
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2018

Comparison of Traditional Versus CubeSat
Remote Sensing: A Model-Based Systems
Engineering Approach
Daniel L. Cipera

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Other Aerospace Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Cipera, Daniel L., "Comparison of Traditional Versus CubeSat Remote Sensing: A Model-Based Systems Engineering Approach"
(2018). Theses and Dissertations. 1881.
https://scholar.afit.edu/etd/1881

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277525889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/228?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1881?utm_source=scholar.afit.edu%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

COMPARISON OF TRADITIONAL VERSUS CUBESAT REMOTE SENSING: A
MODEL-BASED SYSTEMS ENGINEERING APPROACH

THESIS

Daniel L. Cipera, Captain, USAF

AFIT-ENV-MS-18-M-187

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-18-M-187

COMPARISON OF TRADITIONAL VERSUS CUBESAT REMOTE SENSING: A
MODEL-BASED SYSTEMS ENGINEERING APPROACH

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Daniel L. Cipera, BS

Captain, USAF

March 2018

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-18-M-187

COMPARISON OF TRADITIONAL VERSUS CUBESAT REMOTE SENSING: A
MODEL-BASED SYSTEMS ENGINEERING APPROACH

Daniel L. Cipera, BS

Captain, USAF

Committee Membership:

Dr. D. Jacques
Chair

Dr. T. Ford
Member

Mr. D. Meyer
Member

iv

AFIT-ENV-MS-18-M-187

Abstract

 This thesis compares the ability of both traditional and CubeSat remote sensing

architectures to fulfill a set of mission requirements for a remote sensing scenario.

Mission requirements originating from a hurricane disaster response scenario are

developed to derive a set of system requirements. Using a Model-based Systems

Engineering approach, these system requirements are used to develop notional traditional

and CubeSat architecture models. The technical performance of these architectures is

analyzed using Systems Toolkit (STK); the results are compared against Measures of

Effectiveness (MOEs) derived from the disaster response scenario. Additionally, systems

engineering cost estimates are obtained for each satellite architecture using the

Constructive Systems Engineering Cost Model (COSYSMO). The technical and cost

comparisons between the traditional and CubeSat architectures are intended to inform

future discussions relating to the benefits and limitations of using CubeSats to conduct

operational missions.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisors, Dr. Dave Jacques

and Dr. Thomas Ford, along with Mr. David Meyer, for their guidance and support

throughout the course of this thesis effort. Their insight and experience is certainly

appreciated. I would also like to thank Dr. Ray Madachy of the Naval Postgraduate

School for his assistance with the cost estimation portion of this thesis. Finally, my

utmost gratitude to my wife, who somehow thought all this was a good idea, and my

children, who had no choice in the matter.

 Daniel L. Cipera

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Tables ... ix

I. Introduction ...1

General Issue ..1

Problem Statement..2

Research Objectives and Questions..2

Methodology...3

Assumptions ...4

II. Literature Review ..6

Chapter Overview ...6

Space Mission Architecture Modeling and Simulation ..6

CubeSat Utility, Operations and Limitations ...9

Essential Elements of Information (EEIs) for Hurricane Disaster Response10

III. Methodology ...12

Chapter Overview ...12

Choosing a Mission and Defining MOEs ...12

Quantifying Measures of Effectiveness..14

Design Process..18

Architecture Design Details ...24

Modeling Process ...36

Simulation and Analysis Process..38

vii

Summary...46

IV. Analysis and Results ...47

Chapter Overview ...47

Question 1: Results of Performance Analysis ..47

Question 2: Results of Cost Modeling..52

Question 3: Implications of Using MBSE ..53

Summary...55

V. Conclusions and Recommendations ..56

Chapter Overview ...56

Conclusions of Research ..56

Significance of Research ..57

Recommendations for Future Research..58

Summary...61

Appendix A. Use Cases for Traditional Architecture ..62

Appendix B. Use Cases for CubeSat Architecture ..66

Appendix C. NPS Cost Model Suite COSYSMO Output: Traditional Architecture69

Appendix D. NPS Cost Model Suite COSYSMO Output: CubeSat Architecture70

Bibliography ..71

viii

List of Figures

Page

Figure 1. Thesis Steps Mapped to OOSEM Process... 19

Figure 2. Determination of Coverage Per Pass Over Puerto Rico. 21

Figure 3. Use Case Diagram for the Traditional Architecture .. 25

Figure 4. Use Case Diagram for the CubeSat Architecture .. 27

Figure 5. Command and Control Segment Block Diagram .. 29

Figure 6. Image Processing Segment Block Diagram .. 35

Figure 7. Point Target at Geographic Center of Puerto Rico .. 40

Figure 8. Calculation of Resolution MOE .. 41

Figure 9. Calculation of Timeliness and Coverage MOEs ... 43

Figure 10. GSD Performance Comparison ... 48

Figure 11. GSD of Individual Collects for a CubeSat Design .. 49

Figure 12. Timeliness Performance Comparison.. 50

Figure 13. Coverage Performance Comparison .. 51

Figure 14. Incorporating Future Research into Existing Thesis Methodology 59

ix

List of Tables

Page

Table 1. Mapping of COSYSMO Size Drivers to SysML Diagrams 8

Table 2. Values for Attributes Driving Mission Requirements .. 23

Table 3. Design Parameters of the WV110 Camera ... 31

Table 4. Design Parameters of the PS2 Camera ... 31

Table 5. Design Differences Between Traditional and CubeSat Architectures 36

Table 6. Architectures Views and Purposes ... 37

Table 7. Design Parameters for STK Simulation Input .. 39

Table 8. Design Parameters for Post-STK Simulation Input .. 40

Table 9. Size Driver Difficulty Rating Definitions .. 45

Table 10. Resolution Results .. 47

Table 11. Timeliness Results .. 49

Table 12. Coverage Results .. 50

Table 13. COSYSMO Cost Results .. 52

1

COMPARISON OF TRADITIONAL VERSUS CUBESAT REMOTE SENSING: A

MODEL-BASED SYSTEMS ENGINEERING APPROACH

I. Introduction

General Issue

Since the development of the CubeSat standard in 1999, CubeSats have become

popular among the academic and scientific communities as educational tools and

technology demonstration platforms (National Academy of Sciences, 2016: vii).

However, much speculation has been given as to the possibility of using CubeSats as a

cheaper alternative to larger, “traditional” spacecraft and satellite constellations for

military and civilian operational missions. Smaller satellites sizes, with the associated

reduction in material costs, complexity, and assembly timelines, suggest the possibility of

accomplishing a given mission at a lower cost.

The validity of the above premise is dependent on the intended mission to be

accomplished. Some missions, such as high-resolution radar imaging, have physical

requirements that CubeSats may not meet; the electrical power required in this example is

beyond the current capability of CubeSats to provide (Selva & Krejci, 2012). However,

many relevant technologies have been demonstrated on CubeSats which may make

certain mission sets possible. Specifically, practical Electro-Optical, or EO, sensors on

CubeSats have been demonstrated on numerous academic, scientific, and commercial

missions.

Current remote sensing platforms, such as DigitalGlobe’s WorldView-series EO

imaging satellites, are remarkably capable; in disaster scenarios, where “high-resolution”

2

imagery is considered 5 meters GSD or less (Hoque, Phinn, Roelfsema & Childs,

2017:345), the WorldView-series satellites can provide panchromatic images with

resolution near 31 cm (DigitalGlobe, 2016). However, this performance comes with a

significant cost; WorldView-4 cost an estimated $835 million to build and launch (Smith,

2012). For both government and commercial operators, constructing and operating a

constellation with this level of capability is an expensive endeavor; in a fiscally

constrained environment, a traditional architecture may have to sacrifice some degree of

mission or performance in order to satisfy cost constraints.

Problem Statement

CubeSat architectures may provide a cheaper alternative to the expensive

traditional systems described above; however, due to limitations in physical size, a

CubeSat would not match mission performance compared to a traditional satellite. Given

these limitations, it is not well understood how well a CubeSat architecture is able to

perform operational missions typically executed by a traditional architecture, thus

providing this cheaper alternative. Additionally, while CubeSats are logically thought of

as cheaper than traditional satellites, few cost models are available for this design space

to inform how much cheaper a CubeSat solution may be.

Research Objectives and Questions

This thesis has three main research objectives. First, develop appropriate medium-

fidelity models of both traditional and CubeSat architectures for the purposes of

architecture analysis and comparison. Second, use those models to investigate the

suitability of using a CubeSat architecture to provide Essential Elements of Information

3

(EEIs) in a disaster response scenario. Third, use the same models as inputs to a systems

engineering cost estimation model to determine the cost model’s suitability towards

satellite designs.

To pursue these research objectives, several research questions were investigated.

These are:

1. Given a set of mission objectives and requirements, how well does a CubeSat and a

traditional remote sensing architecture meet these requirements?

2. Are systems engineering cost models such as COSYSMO a valid and useful means of

predicting and comparing systems engineering and program costs for traditional and

CubeSat architectures?

3. What are the implications of using Model-Based Systems Engineering (MBSE) to

answer questions one and two?

Methodology

The methodology for this thesis is derived from the Model-Based Systems

Engineering (MBSE) approach. Mission requirements are derived from a hurricane

disaster response scenario, along with Measures of Effectiveness (MOEs). Two

architectures are modeled in SysML using those mission requirements and their derived

system and functional requirements. STK is used to analyze the performance of each

architecture; COSYSMO is used to provide systems engineering cost estimates. The STK

results are compared to the MOEs to provide a clear picture of how well each architecture

performs against the mission requirements.

4

Assumptions

Categorized by weight, satellites range along a scale from 100 gram “femto”

satellites to “large” satellites weighing well over 1000 kg (Konecny, 2004). “Traditional

satellites,” as defined in this thesis, refer to the large end of the scale, with the upper limit

being the payload capacity of existing launch vehicles. Within Konecny’s scale,

“nanosatellites” refers to spacecraft between 1 and 10 kg; this weight range corresponds

with the “CubeSat” standard defined by Robert Twiggs at the Space System

Development Laboratory, Stanford University (European Space Agency, n.d.). This

thesis is limited to comparing the large/traditional and nano/CubeSat categories described

here; while a middle range between 10 and 1000 kg does certainly exist, there is not as

much historical basis for that range as compared to the traditional realm, nor is there a

well-defined weight and volume standard for this range as there is for CubeSats.

In order to both simplify and scope this thesis, a remote sensing type and mission

was decided on up front. Visible-spectrum EO was chosen because it is a mature

technology with sensors in use on both traditional and CubeSat missions. Although EO is

limited by cloud cover, cloud cover will not be specifically addressed, as this limitation

applies to both traditional and CubeSat architectures.

To analyze performance, this thesis is limited to performance objectives traced

back to a hurricane disaster response scenario. While this is a weather-based scenario, the

use of EO to collect weather data is not considered. In order to keep this thesis openly

distributable, military remote sensing applications are not considered.

5

The main focus of the architecture comparison is on functional performance and

cost. Various “-ilities” such as flexibility and resiliency are not considered specifically;

however future research could be done in this regard using the models developed here.

CubeSats have been discussed in the context of responsive spacelift or “launch on

demand,” in which a capability is deployed when it is needed rather than in advance.

Again, to limit scope, this is not discussed; it is assumed in this scenario that both

architectures are deployed and operational prior to the beginning of the scenario.

6

II. Literature Review

Chapter Overview

This literature review contains three sections exploring three relevant topics. The

first section provides context for using MBSE in space architecture performance and cost

modeling. The second section summarizes research relating to CubeSat utility, operations

and limitations. The third develops the background necessary to identify the Essential

Elements of Information (EEIs) for a hurricane disaster scenario, along with other

information necessary for development of this scenario.

Space Mission Architecture Modeling and Simulation

A methodology for assessing CubeSat architectures is discussed by Selva and

Krejci; their method utilizes a genetic algorithm to optimize combinations of sensors and

orbits to achieve some fraction of requirements from multiple inter-related mission sets.

Once an optimized reference architecture is reached, its overall mission performance is

modeled using STK. Additionally, Selva and Krejci propose a simple cost model

incorporating recurring-and non-recurring bus, payload, and operation costs, along with

launch costs (2013).

 Thompson extends this methodology using an MBSE/Model-Based Conceptual

Design (MBCD) approach, focusing on the analysis and optimization of disaggregated

space architectures. While discussing MBCD, he notes that “integration of standardized

systems engineering tools that are capable of integrating parametric cost models with

functional and performance models could provide significant utility”. Thompson

7

concludes that MBSE and the Object-Oriented Systems Engineering Method (OOSEM)

are effective methods of modeling disaggregated space systems (2015).

 The usage of the Systems Modeling Language (SysML) and MBSE to model a

CubeSat design is explored by Kaslow, Soremekun, Kim, and Spangelo (2014). Kaslow

et al. develop a SysML CubeSat model using the MagicDraw modeling tool. Their model

uses the executable functions of MagicDraw, along with STK, to analyze system

performance. Kaslow et al. demonstrate the ability of a MagicDraw SysML model to

perform component-level trade studies on their CubeSat design (2014).

 While not specifically described as MBSE, Krueger, Selva, Smith and Keesee

discuss the development and optimization of a smallsat imaging architecture for global

crisis response using an “integrated model”: a “parameterized representation

of the spacecraft and ground stations that can be used to simulate competing system

configurations” (2009). Much of their effort follows the standard system engineering

process: identifying mission requirements, developing a concept of operations, and

deriving system requirements. Subsequently, the authors use their integrated model to

perform relevant trades and optimize constellation performance amongst the competing

objectives of image resolution and responsiveness. Krueger et. al. used Matlab and STK

to conduct these analyses (2009).

 The usage of MBSE and SysML for systems engineering cost estimation is a

relatively recent development. The COSYSMO systems engineering cost estimation tool

was developed as part of a dissertation by Valerdi. COSYSMO is a parametric cost

model that uses functional size, effort multipliers, and calibration and scale factors to

estimate the system engineering effort needed to develop a given system. Functional size

8

is estimated using “size drivers”: counts of system requirements, system interfaces,

critical algorithms, and operational scenarios. Each individual requirement, interface,

algorithm, and operational scenario is assessed to be easy, nominal, or difficult to

implement; this rating becomes a multiplier as part of calculating functional size.

Valerdi’s method was developed in the context of documents-based systems engineering,

with size drivers counts derived from system specifications, interface control documents,

and use cases (Valerdi, 2005).

The usage of MBSE to support COSYSMO analysis has been investigated by

both Edwards (2016) and Pavalkis, Papke and Wang (2017). Using a water filtration

system example, Edwards demonstrates that using SysML to model and count the design

aspects that contribute to a system’s functional size is a practical approach. Edward’s

mapping of COSYSMO size drivers to SysML diagrams is outlined in Table 1.

Table 1. Mapping of COSYSMO Size Drivers to SysML Diagrams. Modified from
(Edwards, 2016).

Size Driver SysML Diagrams
Requirements Requirements Diagram

Package Diagram
Interfaces Block Definition Diagram

Internal Block Diagram
Algorithms Block Definition Diagram

Parametric Diagram
Operational Scenarios Use Case Diagram

 Edwards acknowledges that the water filtration example is a basic one, and that

challenges may exist scaling this approach to larger systems (2016). More recently,

Pavalkis, Papke and Wang have discussed in depth the practical details of taking a

SysML model and using it for COSYSMO cost estimation, though they use a modified

9

version of the COSYSMO model to account for development with reuse and

development for reuse (2017).

CubeSat Utility, Operations and Limitations

Selva and Krejci empirically describe, using historic examples, how CubeSats

could be used to fulfill scientific Earth Observation requirements as defined by the

Committee on Earth Observing Satellites (CEOS). These authors also describe key

limitations in each common subsystem, to include communications (data rates), ADACS

(pointing accuracy), mass/size (limits aperture sizes, both optical and antenna), power

(solar panel geometry limits power to about 1 Watt or so; this rules out any payloads,

such as radar or LIDAR, that require much more power than a Watt), propulsion (limited

capability in form of cold gas, vacuum arc thrusters), and thermal (mostly passive, though

it might be possible to have an active battery heater) (Selva and Krejci, 2012).

While Selva and Krejci’s discussion gives a starting point for understanding

CubeSat limitations, advancements to overcome these limitations is ongoing. For

example, Planet Labs has developed solar panels without cover glass for CubeSats, which

they claim yields “significantly more power” for less cost and mass compared to previous

solar panel designs. Additionally, Planet Labs claims to have identified a way to put an

X-band transmitter on a nanosatellite, with data rates around 100 Mbps (Boshuizen,

2014:3). Wherever possible, the thesis uses Selva and Krejci’s discussion of limitations to

bound the design space, except in cases of known technology advancements such as

Planet Lab’s.

10

In her thesis, McKenney describes a CubeSat architecture for fulfilling the DoD’s

weather mission. McKenney’s research demonstrates that a CubeSat architecture can

fulfill the mission requirements of an operational weather mission, though in some cases

only marginally. No detailed comparison to traditional satellites is made (McKenney,

2016: 70-72).

Essential Elements of Information (EEIs) for Hurricane Disaster Response

Immediately following a hurricane landfall, required information includes

location, amount, rate, type, and percentage of areas and structures affected (Hoque et al.,

2017:352). The utility of imagery in determining this information is highly dependent on

sensor resolution. Note that sensor resolution can be an ambiguous term; at a basic level,

it is “a limit on how small an object on the Earth’s surface can be and still be ‘seen’ by a

sensor as being separate from its surroundings” (Lillesand, Kiefer and Chipman,

2008:33). Much of the literature discussed below refers to resolution in more specific

terms of “pixel size” and its corresponding Ground Sample Distance (GSD). GSD is

defined technically as the instantaneous Field of View in one linear dimension for one

pixel for a given sensor (Evans, Lange & Schmitz, 2014:184). For this literature review,

the terms used are the same as what the authors used in their respective papers. After the

literature review, Ground Sample Distance is discussed unless otherwise specifically

stated.

Flooding can be monitored using medium resolution imagery. A pixel size1 of 10

meters is sufficient for building identification and location, while discerning building

1 Pixel size is Hoque et. al’s terminology for pixel spacing; the term pixel size is used here to stay
consistent with this source material.

11

damage requires a pixel size on the order of 1 m (Womble et. al., 2006:1). This

conclusion is supported analytically by Battersby, Hodgson and Wang, who determined

that 1.5 m is the threshold spatial resolution for an imagery analyst to assess residential

building damage (2012:625). Similarly, Krueger et al. identify 1 m ground resolution,

with a corresponding 0.5 m Ground Sample Distance, as sufficient requirements for

imagery systems involved in disaster response (2009:5). Change detection products using

moderate to very high resolution (less than 30 m; less than 10 m if looking at man-made

objects) have been recommended for the disaster response phase (Hoque et al.,

2017:352).

Utility of imagery is also dependent upon timeliness. Responding agencies need

imagery within 72 hours of an event, ideally within 24 hours (Hodgson, Davis, Cheng &

Miller, 2010:7). Krueger et al. specify a much shorter timeline of 4 hours from tasking to

target access as requirement for a notional disaster response imagery system (2009:5); no

detailed justification is made for this timeline.

Geographically, most hurricanes to strike the U.S. make landfall below 37°

latitude; historically, 316 of the 342 hurricanes to strike the U.S. between 1850 and 2005

have hit at or below this latitude, with 247 making landfall at or below 31° latitude

(Hodgson, Davis, Cheng & Miller, 2010:11). This information may help to determine the

orbital inclination of architectures to optimize for coverage.

12

III. Methodology

Chapter Overview

The purpose of this chapter is to describe the methodologies by which the

research questions are addressed. In order to develop candidate architectures for cost and

performance analysis, an MBSE, or Model-based System Engineering, approach is used.

Architecture models for analysis are created using the Object-Oriented Systems

Engineering Method (OOSEM), with relevant views generated in SysML using the

Cameo Systems Modeler tool. Each model is evaluated against performance MOEs using

STK. Costs are compared using the COSYSMO cost model, using relevant aspects of the

architectures models as input.

In order to make determinations about the benefits and limitations of traditional

and CubeSat architectures for a given mission, measures to compare these architectures

against must be developed. There are many missions for which CubeSats have potential;

however, spaceborne imagery for remote sensing is a well-known and mature capability,

making it particularly suitable as a basis for this analysis.

Choosing a Mission and Defining MOEs

Remote sensing platforms conduct several missions, including natural disaster

response. Historically, satellite imagery has assisted in the response to earthquakes,

floods, forest fires, and hurricanes. Any of these scenarios could have been used to derive

MOEs and mission requirements; however, hurricanes have significant spatial and

temporal signatures in the visible spectrum, making them ideal to study for an EO

mission.

13

In a natural disaster response scenario, three relevant attributes to system

performance are identified: spatial resolution, timeliness, and coverage. These attributes

form the basis of the Measures of Effectiveness (MOEs) described below. As discussed

in the literature review, spatial resolution is a measure of whether an object of a given

size is distinguishable from other nearby objects. It is a means of describing the level of

detail in an image, which approximately answers the question, “how useful is this image

to an analyst?” In reviewing the literature on the use of imagery in disaster response, the

effectiveness of imagery in meeting the responder’s needs was generally described in

terms of details detectable at a given resolution in meters.

Timeliness, for this scenario, refers to the amount of time between the natural

disaster event (i.e. a hurricane making landfall) and the time a given image is available

for an analyst to exploit. As discussed in the literature review, this is generally measured

in hours or days, with imagery over 72 hours old being described as “too late”

(Department of Homeland Security, 2013). Logically, overall timeliness can be

determined from the sum of three sequential factors: time from event to satellite access

over the event location for image collect, time from image collect to ground station

downlink, and time to process and deliver image to an analyst once downloaded.

Coverage refers to the amount of affected area that can be imaged at a nominal

spatial resolution in a given timeline. Typically, the amount of area covered in a single

image is limited by field of view; thus, it will take multiple images to investigate the

entire affected area, likely over many satellite passes, which could make meeting the

timeliness requirement for the affected area difficult. Any architecture that meets the first

14

two MOEs, but only for a small amount of the affected area, is still not meeting the needs

of the user.

While not a measure of system effectiveness, cost is a critical aspect of whether or

not a system is viable in the domain of budgets and politics. As potential cost savings is a

major appeal of a CubeSat architecture, any comparison of CubeSats with other systems

would be incomplete without a discussion of cost. This thesis will focus on the systems

engineering costs of both architectures, as the MBSE approach for performance analysis

described later can facilitate systems engineering cost analysis. Systems engineering cost

refers to the systems engineering effort required to realize a system of interest (Valerdi,

2005).

Quantifying Measures of Effectiveness

All three attributes described above have quantitative measures. Spatial resolution

can be considered in terms of Ground Resolution or Ground Sample Distance (GSD),

with Ground Resolution being a function of a sensor’s aperture size, and GSD a function

of pixel size and focal length. The literature reviewed discussed resolution almost entirely

in terms of GSD; thus, GSD is the measure used in this thesis.

As previously described, GSD is the instantaneous Field of View in one linear

dimension for one pixel for a given sensor (Evans, Lange & Schmitz, 2014:184). GSD

depends on range and elevation, as well as the design parameters of focal length and

detector pitch (sometimes referred to in literature as “pixel size”). The equation used by

STK to determine GSD is shown is Equation 1 (Analytical Graphics Incorporated, 2017).

15

𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐺𝐺𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷ℎ ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷

𝐹𝐹𝐷𝐷𝐷𝐷𝑅𝑅𝐹𝐹 𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅𝐷𝐷ℎ ∗ �sin (𝐷𝐷𝐹𝐹𝐷𝐷𝑒𝑒𝑅𝑅𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅)

(1)

Range and elevation describe the geometry between the satellite and target at a

certain point in time; these variables are outputs of the STK simulation for a given image

collect.

 Overall timeliness is a combination of the length of time (Δ𝑇𝑇) of each

contributing function of the architecture, from the time a target is affected to the time the

imagery is available to an analyst. This relationship is shown in Equation 2.

𝑇𝑇𝑃𝑃𝑇𝑇𝐷𝐷𝐹𝐹𝑃𝑃𝑅𝑅𝐷𝐷𝑇𝑇𝑇𝑇 = Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + Δ𝑇𝑇𝑃𝑃𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃

 (2)

 where:

Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = Time between hurricane landfall and satellite access, with target
access windows occurring at night disregarded.

 Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Time between image collect and downlink to ground station
Δ𝑇𝑇𝑃𝑃𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 = Time to process an image, from data download until a softcopy image
is available to a user.

The two dominant terms in this equation are Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is a

function of event timing and orbital mechanics. It should be noted that event timing, and

thus the exact position of the satellite at the time of the event, is a random variable. It is

assumed that for hurricanes, the probably distribution is even; a hurricane is just as likely

to hit at one given time as it is any other given time. Due to the Earth’s rotation, the

satellite’s orbit is just is as likely to be at one position relative to the target at this given

time as it is any other position. To help understand how this variability affects Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,

timeliness and coverage are both calculated for planes at every ascending node, from 0°

16

to 360°. This allows for the identification of the worst-case scenario for timeliness and

coverage, and ensures these MOEs are accounted for given this worst case. Another

variable affecting Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the timing of daylight at the target, as usable EO imagery

cannot be gathered at night; again, this is accounted for in MOE calculations through use

of STK to determine whether a given access occurs at day or at night. Access occurring at

night are not counted.

Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is a function of ground station placement and orbital mechanics. Ground

station placement, including number of stations and their locations, is a design parameter;

careful consideration of ground station placement in a regional scenario can help

minimize Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. Again, the time of ground station access for each satellite pass is an

output of the STK simulation. In this scenario, Δ𝑇𝑇𝑃𝑃𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 is assumed to have only minor

variation between architectures, and is assumed to be negligible compared to Δ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

and Δ𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺; this term is not calculated as part of the analysis.

Coverage, the overall amount of area imaged, for a simulated scenario is modeled

as shown in Equation 3.

Coverage = A*I*P* Δ𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝐺𝐺𝑇𝑇𝑇𝑇𝑠𝑠𝐺𝐺*𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇

(3)

where:

A = Area/image
I = Images/satellite pass
P = Satellite passes/unit time
Δ𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝐺𝐺𝑇𝑇𝑇𝑇𝑠𝑠𝐺𝐺 = Time of interest between hurricane landfall and scenario end
𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇 = Number of satellites

With the assumption of a scanning sensor, the area imaged A is equal to Swath

Width times the distance scanned on the ground; a visual representation with scenario-

17

specific details is given in Figure 2. Images per pass is equal to the available target access

time in a given pass divided by the amount of imaging time for a single image. Equation

3 assumes no overlap between consecutive images. Determining the number of satellites

for each architecture required performing test runs in STK to determine the amount of

coverage provided by one satellite, then dividing the coverage requirement by the amount

of coverage provided by one satellite, and rounding up to the next integer.

Cost estimation and modeling of traditional satellites is an established field, with

models such as SMC’s Unmanned Satellite Cost Model (USCM) available to estimate

cost based on weight, among other parameters. Cost modeling for CubeSats is less

mature; the CubeSat standard is a more recent development, with many missions having

been developed by universities. As such, there is little historical data upon which to base

a cost model (Selva & Krejci, 2013).

Rather than attempt a new cost model, this thesis will focus on using an existing

model for systems engineering costs, COSYSMO, to determine its suitability for

comparing systems engineering costs between traditional and CubeSat architectures.

Equation 4 shows the highest-level Cost Estimation Relationship (CER) for COSYSMO

is defined by Valerdi (2005).

𝑃𝑃𝑃𝑃 = 𝐴𝐴 ∗ (𝐺𝐺𝑃𝑃𝑆𝑆𝐷𝐷)𝐸𝐸 ∗�𝐸𝐸𝑃𝑃𝑠𝑠

𝐺𝐺

𝑠𝑠=1

(4)

where:

PM = Person Months
A = Calibration Factor
Size = measure(s) of functional size of a system

18

E = scale factor(s); default is 1.0
𝐸𝐸𝑃𝑃𝑠𝑠 = effort multiplier for the ith cost driver

This analysis effort is specifically interested in estimating the functional size of

each architecture, as this is the parameter MBSE can specifically provide. The general

equation for functional size, as defined by Valerdi (2005), is shown in Equation 5.

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = �𝑤𝑤𝑇𝑇Φ𝑇𝑇
𝑘𝑘

+ 𝑤𝑤𝐺𝐺Φ𝐺𝐺 + 𝑤𝑤𝐺𝐺Φ𝐺𝐺

(5)

where:

k = requirement/interface/algorithm/operational scenario
w = weight
e = easy
n = nominal
d = difficult
Φ = driver count

This equation is ultimately used to calculated the systems engineering effort

required, in terms of person-months.

Design Process

Architecture design was accomplished using OOSEM concepts. OOSEM is a

“top-down, scenario-driven process that uses SysML to support the analysis,

specification, design, and verification of systems” (Friedenthal, Moore, & Steiner, 2015).

This thesis specifically used the system specification and design process from OOSEM.

As described by Friendenthal, Moore and Steiner (2015), the design process consists of

five steps:

1. Set up model

2. Analyze stakeholder needs

19

3. Analyze system requirements

4. Define logical architecture

5. Synthesize candidate physical architectures

Figure 1 shows a mapping of steps taken for this thesis to the OOSEM system

specification and design process, starting with step 2. The bottom arrow from the

“Architecture Performance/Cost Analysis” block back to the “Analyze System

Requirements Block” and “Synthesize Candidate Architecture” block illustrates the

iterative nature of this process.

Figure 1. Thesis Steps Mapped to OOSEM Process

Scenario for Architecture Performance Analysis

 To develop realistic mission requirements based on stakeholder needs, a mission

scenario is necessary. As mentioned above, the fact that hurricanes are spatially large,

temporally long (both the phenomenon itself and its impact), and spatially and temporally

Synthesize Candidate
Architectures

Analyze System
Requirements/

Define Logical Architecture

Analyze Stakeholder
Needs

Mission
Domain

MoEs/
MoPs

Mission
Scenario

Derive
Requirements

Architecture
Functional

Design

Architecture
Physical Design

Architecture
Performance/Cost Analysis

MoE
Analysis

Cost
Analysis

20

dynamic assists in gaining an understanding of how well an architecture addresses a

mission need.

 The scenario for this thesis is loosely based on 2017’s Hurricane Maria. On 20

September 2017, Hurricane Maria made landfall on Puerto Rico as a strong Category 4,

with winds up to 155 mph. Hurricane Maria affected the entire island, causing extensive

damage to buildings and infrastructure, and creating serious flooding concerns (Schmidt,

Achenbach, & Somashekhar, 2017).

 In the thesis scenario, it is the objective of disaster response personnel to use

satellite imagery, ideally with before-and-after change detection, to identify damage to

structures and infrastructure, and to identify areas of flooding across the entire island

within 72 hours after landfall. Some adjustments to and assumptions for this scenario are

necessary. The time period for this scenario, placed near the peak of hurricane season,

was arbitrarily chosen as 0000 UTC 11 August to 0000 UTC 18 August, 2017, with the

first 72 hours being of particular interest. These dates are hard-coded into the Python

scripts used to analyze MOEs; exact choice of dates is assumed to not significantly affect

the results. The area of interest is the entire island of Puerto Rico, which is 177.8 km by

64.8 km, or roughly 11522 square km. Puerto Rico was modeled in STK as a point target

centered at 18.22° N, 66.57° E (Google, n.d.). With a relatively low latitude compared to

other US locations, Puerto Rico also becomes a more stressing case for timeliness and

coverage, as access for spacecraft in sun-synchronous orbits typical for remote sensing is

less frequent.

In order to determine satellite coverage per pass, it was assumed that satellites

moved North to South or South to North, so that the length of the area of interest was the

21

width of the island at its widest point, 64.8 km. Figure 2 illustrates the coverage area per

pass:

Figure 2. Determination of Coverage Per Pass Over Puerto Rico. Modified from

(Central Intelligence Agency, 2017)

Locations outside of Puerto Rico impacted by Maria were not considered for

simplicity. It is assumed that flooding in this scenario can be detected using imagery

better than 10 m GSD, and damage to individual buildings can be detected at imagery

better than 1 m GSD. It is assumed that change detection greatly aids in the

accomplishment of identifying flooding and damage, but that this could also be

accomplished without.

Developing Architectures from Requirements

With MOEs and a mission scenario defined, architectures to accomplish this

mission were developed and modeled. This process begins with mission requirements,

22

which is based on the mission scenario above and will be common to both architectures.

Mission requirement values are outlined in Table 2.

23

Table 2. Values for Attributes Driving Mission Requirements

Attribute Threshold Objective Units
Spatial Resolution 10 1 Meters

Timeliness 72 24 Hours
Coverage 11522 Same Square kilometers
Access 37° All Degrees latitude

Change Detection Must be capable N/A N/A

These requirement values were derived from values commonly found during the

literature review, as discussed above. Verbiage for all requirements is captured in SysML

requirement diagrams and accompanying tables in the Cameo Systems Modeler tool.

After mission requirements were determined, architecture-specific design and

modeling was accomplished. The design and modeling processes are iterative in nature

and occurred in parallel. These processes were common to both traditional and CubeSat

solutions; however, for this thesis, the traditional architecture was designed and modeled

first. The traditional architecture model then became a conceptual template for the

CubeSat architecture design, with CubeSat-specific modifications to the requirements and

design solution made as necessary. Each architecture consists of five chief aspects: use

cases, requirements, physical elements, interfaces, and algorithms. The reasoning for this

is discussed further in the “Modeling Process” section.

To begin the architecture design process, use cases were written to describe usage

scenarios. Most use cases focused on the system actions required to accomplish mission

requirements. Use cases for system support and off-nominal situations were written as

well. Use cases were written with specific attention paid to the functions the system

would need to perform; these functions, once identified, became the basis for segment-

level functional requirements.

24

 With use cases and high-level functions identified, the next step was to develop,

at an abstract level, some degree of notional physical implementation. Beneath the system

level, each architecture was broken down into segments, then broken down further into

components. Functional requirements were parsed out to these segments, and then further

decomposed for individual components of each segment to satisfy.

 Once components were established, necessary interfaces between components

were identified. At this level of abstraction, data interfaces were the most relevant;

electrical power interfaces between satellite components were also considered.

For the purposes of COSYSMO cost modeling, system-specific algorithms are

defined as “new defined or significantly altered functions that require unique

mathematical algorithms to be derived to achieve system performance requirements”

(Valerdi, 2005). Applying that definition to the architectures of interest, an algorithm is

identified anywhere a function is performed, at the system or component level, that

transforms one or more data inputs into data outputs. It is assumed that functions

identified as algorithms would be performed via software implementation.

Architecture Design Details

Starting from the mission requirements and a general knowledge of imaging

systems, thought was given as to how the system would be used operationally, and which

external actors would interact with the system during operations. These thoughts are

captured as text in the form of use cases. The use cases pertinent to the traditional

architecture are shown in Figure 3:

25

Figure 3. Use Case Diagram for the Traditional Architecture

The primary mission of this system is to conduct imagery operations. This use

case includes three main functions, captured as “include” use cases: sensor tasking,

imagery collection, imagery processing, and imagery delivery. These functions are

derived from the “Tasking,” “Collection,” and “Processing” steps of the Tasking,

Collection, Processing, Evaluation, and Dissemination (TCPED) process.

26

Two “support” use cases, used for system support but not directly used for

mission accomplishment, are maneuver satellite and troubleshoot spacecraft anomaly.

The use cases stem from the system-level design life requirement, along with derived

requirements for satellite stationkeeping and anomaly recovery. All three main use cases

require the include use case communicate with satellite; a back-up communication

capability is described in the communicate with satellite via AFSCN2 use case. Full text

for the traditional architecture use cases is provided in Appendix A.

The CubeSat architecture makes use of the same mission-related use cases as the

Traditional architecture; however, there are differences in the support use cases, as shown

in Figure 4.

2 AFSCN: Air Force Satellite Control Network

27

Figure 4. Use Case Diagram for the CubeSat Architecture

One support use case has been removed entirely: for the CubeSat architecture, the

design life requirement is relaxed from seven years to one, negating the need for

maneuver satellite. Additionally, there is no need for the communicate with satellite via

AFSCN use case, as no AFSCN backup communication capability is envisioned. The

CubeSat architecture does have a new extend use case, troubleshoot manually, as it is

envisioned that there would be separate steps that both the spacecraft and the spacecraft

28

operator could go through to resolve the off-nominal condition. Full text for the CubeSat

architecture use cases is provided in Appendix B.

These use cases form the basis for deriving functional requirements at the

segment and component level, followed by performance requirements and design

constraints. There is significant overlap between the requirements for the two

architectures; only key differences are highlighted in this discussion. The key driving

difference is a design constraint: the traditional architecture satellite is required to fit

inside an Evolved Expendable Launch Vehicle (EELV) payload fairing, while each

CubeSat is required to conform to a 6U standard size. Other requirement changes stem

from the use cases mentioned above; specifically, the CubeSat architecture has no

requirements for a propulsion system or connectivity to the AFSCN. It should be noted

that performance requirements that are derived from mission requirements, such as

resolution and coverage, are not relaxed for the CubeSat architecture.

Moving from requirements to physical descriptions of the design, each

architecture consist of three segments: a Command and Control (C2) segment, a satellite

segment, and an imaging processing segment. The C2 segment performs tasking and

commanding functions, and provides the interface between a Tasking Authority actor

who requests imagery and the satellite collecting imagery. Additionally, the C2 segment

provides support functions such as commanding for orbital maneuvering and telemetry

processing and display. The physical structure of the C2 segment, shown in Figure 5,

does not vary between architectures. It should be noted that the traditional architecture C2

segment does have an additional interface, from the C2 processor to the external AFSCN.

29

Figure 5. Command and Control Segment Block Diagram

A key consideration for the C2 segment was the number and location of ground

antennas. This design decision was driven by two constraint requirements: 1) All image

data from a satellite pass had to be downlinked prior to that satellite’s next image

window, and 2) The ground antenna(s) could not be located within 250 miles of coastline

prone to hurricanes. To meet the first requirement, ground stations were located such that

every satellite could downlink its images within one pass. The easiest way to accomplish

this was to locate one ground station at a very high latitude towards either the North or

South pole, so that all satellites had access on every pass. An antenna placed at an

existing NASA ground site in Svalbard, Norway was chosen for both architectures.

Three relevant algorithms were identified in the traditional architecture C2

segment: a scheduling algorithm, a ground antenna control algorithm, and a maneuvering

algorithm. The scheduling algorithm takes image tasking and turns it into executable

commands to be sent to the satellite. The ground antenna control algorithm provides

30

steering control for the ground antenna to maintain contact with the spacecraft as it passes

overhead. The maneuvering algorithm calculates the necessary orbit adjustments for

stationkeeping and turns it into executable commands to be sent to the satellite. Each of

these algorithms would likely consist of many sub-algorithms; however, for the purposes

of this thesis, it is only necessary to specify which high-level algorithms are necessary to

fulfill functional requirements. The CubeSat C2 segment has one fewer algorithm, as the

software functionality for maneuvering is not needed.

The traditional satellite segment design is based on an arrangement of

components, usually called subsystems, commonly found on existing satellite designs.

Modifying the subsystem arrangement given by Wertz and Larson (2010), these

subsystems are the payload, Attitude Determination and Control (ADCS),

communications, Command and Data Handling (CD & H), power, structures, and

propulsion3. These subsystems were only developed to the level of detail needed to

distinguish a traditional design from a CubeSat design.

As mentioned earlier, a key differentiator between architectures is the size

constraint; this subsequently limits payload volume. In addition to physical size, both the

imagery resolution requirement and the coverage requirement drive sensor design

parameters. GSD is a function of pixel size and focal length (Krueger, 2009); coverage is

a function of swath width, which geometrically is a function of the sensor Field of View

(FOV). To avoid a complicated sensor design problem within this thesis, the design

3 Wertz and Larson list three other subsystems: thermal, guidance, and computer systems. Thermal is
excluded in both architectures, as it is a support subsystem not expected to be a major differentiator
between architectures. ADCS is assumed to perform any guidance functions, and computers/software are
split between CD&H, ADCS, and ground systems.

31

parameters of a satellite camera known to satisfy the spatial resolution requirement were

chosen. The WV110 camera, flown aboard the Worldview-2 satellite, has a GSD of 0.46

m at nadir at an altitude of 770 km (European Space Agency, 2017). Key parameters of

the WV110 are shown in Table 3.

Table 3. Design Parameters of the WV110 Camera (European Space Agency, 2017)

Parameter Value
Nadir GSD at 770 km altitude 0.46 meters

Aperture Diameter 1.1 meters
Focal Length 13.3 meters
Field of View >1.28°

Panchromatic Spectral Range 450 to 800 nanometers
CCD Detector Pixel Size 8 micrometers

Data Quantization 11 bits
Data Compression 2.75 bits/pixel

For the CubeSat architecture, the requirement to fit inside a 6U standard structure

placed inherent limits on sensor dimensions such as focal length. Again, to avoid a

complicated design problem, the CubeSat sensor parameters are taken from a pre-existing

design. Table 4 lists the design parameters for Planet Lab’s Planet Scope 2 EO sensor,

which is flown aboard Planet Lab’s Flock series of 2.5U CubeSats.

Table 4. Design Parameters of the PS2 Camera (Planet, 2015; Boshuizen et. al, 2014)

Parameter Value
Nadir GSD at 475 km altitude 3.73 meters

Aperture Diameter approx. 0.1 meters
Focal Length 1.14 meters
Field of View >1.94°

Panchromatic Spectral Range 420 to 700 nanometers, 3 bands
CCD Detector Pixel Size 8.954 micrometers

4 Value not explicitly stated in literature, but calculated using given focal length, altitude, and GSD at
nadir.

32

For this architecture, after the payload, communication is considered the next

design driver, as it is the connecting piece between the payload and the ground. To

minimize complexity in this design, the imaging and communications functions do not

occur simultaneously. The satellite takes images of a target, and then stores that data for

download at the next communications, or “comm,” window with a ground antenna. The

communications subsystem for this architecture consists of two antennas: a directional

antenna for primary communications with the system’s ground antenna, and a backup

omni antenna for communication with the AFSCN if the primary communications link is

lost.

For the CubeSat architecture, the communications subsystem performs the same

role, with one major design change: there is no omni antenna. Given the much more

limited space and the shorter required design life of the CubeSat architecture, a backup

communications capability was not added. It is recognized that the implementation of the

main communication antenna, both on the spacecraft and ground, would vary between

architectures in terms of antenna size, power, and required data rate; however, for

simplicity, this subsystem was not designed to that level of detail. It is assumed that a

plausible antenna design solution meeting requirements exists for each architecture; with

this assumption, this communications design has no impact on the MOEs.

For the remaining subsystems, design focused on the primary functions each

subsystem accomplished, and the data flow necessary to accomplish those functions. The

focus on data allowed the determination of both necessary interfaces and necessary

software algorithms. For example, the ADCS subsystem for both architectures requires

an interface with the CD&H subsystem to receive a desired attitude vector; the ADCS

33

then uses an algorithm to determine current orientation and the correct series of attitude

adjustments to reach the desired attitude. Given that satellites in both architectures both

require nearly the same support functions from these subsystems, the designs at this level

do not vary, with one exception. As previously mentioned, the CubeSats in this design

have no propulsion subsystem, as maneuvering/stationkeeping is not required.

In addition to the previously mentioned ADCS algorithm, both architectures have

a telemetry monitoring algorithm as part of the CD&H subsystem. This algorithm

automatically detects damaging spacecraft conditions and puts the spacecraft in a

protective safe mode when necessary. In order to keep a consistent, simple design, many

software functions are provided by ground segments instead of onboard; for example,

image processing is done by the image processing segment, with spacecraft functions

limited to collecting and transmitting raw “mission data”.

With designs for individual satellites established, the next step was to determine

necessary orbital parameters. For simplicity, all orbits are approximated as circular with

an eccentricity of 0°. Both architectures have a change detection requirement; meeting

this requirement necessitates a sun-synchronous orbit, with near 98° inclination and an

altitude between 475 and 800 km5. This orbit also ensures both architectures meet the

access requirement of 37° latitude or higher. For both architectures, there is a trade-off

between better GSD at low altitude and better coverage at higher altitudes. For the

CubeSat, the payload size constraint and subsequent limitations on sensor performance

meant keeping the satellite as low as possible; thus, altitude was set to 475 km. For the

5 Sellers (2005:164) defines sun-synch as approximately 150 to 900 km altitude. The range for this thesis is
narrower to recognize that altitudes lower than 475 km encounter more orbital drag, and higher altitudes
negatively impact GSD.

34

traditional architecture, there was less concern about meeting the GSD threshold

requirement in this altitude range; this opened up trade space to either maximize coverage

by setting the altitude to 800 km, or maximize GSD by setting the altitude to 475 km.

Preliminary STK simulations at both altitudes showed that the coverage requirement was

easily met at 475 km, thus this value was chosen6. At these altitudes, the inclination for

sun-synchronous is approximately 97.9°. Details of choosing ascending node and mean

anomaly are discussed in the modeling process section. After running test simulations in

STK to determine coverage per satellite over 72 hours, it was determined that an

architecture of one traditional satellite or three CubeSat satellites could meet the coverage

requirement. Both architectures are limited to a single orbital plane; the traditional

architecture by default, and the CubeSat architecture in recognition that multiple planes

would require either a propulsion system or multiple launch vehicles.

The third segment is the Imaging Processing Segment (IPS), consisting of an

imaging processor and a storage database. This segment provides the capability to ingest

mission data, turn mission data into an image, turn two images into a change detection

product, and store image and change detection products for retrieval. The IPS also

provides the interface between the system of interest and whatever means an imagery

analyst uses to exploit the imagery, though it does not provide the image viewing

capability itself. As with the C2 segment, the structure of the IPS, shown in Figure 6,

does not vary between architectures.

6 Results are further discussed in Chapter 4.

35

Figure 6. Image Processing Segment Block Diagram

In terms of software, the IPS consists of two main algorithms: an image

processing algorithm and a change detection algorithm. The image processing algorithm

turns mission data downlinked from the spacecraft into an interpretable image. The

change detection algorithm takes two images, notionally from before and after the

disaster event, and identifies portions of the image that have changed.

This section has described the design details of the architectures to be modeled

and analyzed, with key differences between the architectures highlighted. These

differences are summarized in Table 5.

36

Table 5. Design Differences Between Traditional and CubeSat Architectures

Design Aspect Traditional CubeSat
Physical size Fits within EELV payload

fairing
6U or smaller

Design life 7 years 1 year
Camera See Table 3 See Table 4

Comm subsystem Directional and omni
antennas

Directional antenna

Propulsion subsystem? Yes No
Number of satellites in

constellation
1 3

Modeling Process

The purpose of modeling these architectures is twofold: first, to systematically

derive and define parameters to input into STK for performance modeling; second, to

provide inputs to COSYSMO for cost modeling. The purpose for modeling defines the

views to be developed.

 MBSE projects involve three upfront decisions: choice of method, choice of

language, and choice of tool (Delligatti, 2014:4). As mentioned previously, the Object-

oriented Systems Engineering Method (OOSEM) was chosen as the method. The

OOSEM system specification and design process provided a structured and logical way

to derive architectures from stakeholder needs. The language chosen for modeling in this

thesis is SysML. SysML is commonly used for MBSE (Delligatti, 2014:5); its common

usage and the availability of resources related to it made it a logical choice. The primary

tool for architecture modeling was Cameo Systems Modeler, version 18.5. Vitech’s

CORE systems modeling software was considered and ruled out due to limitations in the

provided educational license. Additionally, Cameo easily allows for architectures to be

37

captured as XML files; this was helpful for parsing the architectures for COSYSMO

input parameters.

Modeling views to be developed were modified from Edwards (2016). Edwards’

method makes use of block, package, requirements, internal block, parametric, and use

case diagrams to parse SysML for COSYSMO input. For this thesis, the views developed

and their purpose is described in Table 6:

Table 6. Architectures Views and Purposes

View View Purpose/Information conveyed
Requirements Table
and Diagrams

Captures system, functional and physical requirements

Block Definition
Diagram

Logical decomposition; identifies relevant hardware and
software components

Internal Block
Diagram

Models interfaces between components

Use Case Diagram Captures operational scenarios from use cases

Before modeling in Cameo, use cases were written out as text. Once sufficiently

understood, the use cases for each architecture were captured in a use case diagram. The

requirements table feature in Cameo became the primary means of capturing

requirements. Requirements were written at the system level, then further derived to the

segment and component/subsystem level. Requirement diagrams were generated to help

visualize the relations between requirements, but were not strictly necessary for analysis.

Interfaces were modeled between the system and external systems, between system

segments, and between system components. In Cameo, these interfaces were modeled as

port elements belonging to the components comprising the interface.

Major algorithms in each architecture are assumed to be implemented via

software. Individual software components representing each algorithm are modeled as

38

blocks, as shown in the Block Definition Diagrams featured in Figures 5 and 6. When

modeling needed software components, it was helpful to identify and model required data

items as separate blocks. Data items themselves are not input for any of the analysis in

this thesis, but having them modeled as distinct blocks provided clarity and made

development of component block diagrams easier. A one-to-one mapping between

algorithms and software components is assumed; a given block of software does not

perform more than one algorithm function, or vis-versa.

Simulation and Analysis Process

 Once the traditional and CubeSat architectures were sufficiently designed and

modeled, parameters from each model provided input for performance and cost analysis.

Performance analysis was accomplished through a combination of STK simulation and

Python scripts. Simulation set-up was accomplished with a Python script; this script

generated satellite, target, and ground station7 instances, then passed them to STK

through the software’s Connect module. The pertinent design parameters are shown in

Table 7.

7 In STK, Ground Stations are modeled as “Facility” objects.

39

Table 7. Design Parameters for STK Simulation Input8

Parameter Traditional Architecture CubeSat
Scenario Start Date/Time 11 Aug 2017 00:00:00.000 11 Aug 2017 00:00:00.000
Scenario End Date/Time 18 Aug 2017 00:00:00.000 18 Aug 2017 00:00:00.000

Target lat/long 18.22°N, 66.57°W 18.22°N, 66.57°W
Number of Satellites 1 3

Altitude 475 km 475 km
Inclination 97.9° 97.9°
Eccentricity 0 0

RAAN 0° - 359° 0° - 359°
Mean Anomaly 0° 0°, 120°, 240°

Ground Station lat/long 78.23°N, 15.38°E 78.23°N, 15.38°E

The STK simulation generated two types of output products: access reports and

Azimuth/Elevation/Range (AER) reports. These reports were generated for each

combination of satellite and ground target or facility. Access reports provided start and

stop times for satellite access to a target or facility; target accesses correspond to “image

windows” and facility accesses correspond to “comm windows”. AER reports provided

azimuth/elevation/range values for every minute of access. This provided a convenient

measure of images taken per image window; it could be assumed that the satellite took an

image and then slewed to take another image on a 60-second timeline. Additionally, each

simulation generated a lighting report, denoting sunrise and sunset times for the target.

One limitation of STK is scheduling; in a simulation, if two targets are within a

satellite’s field of regard at the same time, the satellite will capture the first target that

comes into view, and continue imaging this target until it is out of view. Only after the

first target is out of view will the satellite switch to a second target. To work around this

8 STK also requires an Argument of Perigee; however, for a circular orbit, the value of this parameter is
arbitrary

40

limitation, the entire area of interest is modeled in STK as a single point target on or near

the geometric center of Puerto Rico, shown in Figure 7.

Figure 7. Point Target at Geographic Center of Puerto Rico

Although the access and AER reports are based on the location of this point

target, it is assumed that on each pass the satellite would actually image one or more

“strips” of area, as shown previously in Figure 2. The differences in range and elevation

for a given collect caused by this assumption are presumed to be negligible for an area

this small.

For post-simulation analysis, two Python scripts were written; one to calculate the

spatial resolution MOE, and one to calculate the timelines and coverage MOEs.

Additional design parameters needed for post-STK analysis are listed in Table 8.

Table 8. Design Parameters for Post-STK Simulation Input

Parameter Traditional Architecture CubeSat
Focal Length 13.3 m 1.14 m

Pixel Size 8 𝜇𝜇𝑇𝑇 8.95 𝜇𝜇𝑇𝑇
Swath Width 17.87 km 16.1 km

41

Figure 8 describes the steps for calculating the resolution MOE for a given

architecture. Five parameters were calculated for resolution: best (or minimum) GSD,

worst (or maximum) GSD, average GSD, percent of collects meeting the threshold

requirement, and percent of collects meeting the objective requirement. Calculations were

performed for one satellite in each architecture, on all data points from that satellite,

regardless of daylight conditions. Calculating resolution from identical satellites and

parsing out daylight-only collects would have had minimal to no effect on the overall

aggregate results.

Figure 8. Calculation of Resolution MOE

Figure 9 below shows the general flow of the timeliness/coverage MOE analysis

script. In this script, each individual image window, and eventually each individual

image, is treated as an instance of an “image window” or “image collect” object. Unlike

Start

Ingest AER
Report

Calculate GSD for
each AER data point

Calculate max/min/
average GSD

Calculate % of data
points meeting

thresh/obj

Display
Results

End

Start

Ingest AER
Report

Specify
Optics

Parameters

Calculate GSD for
each AER data point

Calculate max/min/
average GSD

Calculate % of data
points meeting

thresh/obj

Display
Results

End

Start

Ingest AER
Report

Calculate GSD for
each AER data point

Calculate max/min/
average GSD

Calculate % of data
points meeting

thresh/obj

Display
Results

End

Start

Ingest AER
Report

Specify
Optics

Parameters

Calculate GSD for
each AER data point

Calculate max/min/
average GSD

Calculate % of data
points meeting

thresh/obj

Display
Results

End

42

the resolution MOE, the timeliness and coverage MOEs are calculated for each satellite

in each architecture. Additionally, this script is run for each simulated ascending node, to

identify timeliness and coverage for the best-, average, and worst-case target/orbit

combinations.

43

Figure 9. Calculation of Timeliness and Coverage MOEs

Start

Ingest
Access,

AER
Reports

Specify
Swath
Width

Initialize Image
Window instances

Determine if IW
instance occurs
during daylight

Determine GSD for
each AER data point

Initialize Image
Collect instances

Determine if image
instances meets
GSD threshold

Meets
GSD?

No

Yes
Add Collect to
IW.Collect_List

Images in IW
instance don't

count

Images in
IW.Collect_List count

towards meetings
requirements

IW During
daylight?

Repeat previous
steps for all satellites

in constellation

Multiply number of
valid collects by area

per collect

Coverage
MOE

Subtract disaster
event time from first

valid IW start time

Timeliness
MOEEnd

Ignore
collect

Yes

No

Ingest
Lighting
Report

44

To obtain and analyze cost estimates from COSYSMO, relevant data was parsed

from the Cameo model of each architecture. As described earlier, this data includes

counts of the requirements, interfaces, algorithms, and use cases in each architecture

model. Each of these items is given an assessment of easy, nominal, or difficult; a

summary of definitions of these terms as provided by Valerdi (2005) is given in Table 9.

The size driver counts from both architectures and their associated difficulty assessments

were input into the COSYSMO function of the Naval Postgraduate School’s (NPS)

System Cost Model Suite, which calculated each architecture’s functional size using

equation (5)9.

9 This step was performed by faculty at the Naval Postgraduate School, with results e-mailed to the
student and to AFIT faculty.

45

Table 9. Size Driver Difficulty Rating Definitions (Valerdi, 2005)

Requirements
Easy Nominal Difficult

Simple to implement,
Traceable to source, Little
requirements overlap

Familiar, Can be traced to
source with
some effort, Some overlap

Complex to implement or
engineer, Hard to trace to
source, High degree of
requirements
overlap

Interfaces
Easy Nominal Difficult

Simple message,
Uncoupled, Well behaved

Moderate complexity,
Loosely coupled,
Predictable behavior

Complex protocol(s),
Highly coupled, Poorly
behaved

Algorithms
Easy Nominal Difficult

Algebraic, Straightforward
structure, Simple data,
Timing not an issue,
Adaptation of library-
based solution

Straightforward calculus,
Nested structure with
decision logic, Timing a
Constraint, Some
modeling involved

Complex constrained
optimization/pattern
recognition, Recursive in
structure with distributed
control, Noisy/ill-
conditioned data,
Dynamic, with timing and
uncertainty issues,
Simulation and modeling
involved

Operational Scenarios
Easy Nominal Difficult

Well defined, Loosely
coupled, Timelines not an
issue, Few and simple off-
nominal threads

Loosely defined,
Moderately coupled,
Timelines a constraint,
Moderate number or
complexity of off-nominal
threads

Ill-defined, Tightly
coupled, Tight timelines,
Many or very complex off-
nominal threads

46

Summary

This chapter described the methodology used in this thesis, outlining how Model-

Based Systems Engineering is used to develop SysML models of traditional and CubeSat

imagery architectures. These models provide inputs into the STK performance simulation

and COSYSMO cost estimation tools in order to compare the two architectures in terms

of performance and cost.

47

IV. Analysis and Results

Chapter Overview

This section discusses the results of the simulation and analysis described in the

previous chapter. This section seeks to address the investigative questions described in

Chapter Two, which were:

1. Given a set of mission objectives and requirements, how well does a CubeSat and a

traditional remote sensing architecture meet these requirements?

2. Are systems engineering cost models such as COSYSMO a useful means of

predicting systems engineering costs for traditional and CubeSat architectures? Does

it provide a valid means of comparison?

3. What are the implications of using MBSE to answer questions 1 and 2?

Question 1: Results of Performance Analysis

Spatial Resolution

The highest, lowest, and average GSD for each architecture is shown in Table 10.

Table 10. Resolution Results (Meters GSD)

 Traditional CubeSat
Minimum Value 0.31 4.11
Maximum Value 2.51 32.74

Mean 1.78 23.21
Standard Deviation 0.63 8.26

% of Images Meeting
Threshold

100% 10.21%

% of Images Meeting
Objective

14.44% 0%

Color Key
 Meets Objective Meets Threshold Does Not Meet

Threshold

48

Both architectures are capable of meeting the threshold GSD requirement of 10

meters, indicating that both architectures would provide at least some useful imagery in

response to a hurricane disaster scenario. The objective requirement of 1 meter GSD is

more challenging; only the traditional architecture is capable of meeting this value, and

only meets this value 14.44% of the time. A visual comparison of the best, worst, and

average resolution of both architectures is provided in Figure 10.

Figure 10. GSD Performance Comparison

 Compared to the traditional architecture, the CubeSat architecture has a much

higher range of GSD values. As both the average value and Figure 11 show, much of this

range is above the 10-meter threshold; most collects from the CubeSat design do not meet

resolution requirements. In this simulation, 10.21% of collects meet the threshold

requirement, and 0% meet the objective.

49

Figure 11. GSD of Individual Collects for a CubeSat Design

 As discussed in Chapter 3 and in the next sections, the fact that most CubeSat

collects would not meet the threshold requirement is accounted for when calculating

timeliness and coverage.

Timeliness

 Timeliness is measured from the time of the event to the time the first collect is

downlinked to a ground station. The minimum, maximum, and average timeliness,

computed from all ascending nodes, for both architectures, is shown in Table 11.

Table 11. Timeliness Results (Hours)

 Traditional CubeSat
Minimum Value 10.73 10.73
Maximum Value 21.78 23.34

Mean 15.44 16.59
Standard Deviation 3.28 3.50

Color Key
 Meets Objective Meets Threshold Does Not Meet

Threshold

50

 Both architectures meet the 24-hour timeliness objective requirement, meaning

that both architectures can provide imagery on a timeline relevant to users. Performance

of both architectures is similar, with the average values being within 8% of each other. A

visual comparison of these values is provided in Figure 12.

Figure 12. Timeliness Performance Comparison: Maximum, Minimum and Mean

Across 360 Ascending Nodes

Coverage

The minimum, maximum, and average coverage, computed using results from all

ascending nodes, for both architectures is shown in Table 12.

Table 12. Coverage Results (Sq. Km)

 Traditional CubeSat
Minimum Value 30938 16692
Maximum Value 46751 38601

Mean 35451 19697
Standard Deviation 3373 3580

Color Key

51

 Meets Objective Meets Threshold Does Not Meet
Threshold

Both architectures meet the coverage requirement of 11522 square km within 72

hours of the disaster event, with some margin; this is visible in Figure 13, where the solid

line is the requirement and the lowest dots are the minimum coverage values achieved.

Figure 13. Coverage Performance Comparison: Maximum, Minimum and Mean

Across 360 Ascending Nodes

The results for coverage show that both architectures are capable of providing

users with images of any location in this given affected area on a relevant timeline. Recall

that only collects meeting the threshold GSD requirement were counted towards meeting

this requirement; this means that for the CubeSat architecture, even with only 10% of

geometries/accesses yielding usable imagery, given enough satellites this design solution

is viable. Once again, however, the traditional architecture has more favorable

performance, owing to a much higher percentage of images meeting threshold GSD

requirements.

52

Question 2: Results of Cost Modeling

 The systems engineering costs for both architectures as computed by the

COSYSMO cost model is given in Table 13.

Table 13. COSYSMO Cost Results

 Traditional CubeSat
Cost ($) 1,163,929 1,117,582

Effort (person-mo.) 116.4 111.8
Schedule (months) 7.2 7.1

 The cost results for the CubeSat and traditional architectures are closer than one

might initially expect, differing by $46,347, or 3.98%. This similarity reflects three

things. First, that only systems engineering effort costs are considered by COSYSMO; if

other costs such as detailed design effort, raw materials, manufacturing labor, or launch

costs had been investigated, this comparison would likely yield different results.

Second, these numbers reflect the parameters that COSYSMO does and does not

model, and the assumptions behind those parameters. For example, satellite size, which is

a key parameter by which the architectures differ, is not an input to COSYSMO. For this

thesis, there was an assumption that only the functional size parameter in equation (4)

varied, with the scale factors and effort multipliers remaining static between

architectures; this assumption may need revisiting.

Third, this result reflects the similarity of the two architectures at the level of

fidelity modeled for this thesis. With a few exceptions noted in chapter 3, the

architectures perform the same system-level functions in order to achieve the same

mission requirements. At the level of fidelity modeled, the physical implementation of

the C2 and image processing segments also do not vary.

53

The cost estimate results obtained here, along with these three considerations,

indicate that COSYSMO in its current form is not yet a valid means of comparing

systems engineering costs of dissimilar architectures. Suggestions for improving

COSYSMO for this purpose are discussed in the Conclusions and Recommendations

section.

Question 3: Implications of Using MBSE

 This thesis addressed two related but distinct questions: how do two architectures

compare in terms of performance, and how do these same architectures compare in terms

of cost? Answering either question does not strictly require the use of MBSE; question

one could be answered with a document of desired design parameters and STK alone, and

question two could be attempted with sufficient knowledge of desired design parameters

and existing cost models such as USCM. However, the MBSE approach added a level of

rigor and understanding that the simpler approach described in the previous sentence

would not provide.

As described in Chapter Three, the OOSEM approach to MBSE is scenario based.

Identifying and developing a scenario from which to derive requirements ensured the

design solutions developed from those requirements were practical, making for a more

realistic comparison. Using MBSE and SysML to capture the derived requirements

enabled a clearer understanding of those requirements. By ensuring constraint

requirements were captured and understood, the quantitative trade spaces became better

defined.

54

The initial development of a SysML architecture model was time consuming;

however, once a baseline architecture was established, it was relatively easy to modify.

This was especially noted in the development of the traditional and CubeSat SysML

models. The traditional model was built first; this process took several weeks10. The

CubeSat model was developed from the baseline of the traditional architecture model,

with necessary changes to requirements, physical parameters/constraints, etc. This step

took days rather than weeks.

By virtue of being a systems tool, rather than a domain-focused tool, CAMEO

enabled the first two investigative questions to extend beyond the satellite designs

themselves. Ground station placement and performance were key variables for the

timeliness and coverage MOEs; model views that included the C2 and image processing

segments were relevant inputs to the cost model. The usage of a generic systems method

and tool ensured the entire system of interest, along with relevant external elements such

as AFSCN, could be modeled and accounted for.

The converse to this is the risk of a model becoming too generic, when some

degree of domain-specific focus is required. For this thesis, the CubeSat SysML system

model was supplied to the COSYSMO system cost modeling tool; an alternate approach

could have involved having a CubeSat CAD physical model supply physical parameters

to a satellite-specific cost model. Determining which approach provides a better cost

estimate requires further research.

10 Though some of this timeline is attributable to a learning curve associated with CAMEO.

55

Summary

This section described the quantitative results of STK performance analysis and

of COSYSMO cost estimation for both the traditional and CubeSat architectures, and

discussed these results in the context of the first two investigative questions. A discussion

on using MBSE methods as part of the analysis process answered the third investigative

question.

56

V. Conclusions and Recommendations

Chapter Overview

This section highlights the conclusions reached from the investigative questions,

and discusses new questions uncovered during this research that should be addressed in

further research.

Conclusions of Research

While it is intuitive that CubeSat-sized satellites would not directly match the

performance of a larger traditional satellite architecture, this thesis demonstrated that the

utility of CubeSats is not all that diminished compared to traditional architectures.

Ground resolution is the most significant disparity between the two solutions. A CubeSat

architecture can provide useful EO imagery in the sub-10-meter range for a portion of

collects, but cannot meet a sub-meter requirement; a traditional architecture easily meets

a sub-10-meter GSD requirement, and can meet a sub-meter requirement for a portion of

collects. In terms of user needs in a disaster scenario, these results mean that CubeSat

architecture imagery would be useful for identifying broader phenomena such as areas of

flooding, but could not identify features such as individual structure damage. Imagery

from the traditional architecture would be useful in addressing all user needs, but higher-

resolution imagery would be less frequent.

For coverage, both architectures are capable of providing sub-10-meter GSD

imagery covering the entire island within 72 hours. For the traditional architecture, this

requires one satellite. The CubeSat architecture requires 3 satellites, owing partially to the

fact that only a percentage of CubeSat collects meet the sub-10-meter GSD threshold. For

57

this scenario and set of design solutions, timeliness between architectures is comparable,

with timelines meeting user needs for both architectures.

Counter-intuitively, the results of the COSYSMO cost estimates for the two

architectures where within 4% of each other. Reasons for this likely include:

1. Cost estimation comparison was limited to system engineering costs

2. Architectures were quite similar at the functional level

3. The physical parameters by which the architectures varied most

significantly are not parameters captured by COSYSMO

As such, this research demonstrated that satellite architectures modeled using

MBSE can provide input to cost estimation tools such as COSYSMO. However, this

approach requires refinement for the purposes of trade studies.

Significance of Research

In recent years, the maturation and proliferation of CubeSat designs have

generated interest in their usage operationally. The results of this thesis broadly suggest

that, for remote sensing, CubeSats can perform the same mission as a traditional

architecture, though with sensor performance limitations. These results are consistent

with previous research such as McKenney (2016), and with the achievements of

commercial companies such as Planet Labs.

The Model-Based Systems Engineering approach enabled a disciplined method

for developing and comparing the two architectures, demonstrating the method’s

usefulness in performing similar analysis for other trade studies. This result is consistent

with previous research such as Thompson (2015).

58

Recent research has suggested that SysML models can be integrated into systems

engineering cost estimation tools such as COSYSMO (Edwards, 2016). The results of

this thesis suggest this approach is not without its limitations in the space domain. This

approach merits further investigation to determine how best to address these limitations.

Recommendations for Future Research

This thesis addresses questions specific to two specific architecture

implementations. However, throughout its development the intent was that the method

and models could be generalized to address any number of related questions, in keeping

with the philosophy of MBSE. To this end, Figure 14 displays the approach described in

Chapter 3, Figure 1, but with general suggestions on areas for further exploration.

59

Figure 14. Incorporating Future Research into Existing Thesis Methodology

A follow-on trade study incorporating an MOE for resiliency would be of

particular interest; besides cost, resiliency may be another area in which CubeSats have

advantages compared to traditional architectures. In addition to an investigation of

resiliency trade studies, there are any number of ways this method and these models

Synthesize Candidate
Architectures

Analyze System
Requirements/

Define Logical Architecture

Analyze Stakeholder
Needs

Mission
Domain

MoEs/
MoPs

Mission
Scenario

Derive
Requirements

Architecture
Functional

Design

Architecture
Physical
Design

Vary Physical
Architecture

Solutions
- Smallsats
- UAVs
- Mixed
Architectures
- Sensor Types

Vary Model
Fidelity

-Detailed
designs for
C2/Comm/
Propulstion/
etc

Vary Mission
Domain

- Other Space
Applications

Vary MoEs
- Resil iency
- "-i l ities"

Vary Mission
Scenario

- Geographic
Regions
- Disaster
Types

Architecture
Performance/Cost

Analysis

MoE
Analysis

Cost
Analysis

Vary Analysis
Methods

- Optimization
Methods
- Cost Models

60

could be used and modified to investigate related areas. Investigation of CubeSat utility

in other space-related applications, or against other real-world scenarios, could further

validate the results of this thesis. The incorporation of UAV or other remote sensing

platform models would provide both further validation of this methodology and practical

results for further system development. The lists in Figure 14 are not exhaustive, but are

meant to spark ideas that future students could use for their own research.

Integration of MBSE models with COSYSMO for the purposes of spacecraft

system engineering cost modeling is an area for significant future research. A starting

point would be to compare these results to the System Engineering and Program

Management CER in the USCM. This CER is a function of spacecraft bus weight,

payload weight, and an integration and test parameter (Space and Missile Systems

Center, 2015). A comparison would have to be limited to the spacecraft-specific portions

of the architectures developed in this thesis, as the USCM does not incorporate ground

C2 or data processing components.

Following that should be a more in-depth investigation and calibration of all

relevant parameters in the COSYSMO cost model. This thesis looked only at functional

size; it is possible that other parameters such as calibration factors, scale factors, and

effort multipliers could significantly affect results. Finally, the COSYSMO model itself

should be updated to better reflect space domain-unique aspects affecting systems

engineering cost. The relationship between the size or weight of a spacecraft and its

systems engineering costs as a percentage of overall program costs should specifically be

investigated, as this would incorporate the relevant parameters of both COSYSMO and

spacecraft cost models such as USCM.

61

Summary

This section briefly summarized the primary conclusions derived from this

research. A discussion of the significance of the research demonstrate where it validated

previous research, and where more research is required. Ideas for future research included

similar trade studies with different MOEs, investigating trades on a wider variety of

platforms, and further exploration of using MBSE models with COSYSMO for the

purposes of spacecraft system engineering cost modeling.

62

Appendix A. Use Cases for Traditional Architecture

Conduct Imagery Operations

Preconditions: 1) Satellite architecture on-orbit, checked out and in good health (including
ground stations/processing). 2) Target list has been established and is ready for TA to input into
system.

Post Conditions: 1) Satellite imagery has been collected, processed, and made available to
outside database and/or imagery analyst.

Assumptions: 1) both architectures are dedicated to this specific disaster, with no competing
collects in the region. 2) both architectures will collect and forward data to next available
ground contact: no on-orbit relay. 3) Tasking strategy: Both architectures are taskable and
steerable (i.e. not just staring and collecting on open-loop tasking) 4) Cloud cover is not
prohibiting collects pre-and post-disaster 5) Weather data is not specifically being provided –
dedicated weather satellites outside the system boundary fulfill this need. 6) Satellite(s) would
not need to maneuver and expend fuel for better access to areas affected by individual
disasters.

Actors: Imagery Analyst (IA), Tasking Authority (TA)

Use case: Tasking Authority inputs target list into Ground/C2 subsystem. Ground/C2 subsystem
returns acknowledgement of input. Ground/C2 processes target list into an executable imaging
schedule. Ground/C2 uplinks image schedule to satellite(s) during earliest available comm
window(s). Upon having access to a target in the image schedule, satellite images target and
stores image data in on-board storage. Satellite repeats this sequence until a comm window
with a ground station opens. Satellite stops imaging (if need be) and downlinks image data to
ground station. Image data is processed and made available to IA. Satellite continues to execute
against image schedule until a new image schedule is received.

Maneuver satellite

Preconditions: known initial orbit; known final orbit; known stationkeeping/maneuver data

Post Conditions: satellite achieves desired orbital parameters; system ready to execute
“Conduct Imagery Operations” use case.

Assumptions: System is not currently being tasked against active disasters

Actors: Satellite operator (SO), Tasking Authority (TA)

Satellite operator inputs relevant stationkeeping/maneuver data into Ground/C2 subsystem,
including command to cease imaging. Ground/C2 makes TA aware of planned non-availability of
satellite for imaging. Ground/C2 uplinks commands to satellite(s) during earliest available comm
window(s). Satellite executes burn maneuver(s). Satellite continuously sends back telemetry via
omni antenna/AFSCN. Satellite operator monitors telemetry for anomalies. Ground/C2 makes
TA aware that satellite is available for imaging. “Conduct Imagery Operations” use case resumes.

63

Task system

Preconditions: 1) Satellite architecture on-orbit, checked out and in good health (including
ground stations/processing). 2) Target list has been established and is ready for TA to input into
system.

Post Conditions: 1) Satellite has received imaging commands and is ready to begin imaging

Assumptions: target list is regional; tasking list is pre-organized by priority (first target on list is
highest priority); system does not optimize collection (first target on list is first target imaged,
and so on until list is complete); translation of tasking list into spacecraft imaging commands
happens on the ground.

Use case: Tasking Authority inputs target list into a Mission Tasking Interface (MTI) (part of
Ground/C2 subsystem). MTI passes tasking list to processor. Processor identifies upcoming
image windows for targets on tasking list. Processor identifies which satellite has the window
and length of window, and assigns number of targets per window based on estimated imaging
time. Processor continues until all targets are assigned imaging windows in an “image schedule”.
Processor translates image schedule into set of commands for each individual satellite.
Processor sends commands to a buffer at ground antenna for uplink at next available comm
window. Ground antenna uplinks commands during comm window. Satellite sends
acknowledgement signal. Satellite tracks time until next image window.

Image targets

Preconditions: 1) Satellite has received imaging commands and is ready to begin imaging

Post Conditions: 2) Satellite has imaged all targets assigned

Assumptions: target list is regional, meaning an image window consists of access to multiple
targets with close proximity; tasking list is pre-organized by priority (first target on list is highest
priority); system does not optimize collection (first target on list is first target imaged, and so on
until list is complete); translation of tasking list into spacecraft imaging commands happens on
the ground; on-board storage is sufficient to hold all imaging collects between comm windows.

Use Case: Satellite is on standby until near target access/image window. Just outside of target
access, satellite slews to point at the first target. Upon reaching target access, satellite payload
images target. Image data is sent from payload to on-board storage buffer. Satellite slews
slightly to next target and repeats imaging. Satellite continues slewing/imaging until end of
image window. Satellite returns to standby mode until next imaging or comm window.

Communicate with satellite

Preconditions: 1) Data is ready to be exchanged between ground antenna and satellite. 2)

Post conditions: 1) Data has been exchanged between ground antenna and satellite.

64

Assumptions: Ground station knows/reasonably predicts where satellite is; satellite does not
know where ground station is. Data exchange is of sufficiently short duration such that it will fit
inside comm window.

Satellite is on standby until near antenna access/comm window. Ground station recognizes that
satellite is entering comm window, and sends a message to satellite’s omni-directional antenna
with commands to slew main antenna to point at ground antenna. Satellite slews so that main
comm antenna points at ground antenna. Ground antenna uplinks commands. Satellite sends
acknowledgement signal. Satellite downloads image data, telemetry data. Ground antenna
passes mission data to image processing, and telemetry data to Ground/C2 processor.

Once all data has been exchanged, satellite returns to standby mode.

Process imagery

Preconditions: 1) Data has been downlinked to ground antenna

Post conditions: 1) A full processed image has been delivered/disseminated/made available to
imagery analysts

Assumptions: Image retrieval/display for imagery analysts is outside of system boundary.

Use Case: Mission Data is sent to Image Processor from Ground Antenna. Image Processor
ingests Mission Data and performs functions to form a softcopy image. If pre-event imagery of
tasked targets is available, the Image Processor also generates a change detection product.
Image Processor passes softcopy image/change detection product to Imagery Database for
access by Imagery Analysts. A notification is sent to subscribers informing them of which targets
have imagery now available.

Troubleshoot Spacecraft Anomaly

Preconditions: Spacecraft has encountered an anomaly

Post conditions: Spacecraft has recovered from anomaly and returned to operations.

Assumptions: Spacecraft anomaly is recoverable (i.e. it didn’t explode); spacecraft is not able to
communicate via normal comm link with ground station (main comm failure/nav failure/other
reasons)

Use Case: Upon encountering an anomaly, the spacecraft goes into a “safe mode”. Spacecraft
broadcasts “safemode” telemetry (error codes) via omni antenna to AFSCN network. AFSCN
network relays telemetry to C2 processor, on to Spacecraft Operator. Operator begins running
troubleshooting checklist. C2 processor automatically drops sick bird from imaging/comm
schedules. Operator sends commands to solve anomaly. C2 processor routes commands
through AFSCN to spacecraft. Spacecraft receives and executes commands to recover.
Spacecraft acknowledges recovery via AFSCN; C2 processor adds bird back into imaging/comm
schedule. “Conduct Imagery Operations” use case resumes.

<extend> Communicate via AFSCN

65

Spacecraft continuously broadcasts “safemode” telemetry (error codes) via omni antenna. Upon
satellite coming within range of AFSCN ground site, signal is presumably received by AFSCN.
AFSCN relays to C2 processor, and awaits response. Once C2 segment begins anomaly
troubleshooting, AFSCN continues providing a relay, scheduling AFSCN comm windows and
managing message traffic as necessary. Once satellite has recovered and acknowledged
recovery, C2 segment discontinues using AFSCN to communicate with satellite.

66

Appendix B. Use Cases for CubeSat Architecture

Conduct Imagery Operations

Preconditions: 1) Satellite architecture on-orbit, checked out and in good health (including
ground stations/processing). 2) Target list has been established and is ready for TA to input into
system.

Post Conditions: 1) Satellite imagery has been collected, processed, and made available to
outside database and/or imagery analyst.

Assumptions: 1) both architectures are dedicated to this specific disaster, with no competing
collects in the region. 2) both architectures will collect and forward data to next available
ground contact: no on-orbit relay. 3) Tasking strategy: Both architectures are taskable and
steerable (i.e. not just staring and collecting on open-loop tasking) 4) Cloud cover is not
prohibiting collects pre-and post-disaster 5) Imagery is not for purposes of weather monitoring –
GOES/POES/etc fulfill this need. 6) Satellite(s) would not need to maneuver and expend fuel for
better access to areas affected by individual disasters.

Actors: Imagery Analyst (IA), Tasking Authority (TA)

Use case: Tasking Authority inputs target list into Ground/C2 subsystem. Ground/C2 subsystem
returns acknowledgement of input. Ground/C2 processes target list into an executable imaging
schedule. Ground/C2 uplinks image schedule to satellite(s) during earliest available comm
window(s). Upon having access to a target in the image schedule, satellite images target and
stores image data in on-board storage. Satellite repeats this sequence until a comm window
with a ground station opens. Satellite stops imaging (if need be) and downlinks image data to
ground station. Image data is processed and made available to IA. Satellite continues to execute
against image schedule until a new image schedule is received.

Note: while alternative CONOPS/use cases for cubesats are possible, it was a design decision to
keep this Use Case static between the two architectures to better meet mission requirements.

Task system

Preconditions: 1) Satellite architecture on-orbit, checked out and in good health (including
ground stations/processing). 2) Target list has been established and is ready for TA to input into
system.

Post Conditions: 1) Satellite has received imaging commands and is ready to begin imaging

Assumptions: target list is regional; tasking list is pre-organized by priority (first target on list is
highest priority); system does not optimize collection (first target on list is first target imaged,
and so on until list is complete); translation of tasking list into spacecraft imaging commands
happens on the ground, spacecraft can take multiple images per imaging window (IW).

Use case: Tasking Authority inputs target list into a Mission Tasking Interface (MTI) (part of
Ground/C2 subsystem). MTI passes tasking list to processor. Processor identifies upcoming

67

image windows for targets on tasking list. Processor identifies which satellite has the window
and length of window, and assigns number of targets per window based on estimated imaging
time. Processor predicts GSD for each image, and only schedules a collect if predicted image
resolution meets threshold GSD. Processor continues until all targets are assigned imaging
windows in an “image schedule”. Processor translates image schedule into set of commands for
each individual satellite. Processor sends commands to a buffer at ground antenna for uplink at
next available comm window. Ground antenna uplinks commands during comm window.
Satellite sends acknowledgement signal. Satellite tracks time until next image window.

Image targets

Preconditions: 1) Satellite has received imaging commands and is ready to begin imaging

Post Conditions: 2) Satellite has imaged all targets assigned

Assumptions: target list is regional, meaning an image window consists of access to multiple
targets with close proximity; tasking list is pre-organized by priority (first target on list is highest
priority); system does not optimize collection (first target on list is first target imaged, and so on
until list is complete); translation of tasking list into spacecraft imaging commands happens on
the ground; on-board storage is sufficient to hold all imaging collects between comm windows.

Use Case: Satellite is on standby until near target access/image window. Just outside of target
access, satellite slews to point at the first target. Upon reaching target access, satellite payload
images target. Image data is sent from payload to on-board storage buffer. Satellite slews
slightly to next target and repeats imaging. Satellite continues slewing/imaging until end of
image window. Satellite returns to standby mode until next imaging or comm window.

Communicate with satellite

Preconditions: 1) Data is ready to be exchanged between ground antenna and satellite. 2)

Post conditions: 1) Data has been exchanged between ground antenna and satellite.

Assumptions: Ground station knows/reasonably predicts where satellite is; satellite does not
know where ground station is. Data exchange is of sufficiently short duration such that it will fit
inside comm window.

Satellite is on standby until near antenna access/comm window. Ground station recognizes that
satellite is entering comm window and slews ground antenna to make contact. Satellite slews so
that main comm antenna points at ground antenna. Ground antenna uplinks commands.
Satellite sends acknowledgement signal. Satellite downloads image data, telemetry data.
Ground antenna passes mission data to image processing, and telemetry data to Ground/C2
processor.

Once all data has been exchanged, satellite returns to standby mode.

Process imagery

Preconditions: 1) Data has been downlinked to ground antenna

68

Post conditions: 1) A full processed image has been delivered/disseminated/made available to
imagery analysts

Assumptions: Image retrieval/display for imagery analysts is outside of system boundary.

Use Case: Mission Data is sent to Image Processor from Ground Antenna. Image Processor
ingests Mission Data and performs functions to form a softcopy image. If pre-event imagery of
tasked targets is available, the Image Processor also generates a change detection product.
Image Processor passes softcopy image/change detection product to Imagery Database for
access by Imagery Analysts. A notification is sent to subscribers informing them of which targets
have imagery now available.

Troubleshoot Spacecraft Anomaly (modified for Cubesat)

Preconditions: Spacecraft has encountered an anomaly

Post conditions: Spacecraft has recovered from anomaly and returned to operations.

Assumptions: Spacecraft anomaly is recoverable (i.e. it didn’t explode, comm still works)

Use Case: Upon encountering an anomaly, the spacecraft goes into a “safe mode”. Spacecraft
broadcasts “safe mode” telemetry (error codes) via comm antenna. Receiving ground antenna
relays telemetry to C2 processor, on to Spacecraft Operator. C2 processor automatically drops
sick bird from imaging/comm schedules. Spacecraft executes a recovery algorithm to attempt
recovery. C2 processor attempts to communicate with bird at every comm window. Once
spacecraft is recovered and contact is re-established, C2 processor adds bird back into
imaging/comm schedule. “Conduct Imagery Operations” use case resumes.

<extend> If satellite fails to recovery automatically, Operator begins running troubleshooting
checklist. Operator sends commands to solve anomaly. C2 processor routes commands to
spacecraft. Spacecraft receives and executes commands to recover. Original Use Case continues.

69

Appendix C. NPS Cost Model Suite COSYSMO Output: Traditional Architecture

70

Appendix D. NPS Cost Model Suite COSYSMO Output: CubeSat Architecture

71

Bibliography

Analytical Graphics Incorporated. (2017, March). Sensor Resolution. Retrieved from
STK Programming Help: help.agi.com/stk/11.1/#stk/sn-13.htm?Highlight=GSD

Battersby, S. E., Hodgson, M. E., & Wang, J. (2012). Spatial Resolution Imagery
Requirements for Identifying Structure Damage in a Hurricane Disaster: A
Cognitive Approach. Photogrammetric Engineering & Remote Sensing, 625-635.

Boshuizen, C. R., Mason, J., Klupar, P., & Spanhake, S. (2014). Results from the Planet
Labs Flock Constellation. 28th Annual AIAA/USU Conference on Small Satellites.
AIAA.

Central Intelligence Agency. (2017, November 14). Puerto Rico. Retrieved from The
World Factbook: https://www.cia.gov/library/publications/the-world-
factbook/geos/rq.html

Delligatti, L. (2014). SysML Distilled. Pearson Education.

Department of Homeland Security. (2013, February 22). Remote Sensing and Incident
Support. 32. Retrieved from www.napsgfoundation.org/wp-
content/uploads/2013/02/NAPSG-Remote-Sensing-Webcast-022213.pdf

DigitalGlobe. (2016, October 7). System-Ready Imagery. Retrieved from DigitalGlobe
Web site: https://dg-cms-uploads-
production.s3.amazonaws.com/uploads/document/file/27/BasicImagery_DS_10-
7-16.pdf

Edwards, D. J. (2016). Exploring the Integration of COSYSMO with a Model-Based
Systems Engineering Methodology in Early Tradespace Analytics and Decisions.
Masters Thesis, Naval Postgraduate School, Monterey.

European Space Agency. (2017). WorldView-2. Retrieved from eoPortal Directory
Website: https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-
z/worldview-2

European Space Agency. (n.d.). CubeSat Concept. Retrieved from eoPortal Directory:
https://directory.eoportal.org/web/satellite-missions/c-missions/cubesat-concept

Evans, H., Lange, J., & Schmitz, J. (2014). The Phenomenology of Intelligence-focused
Remote Sensing. New York: Riverside Research.

72

Friedenthal, S., Moore, A., & Steiner, R. (2015). A Practical Guide to SysML, 3rd.
Waltham: Elsevier.

Google. (n.d.). [Geographic Center of Puerto Rico]. Retrieved from
www.google.com/maps

Hodgson, M. E., Davis, B. A., Cheng, Y., & Miller, J. (2010). Modeling Remote Sensing
Satellite Collection Opportunity Likelihood for Hurricane Disaster Response.
Cartography and Geographic Information Science, 7-15.

Hoque, M. A.-A., Phinn, S., Roelfsema, C., & Childs, I. (2017). Tropical Cyclone
Disaster Management Using Remote Sensing and Spatial Analysis: A Review.
International Journal of Disaster Risk Reduction, 345-354.

Kaslow, D., Soremuken, G., Hongman, K., & Spangelo, S. (2014). Integrated Model-
Based Systems Engineering (MBSE) Applied to the Simulation of a CubeSat
Mission. IEEE Aerospace Conference, (pp. 1-14). Big Sky, MT.

Konecny, G. (2004). Small Satellites - A Tool for Earth Observation? XXth ISPRS
Congress Technical Commission IV, (pp. 580-582). Istanbul.

Krueger, J. K., Selva, D., Smith, M. W., & Keesee, J. (2009). Spacecraft and
Constellation Design for a Continuous Responsive Imaging System in Space.
AIAA SPACE 2009 Conference & Exposition. Pasadena: AIAA.

Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote Sensing and Image
Interpretation, 6th. John Wiley & Sons.

McKenney, S. J. (2016). Meeting the DoD's tactical weather needs using cubesats.
Wright-Patterson AFB: Department of the Air Force Air University.

National Academy of Sciences. (2016). Achieving Science with Cubesats: Thinking
Inside the Box. Washington DC: The National Academies Press.

Pavalkis, S., Papke, B., & Wang, G. (2017). Enabling Repeatable SE Cost Estimation
with COSYSMO and MBSE. 27th Annual INCOSE International Symposium.
Adelaide.

Planet. (2015, September). Planet Spacecraft Operations and Ground Control Version
1.2. Retrieved from planet.com: https://www.planet.com/docs/spec-
sheets/spacecraft-ops/

73

Schmidt, S., Achenbach, J., & Somashekhar, S. (2017, September 20). Puerto Rico
entirely without power as Hurricane Maria hammers island with devastating
force. Retrieved from Washingtonpost.com:
https://www.washingtonpost.com/news/post-nation/wp/2017/09/20/hurricane-
maria-takes-aim-at-puerto-rico-with-force-not-seen-in-modern-history/

Sellers, J. J., Astore, W. J., Giffen, R. B., & Larson, W. J. (2005). Understanding Space:
An Introduction to Astronautics (3rd ed.). New York: McGraw-Hill.

Selva, D., & Krejci, D. (2012). A Survey and Assessment of the Capabilities of Cubesats
for Earth Observation. Acta Astronautica, 50-68.

Selva, D., & Krejci, D. (2013). Preliminary Assessment of Performance and Cost of a
Cubesat Component of the Earth Science Decadal Survey. 27th Annual
AIAA/USU Conference on Small Satellites, (pp. 1-14).

Smith, M. S. (2012, June 23). EnhancedView News Not so Rosy for GeoEye. Retrieved
from Space Policy Online:
http://www.spacepolicyonline.com/news/enhancedview-news-not-so-rosy-for-
geoeye

Space and Missile Systems Center. (2015, June 12). Retrieved from Unmanned Space
Vehicle Cost Model Online, version 10: www.uscmonline.com

Thompson, R. E. (2015). A Methodology for the Optimization of Disaggregated Space
System Conceptual Designs. PhD Dissertation, Air Force Institute of Technology,
Department of Systems Engineering and Management, Wright-Patterson AFB.

Valerdi, R. (2005). The Constructive Systems Engineering Cost Model (COSYSMO). PhD
Dissertation, University of Southern California, Los Angeles.

Wertz, J. R., & Larson, W. J. (2010). Space Mission Analysis and Design, 3rd.
Hawthorne: Microcosm Press.

Womble, J., Ghosh, S., Adams, B. J., & Friedland, C. J. (2006). Advanced Damage
Detection for Hurrican Katrina: Integrating Remote Sensing and VIEWS Field
Reconnaisaance. Buffalo: MCEER.

74

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

22-03-2018
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2010 – March 2018

TITLE AND SUBTITLE

Comparison of Traditional Versus CubeSat Remote
Sensing: A Model-Based Systems Engineering
Approach

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Cipera, Daniel L., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/ENY)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-18-M-187

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT

This thesis compares the ability of both traditional and CubeSat remote sensing architectures to fulfill a
set of mission requirements for a remote sensing scenario. Mission requirements originating from a
hurricane disaster response scenario are developed to derive a set of system requirements. Using a
Model-based Systems Engineering approach, these system requirements are used to develop notional
traditional and CubeSat architecture models. The technical performance of these architectures is
analyzed using Systems Toolkit (STK); the results are compared against Measures of Effectiveness
(MOEs) derived from the disaster response scenario. Additionally, systems engineering cost estimates
are obtained for each satellite architecture using the Constructive Systems Engineering Cost Model
(COSYSMO). The technical and cost comparisons between the traditional and CubeSat architectures are
intended to inform future discussions relating to the benefits and limitations of using CubeSats to conduct
operational missions.

15. SUBJECT TERMS
 CubeSat, Space Systems Architecture, Space Systems Modeling
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

19

19a. NAME OF RESPONSIBLE PERSON
Dr. David Jacques, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 3329 (NOT DSN)
(david.jacques@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2018

	Comparison of Traditional Versus CubeSat Remote Sensing: A Model-Based Systems Engineering Approach
	Daniel L. Cipera
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Tables
	I. Introduction
	General Issue
	Problem Statement
	Research Objectives and Questions
	Methodology
	Assumptions

	II. Literature Review
	Chapter Overview
	Space Mission Architecture Modeling and Simulation
	CubeSat Utility, Operations and Limitations
	Essential Elements of Information (EEIs) for Hurricane Disaster Response

	III. Methodology
	Chapter Overview
	Choosing a Mission and Defining MOEs
	Quantifying Measures of Effectiveness
	Design Process
	Architecture Design Details
	Modeling Process
	Simulation and Analysis Process
	Summary

	IV. Analysis and Results
	Chapter Overview
	Question 1: Results of Performance Analysis
	Question 2: Results of Cost Modeling
	Question 3: Implications of Using MBSE
	Summary

	V. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Significance of Research
	Recommendations for Future Research
	Summary

	Appendix A. Use Cases for Traditional Architecture
	Appendix B. Use Cases for CubeSat Architecture
	Appendix C. NPS Cost Model Suite COSYSMO Output: Traditional Architecture
	Appendix D. NPS Cost Model Suite COSYSMO Output: CubeSat Architecture
	Bibliography

