However, it is not clear how to construct these infrastructures starting from the data,
information, knowledge, and wisdom available in the organization. [77]

2.4 Industry 5.0

2.4.1 European Union view

The European Commission published from the 2020 three interested article to
understand the European vision concerning the Industry 5.0. [78] [79] [80]

The vision is based on three main aspects: European Green Deal, Europe Fit
for the Digital Age and an Economy that Works for People. It recognises the
power of industry to achieve societal goals beyond jobs and growth, to become a
resilient provider of prosperity, by making production that respects the boundaries
of our planet and placing the well-being of the industry worker at the centre of
the production process. It complements the existing "Industry 4.0" paradigm by
having research and innovation drive the transition to a sustainable, human-centric
and resilient European industry. It moves focus from solely shareholder value to
stakeholder value, for all concerned.

Applying ever-more advanced digital technologies. Sensor technologies, big data
and AI are increasingly automating, interconnecting and optimising a wide range of
industrial processes. Industry 4.0 is primarily a techno-economic vision, indicating
how more general technological advancements, often originated in non-industrial
contexts, will be brought to bear on industrial value chains and how they will change
industry’s economic position. It describes how industry will use technology to cope
better in a changing world and economy, and we believe it does this very well. A
transformed industry will have a transformative impact on society as well. Changing
roles and increased reliance on complex technologies will require new skills. Will
workers be empowered in their industrial work and attracted to work in new high-tech
environments? Innovation will require industry to re-think its position and role in
society. A renewed European "Industry 5.0" needs to be characterized by industries
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more future-proof, resilient, sustainable and human-centred with emerging drivers
for the industry of the future, making an emphasis on the perspective of the industry
worker. We do not distinguish between "blue collar" and "white collar" workers;
in Industry 5.0, the lines between different types of industry workers are blurred.
Furthermore, European values and fundamental rights should be binding principles,
including respect for privacy, autonomy, human dignity and general workers’ rights.
It emphasises aspects that will be deciding factors in placing industry in future
European society; these factors are not just economic or technological in nature, but
also have important environmental and social dimensions.

The need is to better integrate social and environmental European priorities into
technological innovation and to shift the focus from individual technologies to a
systemic approach. Six categories have been identified, each of which is considered
to unfold its potential combined with others, as a part of technological frameworks:

• individualised Human-machine-interaction;

• bioinspired technologies and smart materials;

• digital twins and simulation;

• data transmission, storage, and analysis technologies;

• Artificial Intelligence;

• technologies for energy efficiency, renewable, storage and autonomy.

The Internet of Things (IoT) is going to have a significant impact on the organi-
sation of production thanks to a new interplay between humans and machines and a
new wave of digital application to manufacturing. Industry 4.0 has focused less on
the original principles of social fairness and sustainability, and more on digitalization
and AI-driven technologies for increasing the efficiency and flexibility of production.
The concept of Industry 5.0 provides a different focus and highlights the importance
of research and innovation to support industry in its long-term service to humanity
within planetary boundaries. The concept of the Society 5.0 essentially takes the
digitalization and transformation dimensions, mainly situated on the level of indi-
vidual organisations and parts of society, to a full national transformational strategy,
policy and even philosophy. The Society 5.0 attempts to balance economic develop-
ment with the resolution of societal and environmental problems. It is a society in
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which advanced IT technologies, Internet of Things, robots, artificial intelligence
and augmented reality are actively used in every day life, industry, healthcare and
other spheres of activity, not primarily for economic advantage but for the benefit
and convenience of each citizen. The recently published White Paper on a regulation
of artificial intelligence, as well as the European Data Strategy, clearly illustrate
the importance the European Commission attaches to the societal impact of digital
technologies. In particular, the Radical Innovation Breakthrough Inquirer (RIBRI)
report, which identified 100 potential innovation breakthroughs.

Several Horizon 2020 funded projects have developed evidence and further
guidance on the transformative elements pertinent to Industry 5.0: they develop
solutions that render the production more sustainable, resilient and competitive on a
long-term basis, and tackle challenges associated with beneficial human-machine
interaction and skills matching. A growing number of projects is addressing the
human and societal aspects of the digitalization of our (industrial) workplaces, hence
contributing to the human-centric perspective of Industry 5.0. Last but not least,
projects look into the impact of digitalized work environment on workers’ safety,
working conditions, job satisfaction and physical and mental well-being (e.g. Human
Manufacturing, SYMBIO-TIC, FIT4FoF, PLUS, MindBot, H-WORK, EMPOWER).

Industry 5.0 will be defined by a re-found and widened purposefulness, going
beyond producing goods and services for profit. This wider purpose constitutes
three core elements: human-centricity, sustainability and resilience. Rather than
asking what we can do with new technology, we ask what the technology can do
for us. It also means making sure the use of new technologies does not impinge
on workers’ fundamental rights, such as the right to privacy, autonomy and human
dignity. Industry 5.0 recognises the power of industry to achieve societal goals
beyond jobs and growth to become a resilient provider of prosperity, by making
production respect the boundaries of our planet and placing the well-being of the
industry worker at the centre of the production process. Technology serves people.
The Factory2Fit project, for example, aims at empowering and engaging workers
in a more connected industrial environment. The workers are given more influence
and hence greater responsibility in shaping the production process, through virtual
means. One of the fears associated with the uptake of new technologies is the
loss of jobs. However, if applied correctly, new technologies have the potential to
make workplaces more inclusive and safer for workers, as well as increase their
job satisfaction and well-being. The skills dimension is another important set of
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considerations for Industry 5.0. Skills needs are evolving as fast as technologies.
Digital skills are not the only skills that will be pertinent for industry workers in
the factories of the future. The World Manufacturing Forum has identified a top-
10 of skills that will be needed in future manufacturing. Surprisingly, only four
of them refer to digital skills: "digital literacy, AI and data analytics," "working
with new technologies," "cybersecurity", and "data-mindfulness". The remaining
skills are more transversal skills linked to creative, entrepreneurial, flexible and
open-minded thinking. The benefits for industry are wide-ranging, going from better
talent attraction and retention, over energy savings, to increased general resilience.
The overall benefit for European industry is longterm: continued competiveness and
relevance by successfully adjusting to a changing world and new markets.

Summarizing, there are three main important aspects for the Industry 5.0. Firstly,
talking about the human centricity, in order to ensure that both companies and
workers benefit from the digital transition, rethinking and redesigning business
models is necessary. Workers should be involved in every step of this transition
process. In order to benefit from the relative strengths of technologies and workers,
companies need to invest in both. Education, training, re-skilling and up-skilling
are certainly among the most pressing issues to address when accommodating the
digital transition in industries, as qualified human capital is of the utmost importance
to make it a reality.

Then with respect to the sustainability, several powerful instruments helping the
EU reach its carbon-neutral ambitions have been identified. Innovations in green
technology, combined with EU initiatives aimed at Digitising European Industry
(including better use of big data and artificial intelligence) are a reality and are
increasingly embraced by industry. In the face of mounting public environmental
and societal concerns, companies are incorporating sustainability into their business
models. When fully realising the advantages of an improved corporate image and of
savings on energy and material costs, industry will embrace resource efficiency as a
natural choice.

Finally, With the Recovery and Resilience Facility, the European Commission
wants to support EU countries in reform efforts that ensure sustainable recovery.
Carrying out reforms and investing in the green, digital and social resilience priorities
will help create jobs and sustainable growth, and allow recovery in a balanced,
forward-looking and sustained manner.
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As we have shown, the transition towards Industry 5.0 has already started. A
number of on-going projects in Horizon 2020 are already contributing to the devel-
opment of this concept. The following major actions, foreseen as next steps, are part
of our growing toolbox for making Industry 5.0 happen:

• increasing awareness in industry,

• implementation of the technologies necessary for Industry 5.0. Its main
outcomes are being taken into account in the preparation of the first Horizon
Europe programme, in particular within Cluster 4,

• Identify existing actions and opportunities for the development of Industry
5.0 across Europe, including actions for encouraging inclusive technology
diffusion across Europe.

2.4.2 Literature review

There are 88 articles in the scientific literature that mention Industry 5.0 in the title, of
which 5 reviews [81] [82] [83] [84] [85] and 2 books, that are actually two volumes
of the same book. [86] The main 4 works in this topic, according to the author, have
been puplished from 2018 to 2021. [87] [88] [89] [90]

Investments in and expectations from Big Data have placed transnational re-
search and implementation science communities under enormous and painful new
pressures to rapidly edge toward innovative products and applications. Innovations,
unprecedented by definition, do not necessarily follow a linear line from data to
knowledge to application. They are important to remedy for a robust, sustainable,
and responsible innovation ecosystem design in the digital age, and particularly for
the networked large-scale scientific practices such as Industry 4.0. Industry 5.0 is as
an evolutionary, incremental (but critically necessary) advancement that builds on
the concept and practices of Industry 4.0. Others may wish to name it differently as
"Industry 4.0 Plus", "Industry 4.0 Symmetrical", or "Industry 4.0-S". [87]

Although Industry 4.0 is not yet well grown, many industry pioneers and tech-
nology leaders are looking ahead to the Fifth Industrial Revolution: autonomous
manufacturing with human intelligence in and on the loop. Its sole focus is to
improve the efficiency of the process, and it thereby inadvertently ignores the human
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cost resulting from the optimization of processes. Unfortunately, Industry 4.0 does
not have a strong focus on environmental protection, nor has it focused technologies
to improve the environmental sustainability of the Earth, even though many different
AI algorithms have been used to investigate from the perspective of sustainability
in the last decade. Industry 5.0 will be a synergy between humans and autonomous
machines. [88]

Concerning the Industry 5.0:

• humans are expected to add high-value tasks in manufacturing policies, where
standardization and legalization will help to prevent any serious issues between
technology, society, and businesses,

• particularly, senior members of a society and stakeholders will find it much
more difficult to adapt with the new industrial revolution, [91]

• fast and highly efficient manufacturing may result in an overproduction phe-
nomenon, therefore implementing transparency should also be taken into
consideration,

• it is necessary to consider how autonomous systems can incorporate ethical
principles,

• there should be explainable ethical behavior solutions in autonomous systems,

• ethical behavior in autonomous systems must be subject to verification and
validation,

• essential skill gaps in future management and executive roles must be ad-
dressed.

According the literature, [89] [92] the following ones are issues related to inte-
grating robots into organizations:

• evolution in organizational behaviour, structures and workflows,

• acceptance of robots in the workplace and social implications of human-robot
co-working,

• evolution in work ethics, ethical issues resulting from human-robot co-working,
and ethical status of robots,
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• discrimination against robots or people,

• privacy and trust in a human-robot collaborative work environment,

• education and training, and learning to work with robots,

• redesign of workplaces for robots,

• legal and regulatory issues,

• psychological issues resulting from human-robot co-working,

• the changing role of HR and IT departments, and the emerging of robotics
departments,

• negative attitude toward robots due to shrinking human workforce.

Summarizing another important work, [90] Industry 5.0 is currently conceptual-
ized to leverage the unique creativity of human experts to collaborate with powerful,
smart and accurate machinery. Many technical visionaries believe that Industry 5.0
will bring back the human touch to the manufacturing industry, [88] It is expected
that Industry 5.0 merges the high speed and accurate machines and critical, cognitive
thinking of humans. Another interesting benefit of Industry 5.0 is the provision
of greener solutions compared to the existing industrial transformations, neither
of which focuses on protecting the natural environment. [89] Industry 5.0 uses
predictive analytics and operating intelligence to create models that aim at making
more accurate and less unstable decisions. Despite a growing trend in Industry 5.0,
we are not aware of any review article that focuses on Industry 5.0. Motivated by
this observation, we aim to provide a very first review on Industry 5.0.

Definition 1. Industry 5.0 is a first industrial evolution led by the human based on
the 6R (Recognize, Reconsider, Realize, Reduce, Reuse and Recycle) principles of
industrial up-cycling, a systematic waste prevention technique and logistics efficiency
design to valuate life standard, innovative creations and produce high-quality custom
products. [93]

Definition 2. Industry 5.0 brings back the human workforce to the factory,
where human and machine are paired to increase the process efficiency by utilizing
the human brainpower and creativity through the integration of workflows with
intelligent systems. [88]
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Fig. 2.13 Key enabling technologies of Industry 5.0. [90]

Definition 3. European Economic and Social committee states that the new
revolutionary wave, Industry 5.0, integrates the swerving strengths of CPSs and
human intelligence to create synergetic factories. [94] Furthermore, to address
the human-power weakening by Industry 4.0, the policymakers are looking for
innovative, ethical and human-centered design.

Definition 4. Industry 5.0 compels the various industry practitioners, information
technologists and philosophers to focus on the consideration of human factors with
the technologies in the industrial systems. [95]

Definition 5. Industry 5.0 is the age of social smart factory where cobots commu-
nicate with the humans. [96] The social smart factory uses enterprise social networks
for enabling seamless communication between human and CPS components.

Definition 6. Industry 5.0, a symmetrical innovation and the nextgeneration
global governance, is an incremental advancement of Industry 4.0 (asymmetrical in-
novation). It aims to design orthogonal safe exits by segregating the hyperconnected
automation systems for manufacturing and production. [97]

Definition 7. Industry 5.0 is a human-centric design solution where the ideal
human companion and cobots collaborate with human resources to enable personal-
izable autonomous manufacturing through enterprise social networks. This, in turn,
enables human and machine to work hand in hand. Cobots are not programmable
machines, but they can sense and understand the human presence. In this context,
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the cobots will be used for repetitive tasks and labor intensive work, whereas human
will take care of customization and critical thinking (thinking out of the box).

Fig. 2.14 Industry 4.0 potentials, challenges, and future directions [90].

Industry 5.0 is the enhanced version of the fourth industrial revolution. Another
added features of Industry 5.0 are:

• Smart Additive Manufacturing (SAM) has become emerging technology in
smart manufacturing domain,

• Predictive Maintenance,

• Hyper customization,

• Cyber Physical Cognitive Systems (CPCSs) with cognitive capabilities such as
observe and study the environment and take actions accordingly these realiza-
tions, where learning and knowledge are the primary components of decision
making that is also at the base of human-robot collaborative manufacturing.
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Concluding, human intelligence can be applied for critical thinking of the cus-
tomization logic, and the cobots can be utilized for labor-intensive tasks, thereby,
alleviating the weakened human-power by effective use of cobots for labor-intensive
jobs. Proactive Predictive Maintenance enables more manageable maintenance and
a faster recovery rate in case of failures. The personalized manufacturing solutions
through AI and cognitive systems for every customer will be assured by hyper
customization throughout the manufacturing processes.



Chapter 3

Design framework for smart
data-driven manufacturing services

The proposed framework has been structured to support the design phase of CPSs
dedicated to the manufacturing sector in a Industry 5.0 context. In other words, the
framework is a human thinking methodology to develop digital systems that actively
operate as services family (assumed data-driven) with clear objectives and that require
the awareness of the impact that their pursuing of goals has on the environment:
digital services with arbitrary complexity that improve their sustainability level in
the context of the CPS in which they operate.

Considering the works in the literature, the objective of this study is formalizing
a graphical model to schematize the structure of a CPS for Industry 5.0, enabled by
hybrid knowledge, i.e. hybrid modeling techniques for digital systems consisting
of information management platforms, knowledge-based (cognitive) processes, and
decision-support services with sustainable decision-support services (so operating
with wisdom).

The framework has to guarantee scalable applicability: from simple services, e.g.
a simple digital twin of a machine component (a more specific example is "the tool
set actually on this milling machine"), to complex ones, e.g. an EIS that supports
the human activity of an entire Industry 4.0 process. The framework is referred to
a general IT solution that, being mainly data-driven, is highly complex to analyse,
especially because it relies heavily on tangible and intangible assets with high-value
and complex information baggage such as specialised machinery and the experience
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of a lean practitioner. This framework is designed to schematize the structure of any
reactive data-driven services, i.e., systems that can not adequately be described by the
relational or functional view, or otherwise with individual techniques, methodologies,
or approaches. Typically, the main role of that systems is to maintain an interaction
with their environment, and therefore must be described (and specified) in terms of
their on-going behavior. This modeling approach supports the design of a generic
cyber component: from a platform belonging to the classical EISs (e.g. a MES)
to the digital twin of a simple product component (e.g. a mechanical properties
simulation model). The framework must be able to be applied to any desired physical
subsystem and to any human IT concept (with a minimum effort of generalization or
specialization), but the application domain considered writing this work is given by
systems of digital twins of products, material resources or machine components and
other digital information management subsystems useful for human beings involved
in a manufacturing process.

3.1 Basic concepts

This section reports definitions, fundamentals, and literature recalls in order to (i) fix
the idea of applying the proposed framework as elementary structure for Cooperative
Multi-Agent Systems (MASs), (ii) describe in the next section the proposed DIKW-
structure of the agent, and, finally, (iii) discuss about the hybrid characterization
of functionalities and properties of the agent for a sustainable, human-centric and
resilient cognitive baggage.

3.1.1 Cooperative Multi-Agent Systems (MASs) modeling

The high-complexity level, given for example by the information load regarding
projects and simulations during the design phase of a product, requires a framework
that provides a manufacturing modelling approach of physical and (almost always)
human-centric resources. In this scenario, the choice of assuming a basic information
entity, a digital element (object), an item (a term widely used in PLM systems):
an Agent-Based Model (ABM) is evident. Such agents can be associated with
elementary productive resources without losing the property of being extended to
a system of variable complexity (dependent on the estimated size of the set of
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agents largely influenced by it, e.g. as a mediator of communication). An agent is a
reactive subsystem that exhibits some degree of autonomy, i.e., human beings has
set objectives for it and the system that makes the agent works to achieve this task in
the best way.

A multi-agent system (MAS or self-organized system) is a computerized system
composed of multiple interacting intelligent agents. A multi-agent system is not
always the same as an ABM. The goal of an ABM is to search for explanatory
insight into the collective behavior of agents (which don’t necessarily need to be
"intelligent"), while MASs consist of agents and their environment. Typically multi-
agent systems research refers to software agents. However, the agents in a multi-agent
system could equally well be robots, human beings or human teams. A multi-agent
system may contain combined human-machine teams.

The difference between a MAS and the object-oriented programming can be
summarised by the following points [98]:

• objects are passive (no control over method invocation) while agents are
autonomous (pro-active),

• objects are designed for a common goal while agents can have diverging goals
(coming from different organizations),

• objects are typically integrated into a single thread while agents have own
thread of control.

According basic concepts about MAS, an agent has the following characteristics
[99]:

• local view, i.e. each agent has incomplete information or capabilities for
solving the problem and, thus, has a limited viewpoint or the system is too
complex for an agent to exploit such knowledge,

• decentralization, i.e., there is no system global control, or, in other words, no
agent is designated as system controller or the system is effectively reduced to
a monolithic system,

• autonomy, i.e., agents are at least partially independent, self-aware, au-
tonomous and computation is asynchronous.
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Other characteristics of agents are [100]:

• proactiveness, i.e., being able to exhibit goal-directed behaviour, or better if
an agent has been delegated a particular goal, then we expect the agent to try
to achieve this goal,

• reactivity, i.e, being responsive to changes in the environment,

• social ability, i.e., the ability to cooperate and coordinate activities with other
agents, in order to accomplish their goals (as shown later, in order to realise
this kind of social ability, it is useful to have agents that can communicate not
just in terms of exchanging bytes or by invoking methods on one another, but
that can communicate at the knowledge level).

3.1.2 Data, Information, Knowledge, and Wisdom (DIKW)

The framework is based on the characterization of the wisdom of a generic digital
agent. The wisdom level is required for the agent in order to analyze its objectives
and to generate solutions to pursue them. To ensure its sustainability, the agent has to
generate smart decisions, i.e., decisions based on appropriate processes of continuous
improvement (in a lean perspective) of the knowledge of the state of its universe, its
self state, and all the space of its possible decisions. The DIKW pyramid, or scheme,
is implied as general structure of the wisdom of a generic agent.

The main characterization [101] of works published with the aim of explore and
clarify the possibility to define a hierarchical relationships between data, information,
knowledge, and wisdom, is that:

• there is a clear consensus on the structure of the hierarchy and the definitions
of the elements in the hierarchy,

• there is less consistency in the description of the processes that transform
elements lower in the hierarchy into those above them, and some consequent
lack of definitions clarity.

The research on Scopus for papers with DIKW (Data, Information, Knowledge,
and Wisdom) in their title produced 32 results at the end of 2021, of which 12 journal
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articles, 15 conference papers, 3 book chapters, and 2 reviews shown by Figure 3.1.
These works don’t include all the previous works carried out on the same theme but
which do not use the term "DIKW".

Fig. 3.1 Number of documents with the therm DIKW in their title. [101] [102] [103]

The conference papers are only minor works with few citations, while, between
the 12, the main three journal articles talk about:

• a first representation under the therm "DIKW" of a wisdom hierarchy that is
the most cited one from the 2007, [102]

• a 2-years later critique of this hierarchical representation [101] that is the
second most cited work on this topic,

• a further contribution focused on the quality dimension of the hierarchy, [103]
published in 2013.

Between the three books, the most inherent one exposes a methodology for a
purpose computation-oriented modeling based on the DIKW architecture [104] and
explain how in the higher level (the one dedicated to the wisdom) has to express
the purpose of the system modeled by a DIKW structure. Between the two reviews,
instead, the interesting one is written by the same author that ten years before
analyzes few critical points of the DIKW structure. [105]

In more recent literature, authors often cite Ackoff’s paper of 1989 as a source
for the hierarchy. [106] This article proposed a hierarchy with the following levels:
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data, information, knowledge, understanding and wisdom. It included understanding
in his hierarchy, but more recent commentators have disputed that understanding
is a separate level. Ackoff offers the following definitions of data, information,
knowledge and wisdom, and their associated transformation processes:

• data are defined as symbols that represent properties of objects, events and
their environment and they are the products of observation but generally
in a not usable state (i.e. relevant) form (the difference between data and
information is functional, not structural),

• information is inferred from data and contained in descriptions, answers to
questions that begin with such words as who, what, when and how many, while
information systems generate, store, retrieve and process data,

• knowledge is know-how, and is what makes possible the transformation of
information into instructions and it can be obtained either by transmission
from another who has it, by instruction, or by extracting it from experience,

• intelligence is the ability to increase efficiency,

• wisdom is the ability to increase effectiveness and it adds value, which requires
the mental function that we call judgement (the ethical and aesthetic values
that this implies are inherent to the actor and are unique and personal).

Considering that there is more data than information, than knowledge, than
wisdom, [102], various works hypothesis different views on the variables that change
between the different levels of the hierarchy: low levels (data) are associated to an
high perception of computer inputs and programmability or algorithmicity (automa-
tion), while high levels of the pyramid (wisdom) are associated to an high perception
of meaning, value, human input, structure and human agency, transferability, action-
ability, and applicability.

Data has to be more than the mere "observable", and it can be more than the
pronouncements of "instruments". There are contexts, conventions, and pragmatics
at work. In particular circumstances, researchers might regard some recordings as
data which report matters that are neither observable nor determinable by instrument.
An interesting lesson in the literature for information studies is: "do not suppose that
there is a special category of "data" which can serve as the bedrock for all else." [101]
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Information is notoriously a polymorphic phenomenon and a polysemantic concept
so, as an explicandum, it can be associated with several explanations, depending
on the level of abstraction adopted and the cluster of requirements and desiderata
orientating a theory. [107]

The essence of information science is that it deals with records, recordings,
documents, inscriptions, and representational artefacts. Its historical origins are
librarianship, archival studies, and the theories and practices of documentation.
Nowadays, research in information science has spread widely from its historical base
but its core is still the attention to those artefacts of preservation of forms of bridges
connecting a individual and instant of time with availability across individuals and
persistence through time. There are even many different senses of "information" in
use even in information science and, clearly, it is not the case that one of these senses
is good (and all purpose) and the others not. But, both in information science and
elsewhere, there are different problems and different contexts where these different
notions of information come into play.

Information systems books tend to focus on the relationship between data and
information, often defining information in terms of data: "information is formatted
data", "information is data that have been shaped into a form that is meaningful and
useful to human beings" or "information is data that have been organized so that
they have meaning and value to the recipient". [102] The word "information" has
been given different meanings by various writers in the general field of information
theory. It is likely that at least a number of these will prove sufficiently useful in
certain applications to deserve further study and permanent recognition. It is hardly
to be expected that a single concept of information would satisfactorily account for
the numerous possible applications of this general field. [108]

So much for data and information in the DIKW hierarchy, the pyramid has no
solid foundations for the knowledge. Within philosophy, there is the distinction
between "know-how" and "know-that". The know-that is always in a propositional
form and, given a suitable expressing language, they can be written down and
recorded or stored in data-bases. Know-hows are different: they might be articulated
as procedural rules, usually ‘if–then’ rules or more general regular expressions, but
not always. Knowing how to solve a quadratic equation, how to control a parameter,
and similar, might be conceived like this. Such rules, of course, can be written down
and stored in a repository. Other know-hows do not seem to be of this kind. Knowing
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how to ride a bicycle (or satisfy a customer) is not plausibly a matter of the brain
scanning, and selecting among, rules like "if you want to turn left, lean left" [101]
(or "if a customer needs a product, produce it and sell it at in the most sustainable
way"). Another common assumption is that certain knowledge does not exist: all
knowledge is conjectural. Such scenario, originally called fallibilism, considers that
propositions concerning empirical knowledge can be accepted even though they
cannot be proven with certainty, or in short, that no beliefs are certain. [109]

3.1.3 State-of-the-art about hybrid modeling

CPSs share mathematical characteristics too, which are in many ways more important
for the aim of this framework than the fact that they happen to be built from cyber
components and from physical components. From a mathematical perspective, CPSs
are hybrid systems (or extensions thereof). Overall, hybrid systems are not the same
as CPSs. Hybrid systems are mathematical models of complex (often physical)
systems, while CPSs are defined by their technical characteristics.

Hybrid modeling is the process of making use of two or more modeling tech-
nique belonging to different philosophies or methodologies and then synthesizing the
results into a single score or spread. The main works on this topic use the following
therms (with the following frequencies): "hybrid modeling" (37), "grey/gray-box"
(11), "knowledge based modular networks" (1), "incorporating external information"
(3), and "semi-mechanistic model structures" (1). [17] Hybrid modeling is concep-
tually similar to ensemble modeling but, while the seconds are referred to unify
different models of the same family, hybrid modeling is referred to completely dif-
ferent approaches of modeling with a consequent increasing in therm of complexity
of managing heterogeneous characteristics.

It is clear, therefore, that this research topic is widely covered considering the
different terms by which the scientific community refer to it. This work aims to pro-
vide a proposed definition of this approach, answering the second research question
(RQ2), by formalizing the characteristic of hybrid at the level of data, information,
knowledge and wisdom, considering that the definition of hybrid knowledge, i.e.,
hybrid KBS, turns out to be the most dealt with, even in the case study, because it is
considered the most interesting by the scientific community.
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A literature research executed on Scopus is the base of the discussion regarding
the origin of the therm, and more specifically the first research query is shown
by the Figure 3.2: the aim is finding all the English-written works in the area of
math, engineering, and computer science, that are related to the concept of hybrid
modeling.

Fig. 3.2 Scopus research: all the English-written works in the area of math, engineering, and
computer science, that are related to the concept of hybrid modeling.

The Figure 3.3 shows the number of publications in the years starting from
the publication in the 1962 [110]. This first work starts talking about the benefits
given by the use of a combination of both analog and digital computing devices:
the conclusion is that the addition of the digital expansion system providing logic
capability to the general purpose analog computer will enlarge its capabilities as an
automatic computing device.

Another work published in the 1965 uses the therm hybrid to identify computers
that are both digital and analog and it highlights that the term had already been in use
for some years and had originated in the aerospace industry to refer to the technology
behind the computers used for simulations. [111] Two years later, in the 1967,
the therm hybrid was used to indicates an approach to solve non linear equation
based on two main techniques: the quasi-linearization one and the adjoint state
method. [112] While the quasi-linearization technique is essentially a generalized
Newton–Raphson method for functional equations, the adjoint state method is a
numerical method for efficiently computing the gradient of a function or operator
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Fig. 3.3 Scopus research: all the English-written works in the area of math, engineering, and
computer science, that are related to the concept of hybrid modeling.

in a numerical optimization problem. The work shows that the hybrid use of the
two methods greatly reduces the number of first-order differential equations to be
numerically integrated. A further work published in 1969 uses the therm hybrid for
a root-finding method that is inspired by a previous work of the 1961 and makes use
of analytical techniques, that is statistical in nature, in combination with short tables,
i.e., a deterministic method. [113]

The hybrid methods consider models of different nature to take advantage from
the synergy in particular of the following combinations:

• analog and digital components,

• analytical equations and numerical methods,

• statistical and deterministic approach.

"The diversity of backgrounds led to different terminologies for describing
the combination of mechanistic and data-driven models (hybrid, gray-box, etc.).
Furthermore, different understandings exist of what is really an hybrid modeling
approach; from broader definitions, where data may just be used to adjust mechanistic
parameters, to stricter definitions, where two dissimilar sub-models (mechanistic and
data-driven) are required to be simultaneously present." [17]
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In conclusion, the term hybridisation, which refers to a type of analysis modelling,
originated in the 1960s in response to the need to overcome the complexity limits
of classical models by taking advantage of new computational capacity. The term
refers to a main analysis technique that makes use of several techniques of different
natures in order to determine the optimal solution to a particular problem of such
complexity that classical analysis techniques are ineffective and the pure application
of numerical methods is computationally too costly.

In the era of Industry 4.0, internet of things combined with generalized advanced
digitalization, business analytics and additive manufacturing will drive industry
to a market more decentralized, flexible and customizable, focused on client-by-
client solutions and with reduced time- to-market due to rapid disruptive innovation.
With the exponential increase of the amount of data available, hybrid modeling
requires new frameworks and tools for combining first-principles with data-induced
knowledge, including for instance the ability to incorporate new types of data and
for dealing with the 5 Vs of Big Data. [17]

The spectrum of modeling techniques used by the literature are the mechanistic
modeling and the data-driven one. The construction of a mechanistic model for
hybrid modelling frameworks, depends on the available prior knowledge. These
mathematical statements can be expressed more simply as algebraic equations or,
with increasing complexity, as ordinary differential equations (ODEs) (for lumped
parameter system modeling), differential algebraic equations (DAEs) or PDEs (for
distributed parameter system modeling). By increasing the complexity of the mecha-
nistic model, one reduces the structural mismatch between the model and analyzed
process, but the larger number of parameters can lead to an unsuitable model if there
is not a way to reasonably estimate said parameters (this is the bias-variance trade-off
for mechanistic models). In other cases found in the literature, process knowledge
is encoded in some equations that are not available and this does not mean the
absence of such knowledge: process flow diagrams and even engineering expertise
can provide enough information to improve a data-driven model. The construction
of a data-driven model is argument of data science and applied, for example, in
nowadays deep learning applications. It is imperative to recognize the importance of
data-driven models in a hybrid structure, specially in the increasingly data intensive
industrial settings. The first wave of scientific papers on hybrid modeling, mainly
used data-driven techniques to fill in the gaps of knowledge in mechanistic models,
such as unknown nonlinear behavior (e.g., kinetics) or unknown parameters sus-
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pected to have a complex dependency on the process variables behavior. Currently,
as data-driven modeling becomes more widely accepted as a legitimate and useful
technology for analysing process data, an opportunity arises to apply them not just
as a complement to mechanistic models, but as a way to model which may benefit
from the incorporation of prior knowledge and process understanding.

Finding the right hybrid model structure is fundamental. In the classical hybrid
modelling literature, the prevalent way to combine the two modeling approaches
(mechanistic and data-driven) starts from an analysis of the structure of mechanistic
model and its assumptions. A parallel configuration can compensate for mechanistic
structural mismatch, but if the mechanistic structure is accurate enough, then a serial
configuration is usually a better choice. [17] In the serial structure approach, the
"white box" (mechanistic model) and the "black box" (data driven method) are com-
bined in such a way that one provides an input for the other (use a neural network to
estimate a parameter or use a mechanical equation to calculate a feature for infer-
ence). In the parallel structure approach, usually the mechanistic prediction power
limited due to limitation in describing some effects is improved by the data-driven
model. The parallel structure, despite being adequate for handling model mismatch,
still relies on a robust mechanistic model. An example is the coupling a data-driven
model, comprising a time domain partitioning procedure, with a mechanistic one:
the data-driven model delimits zones where the mechanical model can well describes
residuals. The hybrid approach often outperforms purely mechanistic models, but its
superiority cannot be guaranteed against purely empirical models particularly if the
mechanistic model does not make a good representation of the physical behavior of
the process. Surrogate models (or substitute models, or meta-models, or response
surface models) are simpler mathematical representations of more complex models.
They require less computational effort to be run than the more rigorous representa-
tions, and have been extensively used in process modeling and optimization. These
models are designed to yield unbiased predictions of sampled or simulated data
which is useful to generate regular measurements in complex systems. Another
way to design a surrogate model is to generate data points from a complex mecha-
nistic model and to use them to train a data-driven model (estimate parameters for
simulating a complex process and make subsequent analysis).

Once the structure of the hybrid model is defined, it is necessary to estimate the
models’ parameters (hybrid model or machine training) solving an optimization
problem. In the literature about hybrid structuring, usually, priority is given to the
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mechanistic model and once this model is set, the data-driven model is identified
with standard techniques. Besides this direct approach (or better mechanistic-first
approach, researchers also proposed an incremental approach (decomposition of
large problems into smaller ones trough decomposition algorithm), a sensitivity ap-
proach (training the hybrid model by back-propagating the errors through the ANN
and the associated mechanistic model) and an evolutionary computing approach.

Like in CPS or IoT systems, multiple simple components combine for a common
bigger cause and their combination compounds their interaction and impact gener-
ating new challenges , similarly, despite the significant recent progresses, there are
various challenges regarding hybrid modeling [1]:

• there are no clear demonstrations about benefits given by hybrid modeling and
no clear characterization of processes that require it,

• there is no a common definition of this technique,

• there are no model selection clear guidelines,

• there are only few comparisons between hybrid models and single ones,

• there are no enough benchmark problems and relative dataset for evaluations
and comparisons,

• prior knowledge, although dominated by equations, has not been fully incor-
porated in all its configurations,

• data-driven models have been used to improve mechanistic models, but the
opposite path remains vastly under-explored,

• there is a need for the development of software tools that facilitate the incorpo-
ration of the various sources of knowledge.

3.2 Wisdom characterization of the agent

This framework is based on a DIKW structure used to model any computer programs,
clearly not human cognitive processes, achieving expert-level competence in solving
problems for manufacturing task areas. Considering a software application working
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on a CPS, the DIKW structure can be used to model the entire one and all its
sub-components (often dedicated to specific operative tasks or physical resources)
focusing on characterize data, information, knowledge, and wisdom involved in
the process and how model them to design a smart agent. Any agent, operating
in a system, is a system itself characterized by a DIKW structure. The agent of a
CPS, therefore, represents any entity acting, actively or passively, in that system.
First, in any design of a digital platform it is necessary to model the CPS that is
to be developed, and this represents an initial agent representing the entire system
operating in a certain environment with its KPIs set and its vision. Subsequently, in
the design of a manufacturing CPS, it is necessary to consider some conventional
systems such as ERP systems, PLM systems and MESs as agents operating in the
information system: in fact, it results spontaneously to call them systems itself or sub-
systems rather than agents. The different components or modules or functionalities
of these software, if necessary to model them, consist of a wide variety of different
types of agents: SCADA systems, gateways and, for example, all other entities
defined by the ANSI/ISA-95 standard. [114][115]

Therefore, modeling a CPS means modeling different physical manufacturing
resources (and their interaction) such as humans, machinery and tools, products, and
resources: in other words, just as it is necessary to create agents representing concep-
tual functions or single functions of physical resources (scheduling for example is
a single function executable by a manufacturing engineer), it is necessary to create
more complex agents represented entirely by a physical resource (e.g., a prototype
or a specific milling present in the factory). In this case, agents referring to such
resources can be considered digital twins. For these cases, this work aims to provide
a definition of digital twin that is not limited to using simulation methods to know
the various states of the agent, but makes use of hybrid modeling based on different
modeling methods.

Considering the case of agents referred to human beings, each agent can be
considered a weak AI itself, as opposed to the strong one called Artificial General
Intelligence (AGI), [116] [117] and, therefore, is referred to an agent endowed
wit the functions that the human has in the manufacturing context. Each agent
is an AI not intended to replicate human decision-making processes, but with the
aim of providing a model underlying agents capable of replicating various human
functionalities (knowing the work status of an operator, scheduling the work to be
done in the day, or improving the ability to assemble two particular components). It
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is important to emphasize that limiting the model to a description of the human from
a manufacturing point of view does not mean not considering its complexity; in fact,
as explained in the following sections, such agents play a key role in factory wisdom
and for this reason providing a simplified model of them is rarely sufficient: for
example, designing any type of software, including humans as agents of the model
with strong requirements in terms of Human-Machine Interface will surely ensure to
produce a CPS closer to the goals of 5.0 era.

3.2.1 DIKW-MAS: a system of agents with a holistic wisdom

This work starts considering an agent that is a purposeful producer of actions, that
requires knowledge referred to the associated physical resources, or more generally,
that has an appropriate data structure to extract the knowledge base. In other words,
the data generated along the life cycle of a CPS can be imagined as data set organized
and managed by a set of digital agents that live in a digital system. Summarizing,
a MAS can be considered more general than ABM and is based on the concept of
an heterogeneous agent that lives in its environment, and interacts any agent of the
same environment actively, passively, and as a mediator (middleware).

Therefore, this work proposes a multi-agent model that is based on the following
hypothesis:

• every digital object can be considered as an agent (including the simplest agent
represents by a "single datum" and the most complex one, if one exists, called
"ambient system"),

• every agent refers to data bases to which it has access,

• every agent uses the information given by receiving, linking, managing, and
process data (considered as the data management and mining level),

• every agent has a knowledge, that is a set of models, rules, logic expressions
and human protocols that make the system intelligent, or rather, capable
of understanding and using the information (the level that enable decisions,
whether they are awareness human decisions due to insights generated by the
supporting machine or decisions that the human has relegated to the same
DSS),
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• every agent has a wisdom, that is a set of objective functions that make the
agent a smart, i.e., a decision-making, component operating in a CPS with
knowledge of itself and other agents according to distributed interaction rules.

The complete autonomy is an unquestionable characteristic. The local view
is guaranteed by the limited information managed by a single agent according
its objective of maintain a sustainable existence: in a 5.0 agile context, even the
most complex information systems are designed according to a structure based
on synergistic components that can be modelled as agents. [118] [119] In such
framework the agent has a view limited to a certain number of other agents and their
information and this limit could be change to improve the agent performance but it
definitely remain confined to a relatively low number of agents.

The concept of decentralization is respected, i.e. the interaction between agents
is controlled by the common system, but it is extended considering that each agent
can act as system and therefore an agent can always be considered as a system.
Concluding, an agent can belong to one or more agents that act as systems for It
and, at the same time, the same agent can act as system for one or more agents. This
guarantees the hybrid being of the model that is in the middle between a MAS and
a monolithic one, in order to limit the design complexity of a hypothetical overall
industrial information system.

Two features of multi-agent learning which merit its study as a field separate
from ordinary machine learning. [120] First, because multi-agent learning deals
with problem domains involving multiple agents, the search space involved can be
unusually large; and due to the interaction of those agents, small changes in learned
behaviors can often result in unpredictable changes in the resulting macro-level
(“emergent”) properties of the multi-agent group as a whole. Second, multi-agent
learning may involve multiple learners, each learning and adapting in the context of
others; this introduces game-theoretic issues to the learning process which are not
yet fully understood.

As resumed in Figure 3.4, the general proposed DIKW structure includes:

• 4 hierarchical levels (Data, Information, Knowledge, Wisdom), where data
level is not properly owned by the agent but it is more a active window on
which the agent can operates trough the information level,
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• description of the top-down and bottom-up functional flow , i.e., in Figure
3.4 there are the names of the contribution that a level of the DIKW-pyramid
gives to the upper and lower one,

• 7 axis to characterized the DIKW-hierarchy, where according 5 the wisdom
is in the higher part of the scale, while following the other 3 is in the minimum
one.

Fig. 3.4 DIKW structure of the agent (the system).

The agent is assumed a wisdom-based system, although, according to the defi-
nition, there are cases where the agent, for its simple objectives, can be considered
as a simpler systems without few levels of the DIKW-structure, with a hierarchical
constrain: to design each level of the pyramid, each level below has to be designed.
In other words, agent

• every agent is a data base (DB) system considering that the simplest one has
the same complexity value of the string "Hello world!",

• for every agent, the information level is schematize to design the information
relationships which include the data of the agent,

• (if needed) for every agent, to schematize the knowledge level the agent has to
be an information system, i.e., an agent with a structured information level,
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• (if needed) for every agent, to schematize the wisdom level the agent has to be
a knowledge-based system, i.e., an agent with a structured knowledge level.

Always considering the assumption of equivalence between agent and system,
thus between an information agent and an information system, few examples of
information agent are a standard ".csv" file, i.e., i.e., an agent required a tabular
information structure, and a DBMS without the knowledge level but presenting a
deep and technical treatment of the information one. Otherwise, a Tool Condition
Monitoring (TCM) system dedicated to a drilling tool is a KBS without the wisdom
level but that probably presents the formalization of predictive models to estimate the
status of the tool based on production and sensor data. An agent can be a human in
the cyber physical system interacting along the cyber-physical interface (a machine
operators, a production manager or engineer, a maintenance specialist, or a product
designer). Further examples of agent can be a digital service, one from all, a digital
twin for a product (or family of product) or for a stockable manufacturing resource.

The framework consider the following definition for the DIKW-pyramid:

• data represents simply the "data lake" of all available data to the agent trough
its information level,

• information is about technologies for generating, managing, and share data
with other agents (why not human),

• knowledge is information (always data) that express expert opinion, skills,
and experience, to result in a valuable asset which can be used to aid decision
making (by any types of other agents like human),

• wisdom is the way of evaluate the best choice considering a certain knowledge.

The 7 views on the variables that change between the different levels of the
hierarchy are considered according the following definitions:

1. meaning (↑) axe refers to the contribution that the level gives to the smart or
intelligent being of the agent,

2. high value (↑) is referred to smart data, i.e., less data generated by the wisdom
can impact drastically more respect the same quantity of generic data,
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3. structures complexity (↑) is higher for the wisdom because physically ex-
pressed by less data with more meaning,

4. human influence (↑) is related to how much the human can/has to decide how
processes in a level work,

5. autonomization (↑) is something far from simple data that alone are almost
always not available,

6. programmability (↓) is more accessible (higher values) in therm of mechanis-
tic explications,

7. algorithmic (↓) refers to levels where it is simple automatize processes;

where in brackets it is specify the direction of the axe with an upward arrow (↑) or
downward arrow (↓) according Figure 3.4.

The following processes (can be consider as inter-level functions of the agents)
generate wisdom from data:

• cognitive structuring (data→ information) of data is required for information,

• belief structuring (information→ knowledge) is the structure to give meaning
to (select, synthesize, and understand) the information that is significant "to
know",

• decisional structuring (knowledge → wisdom) is the schematizing of the
knowledge required to evaluate decisions, to generate insights.

Following the opposite direction, the following processes express a sort of back-
propagation flow on which the wisdom is based:

• decision evaluation (wisdom→ knowledge) consists in considering knowl-
edge, taking decisions and evaluating them (know them),

• belief justification (knowledge→ information) is the continuum process of
knowledge "uploading" trough new information,

• generation and enabling access (information→ data) make possible digitiza-
tion processes, data mining activity, and data shared systems.
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Finally, the interface with the environment is managed as a flow of inputs man-
aged in the information level, as shown by the Figure 3.4, dissipated in other levels if
needed, and returns to the environment (or to systems to which it belongs) as outputs:
"one data flow" may change the state of the agent, whose output flow will certainly
influence other systems as it has been asked.

3.2.2 D: data lake

Data is the result of any digitization activity. This framework consider data generated
along the interaction between the software and the final users for which the software
is designed. However, it is reasonable consider that an amount of data are physical
associated to an agent (e.g., if a smartphone is modeled as an agent its memory can
be data for other agents, but physically they are link to the agent smartphone: the
smartphone is the only agent with the maximum level of property respect such data).

From the birth until all its life cycle, an agent is characterized by data under its
view and it can perform activities to pursue its scopes. Data are considered having
the following characteristics [102]:

• data has no meaning or value because it is without context and interpretation,

• data are discrete, objective facts or observations, which are unorganized and
unprocessed, and do not convey any specific meaning,

• data items are an elementary and recorded description of things, events, activi-
ties and transactions.

The acquisition of data can be generalized well beyond automatic instruments.
When, for example, a person fills in a form giving their name, address, age, social
security number, these inscriptions are data (actually, the term "raw data" seems
apposite). [101] This instruments to acquire, store, and retrieve data are arguments
of the information level of the DIKW-pyramid. Following this idea, in the proposed
framework data are not property of the agent, but they are only selecting by them;
in other words, it is clear that part of data are stored physically somewhere but it
is not obvious to define, for example, which Data-Base Management Systems are
managing such data.
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Concluding, saying that the data level has the highest portability is true but it is
obviously the most limited by physical constrains. The Industry 4.0 has given the
freedom of thinking systems hyper-connected, almost with no limits of accessibility,
but it is clear the vision given by an 5.0 point of view where "connections", or
data-exchange edges, are available if sustainable first and foremost for all humans
but also for the entire environment around us and in all conditions, even the most
critical. This limited view is a peculiar characteristic of each agent that decide with
a certain wisdom of selecting its data considered smart, i.e., a sub set of smart data
selected from the data-ocean that is technologically available for every system in the
same environment.

3.2.3 I: Enterprise Information management Systems (EISs)

The vision is that of a human asking a question beginning with, perhaps, "who",
"what", "where", "when", or "how many" [106] and of row data processed as an
answer to become information: data itself has no value until it is transformed into
a relevant form. In consequence, the difference between data and information is
functional, not structural. Information can also be inferred from data (it does not have
to be immediately available). Talking about information as the result of processing,
interpreting, classifying, rearranging or sorting, aggregating, performing calculations,
and selection, it is clear the connection between these processes and ones involved
for example in activities like data mining or feature engineering.

Such processing of data requires a decision about the type of analysis, and this,
in turn, requires an interpretation of the content of the data. To be relevant and have a
purpose, information must be considered within the context where it is received and
used, i.e., being the meaning a subjective notion different agents consider valuable
different data and are in this way different types of information systems. [121] Every
agent (or family of agents) has an information level structure that has view on a set of
data and make them available for itself, e.g. for decision making, or for other agents
(for example an agent representing a human being or an ERP system already involved
in the same process). The agent can be considered as an information management
system that, beyond the concepts of knowledge and wisdom, makes accessible the
information contained within the database over which this IT agent has jurisdiction
(physically or trough the network).
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Examples of information agents are: (i) a digital twin is an information system
clearly developed to generate a specific knowledge about a product or a manufac-
turing resource, (ii) common Data-Base Management Systems (BDMSs) can be
considered as the most complex information system without specific knowledge to
be fulfilled, (iii) the information structure of an ERP system is commonly given
by a functional division of resource planning activities with the aim of developing
specific knowledge (several ERP solutions on the market consider different business
functions as stand-alone information modules, agents, able to exchange information
between them and aimed at generating specific knowledge such as about customers,
suppliers, warehouse or other functional areas of the company), finally, (iv) a MES
in a Industry 4.0 scenario has an information level probably high depended by the
software interface with manufacturing plant machines and consider such machines
as agents or family of agents with its own information level.

Concluding the information level of the framework is required to describe all the
IT services and micro-services used by the agent to generate, maintain, and share
information regarding the context in which the agents operates in form of data, i.e.,
this is the levels of all modeling technique finalized to make efficient (sometimes
autonomous, sometimes automated, sometimes simply organized) the information
flow between digital and physical resources and the resulting structured increase of
the database to which agents have access. It is important to underline a common
view in literature where the information scientist does not want to be collecting data
without being sure that they are promoted to accessible information (science like
cyber-security and digital privacy investigate about the data accessibility).

A better data-acquisition methodology is more top-down and just-in-time: data
are generated trough processes in the information levels and it is trough this level that
a human can receive exactly the data-driven (digital) information needed to answer a
particular need. In this level there are information structures that change radically
among systems in the same environment (just think of the difference between two
systems in the same manufacturing environment such as the ERP platform and
a service of edge-computing of a fire alarm system installed in one single smart
sensor. Complexity, Human-Machine interfaces, strong-weak belonging to a system,
and other peculiar agent characteristics make this level the least portable of all:
the portability can be considered as limited among agents of the same family, i.e.
agents that have the exact same information structure but differ due the historical
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information regarding experiences and choices (e.g. the software solutions installed
in different smart fire-alarm sensors around the plant).

3.2.4 K: Knowledge-Based Systems (KBSs)

Knowledge, in the sense of a knowledge base or knowledge within traditional
philosophy, is assumed just as a collection of "know-thats". When it has, for example,
an high positive impact on human decisions, this "know-that" is common defined
"insight". [122] In this framework, according to the inter-level processes highlighted
in the Figure 3.4, the therm knowledge level refers to models for the "belief" structure,
i.e., a sort of "what it is possible to know", models for estimating all "know-thats"
and their affidability levels, i.e., answering to the question "how much is true this
know-that", and finally models that estimate new types of knowledge, or better that
is able to know that there is a "new" knowledge not included in the knowledge
structure of the agent that is valuable for the agent, vaguely similar to wondering
why something is unknown.

Including all inter-level processes involved, the knowledge level is characterized
as following:

• the belief structuring (information→ knowledge) is the model used to select
relevant information describing the agent (significant variables, predictors or
KPIs),

• the belief justification (information← knowledge) is the management of the
knowledge-base mined by the information level,

• the decisional structuring (knowledge→ wisdom) is the model of solutions
that the knowledge level uses with the wisdom one,

• Decisions evaluation (knowledge ← wisdom) allows the wisdom level to
evaluate the environment state referring to a single its decision

Thus, a knowledge-based system has two distinguishing features: a knowledge
base and an inference engine. The first part, the knowledge base, represents facts
about the environment and the agents itself. The second part, the inference engine,
allows new knowledge to be inferred (like the knowledge about the need of new



3.2 Wisdom characterization of the agent 87

knowledge). For these characteristics the knowledge is more portable than the
information one, however, it remains linked to groups of families of agents linked by
a common information level main characteristics and it works like a bridge between
the least portable level, the information one, and the most portable one, i.e., the
wisdom.

Concluding the definition of such level, the knowledge component of an agent
can be assumed as a KPIs set that describes different states of the referring agent (real-
time states o forecasted ones, like for a digital-twin system), using and generating
information.

3.2.5 W: Decision-Support Systems (DSSs)

Considering the wisdom as the level referring to the decision-making activity, wis-
dom can be considered the ability to use the knowledge regarding the system in order
to find the best decision respect the decisional structure. Data are the physical base
of decisions, information is the instrument to use this base, and finally the knowledge
is near to what is considered to make decisions. Trough its wisdom an agent pursues
its goals depending by the ones of the environment, and trough its data the system
receive knowledge regarding the agent states and actions. Everything starts from a
scope.

Regarding DIKW-structures for EISs, the main lack in the literature is a treatment
of the wisdom that makes it usable in conceptual applications like this framework.
It is clear that wisdom is a very elusive concept that has more to do with human
intuition, understanding, interpretation and actions, than with systems. [123] Some
interesting works assert that wisdom is the ability to act critically or practically in
any given situation, it is connected to the use of information, knowledge, and ethical
judgements related to an individual’s belief system: an accumulated knowledge,
which allows you to understand how to apply concepts from one domain to new
situations or problems. [123] [124] [125]

Wisdom therefore has to respect more than any other level the requirement of
portability (among agents): it has to be a model which tends to be standard in
the environment which characterises the operation of all systems included in that
environment. This characteristic, referring to a component of the agent dedicated
to decisions, can be associated to the common vision that humans of the same
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organisation should have: a vision that "suits" all the members of the organisation (a
manufacturing plant, a company, a consortium or a commercial network).

According to the inter-level processes highlighted in the Figure 3.4, wisdom
is the level responsible for the agent’s decision-making structure and the action of
making a decision and extracting knowledge about its impact:

• the decision structuring is given according human philosophy and culture
(manufacturing examples are PLM, lean thinking or JIT, and Industry 5.0) and
it gives guidelines about required knowledge,

• the decision making is possible trough optimization models (e.g. minimizing,
ranking or selecting) that return a digital representation of the best solution
giving to a problem,

• the decision evaluation processes the knowledge representation of the decision-
made to evaluate the impact of the decision for optimizing the wisdom level
(systems of models).

In this sense, the wisdom is considered as a decision-making management level
that is portable among different systems (probably also among different environments
or fields) and it communicates with the knowledge system delivering solutions to its
problem formulations (one solution per time for each), considering (knowing) the
history, the actual state (digital twin), predictions about future, and obviously the
solutions space of the knowledge level. Referring to the axis in Figure 3.4, this level
has the greatest values of meaning and structures complexity because referred to
complex events systems, value in order to obtain a sustainable manufacturing system,
human influence for its aim of being a formalization of human needs, autonomization
powered by AI technologies.

3.3 HW-MAS: Hybrid-Wisdom characterization of
the agent

According to the literature, the DIKW theory is poorly covered, well structured,
but considered an uninspired methodology by [101]. In this framework, the DIKW
theory is described in detail according the author assumptions and structured to
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Fig. 3.5 Hybrid-Wisdom structure of the system.

classify different hybridization approaches for different level of IT solutions aimed
at extracting value from data: while the scientific problem of DIKW structuring is
how to standardize definitions and tools for developing data-driven EIS based on
manufacturing knowledge and factory wisdom, the hybrid soul of the framework
shifts the scientific point to how selecting and using hybrid modeling techniques in a
EIS structured according a DIKW hierarchy. Figures 3.5 and 3.6 briefly resume the
framework deeply explain in the following chapters.

This section explain how the framework introduces hybrid techniques into the
system through the DIKW modeling used for each agent. Hybrid models, in fact,
are presented referred to each level of the DIKW pyramid and change in type based
on whether the hybridization is applied to data, information, knowledge, or wisdom.
In particular, the hybridization of wisdom is provided by the Manufacturing 5.0
vision, which requires that the goals of an agent operating in a manufacturing system
must always consider the centrality of the human being and the sustainability and
resilience of the whole system. Such goals therefore underlie the agent’s decisions
which are the results of hybrid optimization methods, i.e., an optimization problem
that uses together all the different kinds of models from operations research that can
be considered divided into two main groups: deterministic methods and stochastic
methods. Hybrid optimizations choose dynamically at compile time which optimiza-
tion algorithm to apply from a set of different algorithms that implement the same
optimization or find the way to consider at the same time different best solutions
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Fig. 3.6 Hybrid level characterization of the DIKW-based system.

from different methods finding the best one. They can use a heuristic to predict the
most appropriate algorithm for each piece of code being optimized. [126]

In addition to the use of KPIs referring to different fields, knowledge level
hybridization, on the other hand, consists of the models used to estimate the current,
and perhaps future, values of these KPIs, i.e., it consists of using inference, physics,
expert knowledge, and simulations together to assess the state of an agent at a
specific time. This is the main interesting level from the hybridization point of
view as it presents the patterns most addressed in the literature. The information
level, continuing, lays its hybridization foundations on the fact that hierarchical
relational models, structured but more general models represented by ontologies,
and unstructured models such as MASs must be used at the same time to describe
the relationships between entities in the system. Unlike the other layers, in the
information layer it is more difficult to use different models at the same time, but
certainly different models are used for different types of agents thus ensuring the
hybridization of that layer extended to the entire information of the system.

The following subsections explain in deep the hybridization applied in the infor-
mation, in the knowledge, and in the wisdom level. For the data level, hybridization
consists in the property that each agent has on the data to which it has access: each
agent, in fact, owns its own DB (absolute property), while it owns several data "in
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power", i.e., it has the ability to access in a more or less immediate way the data
owned by other agents. These data in potency can be associated with high levels of
ownership if the agent communicates directly with the information level of the other
agent possessing the data, while they are associated with lower and lower levels of
ownership if the number of intermediary agents allowing access to that information
increases.

3.3.1 W: cross-disciplinarity awareness

The proposed framework is based on the idea that the environmental cognition
and interaction are fundamental, and especially on the hypothesis that the human
intervention is (or has to be) the central resource that creates new information
structures able of acquiring or generating new knowledge flows. The following ones
are consequential requirements for digital manufacturing resources in the industry
5.0 context:

• designed considering all the human resources involved in the manufacturing
process,

• focused on the human, or more specific, being a promoter of talent, diversity,
and empowerment,

• integrated in the 4.0 sense, i.e. along the functional and the product-service
axis interface with the other company’s resources and other digital platform
internal and external to the company,

• sustainability in the environment in which it operates (the perspective 5.0 is
towards a consideration of constraints and needs of the entire planet earth),

• resiliency, or simply, based on flexible and adaptable technologies able to
accommodate new information structures and digitize and create new types of
awareness.

Considering the manufacturing environment, an industry 4.0 plant usually include
various information management systems. The wisdom level, instead, has to be
strictly connected to the vision of the manufacturing plant and of all the stakeholders
to its activity. However, the wisdom level is designed based on its objective (e.g.,
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the wisdom of an entire MES is so close to the company one, while the wisdom
of a simple gateway probably is simpler or does not exist). Figure 3.6 shows the
hybrid characterization of the wisdom level with the aim of finding the best trade-off
between portability and specific human-centrality, i.e., driven by a specific human
knowledge (the systems has to deliver a specific service) and an equal specific human
ethics and aims (a specific interpretation of "right" and "wrong").

Human disciplines usually comprise two different focus areas. The first focus
looks at the science behind the discipline, dealing with the general principles that
build the foundation of the discipline, also known as "the body of knowledge". The
second is more interested in finding general methods and solution patterns that can
be applied to answer to specific needs of a specific business environmental. They
are obviously connected, as methods have to be rooted in general principles to be
sure that they will lead to the desired outcome, and new solution patterns may lead
to new insights and help to discover new general principles.

Operations Research (OR), as a discipline, has its focus on improvement; hence,
it has been argued that the role of OR processes goes beyond the ones explained
by a single human discipline: in order to be applied, the OR discipline must surely
collaborate with another that is specific of the application field, although several
disciplines are probably necessary, for example in manufacturing they can be mechan-
ics, electronics, programming, and marketing. The National Academy of Sciences
report on facilitating inter-disciplinary research identified four primary drivers of
cross-disciplinarity, [127] namely:

• recognition of the inherent complexity of nature and society, and the inability
of reductionism to cope with these challenges,

• exploring problems and questions that are not confined to a single discipline,

• growing societal problems that require a broader approach on a shorter timescale,

• emergence of new technologies that are applicable in more than one discipline,

where simulation is one of these new technologies with the potential to support new
forms of collaboration between disciplines.

In the literature there is an interesting work that consider the hybrid modeling
approach as an enabler of this trans-disciplinary research, proposing a framework
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Cross-disciplinarity as hybrid model of discipline
Multidisciplinarity Interdisciplinarity Transdisciplinarity

Integration
Parallel, i.e., separated
but with the same scope.

In series, or in clear
structures.

Synthesis, i.e., complete
hybridization.

Communication
Translation between
mapped terms.

Integration of concepts,
methodology, proce-
dures, and therms.

Creation of completely
new knowledge.

Purpose
Information exchange:
disciplines inform or
contextualise each oth-
ers, often application-
oriented.

Knowledge exchange:
generating new theoret-
ical, conceptual, and
methodological identi-
ties, adding cognitive
and social aspects, and
supporting standardised
information exchange.

Shared wisdom: gener-
ating common standards
and values.

Table 3.1 Key defining features of cross-disciplinary sub-categories. [128]

of Modeling and Simulation (M&S) for the Cross-disciplinarity OR and discussing
about the importance of the hybrid modeling for emerging trans-disciplinary areas.
[128] Within the M&S community, in particular under the research topic of hybrid
approaches, several approaches have been discussed that propose a similar framework
to categorise concepts of hybridisation better in support of multi-, inter-, and trans-
disciplinary efforts. According this work, "the term "multi-methodology" in OR
has been used to describe the combined use of two or more methodologies within a
single intervention. It may refers to the combination of qualitative and quantitative
methods to more effectively deal with the breadth and nuance of the real world, or to
a combination of quantitative methods" of different nature with the aim of combining
the benefits or overcoming the weaknesses of individual models.

The human cross-disciplinarity characteristic of the wisdom is considered as the
hybrid-wisdom property of decision-making processes of the agent. The terms multi-
disciplinarity, inter-disciplinarity and trans-disciplinarity are used to describe dif-
ferent degrees of collaboration of participating disciplines, with multi-disciplinarity
and trans-disciplinarity being the two endpoints of this comparison. The term cross-
disciplinarity is often used to describe the alignment of vocabularies from different
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disciplines, creating a common lexicon that can be used in more than one discipline.
This framework considers the term cross-disciplinary research [128] to mean multi-
disciplinarity, inter-disciplinarity, and trans-disciplinarity as shown by the Table
3.1. The cross-disciplinarity guarantees that it is possible to structure the wisdom
considering three main characteristics: human-centric, resilience, and sustainability.
Sustainability generally refers to environmental, social and economic sustainability.
[129]

Transdisciplinary alignment describes the integration of domain knowledge,
hypotheses and theories from diverse disciplines. This leads to the development of
new composable methods, tools, and applications and new ways of doing research.
Transdisciplinary research is challenging for a number of reasons; however, a key
aspiration is to share a common language and representation for communication and
collaboration. Hybrid models are playing a central role in research that combines
the collaboration of more than one discipline. This characteristic of wisdom makes
it clear of how the a-priori knowledge of the human is instrumental in defining
that level. In this way it becomes clear how, partially answering the third research
question (RQ3), knowledge of the human being is implicated in that framework. In
addition, as clarified by the discussion of the case study of this work, human agents
being very influential in the wisdom obtained as a union of several sources, i.e., such
agents being the main sources, it is assumed a strong centrality of the human being
in accordance with Vision 5.0 and thus a wide use of its knowledge of the CPS under
analysis.

3.3.2 K: hybrid estimations of Key Performance Indicators

The knowledge level can be considered as the level that describes the state of the
system, i.e., as the union of all "know-thats" referring to the agent: a DIKW-platform
without wisdom still manages to guarantee, for example, a business intelligence
service capable of generating value for a company. Such knowledge includes infor-
mation strictly connected to the agent or referring to external entities and processes
in the environment.

During a design phase, the knowledge level for a smart system has to be design
considering different types of knowledge. An example is given by the Table 3.2:
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knowledge type Description
Domain knowledge Knowledge for a specified domain. Specialists

and experts develop their own domain knowl-
edge and use it for problem solving.

Meta knowledge Knowledge about knowledge.
Commonsense knowl-
edge

General purpose knowledge expected to be
present in every normal human being. Common-
sense ideas tend to relate to events within human
experience.

Heuristic knowledge Specific rule-of-thumb or argument derived from
experience.

Explicit knowledge Knowledge that can be easily expressed in words
or numbers and shared in the form of data, scien-
tific formulae, product specifications, manuals,
and universal principles. It is more formal and
systematic.

Tacit knowledge Knowledge stored in subconscious mind of ex-
perts and not easy to document. It is highly
personal and hard to formalize, and hence diffi-
cult to represent formally in system. Subjective
insights, intuitions, emotions, mental models,
values and actions are examples of tacit knowl-
edge.

Table 3.2 Knowledge-Based Systems for Development. [130]
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The Figure 3.6 shows the characterization of the knowledge. Knowledge within
process data, that was largely ignored until the 1980s, has shown a gradual increase
afterwards and boomed in the transition to the 21st century, with the emergence of
all the conditions that converged to what is now called as Industry 4.0 and Big Data.
Models of this kind are called data-driven, statistical, black-box, data analytics, etc.,
and infer relevant information from large databases. [131] DIKW agent-based model
with a balance of smart data and prior knowledge is the base of a general AI service,
or better services based on data-driven or machine learning techniques.

The knowledge is a required level to assess, monitor, and evaluate. Such function
is the same of a set of KPIs and for this reason the knowledge level can be considered
a group of functionalities with the aim of estimating the value of the KPIs of the
system considering the values of different informative variables. The variables
extracted and selected from the information level are used as input variables to
estimate key variables to describe the state of the agent and of other systems in
the environment trough an hybrid model using the following individual modelling
techniques:

• physics-based or mechanic modeling (classical experimental models),

• data-driven, statistical, or black-box modeling,

• simulation approaches,

• direct evaluation with prior knowledge or done directly by human.

The knowledge level has to deliver the values of the main variables to the wisdom
level and such variables can be considered the KPIs set of the agent. This set has to be
SMART: Specific ("what exactly needs to be achieved"), Measurable ("how to assess
whether the objective is achieved"), Achievable ("the goal has to be attainable"),
Relevant ("KPIs have to be significant"), and Time-bound or Timely ("the objective
is achieved in a finite time"). [132] In this hybrid level referred to knowledge, the
inclusion of direct evaluations by the specialized human as a model to be hybridized
with experimental, ML and simulation models, directly answers the third research
question (RQ3).
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3.3.3 I: information generated by hybrid models

Intelligent systems are not developed separately; rather, they are embedded as mod-
ules in a traditional information system to solve tasks related to the intelligent
processing of data and knowledge, and this combination, nowadays also often known
as a micro-services platform, is referred to as a Hybrid Intelligent Information Sys-
tem (HIIS): an information system based on the idea of “subconsciousness” and
“consciousness”. [133] The Consciousness Module (CM) is based on conventional
data and knowledge processing, which may be based on traditional programming or
workflow technology, mainly represented by ontology-based models. They can be
classical ontologies, which are developed within the Semantic Web technology (RDF,
RDFa, OWL, and OWL2 standards), or nonstandard ontology models including those
based on complex networks or object-oriented approach. The Subconsciousness
Module (SM) is related to the environment in which a HIIS operates. Because the
environment can be represented as a set of continuous signals, the data processing
techniques of the MS are mostly based on neural networks, fuzzy logic, and com-
bined neuro-fuzzy methods. The Interaction Module (IM) is added to manage the
interaction between the CM and the SM.

The information level is the management level of the interaction with other agents
of the DIKW system. So, from the interaction point of view the following options or
their combinations are possible:

• interaction is implemented through the SM that processes the data from the
environment and transmits them trough the IM to the CM that processes and
returns the results that the MS sends to the environment,

• the IM is used for the interaction with another agent and, depending on the
tasks to be solved, it can interact with the CM (typically for conventional
information systems) or with the SM (typically for systems based on soft
computing),

• user interaction can be carried out using the CM (typically for conventional
information systems) or through the SM (which can be used, for example, in
automated simulators).

Defining this framework, the choice is that both the CM and the SM interact
with the environment, but the CM is limited to receive and process only structured
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information, i.e., information received from well-know agents trough UI, API or
directly form the DB of the agent. The SM processes the same data with the addition
of data comes from specific API designed to receive unstructured information from
the environment to generate new types of knowledge or greater levels of affidability
of the knowledge. The IM is used to interact wit the CM in order to send structured
information (made such by the other modules) and to modify the CM in order to
extend its structure (new types of information are structured and then made process-
able directly by the CM). The Figure 3.7 shows the structure of the information level
composed by these three main modules.

Resuming, the CM performs (i) the data processing for knowledge generation
on the ground of ontology-based models, (ii) the logical control and consistency
check of the data which are received from the IM,and (iii) the implementation of new
components in order to receive of new types of inputs and output. The SM performs
(i) the data mining for knowledge generation on the ground of ontology-based models
and (ii) the receiving and processing of not-strictly-structured information. The IM
performs (i) the management of the use of the SM to generate structured information
to send to the CM and the implementation of new components of the CM that needs
to process new types of information.

Fig. 3.7 Scheme of the information level with the Consciousness Module (CM), the Subcon-
sciousness Module (SM)and the Interaction Module (IM).
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3.4 Consideration on the HW-framework

3.4.1 KPIs for the framework

A Key Performance Indicator (KPI) is a metric used to evaluate whether or not a
system is meeting its objectives. By definition, not all metrics can be “key”, so KPIs
are a select grouping of metrics deemed essential to meeting business objectives.
Within IT, KPIs are very effective for answering the following questions: are we
making investments in the right places, are we getting the results we expect to see,
and are our plant, especially human resources, satisfied with the value they have
received?

In the case of IT system design assistance frameworks such as the case of the
framework in this thesis, or in general in the case of KPIs for creative activity, it
is often difficult to measure performance and in fact it is rare to find work of this
type in the scientific literature. The development of metrics, indeed, is very difficult
in areas of high abstraction such as software development and the general design
process. [134] The following points indicate why better estimation of effort and
duration of design projects is so important:

• in some situations, cost or schedule overruns lead to project termination,

• schedule overrun increases the risk of product obsolescence due to the in-
creased risk of missing the market window (in many cases this means a project
failure),

• an initial delay in a project can engender further delays. [135]

From the literature, the main factors to consider designing a CPS are manpower,
[136] complexity, amount of change, time trough each design phase, development
cost, clarity of contents, [137] design difficulty and resources. [138] Following
these works and adding other typologies of metrics, the KPIs selected for this
framework are the following ones and divided in project characteristics, outcome,
and development process metrics:

• designers number, i.e., the number of designers employed in the design
phase,
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• complexity in therm of functional complexity and technical difficulty (an
example of metrics used to calculate this KPI is the number of agent of each
type),

• amount of change, i.e., the number of modifications to implement in the
environment of the systems (interfaces of other systems, work habits, and
more),

• time trough each design phase (introduction, formalization time, transmission
of concepts to developers, total time),

• completeness, i.e., whether the framework can model all the resources needed
for CPS or not,

• scalability, i.e., how easy it is to generate new agents (even of different types)
so as to increase the CPS in therm of entities and resources,

• flexibility, i.e., the ease with which such framework can be transported be-
tween different application areas with different characteristics,

The metrics described are generic KPIs, and the part about the primitive metrics
from which these KPIs are calculated was not addressed. This part has not been
addressed because it is strictly dependent on the application of the framework, i.e.,
the area of application of the CPS being designed. These indicators were constructed
considering to evaluate the performance of the use of that framework in a particular
case study, but they can be used, considering different case studies, to evaluate the
performance of the design framework in general in order to compare it with other
techniques in the literature.

3.4.2 4.0 technological context

This framework is intended to be a design tool in the 4.0 manufacturing context, and
its use is possible because technologies and methodologies specific to this era are
employed in the development of the designed CPS. In particular, the digital twin
concept presented with a DIKW characterization can be considered an optimum
formalization for an agent referred to a product. In fact, the digital twin is a tech-
nology that by definition has several hybrid models at its core in order to obtain
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accurate estimates regarding the current and future states (or referring to hypothetical
scenarios) of products and manufacturing resources.

Another technology that enables such frameworks is the IIoT. This technology,
now increasingly widely used, has spread design thinking based on decentralized or
agent-based systems, that is, systems composed of increasingly micro services as
opposed to the monolithic systems of the previous era. In the 4.0 context, therefore,
software designers have a greater capacity for abstraction needed to design MAS. To
confirm how the IoT philosophy can support the application of such a framework,
consider that an IoT architecture is composed of five main layers, which can be
called the (i) physical layer, the (ii) sensor and actor layer, the (iii) connectivity layer,
the (iv) analytics layer and the (v) digital service one. [139] These five layers can be
easily compared to the layers of the DIKW structure associating the sensor and the
actor with data, the connectivity with information management, the analytics with
knowledge, and the service with the wisdom of the agent.

Finally, data analysis and simulation methods, in the technological context of
Big Data, make it possible to assume a constant availability of sufficient data and
models to estimate all the variables needed to describe the entire state of an agent,
that is, to estimate all the KPIs present in its knowledge layer and their projections
in future or hypothetical scenarios. Data analytics helps manufacturing firms to
get actionable insights resulting in smarter decisions and better business outcomes
[140]. For this reason, data analytics is becoming a very attractive topic for almost
every manufacturing firm in Industry 4.0 era. Generally the data analytics is covered
under three sub topics. First one is descriptive analytics that summarizes the data
and reports the past. It answers the question “what has happened?” and extracts
information from raw data. [141] There is also an extension to the descriptive
analytics named “diagnostic analytics” which reports the past but tries to answer the
questions like “why did it happen?”. [142] Second sub topic is predictive analytics
which is considered as the forecasting phase. It answers the questions “what will
happen?” and “why will it happen?” in the future. [141] These two sub topics are
exactly the function of the knowledge level that describes the states of the referring
agents. Finally, goal of the prescriptive analytics is to provide business value through
better strategic and operational decisions. It is all about providing advice. In general,
prescriptive analytics is also a predictive analytics which prescribes some courses
of actions and shows the likely outcome or influence of each action. It answers the
questions “what should I do?” and “why should I do it?”, [142] and this is strictly
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connected to the knowledge of the consequences of the decision made considering
the actual wisdom of the agent.

In addition to being enabled by the technologies of the 4.0 era, this framework
is designed to provide support for the design of a CPS, that is, to support the
design of a digital system in accordance with the paradigms of the fourth digital
revolution (as well as the principles of Industry 5.0 as explained in the following
section). For disciplines such as cyber security, it is convenient to have a detailed
description of the entire telecommunications system obtained through the description
of the information level of each individual agent. In this method, security experts
can obtain the information about the sensitivity of the data by considering the
associated metadata or by considering the frequency of use of that data by all agents
in the system. In addition, thanks to the agent-based philosophy, in the information
layer, it is possible to describe type-specific security protocols for agents based
on the sensitivity of the information they contain. With regard to IIoT and cloud
computing, the micro-service structure of this framework makes the application
of such technologies immediate. Vertical and horizontal integration is an inherent
paradigm in the conceptual foundations of the model, and should it be used to model
the entire reference CPS it would ensure such integration. If, on the other hand, it is
used for sub-components of the entire system, however, it will allow easy integration
via the API described in the agent information layer or via specific agents created
precisely with the aggregation API functionality for different agents in the system.
Finally, as far as collaborative robots are concerned, the wisdom layer is useful in
that it can be extended to them as well and can be used in order to provide the vision
that aids robot decision-making systems with a clearer and more comprehensive
description of business goals.

3.4.3 5.0 view context

This paragraph is the last one that provides final considerations on the framework
and, in particular, contextualizes this work at the dawn of manufacturing 5.0. As
explained in the introductory paragraphs, this progress revolves around the concepts
of human-centric, sustainability and resilience, so it is analyzed below how this
framework supports this vision based on these three main points. Before analyzing
these points one by one, it is important to underline how one of the main reasons
behind this framework is to allow the introduction of a vision common to all agents
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that can act as a guide for all the different types of decisions that this system will
have to support. This concept is the same foundation that led researchers and
sector experts to spread the term Industry 5.0. In fact, this fifth revolution does not
substantially involve any new technology or methodology, but underlines how the use
of the most advanced technologies risks being ineffective or, worse, unsustainable if
there is no application criterion that considers the interests of the entire ecosystem.
Indeed, innovation ecosystems need to be governed, and cannot be left alone to
their own course. [143] [87] The decisions concerning the selection of conceptual
frameworks that inform innovation ecosystem governance are important because they
influence what, why, where, how, and for whom the innovations materialize or not.
Industry 5.0 is about building complex and hyper-connected digital networks without
compromising long-term safety and sustainability of an innovation ecosystem and
its constituents. The level of wisdom is therefore the characteristic of this framework
that allows software designers to introduce this vision into the systems they design.

Considering the first research question (RQ1), the three pillars of the Industry 5.0
are considered has three main KPI groups to evaluate the activity of the agent: how it
is human-centric, if it is sustainable for the system and how it contributes to the whole
sustainability of the system, and how it contributes to resilience. In addition to this,
the centrality of the human being lies in the prior knowledge which represents one of
the main methods of generating knowledge on the state of the agent to be integrated
with data-driven and physics-based (and simulation) methods through hybridization.
Sustainability, on the other hand, is addressed through the principles of smart data
and ease of integration with the other EISs present in the company. Retroactively,
in fact, the level of wisdom evaluates the use of only the data strictly necessary for
the system, finding the right trade-off between managing the large amount of data
provided by 4.0 technologies and the use of small data which, however, often do not
guarantee the levels of accuracy necessary for the production of knowledge able to
optimize manufacturing processes. As regards the ease of integration, this framework
gives the necessary freedom to design a digital system customized to the needs of
the factory in such a way that it can be both a single platform (composed of various
micro-services) that carries out all the functions necessary for management, and a
platform that can be integrate with the EISs already present in the company (such
as ERP systems, MESs, WH management systems and PLM platforms) in order to
provide the functions that these cannot perform. Finally, the resilience of the system
is provided through the agents’ ability to generate new types of knowledge, or at
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least to underline the need, through the structure of the information level presented
in the previous paragraphs. Furthermore, the entire system of agents is not only
scalable (easy addition of agents of the same type as other existing ones), but it can
be extended to new types of agents without modifying the existing structure in such
a way as to satisfy the need to insert new manufacturing resources, new production
processes or new methodologies and paradigms in factory activity.



Chapter 4

HW-TPM system for CNC tool
machiness

The aim of this case study is to propose a hybrid system that takes advantage of the
strengths of both methods (physics-based and data-driven) while minimizing the
effect of their weaknesses. The main maintenance terms and concepts used in this
chapter are referring to a Total Productive Maintenance (TPM) system according lean
thinking and 4.0 paradigms. Summarising, the case study is focused on the design
of a Hybrid Wisdom-based TPM (HW-TPM) system. The proposed framework is
applicable to the maintenance of a generic tool set on a generic CNC machine, like
welding machines, milling machines, 3D printers and other machines based on the
same technology. In other works, this chapter considers manufacturing processes
executed by machines with cyclical jobs, i.e., which can be monitored in a fixed
defined time window.

After the introduction section, the rest of the chapter is organized as follows:
the second section defines the proposed hybrid model for a TCM system of CNC
tool machine, the third is the case study based on open data for wear predictions of
milling tools, and, finally, the last section presents the conclusions and the ideas for
future improvements.
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4.1 Introduction

4.1.1 Maintenance processes

Maintenance costs are estimated as a percentage of production costs that vary be-
tween 15%, for the manufacturing sector in general, and up to 40% for the metal-
working industry. [144] With the proper implementation of Predictive Maintenance
(PdM) strategies, these costs can be reduced by up to 30% [145], by automatizing part
of monitoring activities, and by optimizing the decision of replacing the resources
when strictly necessary. Furthermore, a PdM strategy can reduce the incidence of
failures by up to 70%, allowing the productive time of systems to be increased by up
to 30%. [146] Another important estimation is that PdM methods based on Machine
Learning (ML) algorithms can reduce current maintenance costs by an additional
30%, increasing machine operating life and reducing downtime. [147]

In the era of Industry 4.0, several technologies, as Internet of Things (IoT) and
Artificial Intelligence (AI), enable the real-time data collection required by high-
performed PdM methods. In fact, they are based on real-time data collected by
sensors systems and Big Data infrastructures. [148] Research has proposed several
AI-based methods whose performance grows as the information possessed about
the process under observation increases, but they are inoperable with no real-time
in-formation. The performance of physics-based methods depends on (i) the number
of variables (sources of variability) considered in the model, (ii) the complexity of
the physical laws, and (iii) the estimation quality of few parameters with data offline
generated by experiments and inspections. Contrarily, the accuracy of data-driven
methods depends on the quantity and quality of historical data, which are difficult to
replicate for research analyses. [149]

Starting in 1950, preventive maintenance was introduced in order to limit the
effects of a failure, which with the previous approach often led to downtime of
the entire production process. [150] Differently, it has been estimated that 99% of
mechanical failures can be predicted with the help of specific indicators, on this basis
was born the Condition Based Maintenance (CBM) [151] to overcame limitations
given by a simple strategy based on time or age schedules. It involves two main
processes: diagnostic and prognostic. [152] The improvement of these methods is
represented by PdM models, in which measurements on the tool machine are used
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in combination with process performance data measured by other devices. The use
of such data jointly allows statistical models to analyze historical trends in order to
predict the instant when the machine needs an intervention. [153]

From the simple visual inspection of the machine, the failures prevention has
evolved to automated methods that use traditional signal processing techniques
and new Machine Learning (ML) methods. The maintenance strategy optimizes a
trade-off situation between maximizing the useful life of a component and up-times
through early replacement of this component (time-based PM), which has been
demonstrated to be ineffective for most equipment components, considered as flawed
and unreliable in recent years. [144] A good estimation of the tool status avoids the
use of degraded tools that reduce the work surface quality and excessive preventive
replacements, which involve higher costs and production time. The paradigm of
Industry 4.0 proposes the digitalization and the interconnection of machines, thus
improving the possibilities of having a more effective condition monitoring, also by
analysing the data coming from sensors.

Prognostics methods can be categorized into data-driven, physics-based and
hybrid approaches [154]. Despite the significant recent progress in the Model-Based
(MB) and ML hybrid modeling domain, there are various challenges that throttle
down the full-fledged growth of hybrid modeling: (i) there is no guidelines for
selecting hybrid models, (ii) there are few benchmarks (problems and dataset) for
evaluating and comparing hybrid models, (iii) training accurate models with low
amount of data or labels, (iv) minimizing data collection costs, (v) solving the
complexity due to geometric data formats as CAD files and imbalanced data. [1]

4.1.2 Case study justification

The aim of this work is to propose a model of CPSs designed to monitor the status of
the tool set on a generic CNC machine. Even if the term “Tool condition monitoring”
refers to the monitoring of different conditions of the tool (e.g., wear, breakage, did-
not-cut condition, thread depth, damaged or missing threads), we limit our analysis
to the prediction of wear and Remaining Useful Life. The proposed framework can
be applied to a generic machine tool for two main reasons: (i) all types of wear of the
tool consist in a loss of material that is measurable with standard methods, and (ii)
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each wear type produces increasing of forces and temperatures to which the machine
answers by varying the work status, measurable trough a standard set of sensors.

Data-driven PM has been extensively applied to industrial manufacturing using
machine learning algorithms, such as logistic regression (LR), support vector ma-
chine (SVM), decision tree (DT) or random forest (RM), and neural networks (NN).
[155] However, previous works mainly addressed single type of sensor measure-
ments, they are focused on one specific learning algorithm, and the majority of them
used data from private experiments or generated from a simulator. Furthermore, few
applications addressed the maintenance of cutting machines, since most works are
related to fault detection of bearings or motors.

Differently from the previous works, the case study is focused on more scientific
problems defining a formal framework for data-driven PM that can be applied to
every CNC machine to support the tool replacement planning. [156] To this aim,
a great attention was firstly devoted to present a formal definition of variables
and parameters applicable in the domain. Data cleaning and feature manipulation
procedures are central parts of this work and they are distributed among agents.
Other agents have knowledge levels based on hybrid techniques of data selection,
outlier detection, feature extraction, feature normalization and feature selection that
result a novelty with respect to the state of the art. [2]

The case study is focused on the development of a Tool Condition Monitoring
(TCM) service whose main component is the knowledge level describing the wear
condition of milling tools provided by physics-based (white-) and data-driven (or
black-box or ML) models based on real time sensor data. The aim is the development
of a Total Productive Maintenance (TPM) CPS designed according the proposed
framework. The milling process is a scenario assumed in order to have quantitative
results for models used in the "hybrid-Knowledge based sub-system". A milling
process case is used, at the expense of others such as welding, mainly because it is
based on open data, provided online by NASA.

4.2 HW-TPM general framework

Designing a CPS that performs a Condition-Based (CB) Predictive Maintenance of
a single manufacturing CNC tool machine. The proposed framework has the aim
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of supporting the design of a general platform managing digital agents referable to
physical manufacturing resource (in particular, a smart digital twin of a machine
tool) that is able to assess, monitor, and evaluate (or contribute to the evaluation) its
status, its performances, its impact on the system and preferable decisions to make
by and regarding the agent towards a TPM system.

The first step is to define the overall agent, the entire system, so as to obtain
the definition of the wisdom level that is the presentation of the entire project. The
following subsection are structured in order to be a sort of template for a project
design document of an hybrid platform to support maintenance choices enabled by
different types of model with the same main aim of create a sort of digital twin of the
tool, or in other words with the same aim of use historical information to estimate
the actual and future states of the machine tool. [4]

4.2.1 General description of the HW-TPM system

The Figure 4.1 tries to resume the main characteristics of the system.

Fig. 4.1 Hybrid level characterization of the HW-TPM system.

Project description. The aim of the project is to develop a Decision Support
System (DSS) for Condition-Based (CB) Predictive Maintenance of CNC machine
tools, i.e., a platform able to manage data from MES and maintenance inspection
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office, in order to support the decision of substituting or not the tool of a single
autonomous CNC machine used for the surface finish of rings produced by an
additive machine.

Goals of the project The project is referring to a monolithic platform providing
a specific family of services:

• acquiring real time sensors measurements from the 4.0 CNC tool machine,

• acquiring production parameters values and tools characterization from the
MES of the plant trough specific APIs,

• acquiring wear measurements provided by maintenance inspections and com-
municating with them trough the plant chatting service,

• estimating the actual wear status of machine tools pursuing the goal of no
needed direct measurements,

• informing the machine operator regarding the risk level of working with the
set tool,

• delivering forecasted future wear states,

• estimating the Remaining Useful Life (RUL) or lifespan of the tool set in the
machine.

Project justification. Maximize the utilization of the tool life, and avoid using
worn tools that are considered detrimental to the quality of the part. In addition, the
system to be developed contributes to optimal inventory management, work planning
and scheduling based on resource status, and product quality certification.

Agents. The agents of the system, and an idea of their relationships, are shown
by Figure 4.2 and they are the following ones:

1. tool, that represents the main resource for this system, i.e., the one to monitor
and to manage respect its wear, and it is able to (i) evaluate the best time to be
substituted, (ii) ask for a further inspection by the metrology expert, and (iii)
update the tool’s stock availability,

2. machine, that is the manufacturing machine on which the tool is set,
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Fig. 4.2 Agents involved in the HW-TPM system. The main agents of the system are
underlined in green,while agents referring to HRs in red.

3. sensor, that is a component of the machine (in case of 4.0 machine or an
external sensors used during the machine activity) and for example can be a
thermometer, an accelerometer, a thermal camera, a video camera, an AC or
DC sensor, a microphone for decibels measuring, or any other type of sensor
for monitoring the activity of the machine and its components,

4. measure, that is a single measurement generated by a single sensor during
a specific activity of the machine, i.e., digital signals (time series), pictures,
videos, row data and all possible data generated by sensors,

5. trainer, that is the agent responsible for controlling the process of estimating
the tool wear level and its Remaining Usefull Life (RUL),

6. tool family, that is he family to which the tool belongs and which describes
its general characteristics,

7. activity, that is the operations run by the operator on the machine to produce
the desired product (component),

8. MES, that is an EIS used in the plant and it control each manufacturing activity,

9. ERP, that is an EIS used in the plant,

10. product, that is the component produced with the machine activity,

11. PLM, that is an EIS used in the plant to monitor the entire product life cycle,
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12. operator, that is the human resource needed to start a task on the machine and
to replace the tool as needed,

13. operator UI, that is the UI component used by the machine operator,

14. inspector, that is the human resource responsible for directly measuring the
level of tool wear,

15. inspector UI, that is the UI component used by the inspector (metrology
expert),

16. data engineer, that can interact with the trainer agent directly modifying its
code source.

4.2.2 Agents description: measure

Fig. 4.3 Agent characterization for the measure.

The measure, shown by the Figure 4.3, is a complete agent consisting in a single
measurement run by the corresponding sensor and it is link to the tool agent in order
to estimate its wear level and to the activity agent in order to deliver summarising
statistics describing the performed activity. The level of knowledge of such an agent
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Ref. Measurement Model Machine Data source
[157] Acoustic emission, vibration SVM Bearings Private experiment
[158] Vibration LR, SVM Bearings Simulation and public dataset
[159] Vibration ANN Bearings Private experiment
[160] Vibration LR, SVN, ANN Bearings Private experiment
[161] Temperature, pressure, speed SVM Aircraft engine Private experiment
[162] Vibration SVM Bearings Private experiment
[163] Vibration SVM Gearbox Private experiment
[164] Electric SVM Vehicle subsystem Private experiment
[165] Vibration LR Bearings Private experiment
[166] Vibration LR Punch Private experiment
[167] Acoustic emission LR Cutting tool Private experiment
[168] Optical ANN Laser welding Private experiment
[169] Vibration DNN Bearings Private experiment
[170] Pressure, lubricant DNN Gearbox Private experiment
[171] Vibration DT Spur gear Simulation
[172] Acoustic emission, vibration, force DT Cutting tool Private experiment
[173] Acoustic emission, vibration Improved LR Cutting tool Public dataset
[174] Temperature DT Refrigerant flow system Private experiment
[175] Vibration DT Gearbox Private experiment

Table 4.1 Research applications in the literature with data characterization: sensors, model,
Machine and data source. [128]

consists of one or more metrics of the quality of the data, i.e., of the entire sensor
measurement, so as to provide all the resources necessary for the level of wisdom to
estimate what is the best choice between holding or not holding the measurement
(eliminating or not itself as a corrupt agent).

Fig. 4.4 Examples of data formats and types referring to numeric time series measurements,
images and videos, and high-cost manual measurements: a) milling data set, [176] b) thermal
video of electrode, carbon imprint image, [5] and a tool picture. [177]

Data level. Table 4.1 and Figure 4.4 show examples of type of data that are
outputs of sensors used to measure a certain physical amount. Such data may be:
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1. single data (e.g., liters of lubricant used) for which no processing is necessary,
just domain checks;

2. simple record data or one-dimensional data, like numerical time series repre-
senting the measurement of a certain quantity during the machine’s activity
with a certain frequency (e.g., vibration of the work table, alternating current,
the noise generated by component processing, or or other sensors shown by
the Table 4.2), for which it is necessary to apply dimensionality reduction
techniques,

3. images or videos recorded during operations (e.g., videos produced by a
thermal video camera or photographs of the most critical areas of the tool that
attempt to capture wear represented in the form of a spot or otherwise irregular
areas on the surface), for which classical and non-computer vision techniques
are performed in order to extract image-related statistics such as average or
maximum temperature, or number of worn areas or their average diameter;

4. results of tests performed in the laboratory or otherwise using expensive proce-
dures that block the availability of the tool (e.g., tribological measurements),

5. complete unstructured information (e.g., text messages or comments writ-
ten in the operator UI), for which specific text mining or Natural Language
Processing (NLP) are required.

Information level. Data structure consists in a time series structure in case
of numerical list measurements, images and videos formats, and customized other
structure for general high-cost manual measurements (often performed by human).
The information level link the measurement to a single sensor, tool and activity.
Trough this level, the sensor agent could report the rejection of the measurement.

Knowledge level. The processing of measurements is composed by 3 steps:

• acquisition, trough sensor API (metadata included in sensor agent),

• domain data validation, i.e. the analysis of each sensor output to identify over
domain outliers and wrong values, consisting in checking that values are in
their sensor domain,



4.2 HW-TPM general framework 115

Equipment V
ib

ra
tio

n

H
um

id
ity

A
m

bi
en

tt
em

pe
ra

tu
re

A
m

bi
en

tp
re

ss
ur

e

A
co

us
tic

si
gn

al

T
he

rm
og

ra
ph

y

M
ot

or
cu

rr
en

t

In
su

la
tio

n
re

si
st

an
ce

E
le

ct
ri

ca
lc

ap
ac

ita
nc

e

E
le

ct
ri

ca
li

nd
uc

ta
nc

e

Pump ✓ ✓ ✓ ✓ ✓ ✓ ✓
Valve ✓ ✓ ✓
Motor/Fan ✓ ✓ ✓ ✓ ✓ ✓ ✓
Heat exchangers ✓ ✓ ✓ ✓
Steam turbine ✓ ✓ ✓ ✓ ✓
Electrical and electronic
equipment

✓ ✓ ✓ ✓ ✓

Cables and connectors ✓ ✓ ✓ ✓ ✓
Pump seal ✓ ✓ ✓ ✓
Piping/Structures ✓ ✓
Compressor ✓ ✓ ✓ ✓

Table 4.2 Sensors used to predict failures and wear of different manufacturing resources
according the literature. [178]
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• time series outlier detection should be a no-invasive detection method able
to detect only extreme measurements considered a symptom of emergency
situation for humans or other resources.

Wisdom level. The wisdom level is strongly related to the sensor agent and its
wisdom level and it is consequently focused on the concept of affidability and on
the problem of reject or not the measure, that is reasonably based on the percentage
of missing values, but should also be function of the following indicators toward
Industry 5.0: human measurement efforts and risks, level of adaptation of control
parameters to different tool families (resilience score), and sustainability related to
the rejection or validation of the measurement (whole agent).

4.2.3 Agents description: sensor

Fig. 4.5 Agent characterization for the sensor.

The information level of a sensor agent, Figure 4.5, ties each measurement to the
corresponding machinery in which it is mounted. The sensors performs a feature
engineering process that make available high level information about measurements.
In the proposed framework, the distinction between searching for outliers within a
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sensor measurement and between measurements is considered, to recognize extreme
signals that indicate process instability. [2] [3] [4]

Data level. This agent contains metadata needed to understand how read the
corresponding measurements, variables extracted from sensors measurements and
feature performance statistics.

Information level. Sensor measurements are linked to a certain activity and to
a certain machine. The communication with measures, machine, activity and tool
agents are managed by API on the same server. But data are received from the API
powered by the CNC machine seller. Before sending data to the knowledge level,
as shown by Figure 4.6, (i) intra-measure outlier detection, (ii) missing measures
management and (iii) time window selection activities are performed.

1. The intra-measure outlier detection removes single points from the set that
composes a single sensor measurement,

2. while the missing values is assumed in this work as a simple check of missing
values came from data acquisition or outlier detection activities.

3. Performance measures, like percentage of outliers or managed missing values,
are created as meta-data of the output: in this work, missing values do not
affect the knowledge level activity and for this reason they are ignored. In case
the knowledge level rejects the measurement according the missing values
intra-measure percentage, the information level transmit the information to the
measurement agent.

4. The stationary time window selection is the selection of a sub-window of the
time series that is strictly connected to the machine activity. For this purpose,
a Change Point Detection (CPD) technique is suggested, i.e. a technique to
identify instants in which the probability distribution of a time series changes.
[179] [180] In each measurement there different phases of the machine: the
(i) available phase in which the machine is on but not working, (ii) the start
and the end of processing and the (iii) stationary phase that is in the middle
of them. To do this a multiple CPD is run on each signal, obtaining multiple
sub.series. The stationary sub-series is the one with maximum value for the
average, in case of non-negative asymmetric signals (e.g., the direct current),
or for the standard deviation, in case of symmetric signals (e.g., the alternating
current).
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Fig. 4.6 Functions performed by the information level of the tool agent.

Knowledge level. In this level, (i) measurement acceptance, (ii) data normaliza-
tion, (ii) feature extraction, (iii) inter-measurements outlier detection, (iv) feature
selection, and (v) performance evaluation activities are performed. This process
consists in the hybridization of the data sources considering the overall best features:
the hybrid system consists in the data fusion process. [181]

1. A measurement is accepted and then processed if the percentage of missing
values is below a certain threshold, or rejected and reported to the information
level in case. The case of rejected measurement (missing complete time series)
is estimated and reported to the information level. The missing sensor outputs
causes a missing feature set and this statistics set are estimated according two
cases: (i) if its the first or the second tool activity, they are the mean statistics
of the first or second activities performed by tools of the same family; (ii) from
the third activity onward they are predicts considering the previous statistics
referring to the same tool: time series approach or simple linear regression are
suggested.

2. Data normalization is used to improve the overall quality of a data avoiding
situations in which some values over-weighting others. A general choice for
the normalization is a Min-Max normalization. [182]
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3. The feature extraction function is need for the first main dimensionality-
reduction contribution to the problem: from an order-of-magnitude number
of points certainly in the thousands or more, to a limited number of statistics
describing the measurement. Single missing measurement points do not affect
this function because it was sufficient not considering them for statistics
calculation.

4. The inter-measurements outlier detection is performed comparing a set of
statistics of the single measurement with the set of cumulative statistics of
other measurements of the same sensor. The standard deviations comparison
is a first suggestion to understand if a measurement is an outlier agent or
not. Another method could be the classical outlier detection based on the
Inter-quartile Rule for Outliers [183] where the Inter-quartile Range (IQR),
calculated on a specific selection of other measurement agents, is multiplied
for kIQR = 1.5 and an agent results an outlier according this method.

5. The goal of the feature selection is to reduce the dimension of the feature
set, in order to both save training time and minimize the over-fitting risk.
[184] The feature selection presented in this work is completely unsupervised
(i.e. executed without considering target variables) in order to guarantee
the independence from tool agent information. This function is activated
periodically, usually based on the number of new data (measurements) received,
and keeps the agent updated on which statistics are most meaningful for the
purpose of describing a measurement.

When performing analysis of complex data, one of the major problems is dealing
with the high number of data involved. The purpose of feature extraction is to reduce
the initial set of measured data, by extracting only the essential and explanatory
features, thus simplifying the subsequent learning phases. [185] The quality and
quantity of features are key determinants which highly affect the result of the predic-
tion. The feature to be extracted belong to the following three types: time domain,
[65] frequency domain [65] and polynomial regression coefficients.

• Time domain statistics. Feature extraction in time domain allows to evaluate
the magnitude of the signal. It consists in collecting a set of statistics that
describes the stationary time series. Examples of time domain feature are
maximum value, mean value, root mean square, standard deviation, Skewness,
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Kurtosis, peak-to-peak and crest factor. Time domain features are important,
but they only reflect the signal changes over time. For this reason, frequency
domain features need to be extracted too.

• Frequency domain statistics. The frequency-domain [186] is the power spec-
trum of the stationary time series and it describes the distribution of power
into frequency components composing. The signal digitized as a time series
can be converted in the frequency domain by using the Discrete Fourier Trans-
formation (DFT) applicable to finite sequences of equally spaced samples and
statistics are calculated on module and argument of the complex outputs of
the DFT. Another list of statistics can be defined for the band power spectrum:
examples of statistics are maximum, sum, mean, standard deviation, Skewness,
Kurtosis, and relative spectral peal. [65]

• Time polynomial regression coefficients. Finally, the last feature extraction
technique consists in a forward selection procedure to select a n-grade poly-
nomial regression of the time domain series with a fixed maximum degree
nmax, considering not only the stationary phase but all the time series. The
coefficients of this regression polynomial are considered as a subset of features.

Wisdom level. The wisdom level is strongly related to the sensor agent and its
wisdom level and it is consequently focused on the concept of affidability and on
the problem of reject or not the measure, that is reasonably based on the percentage
of missing values, but should also be function of the following indicators toward
Industry 5.0: human measurement efforts and risks, level of adaptation of control
parameters to different tool families (resilience score), and sustainability related to
the rejection or validation of the measurement (whole agent). Having multiple feature
available, based on the evaluations made in this level, the knowledge level perform
feature selection processes towards wisdom targets. A resilience strategy could be
to periodically test even excluded features (because until today not relevant) or new
features (for example adding new types of sensors) to check their performance: this
is a re-training phase managed by the trainer agent.
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Fig. 4.7 Agent characterization for the machine.

4.2.4 Agents description: machine

The machine and sensor agents change their relationship based on whether or not the
sensor is integrated into the machinery. In a 4.0 manufacturing scenario is can be
assumed that sensors are physically mounted in the machinery, therefore, the sensor
agent has a strong affiliation with the machine system.

The Figure 4.7 shows the structure of the CNC machine agent. In this case it is
simply an information system with the automatic scope of delivering information
regarding which types of tools can be set on it (selection of tool families) and it
activates the sensor agent when an operation is performed. Finally, when a task
is performed the machine agent send to the activity one the information about the
production parameters used to process the product and any error, warning or simple
description message about the activity just performed.

4.2.5 Agents description: tool

As shown by the Figure 4.8, the tool is the most complex, or smartest agent. It com-
municates with the machine to receive all information related to the manufacturing
activity (start, end, type of activity, type of product if necessary, and possibly all
information coming from the MES or PLM system), with the sensors to receive data
from the sensors related to its activity and extract relevant features (and with the
measures for singular cases), with the trainer to be supported in constantly updating
predictive models, with the two agents referring to the graphical interfaces with
operator and inspector, and, finally, with the tool family to keep all the characteristics
regarding its mechanical and economical properties and awareness of inventories
related to other equivalent tools. [2] [3] [4]
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Data level. Data on process parameters, sensors, and wear levels are used to
estimate the current wear levels of the specific tool and its RUL (lifespan), i.e.,
an estimate of how much tool life the tool has so as to optimize tool management
choices and similar resource stocks. These estimates are made by hybridizing three
types of models:

1. first, any reports are handled by the operator on the machine whose experience
is a valuable company asset,

2. secondly, a model based on experimental physical relationships that, given
the same process parameters and tool characteristics, describe the trends in
different measures of tool wear,

3. and, finally, a data-driven model based on ML methodologies that can relate
tool wear to measurements obtained from sensors in such a way as to obtain
more accurate real-time estimates because they are based on the peculiarities
of the individual tool’s history.

Fig. 4.8 Agent characterization for the tool.

Information level. The observed manufacturing process regarding the tool is
modeled as a multivariate discrete time stochastic process that takes into account
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different target variables describing the wear level of the tool or if the tool is usable
or not. [187] Generally, wear mainly depends on (i) tool and work piece material,
(ii) tool geometry, (iii) manufacturing parameters, (iv) type and level of lubrication
and (v) machine-tool characteristics. The monitoring of tool wear is important as the
wear affects decreased accuracy of produced parts, poor surface finish, economics
of cutting operations and decreased tool life. Tool wear is an important factor to
estimate since it is not directly measurable without stopping the process and perform
an inspection of the work piece. [188] Having to enable interaction with the trainer
agent and the knowledge layer with ML algorithms, this layer continues the logic of
managing the division of data into training and test sets, and, if necessary, validation
sets.

Knowledge level. The ML model, therefore, is the only one capable of incorpo-
rating the information contained in sensor measurements within the features it uses
to estimate target variables. The problem type is a supervised learning with wear
direct measurements as target variables and production parameters, tool and product
characteristics and sensors measurements as sources to obtain the predictor variables.
Mechanistic or phenomenological knowledge is the more sophisticated type of ex-
plicit knowledge as it involves deep understanding of established laws of physics,
phenomena explained by physical or chemical causes or relations between empirical
observations of phenomena. It is often described by mathematical models. These
are called first-principles, mechanistic, phenomenological or white- box models.
Generally used interchangeably, the aforementioned terms actually refer to sightly
different modeling approaches: (i) first-principles models come entirely from the
established laws of nature; (ii) mechanistic models describe systems by referencing
the laws of nature, but their parameters, although with physical meaning, must be
determined from data; (iii) phenomenological models represent empirical relations
and their parameters determined from data do not have physical meaning; (iv) finally,
white-box models refer to situations where all relevant interactions are known and
are made explicit, in a transparent way. [189] For the sake of simplicity, the term
“physics-based model” is assumed to address to any of the citations described above.
The proposed method in the knowledge level is a hybrid model between physics-
based and data-driven approaches, and it aims to exploit the potential of each method.
[4] To these two models, evaluations (no measurements) given by the operator and
its experience, i.e., its knowledge about the processes, are added as third estimation
of the wear.
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To understand how to hybridize such models, an example referring to the union
of models based on physics and ML techniques is presented below. The first step
consists in training the physics-based model and data-driven (black-box or machine
learning) model individually, i.e., a parallel hybrid structure is used. In this way,
the two methods generate estimations about wear levels for each activity executed
with the same tool, called WPB(t) and WML(t), respectively. Then, always with the
training set, for each run, the optimal weight ω(t) is calculated to generate the
linear combinations of physics-based and data-driven predictions as stated in the
following equation: W = ωWPB+(1−ω)WML. The weights are defined by choosing
as objective to minimize the Root-Mean Square Error (RMSE) and the Root Relative
Squared Error (RRSE) of the hybrid predictions. Finally, the trained hybrid model is
evaluated on the test set. The estimation of the wear level W during the operation
performed at time t with the same tool is a weighted average of physics-based and
data driven methods. However, the model estimates a dynamic weight with which to
manage the use of different wear prediction models in order to be able to "trust" more
of the best ones over the life cycle of the tool, i.e., to choose which model to give more
weight based on the number and characteristics of operations performed by the tool.
This example of hybrid modeling, one of the simplest ones, can still be extended for a
general hybrid system with several wear estimation models: an example is the hybrid
model W =ωPBWPB+ωsensWsens+ωsimWsim+ωHWH +ωNLPWNLP+ωMWM, where
WPB is the estimation given by a (or more ensemble) Physics-Based model, Wsens

by supervised ML methods applied on sensor data , Wsim by simulation methods,
WH by estimation given by manufacturing humans, WNLP by ML methods applied
on free comment given by humans, and, finally, WM are time series or, in general,
auto-regressive methods applied on direct measurements of target variables, i.e.,
wear measurements.

As from literature, the RUL is estimated on the actual wear level of the tool
compared to a fix threshold limit [3] or to past decisions taken by machine operators
or technical specialized operator, or based on experimental data or other information
resources, in other words, the RUL is estimated considering the actual knowledge
state regarding the tool and the past decisions according wisdom level criteria.
Considering that each tool performs the same type of task for its entire life cycle
by changing only materials and production parameters (in other words, always
running the same milling G-code), an estimation of RUL is the number of jobs still
performable before the tool, that carried out some jobs, does not respect quality
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parameters. [65] The Useful Life is a stochastic variable referring to the number of
jobs for a new tool before exceeding quality limits: from the (UL+1)-th activity is
the case of a bad maintenance strategy (the tool is used even if its UL is finished, thus
causing a decrease of product quality), if the UL-th activity is decided to be the last
one the case refers to an optimal maintenance strategy (the tool is changed exactly
when needed), and, finally, if the tool do not perform all the activity until the UL-th
one, this is the case of a too preventive maintenance strategy (the tool is changed
when it could have worked for one or more jobs). Concluding, a suggested model
for RUL is the one that, for the first manufacturing activity, assigns the UL value
calculated as average of the tool family, and for the following activities a linear model
is used to forecast the future wear level in order to allow the tool agent to calculate
how many runs (activity) are estimated before reaching unacceptable wear levels.
The parameters of the linear model are calculated using a training dataset which will
include both the wear values that are certain, i.e., measured by the inspector, and the
wear values predicted by the tool agent itself.

Wisdom level. Estimates regarding wear and RUL are then used by the tool
to assess whether or not it needs to be replaced through optimization methods
that can be simply represented by control thresholds (if wear is likely to exceed a
threshold value then replace) to more complex methods that can consider production
scheduling, inventory inventories, and all costs, direct and otherwise, related to tool
activity and any misuse of the tool. Such tool management support is provided
to the operator at the machine via related UI. A further decision managed by the
tool is to request an intervention by the employee to directly measure the wear
level in order to provide an additional target data that can improve the supervised
ML algorithm. This decision is made on the basis of the interaction with the
operator who provides discordant estimates, or considering that the tool is replaced
in very different times than those suggested, or finally because, interacting with the
trainer agent, the tool perceives that its forecast performance estimates are lower
especially when compared to tools belonging to other families. The decisions made
by the tool are then evaluated from a vision 5.0 perspective, i.e., from a human-
centrality perspective, where H = {H1, ·,Hn} represents different metrics related
to that pillar, from a sustainability perspective, {Si}i=1,·,n, and from a resilience
perspective, {Ri}i=1,·,n. In the Figure 4.8, there are two examples of metrics for
human-centrality and sustainability. Having multiple models available, based on the
evaluations made in this level, the knowledge level decides which ones to implement
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or, rather, which ones to give weights greater than zero. A resilience strategy could
be to periodically test even the models with zero weight so as to recheck their
performance: this is a re-training phase managed by the trainer agent.

4.2.6 Agents description: trainer

The trainer agent is strictly connected to the tool one. ML models, in fact, need to
be trained to be operational and to re-run this training process every time you have
new data and want to update model parameters. Fully automated supervised training
without human intervention is a complex function that would therefore overload the
tool agent and for this reason this function is relegated to the trainer agent. That
agent therefore, as shown by Figure 4.9, checks the tool’s predicted performance
by comparing it with pre-set benchmark performance and with the performance of
other tools from the same and different families, and evaluates whether to perform
the training phase to update the model parameters by managing the use of all useful
data in the system, i.e., by choosing from the data on all tools and their performance.
The trainer agent is, therefore, responsible for updating the hybrid sub-systems, or
levels, that make up the DIKW structure. The updating of the wisdom level models
and structures is not addressed in this paper.

Fig. 4.9 Agent characterization for the trainer.
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Data level. Results and performance statistics of past training activities, that are
strictly link to the training phase and not to the performance of such trained models
used by the tool agent. While the results are the performance obtained on the test set,
examples of training performance statistics are: training time, over-fitting risk rate or
the energy consumed during such phase.

Information level level. The trainer communicates with the tool family and
the tool agent in order to upload their information level, that for mostly consists of
resuming the use of some abandoned features or inserting new ones to re-execute the
feature selection phase as a data fusion method. Updating the information system
means updating information sources always tends to reward a hybrid solution in
order to maximize the current quality of knowledge generation processes. This agent
communicates directly with the data engineer

Knowledge level. This trainer level is the most complex, as it has several
complex training subsystems. In fact, training such a hybrid system means both (i)
training the hybrid model and the way how merge different predictive models and
(ii) training each individual model. For example, physics-based models may need to
upload the values of some constants; for models based on sensor data, the classic
ML supervised training phase is required; simulations are retrained more rarely
for singular scenarios, a request for estimation from the operator is a training task,
training of NLP methods follows the theories of deep learning, and finally, the agent
trainer may require a direct measurement of wear and tear if it estimates performance
such that the number of certain data needs to be increased in order to improve the
predictive power of the supervised algorithm. When training different models, a
model validation procedure is used to minimize the probability of over-fitting. An
example of a model validation technique is K-fold cross-validation, which involves
splitting the training set into K smaller sets of the same size (fold), in order to train
the model k times on the training set given by the union of the remaining of K−1
folds and validate it on the set given by the exclude fold. The final measure of model
performance is then the average of the K performances obtained.

Wisdom level. Based on the evaluation under the 5.0 view of the performance of
the agents under control (tool) and their training processes, this level manages the
training of each hybrid level of the DIKW structure of the dependent agent and also
provides, in case where adequate performance cannot be achieved, a direct request
of intervention by a data management expert in order to modify the code source of
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the agent. One proposal for indicators from the perspective of 5.0 is to consider
the rate of influence of human-input information, the rate of safety of operators
in working with current management performance, the cost and impact that each
training phase has, and, for resilience, all those factors that describe how up-to-date
a model is based on new available data, which time window of data is considered to
assess its performance and what that performance is, especially in case of shocks, i.e.,
how long (or how much data) the models took before they reached the performance
they had before a significant change in the system that caused lower estimation
performance.

4.3 Case study on milling open data

The steps described in the previous section were applied to the use case dataset. All
the analyses were conducted with the free software environment R (R Foundation)
and the aim is to predict the flank wear coefficient, shown by Figure 4.10, using data
generated by sensor monitoring the machine milling activity. Flank wear occurs at
the tool flanks, where it contacts with the finished surface, as a result of abrasion
and adhesion wear. The cutting force increases with flank wear. It affects the great
extent of mechanics of cutting. The flank wear region is known as wear land and is
measured by the width of wear land. If the width of wear land exceeds 0.5−0.6mm
the excessive cutting forces cause tool failure.

Fig. 4.10 Flank wear caused by friction between the flank face of the tool and the machined
work-piece surface and leads to loss of the cutting edge.
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4.3.1 Experimental system: NASA milling open dataset

Unfortunately the data level is not considerable hybrid, the information one is limited
by the laboratory environment (few typologies of measurement), and the wisdom
level consists in a quick analysis of the UX/UI of the machine tool operator with the
maintenance functionalities of the wisdom system and the integration of the system
itself with a more general enterprise information system, like a PLM system, an ERP
one or a MES.

The analyses performed in this case study are based on the public Milling dataset,
made available by the Prognostic Center of Excellence NASA-PCoE [176]. It
contains the values recorded by 6 sensors throughout the life cycle of 16 tools (cases),
under different working conditions identified with 8 scenarios, for a total of 170
machining operations (runs). Each case is characterized by 3 machining parameters,
which follow the recommendations of the tool manufacturer, and by the type of
material machined with fixed dimensions (483mm×178mm×51mm). Except for
the cutting speed, which remains unchanged at 200m/min, the other variables are
dichotomous and in particular: the feed rate has been fixed at 0.25mm/s or 0.5mm/s,
the depth of cut has been fixed at 0.75mm or 1.5mm, while the work-piece materials
are cast iron or stainless steel 145.

Fig. 4.11 Process parameters representation.

The design of the experiment involves three production parameters shown by
Figure 4.11: (i) workpiece material, (ii) feed rate and (iii) depth of cut. Particularly,
the investigated materials were (i.a) cast iron and (i.b) stainless steel 145, the feed
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was set to (ii.a) 0.25 mm/s or (ii.b) 0.5 mm/s and the depth of cut (DOC) was
set to (iii.a) 0.75 mm or (iii.b) 1.5 mm. The choice of parameters was guided by
industrial applicability and recommended manufacturer’s settings. The Flank wear
was computed as the distance from the cutting edge to the end of the abrasive wear
on the flank face of the tool. After each run of the experiment, the insert was taken
out of the tool and the wear was measured by a microscope. Flank wear is the most
commonly observed and unavoidable phenomenon in metal cutting, which is also
a major source of economic loss resulting due to material loss and machine down
time, thus it is a generally accepted parameter for evaluating tool wear. [190]

For each parameters combination there are results regarding 2 experiments so as
to obtain 16 cases analyzed. For each case, there are some number of milling activi-
ties (runs) executed with the tool. In each run of each case, 6 sensor measurements
were collected: the alternate and the direct motor currents ("smcAC and smcDC"),
the vibrations and the acoustic emissions of the table and of the spindle ("vib_table",
"vib_spindle", "AE_table" and "AE_spindle"). The data window of each sensor is a
sample of 9000 time-ordered elements. Since the total number of runs is 170, the
total number of signals recorded is 1020. Table 4.3 shows the complete Design Of
Experiment (DOE) used to generate this open dataset.

The agents that interact in that CPS are:

1. inspector, that, with a special microscope, measures the flank wear coefficient
removing the insert from the cutter and measuring the distance from the cutting
edge to the end of the abrasive wear on the side face of the tool., that is the
human resource responsible for directly measuring the level of tool wear,

2. inspector UI, that is the csv file representing the DOE,

3. tool, that is changed by the inspector,

4. sensor, tha are

5. measure, that is a single measurement generated by a single sensor during
a specific activity of the machine, i.e., digital signals (time series), pictures,
videos, row data and all possible data generated by sensors,

6. trainer, that is the agent responsible for controlling the process of estimating
the tool wear level and its Remaining Usefull Life (RUL),
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Case N. runs Material Feed DOC
1 17 Cast iron 0.5 1.5
2 14 Cast iron 0.5 0.75
3 16 Cast iron 0.25 0.75
4 7 Cast iron 0.25 1.5
5 6 Stainless steel 0.5 1.5
6 1 Stainless steel 0.25 1.5
7 8 Stainless steel 0.25 0.75
8 6 Stainless steel 0.5 0.75
9 9 Cast iron 0.5 1.5
10 10 Cast iron 0.25 1.5
11 23 Cast iron 0.25 0.75
12 15 Cast iron 0.5 0.75
13 15 Stainless steel 0.25 0.75
14 10 Stainless steel 0.5 0.75
15 7 Stainless steel 0.25 1.5
16 6 Stainless steel 0.5 1.5

Table 4.3 Values of production parameters for the 16 milling processes of the use case. Note
that the production parameters using in the first half experiments are the same of the second
one.

7. tool family, that is he family to which the tool belongs and which describes
its general characteristics,

8. activity, that is the operations run by the operator on the machine to produce
the desired product (component),

9. MES, that is an EIS used in the plant and it control each manufacturing activity,

10. ERP, that is an EIS used in the plant,

11. product, that is the component produced with the machine activity,

12. PLM, that is an EIS used in the plant to monitor the entire product life cycle,

13. operator, that is the human resource needed to start a task on the machine and
to replace the tool as needed,

14. operator UI, that is the UI component used by the machine operator.
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4.3.2 Measure agent

The agents relating to time series measurements are assumed, without loss of gen-
erality, having the same sampling size and sampling frequency, i.e. the distance
between two consecutive sensor acquisitions. This means that milling activities are
assumed of the same type, or at least with a similar nominal duration, which allow
to use a single width for all the measurement windows with only few cases with
truncated acquisitions managed by the outlier detection phase of the sensor agent.

All the measures in this system are assumed lists of 9000 thousands numerical
values. For the data validation, we used the domain (0,+∞) for all the sensors except
the alternate motor current for which it was set to (−∞,+∞), that are all the possible
values that physical quantity can theoretically reach. We checked the time series data
and we found that no one of them exceeded the fixed thresholds, thus all data are
acceptable. All measurements of the dataset are accepted from this agent.

4.3.3 Sensor agent

The outlier detection identified 33 signals as outliers, over the total of 1020 signals
recorded. The 33 outliers are reported in Figure 4.12 on 6 rows, one for each type
of sensor. For example, for the alternate motor current, three signals were detected
as outliers, the 18-th one (corresponding to the first run of the 2 second case), the
95-th one (corresponding to the first run of the eleventh case), and the 115-th one
(corresponding to the 21 run of the eleventh case). For the direct motor current, two
signals were detected as outliers, again the 18-th and the 95-th. As it is clear from the
figure, it appears that if the signal collected in a specific run by a sensor is an outlier,
also the signals collected by the other sensors at the same time may be outliers. After
the application of the outlier detection procedure, only the four signals related the
95-th measurements were removed. For the other measurements, the result of the
outlier detection is shown always in Figure 4.12

For the stationary window selection, the cpm-package in R language [191] is
used. For the identification of the first change point a the function "detectChange-
PointBatch" is used with a confidence level α = 0.1%. The method used for the
change point detection are the Bartlett test statistic for the alternating current and the
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Fig. 4.12 Plots of sensor measurements identified as outlier to be processed and sensor
measurements identified as outlier but accepted (after outlier detection).

Generalized Likelihood Ratio test for the other sensors. In Figure 4.13, an example
of the data change points identification on the six sensors measurements is shown.

Fig. 4.13 Stationary window selection applied on Milling Dataset.

The three types of features (i.e., time domain statistics, frequency domain statis-
tics and polynomial regression coefficients) were extracted from each sensor mea-
surement. The statistics over time domain are the following: (1) maximum, (2)
minimum, (3) mean, (4) standard deviation, (5) root mean square, (6) skewness, (7)
Kurtosis and the (8) crest factor. The statistics over frequency domain are calculated
on the module and the argument of the complex outputs of the "fftw" package [192]
and they are the following: (1) maximum, (2) minimum, (3) mean, (4) standard
deviation, (5) Skewness, (6) Kurtosis and the (7) Relative Spectral Peak per Band.
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Finally, the coefficient of regression polynomial with maximum degree of 5 are
computed, starting from the constant polynomial. In each i-th iteration the new
polynomial is considered, until finding the first imax-th iteration in which the p-value
referred to fitting a polynomial of maximum degree equal to imax is significant with
confidence level of 5%. Summarizing, the number of features extracted from each
measurement is 21, with respect to the dimension of a measurement equal to 9000:
8 features from time-domain, 7 from frequency domain and 6 as coefficients of
polynomials of degree 5, where for polynomials of lower degree the last coefficients
are equal to zero.

For the normalization, the Min-Max strategy was used, e.g., a linear transforma-
tion to map each feature to the set [0,1].

The proposed feature selection methods are: (1) removing features with a low
coefficient of variation, (2) selection by correlation between features, (3) selection by
hypothesis testing, (4) selection by monotonicity and prognosability. Other methods
could be the selection by trendability or multicollinearity analysis. In the first step, for
each feature the coefficient of variation is calculated and, if it is under the threshold
value of 0.5 (it is recommended a value less than 0.75 [193]), the feature is no longer
considered. This is to remove constant or low variability features. In the second
step, the correlation between each couple of features is calculated and if the absolute
value of this correlation is greater than 0.8 (an arbitrary value of positive correlation)
the feature with minimum coefficient of variation is no longer considered. Finally,
an ideal prognostic feature has two quality: monotonicity and prognosability. [194]
These parameters are calculated for each feature and a weighted average of them
is compared to a minimum value: features with average lower than this value are
removed.

4.3.4 Tool agent

As the tool proceeds in the job execution, the various deterioration mechanisms, such
as abrasion and plastic deformation, result in increasing levels of wear on the tool
surface, and as consequence, in the reduction of its RUL. The gradual wear can be
divided into two basic types, corresponding to two regions in the cutting tool. [195]
Flank wear occurs on the relief face of the tool and it is measured by the width of
the wear band VB. Crater wear consists of a cavity in the rake face of the tool that
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forms and grows from the action of the chip sliding against the surface and it can be
measured either by its depth or its area. All the measures of wear are called direct
measurements in [196].

ML methods can utilize the information contained in sensor measurements can be
used to estimate tool wear. In the proposed case study is analyzed in the literature. [4]
[3] [2] To estimate the tool wear, ML models have 126 features: for each 6 sensors
are used the 21 feature extracted from a single measurement. A total of 22 missing
values was detected. They were estimated as explained in the previous section. For
the normalization, the Min-Max strategy was used. ML models require supervised
[197] using a training set and a test set. The ML algorithms implemented in the case
study are the most used in literature [198] and the only one to be employed, i.e.,
which output is considered as ML wear estimation WML, is select as the best one
between the following:

1. Linear Regression (LR),

2. Bayesian Linear Regression (BLR) where linear regression in which the data
are supplemented with additional information in the form of a prior probability
distribution,

3. Decision Forest (DF) that is an ensemble model that operates by constructing
a multitude of regression decision trees at training time,

4. Boosted Decision Tree (BDT) where boosting means that each tree is depen-
dent on prior trees,

5. Neural Network (NN).

In parallel, classical mechanics methods concerning the wear of rotating machine
tools are based on the non-linear relationship between two main parameters: cutting
speed Vc and TRUL (RUL of the tool considering the amount of past manufacturing
activities). A first equation was proposed by Taylor in 1906 and has the following
form: Vc · t1/β =C and C = α f−C/β d−γ/β , where C is the cutting speed with which
one minute of life is obtained, d is the depth of cut, f is the feed rate and α , β and
γ are empirical constants. 1/β is an indicator of how much the tool life is affected
by changes in cutting speed and empirical data has defined that 1/β ∈ [0.1;0.15]
for HS steel tools, 1/β ∈ [0.2;0.25] for carbide tools and 1/β ∈ [0.6;1] for ceramic
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tools. [199] The physics-based component of the hybrid model (called WPB) is
based on the extended Taylor equation for rotary tools, which includes all machining
parameters. The equation has the following form: TUL = α0ν

α1
c f α2dα3W α4

PB , where
[TUL] = [min] is the estimation of the useful life of the tool where TUL = TRUL(t = 0),
[νc] = [mm/min] is the cutting speed, [ f ] = [mm/rev] is the feed rate, [d] = [mm] is
the dept of cut. [WPB] = [mm] is the width of flank wear according to the physics-
based method that can be measured in relation to the activity time T , and α0, α1, α2,
α3, and α4 are empirical constants to be estimated that will be called coefficients,
since they represent the coefficients in the multiple regression model. The formula
can be rewritten to obtain the estimation of wear level like shown by the Equation
4.1.

WPB(T ) = eln(T )−ln(α0)−α1 ln(νc)−α2 ln( f )−α3 ln(d) (4.1)

The estimation of the coefficients can be done with a multiple linear regression
by performing a logarithmic transformation, which can be written in matrix form
like in Equation 4.2.

Y =

ln(T1)
...

ln(Tn)

= Xα =

1 ln(νc,1) ln( f1) ln(d1) ln(WPB,1)
...

...
...

...
...

1 ln(νc,n) ln( fn) ln(dn) ln(WPB,n)




α0

α1

α2

α3

α4

 , (4.2)

where n is the number of operations rune with the same tool, X is called sensitivity
matrix, [200] and α contains the coefficients that can be estimated with the method
of least squares. The accuracy of the estimation of coefficients depends on the inverse
of the matrix XT X , the term on which the optimization criteria are based, as for
example to define the minimum data sample to be collected for training the method.
[201]

Then, always with interacting with the trainer agent, for each run, the optimal
weight ω(t) is calculated to generate the linear combinations of physics-based and
data-driven predictions as stated in the following equation: W = ωWPB + (1−
ω)WML.
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4.3.5 Trainer agent

To test the stability of the algorithm the training set and the test set are re-sample
10 times and each times the performances of all the algorithms are calculated. The
training set is composed by all data related to 12 tools while data of 3 tools are used
as test set. In this way, we tested the ability of the algorithms to predicting wear of
new tools. The linear model is performed using the classical module lm in R. The
BLR, instead, is performed using the function stanglm with the gaussian family. For
the decision random forest method, the library randomForest is used as a regression
module with the default number of 500 trees. For the BLR the method trainControl
is used with a number of re-sampling equal to 20 and with a linear regression method.
The same function is used for the neural network to optimize the training activity
of the function nnet: the method for the resampling is cv for the cross-validation
and the number of re-sampling is 4, while in the function nnet the parameters are
size = 1, decay = 0.01 and maxit = 2000.

Fig. 4.14 Performances of ML methods according to Root-Mean Square Error and Root
Relative Squared Error.

Figure 4.14 reports the results obtained by the 5 algorithms analysed. NN outper-
formed the other methods by obtaining the lowest error rates with a simple structure
with 10 hidden nodes for each of the 3 layers. Figure 7 shows the comparison
between the real data and the data estimated by the NN for the tools 14, 15 and 16.
Figure 4.15

Among different ML algorithms, Neural Network (NN) was the one with the
best performance. For this reason, this model was chosen as the data-driven method
to be used in the hybrid model. In Figure 4.16, the weights obtained with a training
set composed by 10 tools are represented (ω values). In the later runs, the weights
reflect the results obtained with the error analysis, in which there is an intermediate
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Fig. 4.15 Comparison between test data and estimated values by NN for wear

linear phase (from run 13 to run 19) in which the Taylor model is more accurate
and therefore the weights tend to 1, while in the outer phases the data-driven model
based on the NN algorithm prevails.

Fig. 4.16 Weights obtained on the training set.

4.4 Results and future implementation

4.4.1 Discussion of results

The results show that the proposed hybrid approach, defined by the linear combi-
nation of a physics-based and a data-driven method, has the best performance than
either single method. When single models achieve similar performance, the hybrid
approach allows to significantly increase the overall accuracy and specially to obtain
much more robust results. In addition, this approach can be used as an unique model
to estimate tools that are monitored both offline of along each operation.

Figure 4.17 shows the overall errors of the hybrid model and the single models.
In terms of the RMSE, the hybrid model has a similar distribution to the NN model,
slightly shifted downward and with one less outlier. While analyzing the distribution
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of the RRSE, the distribution of the hybrid model has a median value similar to
the single models but with much less dispersion. It can be inferred that the hybrid
model only slightly improves the overall accuracy of the predictions, while the main
ad-vantage of this approach is to obtain a more robust method whose goodness of
predictions is less affected by the training data than the single models.

Fig. 4.17 Hybrid model performance compared to individual model performance.

As shown in Figure 4.18, the performance of the hybrid and related single models
was analyzed as the size of the training set varied. The error measured with the RRSE
metric is always smaller with the hybrid model than with the single models, although
the differences are more pronounced with larger training sets. While, analyzing
the values of the metric RMSE, it was found that with a training set of small size
(composed of 8 tools over total of 14) is more accurate the Taylor model because
there are not enough data to train the neural network, which has a much higher
error than the physics-based method, and then the hybrid model has intermediate
performance between them. While increasing the size of the training set the error of
the NN model becomes very similar to that of the Taylor model and consequently the
hybrid model obtains better performances than the single models. Moreover, it can
be ob-served that with the hybrid model the increase in accuracy with the increase of
the tools used in the training set is greater than that obtained by the single models.

The results obtained is a primary formulation of a hybrid model applied on a
real manufacturing case study, with the aim of monitoring the status of a CNC
machine tool through a combination of an NN model with the extended Taylor
law. Considering the two approaches applied on the case study, the physics-based
methods result the most accurate and robust, in fact, the best overall prediction
performance was obtained with the Taylor model. It has the advantage that it can
be implemented even in the absence of sensors on board the machine and with few
offline measurements to train the model. The main limitation of this method is that it
can only be applied to wear phenomena for which a mathematical law describing
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Fig. 4.18 Performance comparison of models for different training set size.

the trend is known, i.e., only for common wear metrics. The category of data-driven
methods based on NN model shows it potential during the last milling runs, i.e.,
with enough sensor data. This characteristic reflects the ability of such methods to
explain high variable trends using the information provided by sensors. Limitations
of data-driven methods are the need of installing many sensors on the machines for
real-time monitoring, and then the high initial investment.

4.4.2 Future research on CNC machine TCM

Despite the theoretic applicability of the framework, on important limitation of this
methodology is that the results strongly depend on the amount of data used to train
the model. This fact also affects the performance results of the model. This limitation
can be solved by attempting to collect data from different machines, by varying a
different number of parameters, and add more types of sensors and data sources (e.g.,
noise, temperature, etc.).

Another limitation consists of the measure of only one flank wear coefficient.
Even if is the most commonly parameter used to evaluate the tool wear, other
types of wear can occur (e.g., built-up edge, plastic deformation, chipping, notch
wear, and thermal cracks). Considering that surely different wear measurements are
mutually dependent variables, having a dataset to set up a multivariate problem may
demonstrate an improvement in predictive performance as well as a better description
of the tool condition given by different types of wear measurements.

The first future improvement regards the dataset. As pointed out by other previous
works, the main problem in these kinds of works is the lack of data coming from
real environments. Thus, more types of tools need to be considered, with different
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production parameters and different tool paths depending on the part program.
Another improvement of the dataset will consider the use of more sensors, even with
different data format, e.g., thermal camera and others. [178] [39] A larger set of
sensors would allow an additional analysis of the search for the optimal sensor set
by also considering the technology costs during the feature selection phase.

The second future direction is the extension of the framework improving and
testing the maintenance strategy and using the results to improve the tool warehouse
management and the supply planning. The goal is to optimize the production plan-
ning and the maintenance activity, [202] [203] by also considering batch production,
[204] and minimizing the energy consumption. [205] [206]

A further direction regards the improvements of the data-driven model. In fact,
all the previous features related to the same tool can be used to predict the actual wear
level. This means considering a set of features with time depending sizes and this can
be managed by extract trends or weighted statistics or developing an algorithm able
to receive different number of inputs. Another idea is to use prior defined or fitted
distributions for the manufacturing window selection. Also a quantitative evaluation
about the size of the training set necessary to obtain acceptable performance could
be carried out. Finally, the ML approach that estimate the target variable WML, used
in the hybrid system, can be considered as an hybrid systems powered by all the
supervised models shown in this work and not by only the best.

With further research, the general framework can be validated on other case
studies, even on different manufacturing processes and with different wear metrics.
For example, a proposal for a future work is considering another process completely
different from milling, such as welding, and perform experiments to see if the
prediction models achieve better performance when trained on the same standardized
database, toward a single wear prediction model for different CNC machines. In turn,
the hybrid model can be extended to predict the RUL of each tool after each run, in
term of remaining runs or estimating the remaining time of usage. In addition, it is
possible to implement a hybrid approach between a time series method (starting with
a simple auto-regressive one) and the two used in this case study. Other improvements
can be done to the hybrid model, such as considering other estimations as input
nodes of the NN model.

Finally, a quick analysis work can be devoted to finding a case study that does
not lose generality but provides shorter wear times so that we can focus more on
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validating the framework applied to different machines than on optimizing a single
model validated on data that are too homogeneous because with a small in size and
few subjects.

Concluding, wear processes are slow processes, and tool breakage events are
defined as rare. For this reason, it is expensive to have a dataset that can test the
validity of the framework applied to an entire production plant. An experimental
plan that is relatively inexpensive but would still provide an acceptable validation of
the framework consists of a series of experiments performed on a machine tool (e.g.,
milling, welding or additive manufacturing machinery) following these requirements:

• consider as a single experiment the execution of a standard processing cycle to
be the same for the entire experimental plan,

• use even one type of tool,

• ensure that the number of tool is sufficient for the experimental plan and in
any case that it is not less than 30 tools (dataset dimension)

• use at least 2 different materials for the component to be processed,

• consider at least 2 values for each machine setting parameter (tool speed, depth
of cut or laser power) included in the physics-based (experimental) model
implied in knowledge levels,

• record energy and resource consumption in general both to improve the pre-
dictive power of data-driven models and to be able to make economic and
environmental impact assessments,

• ensure that the number of tool is sufficient for the experimental plan and in
any case that it is not less than 30 tools,

• record the information provided by an expert (prior human knowledge) regard-
ing the wear state of and the optimal replacement time of the tool (probably
discretizing these two target variables in order to obtain ordered classes of wear
and information about the "Remaining Useful Operation" or the "Remaining
Useful Cycle",

• as control sample, measure tool wear levels after the first machine cycle and at
the same time as the expert reports the need for tool replacement,
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• measuring tool wear levels periodically, trying to use the tool as much as
possible, and certainly continuing beyond the expert’s replacement report
(under the proper safety protocols for the tool)

• product quality evaluation



Chapter 5

Conclusions

5.1 Summary of the work

The main motivation of the research is the desire to investigate hybrid systems
and their application in the manufacturing sector. This thesis aims to propose a
method or rather a framework for designing an information system that not only
includes, but integrates different modeling techniques in order to optimize the stages
of mapping the information flows of the system and describing the knowledge needed
in order to achieve the awareness that can guide toward optimal choices. Such hybrid
systems, i.e., hybrid model systems, turn out to be an interesting research topic as
they are widely used even though the scientific literature provides neither a clear
definition and comprehensive results regarding their benefits over single models and
under different hybridization choices. Another important open research question
specifically concerns system knowledge and, in particular, how to integrate so-called
prior knowledge and how to structure a framework that provides for the addition of
new knowledge sources over time.

The main scientific contribution that this work seeks to bring, therefore, is a
proposal for a design method that promotes to the reader, or accentuates, hybrid
thinking, that is, designing an information system by considering different models,
separately and simultaneously, in order to obtain more reliable descriptions and
predictions of the state of the system, ensuring greater resilience of the system
as it is able to exploit the strengths of different prediction models. This certainly
pushes research efforts toward the concepts of Enterprise Information Systems (EISs)
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and Knowledge-Based Systems (KBSs), and thus toward the study of how to use
different information mapping techniques and different approaches of variables
modeling (the main ones being data-driven and those based on laws of physics,
analyzing how integrate human-driven ones, i.e., variables models based completely
on manufacturing human know-how).

Hybrid modeling, considering different modeling techniques, aim to avoid the
unscrupulous use of one single family of models that are often non-sustainable.
It is unequivocal that the sustainable manufacturing needs an appropriate digital
information system that has (or that is design with) an awareness of the enterprise’s
objectives and the impact of its use by the enterprise’s resources. Today it is required
that this awareness is increasingly comprehensive and effective, in other words,
that it follows the 5.0 vision by making use (or being able to make use) of all 4.0
technologies. In order to guarantee the sustainability, an hybrid model has to consider
the impact due to energy consumption or hardware production and installation, but
often the non-sustainability is also due to maintenance costs or the inability of
humans to use the system.

In detail, this thesis is a work dealing with (i) awareness Knowledge-Based
Systems (KBSs) and (ii) hybrid systems as base concepts for designing a digital
platform aiming of supporting a specific physical manufacturing environment. The
model proposed by this work is based on these two concepts and, basically, it is a
theoretical formalization of a digital platform belonging to a Cyber-Physical System
(CPS) that uses hybrid models in order to achieve a 5.0 wisdom, i.e., in order to
promote and follow a 5.0 awareness as digital component of information management
for a generic 4.0 manufacturing system. The hierarchical structure of the 4 levels
of Data, Information, Knowledge and Wisdom (DIKW) is proposed as a method
capable of (i) making use of data-lakes, information flows and knowledge processes
to make conscious decisions, with wisdom for the precisely, and (ii) developing the
concept of hybrid system by characterizing the 4 hybrid subsystems: hybrid data
sources, DB and computer networks hybrid models, hybrid models for estimating
state variables, and hybrid decision support methods.

The first chapter introduces the background of the author, the motivations and
the aim of the research and the research question. This introduction allows, in a few
pages, to understand the objective of the thesis and the associated research axes.
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The second chapter describes the state of the art carried out starting from lean
thinking and waste elimination, trough the digital era of Industry 4.0, until today
with the need to have and greater spread of awareness of these tools and their impact.
This chapter is a quick introduction to the main manufacturing concepts on which
this thesis is based: lean manufacturing from which is important to understand
variables and methodologies to eliminate wastes, Enterprise Information Systems
(EISs) focusing on ERP, PLM, MES and their integration, Industry 4.0 and its
technologies, and finally the Industry 5.0 and the European manufacturing view.

The central chapter presents the methodological proposal in detail and it is
a description of the proposed hybrid wisdom-based framework. It includes an
analysis of manufacturing processes and the opportunities they offer for the proposed
framework. After giving basic notions about agent-based system, DIKW-structures
and hybrid modeling, the element of the framework, the agent, is presented with
DIKW levels, the hybrid structure of which is subsequently discussed level by level.
Finally, a proposal of framework evaluation metrics and the expected impacts in
Industry 4.0 and Industry 5.0 is provided.

One case study is presented, and it is focused on the application of the frame-
work to design a Tool Condition Monitoring (TCM) system for a Total Productive
Maintenance (TPM). Results obtain with a real case application are provided on
milling process: monitoring and optimize the changeover of the milling cutters using
open data for results replication. The aims of the case study is to present a design
methodology for predictive maintenance functionalities in a TPM CPS.

The theoretical contributions of this work are towards the concepts of hybrid
systems, Industry 5.0 and DIKW structures for AI. Even if the single case study
presented unfortunately fails to validate all the characteristics required for the gen-
eral framework, it certainly contributes to various open points of research on hybrid
systems. Considering the 6 categories to better integrate social and environmental
European priorities into technological innovation and to shift the focus from indi-
vidual technologies to a systemic approach, this work contributes for the most of
them: only bio-inspired technologies and smart materials are difficult to apply for the
proposed framework. The proposed work, therefore, can be considered with regard
to:

1. individualising Human-Machine Interaction, as agents in CPS modeled as a
HW-system trough the proposed framework;
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2. digital twins and simulation, as knowledge tools to be integrated with others
as components of the hybrid system;

3. data transmission, storage, and analysis technologies described in detail trough
the DIKW structure of the proposed framework;

4. Artificial Intelligence structured as MAS where the intelligence is a cognitive
back-warding process from data, trough information and knowledge, until the
wisdom making use at every level of hybrid modeling systems;

5. technologies for energy efficiency, renewable, storage and autonomy that are
considered by the 5.0 oriented wisdom that the framework guides to build.

5.2 Conclusive remarks

The theoretical contributions of this work are towards the concepts of hybrid systems,
Industry 5.0 and DIKW structures for AI. For the DIKW method, the section regard-
ing the wisdom characterization of the agent in the third chapter gives a description
of the processes in each level and the processes that transform elements lower in the
hierarchy into those above them. The next section of the same chapter, on the other
hand, provides a definition of hybrid systems for each DIKW level and a proposal to
integrate human prior knowledge, simple or dominated by equations. In the same
section, the incorporation of the various sources of knowledge is treat.

Even if the single case study presented unfortunately fails to validate all the
characteristics required for the general framework, it certainly contributes to various
open points of research on hybrid systems:

• the results of the case study are an experimental demonstration about benefits
given by hybrid modeling respect using single model,

• a dynamic model selection method is provided (the method of averaging
weights varying over time),

• performance of the hybrid model are compared to the ones of the single model,

• other results on the milling open case study are reported in order to promote
this dataset for future works,
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• data-driven and mechanistic models are used in parallel so that one could help
the other.

The results show that the proposed hybrid approach, defined by the linear combi-
nation of a physics-based and a data-driven method, has the best performance than
either single method. When single models achieve similar performance, the hybrid
approach allows to significantly increase the overall accuracy and specially to obtain
much more robust results. In addition, this approach can be used as an unique model
to estimate tools that are monitored both offline of along each operation.

The literature regarding Industry 5.0 reports other central concepts for this revo-
lution and, even in this case, except for Smart Additive Manufacturing (SAM) which
is treated in future improvements, this work shows results along these directions, or
more precisely:

• experimental results are taken from the case study on Predictive Maintenance,
which is a key manufacturing sector for sustainability and resilience of a
system,

• the hyper customization is ensured by the use of product- and service-referenced
agents, such that each individual factory resource has a unique correspondence
to a DB (and to the entire agent referring to it) or set of them that characterizes
it uniquely within the entire CPS,

• cognitive capabilities are assigned to the CPS trough knowledge and wisdom
levels toward a Cyber Physical Cognitive Systems (CPCSs), where learning
and knowledge are the primary components of decision making that is also at
the base of human-robot collaborative manufacturing.

Applying the theoretical framework on the presented case study, several depen-
dencies between the agents were made explicit in defining the wisdom levels: for
example, how the measurement agent inherits part of wisdom from the sensor agent,
which in turn inherits from the machine driven by the MES through the activity agent.
Other relationships not made explicit in the case study are hypothesized and shown in
Figure 5.1. From these dependencies, a flow of wisdom generated by source agents
directly referring to human beings has been hypothesized. The Figure 5.2 shows this
flow and highlights the source agents, i.e., agents in the HW-system directly related
to the factory humans and whose wisdom is derived from designing the needs of
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Fig. 5.1 Wisdom relationships estimation of the case study for TCM of CNC machine tool.
The simple link between two agents expresses a directional logical dependence, while the
arrow indicates the direction by which wisdom is spread (although in reality this is a pull,
not a push, process). Red refers to agents strongly associated with humans and the flows
by which they spread their wisdom to adjacent agents; green refers to principal, or better
characterized in depth, in the case study referring to a machine tool.

society, characterizing of the needs of the humans represented by an operative agent
in the system, and keeping going the activity of monitoring the agent’s performance
and updating the characteristics by interacting whenever possible (and necessary)
with the human being. During the design phase of a HW-system, the wisdom levels
of each HW-agent are defined through a forward process starting from master agents
(sources of wisdom), where the wisdom of dependent agents is defined probably
by relaxing some constraints of the inherited wisdom and finding the balance of
requirements from the different wisdom sources. In contrast, during the use of CPS in
the factory activity, through a backward process, the state of the system is evaluated
by focusing on the performance of the wisdom source agents which depend on the
performance of agents operating in the system, considering the weight a source agent
has in defining the wisdom of the inherited agents.

This wisdom flow mapping methodology allows us to estimate the level of
transversality of wisdom that is intended to be provided to the CPS and what are
the agents through which this wisdom is digitized. The flow hypothesized in Figure
5.2, while further demonstrating the centrality of the human being in the proposed
framework, is a topic for future research as different types of wisdom streams
need to be added to study the universal wisdom derived from the design phase and
years of CPS deployment and updating the wisdom levels of agents: for example,
it is interesting to map the flows related to wisdom generated from (i) technical
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Fig. 5.2 Wisdom flow estimation of the case study for TCM of CNC tool machine. The
simple link between two agents expresses a directional logical dependence, while the arrow
indicates the direction by which wisdom is spread (although in reality this is a pull, not a
push, process). Red refers to agents strongly associated with humans (and the flows by which
they spread their wisdom to adjacent agents; green refers to principal, or better characterized
in depth, in the case study referring to a machine tool.

documentation and machine use standards, (ii) ERP system (economic, financial and
fiscal wisdom), (iii) a hypothetical cost and environmental impact estimation system,
or (iv) guidelines from networks between suppliers or partners, commercial groups
or governments. Of these wisdom streams, it is interesting to monitor developments
during the design phase and the test of a HW-CPS in a real plant (achieve a TRL of
5).

Finally, a final research contribution of this paper is the section in the second
chapter on integration between EISs. While integration between MESs and ERP
systems is an inherent feature in the hierarchical relationship of these two systems,
[114] [115] and integration between ERP and PLM activities remains an area of
scientific interest. In particular, many realities that base their core business in One-
of-a-Kind Production (OKP) [207] urgently need a complete integration between
PLM and MES systems, that, in several cases, remains a complex feature caused
by the high heterogeneity of MESs in manufacturing realities. Providing guidelines
on standardizing such systems or identifying key components on which to map the
lifecy-cle of a generic product is critical. [10] [11] [12] [13] [14]
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5.3 Discussion of research questions

The first research question reads as follows:

RQ1. Is the DIKW-schema able to support the design of a Decision Support Sys-
tem (DSS) integrated in a 5.0 smart manufacturing context?

Actually, the size of the scientific literature regarding the current Industry 5.0 does
not justify a full interest on the subject. In any case, the concepts of sustainability,
resilience and human-centrality are clear pillars from which to build a variables
system on which decision-making processes are based to achieve a system able of
managing changes in the factory and in the system in which such factory operates,
thanks to the collaboration with the human resources of the factory, and in order to
make the manufacturing CPS sustainable. The literature regarding the Industry 5.0
underlines the need to find a way to incorporate into the design of AI services some
sort of overall vision of the enterprise that can guide AI decisions with factors that
include the welfare of broader systems, even broader than the enterprise system itself.
In this sense, the DIKW pyramid is a proposal along these line, where the wisdom
subsystem represents (i) a concept that drives designers to include such universal
factors as the target of the service to be developed, and (ii) a general component
common to all the services in the factory in order to create a common vision followed
by all digital agents, and non-digital agents, who are able to make effective decisions
within the factory.

The second research question reads as follows:

RQ2. What can be a formal and comprehensive definition of hybrid systems em-
ployed as manufacturing decision support components?

The second research question refers primarily to the definition of hybrid system
and both the analysis of the literature and the proposed framework contribute for the
answer to such question: in the literature the use of this term is employed in different
ways and occasionally even in conflicting ways. The DIKW method is considered
to be a 4-level division of a generic hybrid decision support system in which a
definition and several considerations of the hybridization processes occurring in each
level have been provided. In particular, the definition of hybrid modeling structures
are given considering ensemble models of different families for each DIKW level:
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different types of data, heterogeneous information sources (like relational, semi-
structured or completely no-structured manageable with AI techniques like NLP) and
predictive models using the knowledge generated by ML, PB models, simulations
and human-centric evaluations.

Moreover, defining a type of CPS refers to how to measure the contribution
of the CPS, which are the models to use in the system and which is its structure,
i.e., how these models are integrated. The section on KPIs to be used to assess the
applicability of the proposed framework, while part of future work, provides a clear
description of the line of research to be followed. In the definition of the framework,
the function of creating new model families to hybridize and simply integrating them
in the framework, generating new types of information, new knowledge process and
new wisdom structures, is discussed characterizing each subsystem.

Finally, the case study provides a relevant scientific contribution as regards the
hybridization of ML and PB models, and ideas for the insertion of knowledge directly
provided by humans (operator or quality managers) and dynamic simulation models.
Comprehensive results regarding their benefits over single models are provided.

The third research question reads as follows:

RQ3. Is hybrid modeling a paradigm that standardize the use of human
prior knowledge in manufacturing decision support systems? If so, how?

The third question investigates how to integrate human prior knowledge in
the framework and how to structure such framework in order that it is able to
generate new knowledge and to receive knowledge from new sources over time.
Unfortunately, a single case study, and specifically the case study presented, does
not guarantee to fully answer this research question. In any case, in the discussion of
the case study different considerations refer to how employing such human a-priori
knowledge within wear prediction models. A quantitative assessment of how much
such knowledge improves predictive maintenance strategies is not provided due
to lack of data, however the theoretical framework presented in the third chapter
devotes different parts to the discussion of how to place such a-priori knowledge
within the hybridization of predictive models and how to estimate the significance of
such knowledge relative to that obtained from mathematical, physical, and statistical
models. Finally, the framework also includes a discussion of how such a-priori
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knowledge, or otherwise not data-driven knowledge, can support the creation of new
information structures with the aim of providing new types of knowledge.

5.4 Future works

Future works are presented divided into groups: first the discussion at a general
level, then the future works as regards the available data, the third list, the smallest,
concerns research in the IT field, while the last two concern models forecasts and
the characterization of the wisdom of a CPS.

General improvements and futures activities:

• analyzing different case studies in order to validate the model for all the phases
of the entire life cycle of a generic product (and service) or a manufacturing
resource;

• defining a standard definition method for the environment agent, i.e., a system
containing all the agents and therefore would mainly act as the source of
wisdom (it could be considered as a functional supervisor of the main agents
in the system, like ERP system, MES, PLM systems or a system given by their
integration, or the software environment where the CPS will be developed);

• developing an European research project proposal, starting from the HOME
one, where ideas for case studies are (i) electrode condition monitoring and
tool changeover management, (ii) MES-PLM integration for AM, (iii) EISs for
agriculture management, (iii) Warehouse Management Systems (WMS) and
(iv) on-life platform (CPSs) for learning activities, that represent heterogeneous
cases, even from outside the manufacture, so as to test the level of generality
of the research;

• discussing in depth validation of the framework by comparing it to the hierar-
chical structure provided by ISA-95;

• developing new models for costing and environment impact evaluation for the
agents.

Improvements concerning data and information:
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• using case studies with a more complex information flow so as to study the
behavior of all agents to assess how they operate;

• link wear levels, or degradation measures in general, with product quality
parameters in order to create a system able to determine the optimal changeover
strategy considering the desired quality standards;

• working on case studies that are perhaps less scientifically relevant but which
present data collection campaigns that are easier to organize also because
requiring less IT infrastructure costs (an example is the system for managing
the lesson and monitoring student learning).

Knowledge level improvements:

• extending the hybridization methodologies and creating multiple level of
hybridization, especially in ML cases, where, instead of selecting the best
model, a hybrid structure is always proposed so as to provide better model to
be integrated in the first level of hybridization with other models of complete
different nature;

• developing a system that can optimize the hybridization parameters in parallel
with the choice of ensemble model parameters so that these activities are not
left independent;

• exploring different way to hybridize, i.e., other open, or white, box methods,
like parallel systems or deterministic in series ones, or grey ones where, for
example, the outputs of PB models or the information provided by an operator
are considered as additional characteristics to estimate a target variable;

• when it is necessary to estimate the hybridization parameters, using reinforce-
ment learning methods, taking care not to constrain the model to be supervised
so as not to lose much of the contribution brought by a-priori knowledge and
by the PB models validated in the laboratory.

Wisdom level improvements:

• quantitatively estimating the wisdom flow by starting with defining the wisdom
main agents (with different wisdom sources) and defining from them the
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wisdom of others in cascade following the relationships of the system, i.e.,
creating a method of estimating the wisdom spread within the factory so as
to also have further mapping of the value of company assets based on these
concepts;

• collecting values of the indicators used in the wisdom level so as to study their
trends, dynamic relationships, and possible drifts of some agents with respect
to the system;

• deepen the methods of inheritance of wisdom in order to build a system of
replicating agents each with a set of more or less smart functions, but in any
case aimed at the business objectives defined by humans so as to place them at
the center of all processes of corporate decision making.

Fig. 5.3 Schema representing the main interesting models to be involved in a future improve-
ments of the project Safe&Green Intralogistic System with 4.0 integrations (SaGrIS4.0)
belonging to the MESAP polo.

Finally, starting from the funded research projects outlined in the introductory
chapter, interesting future works consist in applying the proposed framework to these
three use cases (storage systems, general EISs and AM management) in order to
validate it more comprehensively. In particular, as shown by the figure 5.3, from the
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project SaGrIS4.0 it is possible to plan a second project in order to develop a model
for autonomous management of a generic warehouse (including fully automated
parts, human-powered parts, and hybrid parts) that looks to the vision 5.0 and
especially allows for experimentation with the synergy achieved by hybridizing
simulation models, models based on stochastic processes, and, where possible, real-
time measurements made directly on the storage facility. The project HOME, instead,
is focused on making available the needed information where it is needed, when
it is needed, and for who needs it. This makes it extremely complex to ensure
the economic, social, environmental, and energy sustainability of manufacturing in
sectors that are centuries old (automobile) or more (textile). As shown by the figure
5.4, in order to make manufacturing lean, smart, aware, and sustainable, a future
project of the same complexity and importance as the previous one is the perfect
environment to validate all the features of the proposed framework. Concluding,
the CAPT’N’SEE project is dedicated to professionals willing to enhance their
expertise in the use of Additive Manufacturing (AM) technologies. The project
provides a scientific contribution toward the dissemination process of manufacturing
knowledge (and wisdom) about product design and MES for AM. Therefore, the
CAPT’N’SEE project is an excellent starting point for designing the study of how to
disseminate that knowledge through an EIS integrated with other generic systems not
strictly related to AM: study an AM-specific MES concept that is (i) specific for the
management of 3D printers and other AM resources and (ii) able to digitize, generate
and share new manufacturing knowledge for AM in the European and global 5.0
industrial context.
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Fig. 5.4 DIKW point of view of the hierarchy of the HOME project, that is funded by
the Piedmont Region in the framework of "Programma Operativo Regionale POR-FESR
2014/2020" over the call for tenders of the "Fabbrica Intelligente" technological platform.
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