1,054 research outputs found

    Strategies for automatic planning: A collection of ideas

    Get PDF
    The main goal of the Jet Propulsion Laboratory (JPL) is to obtain science return from interplanetary probes. The uplink process is concerned with communicating commands to a spacecraft in order to achieve science objectives. There are two main parts to the development of the command file which is sent to a spacecraft. First, the activity planning process integrates the science requests for utilization of spacecraft time into a feasible sequence. Then the command generation process converts the sequence into a set of commands. The development of a feasible sequence plan is an expensive and labor intensive process requiring many months of effort. In order to save time and manpower in the uplink process, automation of parts of this process is desired. There is an ongoing effort to develop automatic planning systems. This has met with some success, but has also been informative about the nature of this effort. It is now clear that innovative techniques and state-of-the-art technology will be required in order to produce a system which can provide automatic sequence planning. As part of this effort to develop automatic planning systems, a survey of the literature, looking for known techniques which may be applicable to our work was conducted. Descriptions of and references for these methods are given, together with ideas for applying the techniques to automatic planning

    Improving DRAM Performance by Parallelizing Refreshes with Accesses

    Full text link
    Modern DRAM cells are periodically refreshed to prevent data loss due to leakage. Commodity DDR DRAM refreshes cells at the rank level. This degrades performance significantly because it prevents an entire rank from serving memory requests while being refreshed. DRAM designed for mobile platforms, LPDDR DRAM, supports an enhanced mode, called per-bank refresh, that refreshes cells at the bank level. This enables a bank to be accessed while another in the same rank is being refreshed, alleviating part of the negative performance impact of refreshes. However, there are two shortcomings of per-bank refresh. First, the per-bank refresh scheduling scheme does not exploit the full potential of overlapping refreshes with accesses across banks because it restricts the banks to be refreshed in a sequential round-robin order. Second, accesses to a bank that is being refreshed have to wait. To mitigate the negative performance impact of DRAM refresh, we propose two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of per-bank refresh by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Extensive evaluations show that our mechanisms improve system performance and energy efficiency compared to state-of-the-art refresh policies and the benefit increases as DRAM density increases.Comment: The original paper published in the International Symposium on High-Performance Computer Architecture (HPCA) contains an error. The arxiv version has an erratum that describes the error and the fix for i

    Comparison of Traditional Versus CubeSat Remote Sensing: A Model-Based Systems Engineering Approach

    Get PDF
    This thesis compares the ability of both traditional and CubeSat remote sensing architectures to fulfill a set of mission requirements for a remote sensing scenario. Mission requirements originating from a hurricane disaster response scenario are developed to derive a set of system requirements. Using a Model-based Systems Engineering approach, these system requirements are used to develop notional traditional and CubeSat architecture models. The technical performance of these architectures is analyzed using Systems Toolkit (STK); the results are compared against Measures of Effectiveness (MOEs) derived from the disaster response scenario. Additionally, systems engineering cost estimates are obtained for each satellite architecture using the Constructive Systems Engineering Cost Model (COSYSMO). The technical and cost comparisons between the traditional and CubeSat architectures are intended to inform future discussions relating to the benefits and limitations of using CubeSats to conduct operational missions

    Predictive Duty Cycling of Radios and Cameras using Augmented Sensing in Wireless Camera Networks

    Get PDF
    Energy efficiency dominates practically every aspect of the design of wireless camera networks (WCNs), and duty cycling of radios and cameras is an important tool for achieving high energy efficiencies. However, duty cycling in WCNs is made complex by the camera nodes having to anticipate the arrival of the objects in their field-of-view. What adds to this complexity is the fact that radio duty cycling and camera duty cycling are tightly coupled notions in WCNs. Abstract In this dissertation, we present a predictive framework to provide camera nodes with an ability to anticipate the arrival of an object in the field-of-view of their cameras. This allows a predictive adaption of network parameters simultaneously in multiple layers. Such anticipatory approach is made possible by enabling each camera node in the network to track an object beyond its direct sensing range and to adapt network parameters in multiple layers before the arrival of the object in its sensing range. The proposed framework exploits a single spare bit in the MAC header of the 802.15.4 protocol for creating this beyond-the-sensing-rage capability for the camera nodes. In this manner, our proposed approach for notifying the nodes about the current state of the object location entails no additional communication overhead. Our experimental evaluations based on large-scale simulations as well as an Imote2-based wireless camera network demonstrate that the proposed predictive adaptation approach, while providing comparable application-level performance, significantly reduces energy consumption compared to the approaches addressing only a single layer adaptation or those with reactive adaptation

    CitrusTV Website Redesign Project

    Get PDF
    Many students who live off campus at Syracuse University are unable to view the Orange Television Network. CitrusTV\u27s news, sports and entertainment programming airs on this channel and is therefore unavailable to many students. To expand the viewing audience, the CitrusTV website is crucial. The original goal of this honors capstone project was to enhance and improve CitrusTV’s website in order to simulate that of a local news station. Through a newly created content management system, students would be able to upload news stories with text, video and pictures. Because of CitrusTV’s annually changing administration and technical hurdles, the project’s goal has evolved over time. The website will now serve as a prototype for the organization if they choose to revamp their website in the future. This project explores the challenges of implementing a new website system, as well as improvements that could be made to the current design. The basis for my research was studies by the Project for Excellence in Journalism and the Radio Television Digital News Director\u27s Association and using those to compare with the features and current design of CitrusTV.net. This project concludes that there are several ways to improve CitrusTV’s current website, including a social media campaign, along with the changes to the current website production system. It recommends an overall improvement in communication between developers and journalists, along with management staff

    The Diamond, November 10, 2023

    Get PDF
    Front Page: Dordt University Claims First Ever Victory Over Mustangs; What\u27s Next for the New Commons?; International Education Week News: CORE Program Revises CORE 100; Highway 75 to be Redesigned into Four Lane Highway; A Spook-tacular Night; Registrar Navigates Another Busy Season; Campus Ministries Launches Seek Week; Students Attend Agricultural Missions Conference; Education and How Big the World Is Feature: Matt Bos Celebrates Three Years as Assistant Director of Athletics Communications; Academic Enrichment Center Experiences High Demand; The Power of Women in Business; Education Students Participate in Year-Long Student Teaching; Faculty Coffee Gatherings Encourage Community; Theatre Students Direct One Acts Art & Entertainment: Defender Band Performs Rain or Shine; Happy Trees, Happy College Students; 1989 (Taylor\u27s Version) is an Ode to Young Life and Love Opinion: Scare Meets Screen in Five Nights at Freddy\u27s; Killers of the Flower Moon is a Must-Watch; Password Sharing Limitations Impacts College Students Sports: Athletes Keep Their Heads in the Game During Preseason; Women\u27s Basketball Enters New Season Highly Ranked; Dryden Wins National Defensive Player of the Week; Dordt Media Network Uses New Drone Technology The Back Page: Smit Presents Doctoral Recital; Staff Recipeshttps://digitalcollections.dordt.edu/dordt_diamond/1876/thumbnail.jp

    Workflow support for live object-based broadcasting

    Get PDF
    This paper examines the document aspects of object-based broadcasting. Object-based broadcasting augments traditional video and audio broadcast content with additional (temporally-constrained) media objects. The content of these objects - as well as their temporal validity - are determined by the broadcast source, but the actual rendering and placement of these objects can be customized to the needs/constraints of the content viewer(s). The use of object-based broadcasting enables a more tailored end-user experience than the one-size-fits-all of traditional broadcasts: the viewer may be able to selectively turn off overlay graphics (such as statistics) during a sports game, or selectively render them on a secondary device. Object-based broadcasting also holds the potential for supporting presentation adaptivity for accessibility or for device heterogeneity.From a technology perspective, object-based broadcasting resembles a traditional IP media stream, accompanied by a structured multimedia document that contains timed rendering instructions. Unfortunately, the use of object-based broadcasting is severely limited because of the problems it poses for the traditional television production workflow (and in particular, for use in live television production). The traditional workflow places graphics, effects and replays as immutable components in the main audio/video feed originating from, for example, a production truck outside a sports stadium. This single feed is then delivered near-live to the homes of all viewers. In order to effectively support dynamic object-based broadcasting, the production workflow will need to retain a familiar creative interface to the production staff, but also allow the insertion and delivery of a differentiated set of objects for selective use at the receiving end.In this paper we present a model and implementation of a dynamic system for supporting object-based broadcasting in the context of a motor sport application. We define a new multimedia document format that supports dynamic modifications during playback; this allows editing decisions by the producer to be activated by agents at the receiving end of the content. We describe a prototype system to allow playback of these broadcasts and a production system that allows live object-based control within the production workflow. We conclude with an evaluation of a trial using near-live deployment of the environment, using content from our partners, in a sport environment.</p

    Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Get PDF
    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.https://doi.org/10.3390/s14030507

    Dynamic Control Flow in Large-Scale Machine Learning

    Full text link
    Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.Comment: Appeared in EuroSys 2018. 14 pages, 16 figure
    • …
    corecore