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ABSTRACT

Shin, Joonhwa Ph.D., Purdue University, December 2013. Predictive Duty Cycling of
Radios and Cameras using Augmented Sensing in Wireless Camera Networks. Major
Professors: Avinash C. Kak and Johnny Park.

Energy efficiency dominates practically every aspect of the design of wireless cam-

era networks (WCNs), and duty cycling of radios and cameras is an important tool for

achieving high energy efficiencies. However, duty cycling in WCNs is made complex

by the camera nodes having to anticipate the arrival of the objects in their field-of-

view. What adds to this complexity is the fact that radio duty cycling and camera

duty cycling are tightly coupled notions in WCNs.

In this dissertation, we present a predictive framework to provide camera nodes

with an ability to anticipate the arrival of an object in the field-of-view of their

cameras. This allows a predictive adaption of network parameters simultaneously

in multiple layers. Such anticipatory approach is made possible by enabling each

camera node in the network to track an object beyond its direct sensing range and

to adapt network parameters in multiple layers before the arrival of the object in

its sensing range. The proposed framework exploits a single spare bit in the MAC

header of the 802.15.4 protocol for creating this beyond-the-sensing-rage capability

for the camera nodes. In this manner, our proposed approach for notifying the nodes

about the current state of the object location entails no additional communication

overhead. Our experimental evaluations based on large-scale simulations as well as

an Imote2-based wireless camera network demonstrate that the proposed predictive

adaptation approach, while providing comparable application-level performance, sig-

nificantly reduces energy consumption compared to the approaches addressing only

a single layer adaptation or those with reactive adaptation.
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1. INTRODUCTION

Central to the design of a wireless sensor network (WSN) is the need for high en-

ergy efficiency and it is also true for wireless camera networks (WCNs) where the

complexity of sensing and data processing is much higher. Obviously every hardware

component and functional software module consumes energy yet at different rates.

Considering that radio broadcasting tends to be the most energy-hungry step in the

operation of a WSN, one seeks to achieve high energy efficiencies by duty cycling

the radio of the WSN nodes. Duty cycling is based on the straightforward rationale

that if the environmental parameters that a node is monitoring tend to stay constant

over long periods of time and generating relatively light traffic compared to the full

capacity, the node can conserve its energy resources by keeping its radio asleep much

of the time and transmitting packets in a burst when the radio is active.

Whereas duty cycling is relatively simple to implement for WSNs meant for mon-

itoring environmental parameters, such as air or structure quality parameters, the

opposite is the case when the parameter to be monitored is of a transient nature —

as is the case with wireless camera networks meant for tracking people and objects.

Should a node be asleep when an object shows up in the field-of-view of its camera,

at the least you would lose continuity in tracking the object. Obviously, then, the

latency introduced by duty cycling in recording the parameters of interest must be

minimized when such parameters are allowed to be transient.

The interest in using duty cycling for enhancing the energy efficiency of WSNs has

led to several contributions on the incorporation of the same especially in the MAC

protocol layer [1–5]. But, as we mentioned above, any static approach to duty cycling

would be found wanting when the parameters that need to be monitored by a WSN are

transient. So the past several years have also witnessed contributions that incorporate

dynamic duty cycling in the MAC layer that can adapt to the variations in the
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temporal properties of the parameters of interest. These contributions have resulted,

for example, in the MAC protocols such as TMAC [6], AMAC [7], DSMAC [8], and

CMAC [9].

That brings us to an examination of the currently available dynamic approach to

duty cycling from the standpoint of what is needed for wireless camera networks. In

the research contributions we have cited above, the dynamic duty cycle adaptation

at a node is based on the detection of a change in the current traffic conditions at the

node. We claim that such passive duty cycle adaptation schemes are not appropriate

for event-driven WSNs, such as wireless camera networks (WCNs) intended for track-

ing humans and objects in motion possibly with high mobility. Our claim is based on

the observation that the delay between the time an event occurs and the time a new

duty cycle regime becomes effective may be unacceptable if the event corresponds to

a fast moving object being tracked by a camera network.

What we really need for wireless camera networks are network parameter adapta-

tion strategies including radio duty cycle that can anticipate the arrival of events of

interest provided the methods used for anticipation entail only minimal communica-

tion overhead. The condition stated in italics is important since a trivial anticipation

strategy consisting of the currently active nodes merely broadcasting their activity

status to all the neighboring nodes is not likely to work effectively in practice. The

currently active nodes are likely to be the members of clusters that are engaged in

observing the target and calculating its motion parameters. They cannot be expected

to also be responsible for communicating with the non-cluster members. Even if such

a simpleminded approach to duty cycle adaptation was made to work under certain

experimental conditions (such as when we have a small number of slowly moving ob-

jects), it would not scale up properly as the event activity levels increase. Note that

the intra-cluster traffic tends to be intensive and bursty. That increases the odds that

random communications from cluster members to non-cluster members in order to

lend to the latter the ability to anticipate future traffic are likely to fall prey to the

expected high levels of contention. The packet collision/loss rate in wireless networks,
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in general, increases exponentially due to contention as the traffic increases. There-

fore, introducing additional traffic for explicit notification of the current object state

to non-cluster nodes also has the potential to significantly increase the loss of critical

information related to the tracking task. This may result in severe degradation of

the tracking performance, reduced tracking accuracy, and possibly frequent tracking

failures.

These observations have motivated us to develop a network adaptation framework

that requires only minimal communication overhead. Our adaptation framework

enables a node to infer the current state of an object of interest that is beyond its

sensing capability. Our proposed approach, called PNAT (for Predictive Network

Adaptation by Tracking) is a predictive framework for network adaptation where a

node can adapt its parameters in advance of a moving target actually showing up

in its field-of-view and do so with no additional communication cost. The engine

that drives the adaptation is an event/object tracker that can interact with all of the

layers of a protocol stack. The interaction between any of the protocol stack layers

and the tracker creates inputs for the tracker that can be used to update the state

of the object being tracked. The updated state thus calculated can subsequently

be retrieved by all the layers of the protocol stack. Our approach to modeling the

interaction between the tracker module and the layers of the protocol stack allows

for online cross-layer optimization to be carried out while an object is being tracked

even beyond its direct sensing range.

Our framework for network adaption, PNAT, in anticipation of upcoming high

traffic is made possible by the notion of augmented sensing that consists of direct

sensing and indirect sensing. Whereas direct sensing refers to sensing by a node’s

own camera, indirect sensing is defined as obtaining a measurement (or any object

state information inferred therefrom) from the sensing capability of some other nodes

via a communication channel. We show how indirect sensing can be achieved by

using a single bit embedded in the MAC header of all outgoing packets. We refer to

this one bit as the Explicit Event Notification (EEN) flag. Since this flag can be set
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within the Frame Control Field (FCF) of the MAC header, which is available in most

standard MAC protocols such as 802.15.4, our proposed method does not require any

modification of the structure of the packet formats of the existing protocols. Moreover,

since this flag is set in the packets that are supposed to be transmitted anyway, our

proposed method does not involve any additional communication overhead.

The event tracker at each node uses a Kalman filter to aggregate all the measure-

ments obtained through augmented sensing from the bottom of the network protocol

stack (i.e., MAC layer) in order to keep track of the object of interest. Thus, all nodes

— even those that are not currently seeing the object — can estimate the current

state of the object and make predictions of the future state of the object. This allows

each node to adapt its duty cycling regimen in the MAC layer in anticipation of the

arrival of the object in the near future, resulting in Predictive Duty Cycle Adaptation

(PDCA) as an application of PNAT framework to the MAC layer.

A noteworthy aspect of the PDCA presented in this dissertation is that it allows

different nodes to operate with different duty cycles. For obvious reasons, this creates

challenges in any communication between the nodes, especially for those modes of

communication that do not call for handshaking with ACK. The work we present

here includes a novel approach for nodes with different duty cycles to engage in

communications.

We then show how the predictive network adaptation by tracking (PNAT) frame-

work can be further applied to a different layer at the same time, which turns out

to be the application layer that controls the parameters for camera management.

Conventional wireless sensor platforms [10] are equipped with minimal sensing and

processing capabilities, and thus the energy dissipation by radio dominates the overall

energy consumption. Wireless cameras, however, have much more complex hardware

components and produce extremely high dimensional data, resulting in high energy

consumption for data acquisition and processing. Since there are two major consumers

of energy in WCNs: radios and cameras, therefore, it is also critical for overall en-

ergy efficiency that the camera also needs to be properly duty cycled as radio does
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if at all possible. In this dissertation, therefore, we present how the camera sensing

rate can be dynamically adapted in a predictive manner using the PNAT framework,

which will be called Predictive Sensing Rate Adaptation (PSRA). Note that a trivial

approach that keys the duty cycling of the cameras off the duty cycling of the radios

would not work in practice, however, since the relationship between the duty cycling

of the radios and cameras must, at the least, depend on the state of the WCN. To

elaborate, before a moving object can be tracked, it must be detected. When a node

must engage in object detection, the off time for the camera cannot be allowed to

exceed the time it would take for an object of interest to cross the field of view of the

camera, while the radio is allowed to be at a very low duty cycle.

Below is a summary of the contributions made in this dissertation:

1. Developed an energy-efficient predictive network adaptation framework that can

be applied to the multiple layers at the same time

2. Proposed the concept of the augmented sensing for object tracking in the net-

work layers

3. Demonstrated the first use of the single-bit-long summary of the cross-layer

information in the MAC header for predictive duty cycle adaptation without

any communication overhead

4. Developed an efficient algorithm for avoiding synchronization failures when

adapting the radio duty cycle in synchronous MAC protocols

5. Validated the proposed framework applied in large-scale simulations and in a

real WCN testbed that consists of 13 iMote2-based wireless cameras with a

realistic cluster-based distributed object tracking application

In the rest of the dissertation, we first review in Chapter 2 unique features of and

challenges in wireless camera networks. Chapter 3 then provides a review of the

relevant literature on adaptation approaches on network parameters in a single layer

or multiple layers. The new PNAT framework is presented in Chapter 4 and 5 and
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its application to duty cycle adaptation of radio and camera in Chapter 6. The

performance evaluation of the framework is presented in Chapter 7. As already

mentioned, our performance evaluation is based on large-scale simulations and on a

real Imote2-based testbed. Chapter 8 then concludes the paper.
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2. CHALLENGES IN WIRELESS CAMERA NETWORKS

As a sub-category of the more general WSNs, the wireless camera networks (WCNs)

tend to be event-driven, in the sense that their operation is frequently triggered by

the detection of an event of interest by one or more camera nodes [11, 12]. It is

obvious that the occurrence of an event/object of interest within the network makes

the network more dynamic in terms of the state of the camera nodes and the traffic

pattern.

In addition to their being event-driven, WCNs differ from the typical WSNs also

from the fact the cameras are directional sensors due to its unique sensing model. A

camera is typically modeled as a pinhole camera with limited visibility bounded by

a fixed range of depth and viewing angle as shown in Figure 2.1. So it is possible

for two or more nodes to see a target simultaneously even when the nodes are well

separated by other intervening nodes that cannot see the target at all.

In this chapter, we focus on three unique characteristics of WCNs that make the

system design extremely challenging. For a more comprehensive survey on camera

sensor networks, the reader is referred to [14] and [15].

Figure 2.1.: Viewing frustum of a pinhole camera (reproduced from [13])
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2.1 Traffic Patterns for Event-driven Collaborative Processing

WCNs differ from the more traditional WSNs in that the events occurring in the

environment usually cause spatially-correlated traffic from multiple sources in the

vicinity of the events. Since the traffic is generated among the nodes around an event

in a bursty fashion during the presence of the event, it tends to be temporal and locally

intensive. Therefore, the network-wide variation of the traffic patterns is much larger

than that in conventional WSNs where the traffic generation tends to be periodic and

distributed over the entire network and remains unchanged in the course of time.

Collaborative processing of visual data for better understanding of the environ-

ment even more enhances this locally intensive temporal traffic. Due to limited com-

putational power and sensing capability, the sensor nodes in a WCN usually collab-

orate with one another in order to detect events of interest and to estimate their

various attributes in a collective way. This is in contrast to the nodes in a traditional

WSN where scalar measurements are acquired by each node independently and these

measurements are simply aggregated in the network in order to remove redundan-

cies in data transmission. An example of the traditional WSNs would be a wireless

network meant for monitoring the environment for, say, the air quality. For WCNs,

on the other hand, the nodes may be called upon to not only detect the presence of

humans/objects in the environment but to also follow the movement of the detected

humans/objects while exchanging their local measurements to each other.

For tasks such as object detection and tracking, a WCN may involve computations

beyond the capabilities of the processor at any single node. Such tasks would require

cluster-based distributed implementations of the algorithms as in [12,16]. The nodes

in a WCN may have to collaborate to estimate the various attributes of the objects

of interest in order to surmount the extremely limited computational power available

at the individual nodes. The collaborative processing that WCN nodes engage in is

carried out with the help of clusters. That is, the nodes are allowed to form clusters

with the expectation that it is the cluster as a whole that would “understand” an
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object in the environment. Clusters will usually elect cluster leaders in order to

reduce the communication requirements when the network is either fielding a human

query or when a cluster is communicating with another cluster.

The following computations are typical of this cluster based approach to collabo-

rative sensing by the nodes of a network [16]: 1) cluster formation; 2) cluster leader

election; 3) cluster propagation, with cluster leader re-election whenever necessary; 4)

estimation of the properties of the objects of interest collaboratively; etc. All of these

phases of cluster based computing require highly bursty communications. Focusing

on the fourth category listed above, consider for example the case where a cluster is

trying to estimate a color histogram for an object that is visible to all the members

of the cluster, our goal being for the sensor network to track the object. The cluster

leader may assign the different bins of the histogram to the different members in the

cluster and request that each member transmit the bin counts back to the leader. As

each cluster member finishes its assigned task, all of the members trying to reach the

cluster leader at approximately the same time with their bin counts would result in a

burst of communication activity, with attendant packet collisions and wasted energy.

The communication pattern among the cluster members would probably become even

more vulnerable to effects such as the hidden terminal problem if the members col-

laborate in a distributed execution of a more sophisticated computer vision algorithm

(as in the distributed implementation of, say, a Kalman filter).

For further detailed discussion, consider how a laboratory-based WCN could track

simple objects moving about in its environment. Regardless of the specifics of the

vision algorithms used, Figure 2.2 is good depiction of how a cluster of nodes working

cooperatively would go about first detecting and then confirming the presence of

an object in the portion of that space that all the cameras in the cluster can see.

We can consider Figure 2.2 to be a general state transition diagram that could be

instantiated for any specific vision algorithm. To drive home the point about the

usefulness of this state transition diagram, let’s briefly consider how the diagram

would work for the same example that a histogram based approach is used for object



10

Figure 2.2.: Sensory processing state transition diagram at a camera node for tracking
objects (reproduced from [17])
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detection, recognition, and localization. In the state transition diagram shown above,

for this specific collaborative vision process, State 1 corresponds to capturing the

image periodically at each member node and State 2 to applying a threshold to the

image at each member node. State 2 would also consist of accumulating the counts in

the bin assigned to the cluster member; if the bin counts are below a threshold, the

node assumes that there does not exist anything of statistical significance to report

for that bin. State 3 would consist of reporting the results accumulated to the cluster

leader. States 4 would apply only to the cluster leader; these states would enable the

leader to collect the bin counts from the cluster members.

What is interesting is that the state transition diagram in Figure 2.2 is general

enough to also represent a cluster head election process and to represent the idle state

of a node if nothing statistically significant can be detected by the camera at the

node. Let’s first talk about the idle state. This is the state when the target cannot be

discerned in the image recorded at a node. Obviously, in this state, the node will keep

on capturing images and continue to stay in the idle state. Equally obviously, there

will be no collaborative computing involving a node that is in the idle state. Regarding

head election, initially all nodes that can discern an object features in their images

would try to be cluster leaders. Every prospective cluster leader sends a message to

the other members in its cluster about its leadership role. The actual leadership is

acquired by the member who is the first at the inter-cluster communications. Mapping

this process to the state transition diagram, State 3 corresponds to a member telling

all other members that it has seen the object. State 4 in this case would entail each

member relinquishing its leadership role to the member that was the first to broadcast

its object detection. Obviously, these messages must be received within the timeout

period shown in the diagram.

Recognizing that it would be impossible to create a truly application independent

state transition diagram for the vision processes that one may wish to implement for

collaborative computing in a WCN, we nonetheless wish to claim that the diagram of

Figure 2.2 is of broad enough generality and that we may use it as a basis for creating
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a bursty communication model that would typify cluster-based processing of image

data in such networks.

2.2 Resource Demands in Event-driven Collaborative Processing of Vi-

sual Data

In addition to the aforementioned communication activities (which corresponds

to Step 3 and 4 in the state transition diagram in Figure 2.2) that pushes the radio

bandwidth usage and energy consumption by the radio to the edge, all the image

processing chain from image acquisition to low- to high-level processing such as feature

extraction, object detection, tracking, and recognition (which corresponds to Step

1 and 2 in the state transition diagram in Figure 2.2) entails an extreme use of

computing power and thus energy expenditure.

The cameras used in WCNs range from those that record low-resolution 160×120

grayscale images to those that record medium-resolution 640 × 480 × 3 color images.

Several low-level processing steps must be applied to the images for the extraction

of information related to the identification of the object meant to be tracked. These

steps may involve morphological operators, interest point extractors, edge extractors,

image segmentation, etc. Given the constraints of real-time, it should be obvious that

the peak demand on the resources required for processing the visual data in terms

of the computing power and the memory could be very high and could involve high

energy consumption.

To a certain extent, the resource requirements with regard to the computational

power can be somewhat mitigated by having all the nodes that see a given object to

engage in collaborative processing of the images of that object, which is described in

the previous section yet at the cost of communication and energy overhead.
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2.3 Quality of Service Issues

The Quality-of-Service (QoS) criteria for WCNs must of necessity be more strin-

gent as compared to those for the more conventional WSNs. Due to the real-time

nature of the WCN applications, any latencies and packet losses caused by, for exam-

ple, duty cycling and high traffic contention — traffic contention is more of an issue

for WCNs given the bursty nature of the traffic — is likely to result in more serious

performance degradation. Since objects must be tracked in real time, the measure-

ments made at a node have only a limited lifetime. That is, unless a measurement

is reported to the cluster head that is in charge of estimating the target motion at-

tributes from the measurements supplied by the cluster members within a specified

timeout, it is a wasted measurement. When such latencies become excessive, a cluster

may even loose track of the target. Low latency for data aggregation typically within

a cluster, therefore, is a critical requirement to support the application-specific QoS

in WCNs.

Achieving a high QoS by simply over-provisioning resources to the nodes for per-

formance requirements so that they can cater to the expected peak traffic is obviously

not feasible since the wireless camera nodes are generally resource constrained. In-

creasing the duty cycle of radio or the sensing rate of the cameras would cause better

application-level performance, but at the cost of high energy consumption.

Such demanding needs on the computational, communication, and energy re-

sources shape the design space of the software used and the network protocols for

wireless camera networks. Obviously, one must conserve the energy to the maximum

extent possible. An important approach to energy conservation that has emerged over

the years is network parameter adaptation to the locally prevailing conditions. Since

the radios and the cameras are two large consumers of energy, it stands to reason

that both should be subject to adaption to the locally prevailing conditions related

to what is expected of the network.
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Most of the adaptation strategies that have been proposed in the past, however,

address network parameter adaptation only for a single layer or only in a reactive

manner. That makes them unsuitable for the real-time constraints of a WCN. Note

that in conventional WSNs with light-weight applications for periodic monitoring of

the environment with scalar sensors, the energy consumption is dominated by the

radios. The work that has been reported on single-layer adaptation [6–8, 18–24] has

therefore focused only on the radios.

Reactive network adaptation approaches also have limitations on conserving en-

ergy while supporting application-level performance. The reactive approaches in gen-

eral [24–29] and more specifically in the MAC layer [1–9,21–23] must entail an inherent

delay in between the time of occurrence of an event as detected by a node and the

time when the network adaptation takes place at the node. This delay can degrade

the application-level performance significantly especially in real-time object tracking

applications in terms of tracking accuracy and clustering operations. In fact, most

existing MAC protocols, although possessing adaptation capability, have been de-

signed with little consideration for being responsive in real time [30]. The extent of

energy reduction achieved with such strategies is also limited since a camera node

with a reactive approach cannot make predictions on the state of an object beyond

its sensing range, resulting in its camera to be highly activated all the time.

The more detailed survey of the literature will be presented in the following chap-

ter.
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3. LITERATURE SURVEY

In this chapter, we will start our discussion by reviewing the existing literature on

MAC protocols and related concepts to our proposed approach. Since our framework

heavily relies on the interaction of the MAC layer with others and primarily applied

to the MAC layer, the first part of our survey will focus on approaches in existing

MAC protocols. We then review adaptation strategies and tracking methods in a

broader context since our framework spans not only a single layer but multiple layers

including MAC and application layers.

Keeping in mind that there is no single communication protocol that is suitable

for all application domains in WSNs, we will then classify MAC protocols according

to the best suited application space for the target protocols. The best suited applica-

tion space for a particular class of protocols is identified based on qualitative analysis

on their design itself which may or may not support the traffic patterns of their ap-

plication in mind. We will see that many of the existing protocols do not successfully

achieve their goals due to lack of careful investigation on the communication charac-

teristics and requirements of their applications. It is especially true for event-driven

MAC protocols, the application characteristics/requirements of which is analyzed in

the previous chapter. Beside the qualitative analysis, the investigation on to what

extent the communication protocols actually achieve their goals is beyond the scope

of this survey since it requires quantitative analysis based on carefully designed and

thorough experimental evaluations.

To design a MAC protocol for an application that may produce highly varying

traffic loads possibly only within a local area, on the other hand, it is inevitable

to employ an adaptive mechanism that adjusts the network parameters of a subset

of nodes involved in any certain activity of interest. Depending on how to adapt

the parameters based on what criteria, therefore, the applicability of an adaptive
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mechanism of a particular protocol shapes its application space that it can support.

Our survey will be taken taking these into considerations in classifying the MAC

protocols.

Among various MAC protocols, we will limit the scope of our survey within duty

cycling and random access MAC protocols using a single channel with a single radio,

since others are not directly relevant to our discussion. A more general survey on

MAC protocols can be found in [31,32].

Afterward, we will continue to survey several concepts related to our approach in

other domains such as predictive models in network adaptation and tracking methods

in sensor networks especially using binary sensors. The event tracking methodology

in our framework is based on detecting a single bit embedded in the packets and thus

can be viewed as a type of object tracking in binary sensor networks. By reviewing

existing binary sensor-based tracking methodologies, we will qualitatively analyze

how the network parameter adaptation can be carried out with help of statistical

estimation of the network state in terms of objects.

3.1 Approaches of MAC Protocols for Wireless Sensor Networks

Among various MAC techniques, duty cycling-based on Carrier Sense Multiple

Access (CSMA) [33] is one of the main approaches to achieve a low-power operation

of nodes in wireless sensor networks. By alternating sleep and active modes and by

transmitting data only during the active mode, a node can transmit packets in a burst

only in a fraction of time and avoid unnecessary energy consumption and therefore

prolong its lifetime. Generally, proposed MAC protocols that adopt this duty cycling

technique can be bifurcated into synchronous and asynchronous approaches.

3.1.1 Synchronous MAC Protocols

The synchronous approaches use synchronization to assure that all or a subset of

nodes in a network operates concurrently in such a way that they are planning their
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(a)

(b)

Figure 3.1.: Timelines of SMAC and TMAC: (a) Timing relationship between senders
and receiver in SMAC (b) The early sleeping problem of TMAC (reproduced from
[5,6], respectively)
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communication activities according to their neighbors’ schedule, so that they share a

period of time to communicate. A node running SMAC (Sensor MAC) [5] periodically

sleeps and wakes up simultaneously with its neighbors. SMAC divides the time frame

into active and sleep period, and active period is further divided into SYNC, RTS

(ready to send), and CTS (clear to send), as shown in Figure 3.1 (a). The length of

the sleep period determines the duty cycle of SMAC, since that of the active period

is fixed. During SYNC period, nodes need to exchange synchronization information

periodically to reset the clock drift among neighbors. If there is data to transfer,

then the sender and receiver establish a connection using RTS-CTS handshake to

avoid collisions with other neighbors. Then the data transfer takes place while the

other nodes return to sleep. This RTS-CTS handshaking is employed to alleviate so-

called Hidden Terminal Problem among two-hop neighborhoods that causes packet

collisions. A node only listens during the contention periods for SYNC and RTS

briefly unless it has data to send. Only nodes participating in data exchange stay

active after these contention periods, whereas others can return to sleep. SMAC also

employs adaptive listening to enable immediate message passing right after the end of

previous communication in order to reduce per-hop latency. Since SMAC may create

multiple virtual clusters in a network that have the different schedules, there are

the nodes belonging to multiple virtual clusters at the border of the virtual clusters,

called the border nodes. Since these nodes should wake up according to each of the

schedules of the virtual clusters, they dissipate energy faster than the non-border

nodes due to frequent idle listening and overhearing. In addition, the predetermined

and fixed lengths of sleep and active periods decrease the performance of the protocol

under variable traffic loads.

TMAC (Time-out MAC) [6] improves the energy efficiency of SMAC by adaptively

reducing energy waste in active period based on the observation that if a node has

data to send, then the transmission will take place at the beginning of RTS period

with, of course, a short random backoff. TMAC uses a short window, that is time-

out, at the beginning of RTS period to determine whether it remains listening further



19

Figure 3.2.: Timelines of the extended preamble of Low Power Listening (LPL) and
the short preamble approach of X-MAC (reproduced from [2])

or not. When there is no activity in this short window, it allows a node to sleep

earlier, saving energy. Yet it also causes a node to sleep too early even if its neighbor

may have packets to transmit in the middle of the contention period, called early

sleeping problem as shown in Figure 3.1 (b). Thus, nodes may suffer from poor

throughput in case of heavy traffic loads. To mitigate this problem, TMAC employs

FRTS (Future Request-To-Send) that lets two-hop neighbors not to sleep early. But,

it only decreases the effect of the early sleeping problem from one-hop range to two-

hop range. Thus, the problem still remains. Rather, it may enhance the contention

in the region of current traffic due to increased communication overhead, resulting in

poor throughput at the center of active region.

A comparison of duty cycling MAC protocols for WSNs can be found in [34].
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3.1.2 Asynchronous MAC Protocols

The asynchronous MAC protocols, on the other hand, employ an extended pream-

ble approach in packet transmission and low power listening or preamble sampling in

packet reception with asynchronous schedules. B-MAC (Berkeley MAC) [3] senses a

channel to avoid collision or to check any ongoing communication activity by sampling

signal strength and detecting outliers, called clear channel assessment (CCA). The

rationale behind it is that in case of signal due to extended preamble or data, the sam-

ples of the signal strength would be consistent whereas in case of no signal, it would

not due to white noise, resulting in frequent outlier occurrences. Whenever a node

wakes up, it samples the channel multiple times with a certain sampling interval using

CCA, called low power listening (LPL). Thus, the preamble should be long enough

to be checked by other nodes for reliable communication since they do not know the

schedules of their neighbors. If the channel checking interval (i.e., wake-up interval)

is shorter, implying that potential receivers check the channel more frequently, then

the potential receivers will spend more energy. Yet at the cost of receivers’ energy,

the potential senders can send a shorter preamble, resulting in low latency. Longer

preambles, on the other hand, enables a longer sleep interval between channel sens-

ings, which helps energy conservation of potential receivers. When a node is not

the intended recipient of the current communication activity, however, long preamble

causes long idle listening of the non-intended receivers, ending up with unnecessary

energy waste of the nodes. Therefore, there is a trade-off between the length of a

preamble in sender-side and the channel checking interval (i.e., wake-up interval),

determining to which side the communication burden is given more. Since B-MAC

pursues low complexity and small size, it instead provides configurable interfaces that

allow upper-layer services to adjust its operation mode according to runtime network

conditions.

WiseMAC (Wireless Sensor MAC) [4] uses a preamble sampling similar to LPL

in B-MAC. In contrast to B-MAC, a transmitter can learn its receiver’s schedule in
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Figure 3.3.: Timelines of a pair of source and destination in WiseMAC (reproduced
from [4])
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ACK packets from the receiver by piggybacking, so that the transmitter can initiate

its preamble only a short period of time before the receiver’s active period, as shown

in Figure 3.3. The preamble transmission duration is determined with taking into

account the clock drift uncertainty from the time when the last packet exchange

took place between the sender-receiver pair. This reduces the length of the extended

preamble, an energy problem in B-MAC.

While B-MAC and WiseMAC provide simple yet efficient schemes for low power

communication in an asynchronous way, they are inherently expensive to perform

broadcasting packets to neighbors and have no mechanism for the hidden-terminal

problem. In addition, per-hop delay introduced by extended preamble can be accumu-

lated at multi-hop communication, degrading latency performance. Thus, these pro-

tocols mainly target delay-tolerant applications, such as environmental monitoring,

that do not require real-time operation. To resolve the latency issue, an approach [35]

is proposed that attempts to minimize the per-hop latency in WiseMAC by multi-hop

cross-layer design. For the broadcasting issue, another approach [36] is proposed that

reduces the cost of broadcasting in WiseMAC using the k-Best-Instants approach

that calculates a minimum set of instants that can cover asynchronous wake-ups of

all neighboring nodes based on their schedules.

In addition to these inherent barriers in asynchronous MAC protocols, LPL-based

approaches encounter difficulties when they are applied to 802.15.4 radios since LPL

is based on bit-wise operation while 802.15.4 is packet-based, resulting in solutions

like X-MAC (Short Preamble MAC) [2]. Instead of continuous bit stream-based

preamble, X-MAC sends a chain of consecutive short preamble packets, each of which

contains the address of an intended receiver. Then, if the intended receiver wakes up

and listens these short preamble packets, then it will send an early ACK between the

short preamble packets, stopping further excessive preamble transmission of sender,

while the other non-intended receivers can return to sleep early by overhearing a short

preamble packet, as shown in Figure 3.2. The early sleep of non-intended receivers

reduces energy spent by unnecessary overhearing while the early ACK reduces per-
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Figure 3.4.: The time frame rule of Z-MAC: The numbers assigned in the topology
indicate the slot numbers assigned by DRAND which correspond to the shaded slot
in the bottom, and the numbers in the parenthesis are the maximum slot number
within two-hop neighbors. The dark slots are the empty slots that can be used by
any node with random access. (reproduced from [1])

hop latency as well as energy spent by both the sender and the intended receiver.

Based on the observation that fixed schedule MAC protocols are always sub-optimal

under time-varying network conditions, X-MAC also adapts to variable traffic load

by dynamically tuning the durations of receiver’s sleep and listen periods. As the

measure of traffic load, the probability of receiving a packet within a timebound

is estimated by observing the packet arrival rate at a node. Besides of these efforts,

however, it also has limitations; The usage of the early ACK is limited only to unicast

message exchanges, and X-MAC does not provide a mechanism to avoid the hidden

terminal problem.

3.1.3 Hybrid MAC Protocols

While a pure TDMA scheme has been considered an impractical solution for WSNs

due to its poor scalability, poor adaptability to changing network conditions, and
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inefficient broadcasting capabilities, as already indicated in other sources [1], there has

been several efforts to combine the strengths of CSMA- and TDMA-based schemes,

leading to a hybrid approach. In fact, SMAC and TMAC are hybrids of CSMA and

TDMA in that they divide an active period into several specific time slots such as

SYNC, RTS, CTS, and DATA while the underlying medium access method for each

slot is CSMA. In contrast, PTDMA [37] shows smooth switching between CSMA- and

TDMA-based on the level of contention. Given a time slot assigned by a common

TDMA scheme, the probability of accessing the slot by owners and non-owners is

adjusted depending on contention.

Z-MAC (Zebra MAC) [1] improves PTDMA in such a way that there may be more

than one owners per slot if the owners are apart beyond two-hop neighborhoods, which

is similar to resource allocation in cellular networks. An owner of a slot is determined

only once at the very beginning stage, and it has earlier chances to get the slot due to

a higher priority over non-owners based on pre-determined contention window sizes.

The transmission control scheme of Z-MAC lets any node can compete for a slot yet

with different probabilities in low contention while the owner of the slot and its one-

hop neighbors are allowed to compete in high contention. An example of schedules of

nodes is presented in Figure 3.4 where although the global time frame size is six, the

local time frame size of Node A and B is four due to the time frame rule in Z-MAC

that allows re-utilization of slots among nodes beyond two-hop range.

Z-MAC is robust to the hidden terminal problem since when time slots are assigned

to nodes, DRAND (Distributed Randomized TDMA Scheduling) [38] prevents two

nodes within a two-hop communication range from being assigned to the same slot.

To further alleviate the hidden terminal problem, Z-MAC employs explicit contention

notification (ECN) in high contention. ECN is similar to RTS yet differs by sending

only in high contention only to two-hop neighbors of the current slot. When a node A

experiences high contention to another node B, then the node A sends one-hop ECN

to the node B, triggering the node B to broadcast two-hop ECN.
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(a)

(b)

(c)

Figure 3.5.: Nodes with different duty cycles in (a) DSMAC and (b) AMAC, respec-
tively, and dynamic cycle time adjustment of (c) AMAC (reproduced from [7,8])

3.1.4 Adaptive Synchronous MAC Protocols

In addition to these synchronous and asynchronous approaches, further improve-

ments on the tradeoff between energy efficiency and latency can be achieved by more

explicit adaptive scheduling of sensor nodes. Note that many of the aforementioned

protocols such as SMAC and TMAC also have an adaptive mechanism in terms of

duty cycle. And, LPL-based approaches including BMAC are inherently adaptive in

terms of duty cycle when packets are consecutive. Yet the criteria for adaptation is

rather simple, for example, the presence of any subsequent packets. Thus, although

they improve per-hop latency to some extent, the effect of the adaptation is relatively

limited. In this section and the following, we will consider MAC protocols that ex-
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plicitly claim an adaptive method that employ more sophisticated adaptation criteria

or mechanisms.

DSMAC (Dynamic SMAC) [8] is a variant of SMAC and dynamically adjusts duty

cycle according to the current traffic condition and energy utilization efficiency. The

current traffic condition is measured based on average one-hop latency, which is then

embedded in SYNC packet by a sender node. This information is retrieved and used

together with energy utilization efficiency by receiver nodes to exponentially adjust

their duty cycle as shown in Figure 3.5 (a). This exponential duty cycle change is

achieved by adding extra wake-ups and thus still provides shared time intervals for

communication among heterogeneous schedules. When DSMAC experiences heavy

traffic, meaning that average latency is larger than a threshold, then DSMAC doubles

its duty cycle to provide larger throughput. If the average latency decreases, then

it halves. The adjusted new schedule is put into the next sending SYNC packet

to inform neighboring nodes of the schedule change and thus to be utilized. Since

DSMAC adjusts is parameters based on the average network condition, it takes time

to perform the adaptation; in other words, it has lag in adaptation. The lagging time

strongly depends on how to estimate the average, for example, the size of the window

to compute the average.

AMAC (Adaptive MAC) [7] has a similar approach to adjusting the duty cycle as

that of DSMAC like Figure 3.5 (b), yet differs by putting all the nodes that receive

any traffic to the maximum duty cycle as shown in Figure 3.5 (c). In other words,

AMAC doubles and halves its cycle time adaptively like DSMAC; however, it reduces

the cycle time of a node to the minimum (i.e., increasing duty cycle to the maximum)

when the node receives a RTS packet while it doubles the cycle time when there

is no traffic for a period of time until its cycle time reaches to the maximum (i.e.,

minimum duty cycle). The motivation that drives this design is that all the nodes

along a routing path should be on a high duty cycle to maximize throughput and

minimize latency while other nodes conserve energy in low duty cycle mode. Also,

AMAC removes unnecessary RTS periods as in SMAC using the modified SYNC
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packet that contains a preamble bit, called the communication SYNC, to avoid idle

listening of nodes during RTS period. Thus, when a node has a data to send, it

broadcasts a communication SYNC serving as pre-RTS during SYNC period. If

nodes hear the communication SYNC, then they extend their active period to listen

for RTS to check whether they are intended recipient or not. Otherwise, they go to

sleep right after the SYNC period. Using communication SYNC packets, however,

increases the probability of packet collisions in SYNC period, resulting in better

chance of synchronization failure among nodes. This is especially true for the case

of collaborative processing of event-triggered data. It could be worse if the event has

high mobility and continuously moves and thus keeps triggering schedule changes of

nodes around the event.

While DSMAC and AMAC allow nodes to have different schedules among neigh-

bors, they do not provide any mechanism that enables efficient communication be-

tween neighbors with different schedules only within the shared time intervals be-

tween them. Without this mechanism, a node may attempt to transmit a packet to

its neighbor that has a different schedule when the neighbor is not on duty in this

period. Then, the node may retry the transmission multiple times, wasting unneces-

sary energy. In Section 6.1.4, we propose a detailed algorithm that enables successful

communication among heterogeneous schedules.

3.1.5 Adaptive Asynchronous MAC Protocols

While DSMAC and AMAC can be thought of as synchronous MAC protocols

with exponential duty cycle adaptation scheme, there are several adaptive MAC

protocols based on asynchronous schedules [21–23]. MaxMAC (Maximally Traffic-

adaptive MAC) [21] is an adaptive asynchronous MAC protocol that adapts the duty

cycle of nodes exponentially on top of WiseMAC. Besides the short preamble nature

of WiseMAC, MaxMAC adds online traffic adaptation mechanism that puts extra

wake-ups between regular wake-ups of the base schedule, as shown in Figure 3.6.
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Figure 3.6.: Adding extra wake-ups in MaxMAC according to varying incoming traffic
(reproduced from [22])
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This adaptation takes place based on the current rate of incoming traffic estimated

using a sliding window of one second. The schedule change is achieved among three

steps with predefined traffic thresholds through a soft-state approach with predefined

timespans, resulting in avoidance of frequent state transitions.

BEAM (Burst-Aware Energy-Efficient Adaptive MAC) [22] is also an asynchronous

adaptive MAC protocol that aims to resolve drawbacks of X-MAC (1) by adding

acknowledgment-based link-layer reliability support on top of X-MAC and (2) by

adding receiver-initiated transmission rate control of senders and sender-initiated

duty cycle adaptation of receivers using traffic and buffer indicators in the MAC

header. The main drawback of X-MAC is pointed out that it works well only with

light traffic condition. Under heavy traffic or high link error rates, it suffers from

significantly reduced throughput due to lack of reliability support. BEAM, on the

other hand, employs both early ACK for successful preamble reception and data ACK

for successful data reception to provide reliable communication. It basically utilizes

two types of short preambles with and without payload, as shown in Figure 3.7 (a)

and (b), respectively. The short preamble approach without payload which is similar

to X-MAC is more energy efficient in sending preambles yet less robust and more

complex compared to the basic operation mode that sends the short preambles with

payload. Thus, BEAM alternates between two modes depending on the size of the

payload: for smaller payload size, the approach in Figure 3.7 (a) is preferred and vice

versa.

Another drawback of X-MAC that BEAM tackles is lack of adaptation scheme

to the highly varying traffic loads. When a sender experiences congestion based on

its current buffer state, then it sets one bit-long traffic indicator defined in the FCF

field of 802.15.4 MAC header of outgoing packets for short preamble or data, so that

the receiver adapts its wake-up interval (i.e., duty cycle) by estimating an earlier

time to wake-up according to the traffic indicator. When a receiver suffers from

congestion due to possible buffer overflow, on the other hand, it sets two bit-long

buffer indicator in the same FCF field of outgoing packets for early ACK or DATA
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(a)

(b)

Figure 3.7.: Short preamble approach of BEAM (a) with and (b) without payload
(reproduced from [22])
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ACK, causing the sender to reduce its transmission rate. The former sender-initiated

congestion control is called Listen Cycle Adaptation, while the latter receiver-initiated

one is Transmission Cycle Adaptation. According to these adaptation schemes, the

authors claim that BEAM can react and adapt to the rapid traffic change so that it

can handle both low traffic and local/bursty event-driven traffic.

While MaxMAC and BEAM are built on top of WiseMAC and X-MAC, respec-

tively, ALPL (Adaptive LPL) [23] is based on B-MAC and adapts the listening (op-

eration) mode of B-MAC on-the-fly while it also adapts the routing path with a cost

function based on the state information of one-hop neighbors, resulting in a cross-

layer optimization in a greedy sense. In each periodic routing update messages in a

proactive tree-based routing protocol employed, state information is embedded such

as the current listening mode, the number of descendants, the current duty cycle,

and its role. Since the listening mode of B-MAC determines the listen check interval

of the receiver, it also determines the preamble length of the potential sender, corre-

spondingly. Given these state information of neighbors, a node adapts its listening

mode in a MAC layer based on the incoming traffic rate. If incoming traffic rate is

not uniform over the network, then the duty cycle of a node will be different from its

neighbors, resulting in non-uniform cost and thus different routing decisions in each

node. Also, If a node detects an event, it may alter sensing activity level, implying it

has a temporal role different from its neighbors, yielding different cost. These factors

cause routing path to circumvent the busy nodes.

3.1.6 Event-driven MAC Protocols

While most of the aforementioned MAC protocols are designed for a wide range

of applications in general wireless sensor networks, several protocols (e.g., Sift [39],

CC-MAC [40], Alert [41], and EC-MAC [42]) are explicitly and specifically designed

for event-driven wireless sensor networks where the event-triggered packets should be

handled typically with low latency. Since the timeliness is critical when an event of
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Figure 3.8.: A timeline of four nodes running the Sift protocol. Shaded bars indicate
the duration of packet transmissions (reproduced from [39])

interest occurs, the energy conservation is set to be a secondary goal when the event

is present.

Sift [39] adapts CSMA/p∗in such a way that each node has non-uniform proba-

bility distribution over contention windows for transmission at each time slot—each

time slot is divided into multiple contention windows, as shown in Figure 3.8 (a). Sift

multiplicatively increases the probability in the next contention window if no node

transmits in the current contention window. This enables very low contention at the

beginning of each time slot so that first few messages can be transmitted in a timely

fashion. This approach is based on the assumption that only a subset of reports on

events of interest is enough to be transmitted as long as it is reported to the data

sink. It is because the underlying rationale is the packets generated in the vicinity of

an event are spatially-correlated thus redundant.

CC-MAC (spatial Correlation-based Collaborative MAC) [40] also exploits the

redundancy in generated packets to minimize the number of packet transmissions

and thus packets collisions and energy waste, correspondingly. Since CC-MAC has

the same rationale as Sift, it instead selects a subset of nodes iteratively in such a

way that the nodes have maximum coverage with minimum overlapped sensing area

since measurements from overlapped area is redundant. The measurements from the

selected nodes are merged together in the middle of the routing path to construct a

big packet for efficient routing.
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These protocols are all based on the belief that multiple measurements to the

same event must be redundant and thus many of them can be discarded. This may be

suitable for simple scalar sensor-based networks that do not require local collaborative

and collective reasoning around events of interest; however, it does not hold for a

class of sensor networks that employ sophisticated sensors, such as cameras. In such

networks, each measurement taken from different sensors about the same event have

its own perspective and meaning. Therefore, although there exists some redundancy,

all of them need to be processed if possible.

Alert [41] tackles the similar problem of Sift and CC-MAC yet with different

method and different philosophy. The goal of Alert is how to minimize the latency

of all event-triggered packets in event-driven WSNs although there will be some ad-

ditional energy consumption.. Alert employs a combination of time and frequency

multiplexing with multiple channels. Due to multiple channels, the contention is

minimized by optimizing the channel selection probability of the nodes. Besides the

methodological differences between Alert, Sift, and CC-MAC, an interesting obser-

vation among them is that the underlying assumption of Alert is exactly opposite to

Sift and CC-MAC; Alert is designed with the belief that although the event-triggered

messages are typically correlated, all messages as a whole—not just a subset of them

as in Sift—provide valuable information for further inference or refinement of the

decision about the events such as detection of false positives.

EC-MAC (Event-centric MAC) [42] is also proposed for event-driven data collec-

tion with asynchronous schedules. Yet the details will be discussed in Section 3.3.

3.2 Application Space of Adaptive MAC Protocols for Wireless Sensor

Networks

While there exist many canonical MAC solutions that resolve energy problems

in wireless sensor networks, there also have been proposed various types of adap-

tive methods that tackle variable traffic loads as described in the previous section.
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(a)

(b)

Figure 3.9.: An example of handling a chain of packets (from P0 to P14) generated
by an event of interest during a sleep period with different adaptation methods of (a)
Type A and (b) Type B. TC denotes the period of a cycle consisting of an active and
a sleep period, denoted as TA and TS, respectively. TEA indicates the extended active
period in (a).

Depending on how they adapt their network parameters based on what criteria, how-

ever, their adaptability and applicability greatly varies in the space of applications.

In this section, therefore, we first classify the adaptive MAC protocols according to

their adaptation criteria and methods, and then investigate their advantages and

disadvantages to help finding the best application space.

3.2.1 Adaptation Method

In terms of the duty cycle adaptation, most adaptive MAC protocols employ

either dynamic active period with a fixed cycle (Type A) or dynamic cycle with a

fixed active period (Type B), where a cycle is defined as the duration of a pair of

active and sleep periods. In other words, the former changes the duty cycle of a

node by increasing/decreasing the duration of the active period while the latter by
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adding/removing additional wake-ups between two base wake-ups. MAC protocols of

Type A include SMAC with Adaptive Listening, TMAC, and BMAC while those of

Type B include DSMAC, AMAC, MaxMAC, and BEAM.

Type A approach is suitable for the case of a continuous stream of packets between

nodes since active period will be prolonged as more packets are in the queue. Thus,

for the packets that are already in the queue, they will be served with low latency. For

the packets that are instantaneously generated in the middle of sleep period, however,

they must stay in a queue before getting served with extended active period. In the

case of low duty cycle mode of a Type A protocol, the sleep period is usually large,

resulting in the introduction of a large latency in the packets generated during the

sleep period, which would correspond to the packets at the beginning of a packet

stream. Suppose an example that a chain of packets (from P0 to P14) are generated

during a sleep period triggered by the detection of an event as shown in Figure 3.9

(a). In a worst case, the packet P0 must stay in a queue for the entire sleep period to

get served at the next active period beginning at time t2. Yet all the packets will be

served in the next cycle with extended active period, denoted as TEA in the figure, if

necessary.

Type B approach, on the other hand, can serve the packets generated in the

middle of sleep period with less latency than Type A approach, since the duration

of the sleep period is shorter as long as the nodes are in a high duty cycle mode.

Suppose the same example that the same packet chain is generated yet with a high

duty cycle as illustrated in Figure 3.9 (b). For the packet P0 and P10, it will be served

with low latency at time t1 and t2, respectively, since the new active period begins.

Provided that nodes are in a high duty cycle mode, therefore, Type B approach can

handle better the potential packets that may be generated in the future sleep period

while Type A approach does so for the already-generated packets. This implies that

Type A approach is suitable for packet forwarding in the middle of a routing path

while Type B approach is suitable for packet handling at the beginning of the routing

path. Since Type B approach allows nodes to have different schedules with different
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duty cycles, however, it requires more complicated methods than Type A approach

to maintain the heterogeneous schedules in a network and to efficiently communicate

among them. Also, due to the increased number of wake-ups in a high duty cycle

mode, energy is consumed more in Type B than in Type A.

3.2.2 Adaptation Criteria

Adaptations using one of the aforementioned approaches take place when a deci-

sion is made based on a certain type of traffic conditions that each protocol defines.

Virtually, all of the adaptive MAC protocols that we have mentioned adapt their

duty cycle based on the current traffic conditions. How to measure and estimate the

current traffic, however, varies among the protocols.

The MAC protocols that adapts the duty cycle based on the average estimates of

the parameters (Type C) such as the incoming packet rate (e.g., MaxMAC) or average

one-hop latency (e.g., DSMAC) employ a relatively conservative congestion control

mechanism compared to those based on the instantaneous conditions (Type D) such

as the current buffer state (e.g.,TMAC, AMAC, and BEAM ). Type C protocols

inherently have lag in adaptation depending on to what extent it accommodates the

history to estimate the average. Type D protocols, on the other hand, may frequently

change the duty cycle or schedule while they are agile in adaptation. To avoid too

frequent schedule changes, protocols may choose a soft-sate approach with a time-out

as in MaxMAC.

Those protocols may change the duty cycle gradually (Type E) as the adaptation

metric reaches one of the pre-defined thresholds (e.g., MaxMAC and DSMAC). This

approach is a more conservative congestion control method than those who imme-

diately and aggressively adapt the duty cycle (Type F) (e.g., TMAC and AMAC).

Type F protocols may over-provide bandwidth and thus spend unnecessary energy;

however, in case of a burst of upcoming packets triggered by an event of interest, they

can be better prepared and thus handle them better with low latency.
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The conservative approaches (Type C and E) tend to prioritize the energy effi-

ciency over the performance even during the time period that adaptation is neces-

sitated. Therefore, the conservative MAC approaches are more suitable for a class

of applications that require tight energy efficiency and are tolerable to the network

performance. Especially they are best suited to the applications that generate delay-

tolerant data packets, since the conservative approaches may require a larger transient

time to react to the change of network conditions and to adapt their parameters (e.g.,

the duty cycle) to the maximum. Of course, once the parameters are adapted to a

desired level, then delay-sensitive data can be properly handled, and variable traffic

loads can also be better handled by reducing buffer overflow problem. Due to the

large transient time, however, when the source of the delay-sensitive data packets

are not static and when the routing path of the delay-sensitive data packets in a

multi-hop network is volatile or dynamic, then the performance may be significantly

degraded since multiple transient times would be required for the network parameters

to be adapted and stabilized.

The aggressive MAC approaches (Type D and F), on the other hand, can support

better another class of applications that put more emphasis on the performance than

energy efficiency during the time when the network needs to be highly activated.

These type of MAC protocols are best suited to the applications that have a long

period of idle time followed by a sporadic and short time of high activity in a net-

work. It is because the MAC protocols can maximize the performance of applications

yet may waste energy when they over-provide resources during the highly activated

periods. These aggressive approaches minimize the transient time required to adapt

the parameters so that delay-sensitive data can be treated better. Especially the

combination of Type D and F (e.g., AMAC) can provide better support for even

a light traffic of delay-sensitive data than the combination of Type C and E (e.g.,

DSMAC). A surveillance application in an intruder detection/tracking system could

be an example of such applications.
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3.2.3 Applicability to Collaborative Networks

In terms of the applicability of adaptive MAC protocols to the applications that

may require collaborative processing among neighboring nodes, we need to investi-

gate how well the MAC protocols cope with broadcast messages since such application

require extensive broadcast-based traffic among mostly single-hop neighbors. This

is especially true for tracking applications in wireless camera networks. For asyn-

chronous MAC protocols, broadcasting is inherently an expensive operation when it

is achieved by a series of unicast to each neighbor, or it induces a longer preamble

to make sure all neighbors are listening, resulting in a larger per-message latency.

For synchronous adaptive MAC protocols, maintaining and utilizing heterogeneous

schedules among neighbors is not an easy task. Moreover, successfully transmitting

a broadcast message among nodes that have heterogeneous schedules is even more

difficult. To the best of my knowledge, there has been no synchronous MAC protocol

that provides such functionalities.

Consider an object tracking application in a wireless camera network where objects

have high mobility, which is prune to occur in reality. The MAC protocol employed

in such network should be able to handle all generated traffic with minimum delay

since time is critical in tracking. With highly mobile objects, the transient time of the

MAC protocol is therefore also very critical in tracking performance. We can only try

to minimize this transient time and cannot remove it as long as the MAC protocol

reacts to the environment. And, the aforementioned adaptive MAC protocols all react

to the current network conditions. Therefore, to the best of my knowledge, there is

no way that removes this transient time in existing MAC protocols.

The only way that we can conceive is to adapt the network parameters before any

communication activity occurs. Then any significant communication activity will be

able to be served with optimal parameters, resulting in optimal performance. This

type of proactive, not reactive, approaches require a measure to make decisions on

when to and how to adapt the parameters. While the reactive approaches are based
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Figure 3.10.: The Frisbee model (reproduced from [25])

on the measure of the current states, the proactive approaches should be based on

a certain type of prediction that gives us an estimation of the network conditions in

the future.

3.3 More General Network Adaptation Strategies

There have been multiple approaches and models that somehow accommodate the

concept of prediction in adapting a network. The approach in [25] is proposed with a

belief that unattended networks deployed in a real environment must automatically

self-configure to adapt to dynamic environmental conditions. As a core building

block, the Frisbee model is proposed, which dynamically sets a circular zone with

a pre-defined radius around the current location of a target being tracked by the

network, as shown in Figure 3.10. The nodes within the zone are then kept in fully

active state while those outside the zone are inactivated (i.e., power-saving mode) to

minimize energy waste. As the target of interest moves, the zone should also move

centered at the target. A node then makes a decision autonomously on whether it is

within the range or not with the help of a localization algorithm.
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To enable this heterogeneity, the Frisbee model assumes that it must be possible

that the nodes in power-saving mode can be activated by other nodes using a wake-up

signal. Therefore, as a target moves, a so-called “wake-up wavefront” is propagated

in the direction of the movement of the target. Since inactivated nodes are not able

to detect a target nor send any signal in this model, a set of nodes that stay awake

all the time are defined and serve as “sentries”, resulting in a tiered architecture.

Since it uses a wake-up signal, however, the nodes must be equipped with a special

hardware such as wake-up radio. Also, using a wake-up radio to activate transceiver

forces all nodes within one-hop range turn on their transceiver regardless of what the

radius of the Frisbee is set. Moreover, having always-on nodes are not feasible in

energy-constrained wireless networks and, therefore, not applicable to wireless sensor

networks. Having only two types of modes (i.e., active or not) in terms of the level

of activeness also limits the adaptability of the network to dynamically changing

environments.

Another approach described in [26] adopts a modified Frisbee model for a surveil-

lance application in a random sensor network. The surveillance system is structured

by a static cluster-based tracking architecture consisting of two types of sensors: Sim-

ple sensors that have only sensing capability are pre-determined as cluster members

while complex ones that have computation capability as well serves as cluster heads.

A target from a sensor is first localized using Maximum Likelihood estimation in

cluster members and then combined using Kalman filter in a cluster head. Once the

location of the target is estimated, then an asleep-awake mechanism is employed for

energy-efficient operations, which selects a set of nodes that needs to be activated.

The mechanism defines a model with two active zones and lets the nodes within the

zones fully active. The first active zone is defined as the circular region centered at

the estimated current location of the target being tracked, which is exactly same as

the Frisbee model. To better help the target tracking in case of large errors, the

second active zone is defined, which is centered at the estimated target track in the
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Figure 3.11.: Layered onion-like node state distribution around the target in PECAS
(reproduced from [43])

previous recursive step. Since the active zones are maintained as a new zone with a

single lag, this model is called “Frisbee model with memory”.

Although this approach improves the Frisbee model in terms of tracking, it still

inherits the shortcomings of the original version except for the always-on node case.

In addition, the aforementioned approaches seem to somewhat take into consideration

the future state of the target of interest, yet based heavily on a heuristic reasoning.

Probing Environment and Collaborating Adaptive Sleeping (PECAS) described

in [43] is based on a similar rationale in a sense that only a subset of the network

around an event of interest needs to be active for energy efficiency. Whereas the nodes

in the aforementioned approaches are awakened by other nodes using a external wake-

up signal, however, the nodes within the active region in this approach broadcast a

wake-up packet so as to proactively wake-up other nodes. There are four states defined

as illustrated in Figure 3.11: the nodes in Tracking mode are the nodes that actually



42

detecting an object and participating a collaborative tracking, which are in the region

of event occurring. The nodes in SubTrack mode are the nodes that can overhear the

packets from the nodes in Tracking mode, which are within one-hop communication

range. Each node in SubTrack mode broadcasts a Prepare message so as to wake-up

another set of nodes, which are in the region of two-hop communication range. Thus,

the nodes in Tracking, SubTrack, and Prepare modes within two-hop range are in

fully active state. Other nodes will be in a low-power mode.

This type of proactive wake-up mechanism makes the network adaptive and pre-

pared for upcoming possible events; however, a large amount of wake-up packets

generated in a local area may cause a huge communication overhead and enhance

congestion around an object, resulting in increased packet collisions and hence may

degrade tracking performance. More energy consumption is also obviously entailed.

While the approach in [44] operates nodes in a similar way, it has a different

method to determine the range of adjusting the duty cycle around the event of interest.

The method dynamically changes its duty cycle based on the number of hops from

the event-detecting node. Also, its duty cycle adjustment is performed additively

so that the sleep interval changes in, for example, 1T , 2T , 3T , and 4T , whereas

the DSMAC and AMAC approaches take exponential duty cycle adjustment, for

example, 1T , 2T , 4T , and 8T . However, the downside of an additive adaptation of

duty cycling is already pointed out in [7, 8] that it is hard for a node to synchronize

with its neighbors since if the neighbors have different schedules, then there may

not be a single overlapping SYNC slot for all the neighbors, resulting in multiple

transmissions of a SYNC packet by the node.

Instead of waking up all the nodes within a fixed range, the approach described

in [45] predicts a smaller set of nodes that an object may appear in the next time step,

and then wake them up only. To make prediction, it first stores the object movement

log over time in a type of database and then discover the movement pattens of objects

by mining the database, generating object movement rules. Then a region that an

object is likely to appear in the future is predicted, and the nodes within the region
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(a) (b)

Figure 3.12.: Using convoy tree to track the target. (a) Data collection (b) Tree
reconfiguration (reproduced from [46])

will be activated. Since the network is hierarchically structured with multiple-level

clusters, if an object is lost by the failure of the prediction, the nodes within a larger

region defined in a higher level will be activated by the cluster head until the missing

object is found.

Since the entire past history of objects that appeared is stored and mined, the

prediction would work well if the type of objects and the movement patterns are rel-

atively static rather than random. Therefore, although this approach indeed predicts

the next nodes that are likely to detect an object, its usage is limited and so not

suitable for dynamic networks in terms of the target’s mobility.

There are also other node activation schemes in a structured network. Convoy-

tree approach proposed in [46] is based on a tree-based reconfigurable structure and

adaptively activate/deactivate nodes using Geographical Adaptive Fidelity (GAF)

[47], as illustrated in Figure 3.12. Collaborative tracking operation in this approach

entails tree expansion and pruning with regard to the target’s speed.

Above all, it is not clear what the aforementioned approaches mean by activating

nodes. Even when they define activation as turning on radio or increasing duty cycle,

they fail to address how to successfully perform the activation/deactivation through

communications among the nodes that may have heterogeneous schedules. If they do

so in a naive way that a node retransmits a packet if unsuccessful, it may incur multi-

ple retransmissions, resulting in energy waste and possibly poor throughput/latency
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Figure 3.13.: A timeline of a sender (Node S) and two receivers (Node A and B) in
EC-MAC (reproduced from [46])

due to enhanced contention. Without stating how to actually schedule communica-

tions in different modes, therefore, it is difficult to imagine how to get performance

gain.

EC-MAC (Event-Centric MAC) [42] points out that all the existing works inspired

by the Frisbee model handle the issues on selective activation of a subset of nodes

related to an event in only either application or network layer. Instead, EC-MAC

provides a hybrid MAC scheme of asynchronous random access and TDMA that can

facilitate efficient and reliable communication in a cluster-based collaborative data

processing and forwarding. In an idle state, all nodes operate with asynchronous

duty cycle schedules. When an event of interest occurs, a burst of RtR (Request to

Receive) packets is initiated by a node and wakes up all the nodes within an active

region and set up/reserve a TX-RX exchange schedule with intended receivers, as

shown in Figure 3.13. Corresponding receiver nodes reply back with a CtS (Clear

to Send) packet which is similar to the early ACK in X-MAC. Using this scheme of

medium access control, a tree-based cluster is constructed among the nodes that are

currently observing the event. The root node (i.e., cluster head) then assigns time

slots to its one-hop neighbors. These neighbors then propagates the schedule to the

leaf nodes that may be in multi-hop away from the root node.
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While EC-MAC provides an event-driven local data collection mechanism among

asynchronous schedules, its objective is set to reliably and efficiently collect data

within an active region. Therefore, its design does not take into account the delay-

sensitivity of generated traffic. In addition, for the methods inspired by the Frisbee

model, it is crucial how an active region is defined and what should be the radius of

it, because it affects the level of preparation of the nodes for the upcoming events.

However, EC-MAC defines the active region as only the set of nodes that are already

detecting an event, which contradicts to the motivation of the Frisbee model. More-

over, it assumes to use an existing tree construction algorithm which may greatly

affects on the performance of the data collection in terms of latency.

Note that all adaptive approaches in network protocols and all predictive ap-

proaches for network adaptation are based on the proximity of the actual nodes to

the event. This implies that all of them are designed under an assumption that

their target wireless sensor networks employ non-directional sensors, the center of the

sensing field of which is the location of the sensor node. Since camera is a highly di-

rectional sensor (it may have very narrow field of view, causing strong directionality),

their assumption does not hold and thus they are not suitable for wireless camera

networks. Unless all cameras are deployed in a way that they are viewing strictly

downward, which is obviously impractical assumption, the predictive approaches for

network adaptation in wireless camera networks must be based on the distance metric

between the event and the sensing region of the nodes.

(Paul: TODO: Include [27])

3.4 Tracking Approaches for MAC Layer

The aforementioned predictive approaches for network adaptation are mostly

based on a heuristic reasoning. Making a statistically optimal prediction is obvi-

ously preferred for network adaptation, and it must be entailed by employing an

optimal estimator with given measurements such as Kalman filters and Particle fil-
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ters. Suppose we implement a tracker in the MAC layer to get optimal prediction.

Then we should not assume that accurate measurements are available. Oftentimes

what a node can infer in the MAC layer by overhearing on-going packets is whether

an object of interest is present or not, which is embedded in the packet header as

a binary information. Thus, in the viewpoint of MAC layer, we can think of other

nodes as binary sensors regardless of the resolution of their actual sensors. Even if

a couple of bits are used to represent the state about an object, it must be in an

extremely low resolution. Therefore, it is important to investigate how a tracking

task is performed with binary sensors in a sensor network context.

Tracking objects using binary sensors in a large-scale real sensor network de-

ployment is successfully demonstrated in [48]. The tracking methods or trajectory

estimation strategies among literature for binary sensor networks roughly bifurcated

as piecewise linear path approximation-based [49–51] and particle filter-based ap-

proaches [50,52,53].

While the former is simple and computationally inexpensive, we are more inter-

ested in the latter approaches which are based on Particle filter [54–56] since they

provide us optimal estimation, and recent advances in embedded systems such as

Imote2 [57] allow us to employ more sophisticated algorithms with less cost and en-

ergy.

The authors in [50] propose two minimal trajectory estimations and representa-

tions with the ideal and non-ideal binary sensing models, respectively. For the ideal

sensing model where the sensing range of a binary sensor is modeled as a circular

region with a fixed radius, a minimal set of connected line segments is identified that

pass through all arcs of sensing boundaries belonging to a localization patch as shown

in Figure 3.14. A localization patch is defined as the intersection of the sensing range

of the nodes that are simultaneously detecting an object of interest at a given time

instant, subtracted by the union of the sensing range of the nodes that do not de-

tect the object at the same time instant. In 2D case, for example, it is analogous

to a tessellation. For the non-ideal sensing model where a uncertainty region lies
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(a) (b) (c) (d)

Figure 3.14.: The minimal trajectory estimations and representations with the ideal
binary sensing model: (a) Shows a target moving through a field of three binary
proximity sensors, X, Y, and Z (b) Shows sensor output as a function of time (c)
Shows the localization patches to which the target is localized (d) Shows the arcs
marking boundaries between patches (reproduced from [46])

outside the ideal sensing range, the piecewise linear approximation yields a poor per-

formance in terms of trajectory estimation. Therefore, a particle filter is employed to

accommodate this non-ideality in tracking. After estimating the trajectory using the

particle filter, a geometric piecewise linear approximation algorithm is applied to get

a minimal trajectory representation as a post-processing.

The particle filtering for non-ideal sensing model in [50] is summarized as follows:

At an initial state, it is assumed that we have K particles associated with the current

location of a target at a time instant n: xk[n]. At the next time instant n + 1,

assuming that an object is detected at the localization patch F , draw m candidate

particles randomly for each particle xk[n] uniformly over the patch F , resulting in total

mK candidates. Then, we choose a new set of K particles among mK candidates

that minimize the cost function defined as the sum of the total acceleration between

time instances over the history of the target. This type of cost function yields the

lowest-pass trajectory evolution since the high frequency part that corresponds to

high acceleration is minimized.

This approach, however, requires a number of strong assumptions in terms of com-

munication. The basic assumptions include the perfect time synchronization among

nodes and the relatively accurate localization of nodes. Moreover, a tracker node—
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which corresponds to the cluster head in a cluster-based tracking system—is assumed

to be able to collect all sensor observations without any communication issues. In

addition, the identification of the localization patches is a critical step in tracking

objects. Yet it must be predicated by the fact that a tracker node has sensor readings

from its neighbors with the exactly same time stamp. In practice, however, it is usu-

ally very hard to make these assumptions. Furthermore, if communication latency is

not negligible, which is actually true in most event-driven collaborative wireless sensor

networks, these assumptions will no longer hold. Nonetheless, the investigation on

the fundamental limit of spatial sensing resolution in tracking using binary proximity

sensors of this work provides us a useful theoretical analysis to better understand

tracking performance in a binary sensor network, albeit in a high level view with an

idealized communication setting.

The work described in [53] improves the above approach in a sense that multiple

target tracking in a binary sensor network is enabled with theoretical analysis on

the target countability. To track multiple targets, the same particle filter technique

described above is used yet with clustering of particles. This particle cluster-based

target identification is essentially based on the intuition that if there are multiple

targets, then particles will form multiple clusters around the center of the targets.

Therefore, the number of clusters in particles will correspond to the number of targets

within a particular localization patch at a given time. This approach is an improved

version of the previous approach yet inherits all the shortcomings, too.

Instead of identifying localization patches, the particle filter employed in [52] for

tracking with binary sensors draws a set of random samples from the entire sensing

region of a binary proximity sensor detecting an object. The goal of this approach is to

estimate the direction of the movement of the object of interest as well as the current

location. For object direction estimation, it requires a type of binary sensors that

output whether an object is approaching to a node or moving away from it. For object

localization, on the other hand, it requires another set of binary proximity sensors,

resulting in multi-modality in sensor network deployments. Without the proximity
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information, they show that there exists indistinguishable pairs of trajectory for any

binary sensors. Since this approach requires special types of binary sensors for target

localization, it is not generally applicable especially to tracking task in MAC layer.

In addition to the aforementioned centralized particle filters with binary sensors,

there are distributed versions of particle filters used in general sensor networks, which

can be found in [58,59].
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4. OBJECT TRACKING FROM THE BOTTOM OF
NETWORK

In this section, we present a novel framework for object tracking from the bottom

of the network protocol stack of WCNs. The proposed object tracker resides in a

separate module in each node that can interact with all of the layers of a protocol

stack. The interaction between any of the protocol stack layers and the tracker creates

inputs for the tracker that can be used to update the state of the object being tracked.

The updated state thus calculated can subsequently be retrieved by all the layers of

the protocol stack. Such interaction between the tracker and the layers of the protocol

stack allows for online cross-layer optimization to be carried out simultaneously while

an object is being tracked.

Consider a WCN shown in Figure 4.1. The communication range and the field-of-

view of each camera node are shown, respectively, in Figures 4.1(a) and (b). The goal

of this camera network is to track an object of interest depicted as the star in Figure

4.1(c). As the object moves, the cameras that can detect this object form a cluster

to track the object collaboratively. The data aggregated within the cluster is then

delivered to the base station (or sink) through multi-hop communications as shown in

Figure 4.1(c). The nodes labeled E and F represent those cameras that are currently

able to see the object and are actively participating in the data aggregation. Thus,

the duty cycle of these nodes must be set sufficiently high in order to carry out the

collaborative object tracking. Since it is likely that the nodes A and B will soon see

the object based on the expected future location of the object, their duty cycle should

be increased in order to achieve a low-latency condition prior to the object becoming

visible to them. The methods with which we use to achieve this will be discussed in

detail in Sections 4.1 to 6.1.4. The nodes B, H, C, and D are those that are actively

participating in delivering the aggregated data to the base station. The duty cycle
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at these nodes would also need to be sufficiently high so that the packets containing

the information of the object can be delivered to the base station as quickly and as

reliably as possible. Our proposed method to achieve this will be the topic of Section

6.1.5.

To enable predictive network adaptation, the nodes where the objects are highly

likely to appear soon must be notified so that they can get ready to handle the

imminent increase in radio traffic. If such notification is carried out through explicit

transmission of packets, it will entail not only additional energy consumption but

more importantly increased traffic in the nodes that are engaged in object tracking.

Our proposed approach therefore does not involve transmitting explicit notifications

by the currently busiest nodes. Instead our approach employs an implicit notification

embedded in the MAC header of all outgoing packets so that the receiving nodes can

infer the state of the object and adapt the network parameters accordingly. Since

the notification is set in the packets that are supposed to be transmitted anyway, our

method incurs no additional communication overhead. In Section 4.1, we will describe

in detail how the implicit notification is carried out by the notion of augmented

sensing.

The aforementioned online network optimization technique requires a prediction

of the state of the object and a proper metric to estimate the probability of the object

appearing at a node at a given time. In Section 4.3, we will present how to keep track

of the current position of the object and make a prediction on the state of the object.

4.1 Augmented Sensing

Sensing generally refers to an action of obtaining measurements from a sensor. In

the context of WCN, sensing can be interpreted as obtaining object measurements

from the images acquired by a camera attached to a wireless mote. We will refer

this type of sensing as direct sensing. Indirect sensing, on the other hand, refers to

obtaining measurements (or any object state information inferred therefrom) from the
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Figure 4.1.: A depiction of a WCN engaged in tracking a moving object. The dotted
circles and lines in (a) represent the communication range and connectivity among
nodes, respectively, and the dotted rectangles in (b)-(c) represent the sensing field of
nodes. The red star in (c) indicates the object of interest and the black solid arrow
its moving direction. The black dotted arrows in (c) indicate the routing path of the
packets triggered by the detection of the object. The augmented sensing field of node
C is shown in (d) as an example, which is the union of the sensing field of node C
and its communication neighbors illustrated as red regions.
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sensing capability of the neighboring nodes via a communication channel. We will

use the term augmented sensing to include both direct sensing and indirect sensing.

Indirect sensing is usually in a summarized or compressed form since commu-

nication is expensive in WSNs. The summarized measurements of an object (e.g.,

center of mass and direction) can be made to known to other nodes by explicitly

transmitting packets that contain the object information. The receiving nodes can

extract the current state of the object and adapt their parameters, if necessary, in

anticipation of the arrival of the object. As we mentioned earlier, this approach is

not likely to work in practice because it creates additional communication overhead

for the already busiest nodes in the network that are currently engaged in object

tracking. These nodes cannot be expected to also be responsible for broadcasting the

object state information to other neighboring nodes in the network. Therefore our

proposed framework employs indirect sensing that does not require any communica-

tion overhead. The indirect sensing in our framework is a single-bit flag embedded in

the MAC header of all outgoing packets. We refer to this one bit as Explicit Event

Notification (EEN) flag1. Since a node currently engaged in object tracking is bound

to generate a large number of packets, embedding a binary flag in all outgoing packets

will effectively notify the neighboring nodes about the presence of the object inside

the sensing field of the node without incurring any additional communication traffic.

A node receiving/overhearing a packet with the EEN bit set to 1 can assume that the

object of interest is located somewhere in the field-of-view of the node that sent the

packet. The augmented sensing field of a node therefore is the union of its own field-

of-view and the field-of-view of its one-hop neighbors. Figure 4.1(d) illustrates the

augmented sensing field-of-view of node C. As we will describe later, a Kalman filter

at each node aggregates all the measurements obtained through augmented sensing

in order to keep track of the object.

In order to carry out indirect sensing, a node must know about the field-of-view

of its one-hop neighbors. For that purpose, we assume that the cameras in the
1EEN can be thought of as a generalized and implicit form of ECN (Explicit Congestion Notification)
used in TCP/IP.
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network have been localized and calibrated and that the field-of-view of each camera

is available in the form of a 3-tuple (i, z, R) where i identifies the node (iself is the local

node address), z corresponds to the center of its field-of-view, and R is an ellipsoid

that approximates the area of the field-of-view. During an initialization stage, each

node broadcasts its field-of-view information to its one-hop neighbors. When a node

receives the field-of-view information from its neighbors, it simply stores them in a

list within the tracker module.

Since EEN can be set within the FCF field of the MAC header, which is available

in most standard MAC protocols such as 802.15.4, our proposed method does not

require any modification of the structure of the packet formats of existing protocols.

Moreover, since EEN is included in the packets that are supposed to be transmitted

anyway, our proposed method does not incur any additional communication overhead.

Obviously one could allocate additional bits to embed more descriptive information

about the object. In fact, the FCF field of the MAC header of the current implemen-

tation of 802.15.4 MAC protocol in TinyOS takes only 7 bits out of available 16 bits,

leaving us with up to 9 bits that could be used for EEN. In this paper, we use only

one bit for EEN to demonstrate that there is a significant performance improvement

by our proposed PNAT framework even with the coarsest indirect sensing achieved

by a single bit.

For obvious reasons, indirect sensing would be most effective if each node checks

the EEN bit for all receiving packets, including those packets not intended for the

node. This can be easily implemented by checking the EEN bit first at a protocol

stack before the destination address check in the MAC layer. Thus, it does not entail

unnecessary energy consumption that usually happens in typical packet overhearing.

Since we only intend to detect whether or not the EEN bit is set, we refer to this

process as event packet detection.
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4.2 Tracker Design

It is reasonable to assume that each node can acquire multiple observations of

the object via direct and/or indirect sensing. Each measurement may be represented

by the expected location of the object along with its uncertainty in the form of a

covariance matrix. The goal of the discussion that follows is to show how all the

measurements acquired sequentially as the object is being tracked can be used in a

recursive framework to predict as to what nodes are likely to see the object next

with what probability. There is a number of recursive estimation methods available

including various types of Particle filters [54,58], but we chose to use Kalman filter [60]

because of its low computational and memory requirement.

Note that the Kalman filter employed in this paper is one of the simplest forms

with a linear dynamics and measurement model. We fully realize that such a simple

model is not adequate to capture various object movements that may occur in dif-

ferent applications. Our intention is to show that even with such a simple tracker, a

significant performance gain can be made possible using our proposed PNAT frame-

work. Obviously the type of tracker used in the system would impact the level of

performance gain, and such evaluation is beyond the scope of this paper.

4.2.1 System Model and Kalman Filter Equations

Each node that is currently engaged in observing and tracking the object of interest

will create a state vector for the object. When a new object is detected within the

augmented sensing field-of-view of a node, the state vector of the object is initialized

with the initial object observation. Subsequently, the node uses the Kalman filter

equations to update the state vector. This updated state vector is then used to make

a prediction about where the object will likely to appear next.
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We model the object state as a 4-D vector that consists of the object position

(xk, yk) at a discrete time instant k and its velocity (ẋk, ẏk). That is, the state vector

is given by

xk =
[

xk yk ẋk ẏk

]T

.

The system dynamics are modeled by

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk + δkẋk + ax

2 δ2
k

yk + δkẏk + ay

2 δ2
k

ẋk + axδk

ẏk + ayδk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where δk is the time elapsed between two successive observations. That is, if the

kth observation was acquired at time tk, the observation k + 1 is acquired at time

tk+1 = tk + δk. The event acceleration (ax, ay) is modeled as white Gaussian noise

with covariance matrix Qk. Then, the system dynamics can be represented as

xk+1 = Fkxk + Wkwk

where

Fk =

⎡
⎢⎣ I(2×2) δkI(2×2)

0(2×2) I(2×2)

⎤
⎥⎦ ,

Wk =
[

δ2
k

2 I(2×2) δkI(2×2)

]T

,

and wk = [ ax ay ]T is the process noise vector with covariance matrix Qk.

Each direct sensing measurement consists of the approximate location of the object

along with with its uncertainty as given by the covariance matrix associated with the

state vector. The measurement model can be described by

zk+1 = Hk+1xk+1 + vk+1,
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Figure 4.2.: An illustration of how the event packet detection is used not only to get
advance notice of an approaching target but also to decide whether the target is close
enough for any changes to the local communication parameters. Node A is currently
detecting an object and wants to collaborate with node B. The outgoing packets from
node A have their EEN bit set. Node C, which is within a single hop range of node
A, detects one such packet. Then, node C uses this information to form an estimate
of the current position of the object.

where Hk+1 = [ I(2×2) 0(2×2) ] and vk+1 is the measurement noise, assumed white

Gaussian with covariance matrix Rk+1.

Let x̂k+1|k and x̂k|k be the predicted and the previously estimated state vectors,

and similarly, Pk+1|k and Pk|k the predicted and the previously estimated covariance

matrices. Then, the time update equations of the Kalman filter are given by

x̂k+1|k = Fkx̂k|k (4.1)

Pk+1|k = FkPk|kF T
k + WkQkW T

k . (4.2)

4.2.2 State Updates by Indirect Sensing

Exactly the same Kalman Filter that was described in the previous subsection

is used to estimate the state vector using indirect sensing measurements. Note that
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Algorithm 4.1 Object tracking via indirect sensing using KF in the tracker module:
Cross-layer interaction from MAC and application layer
< Application layer >

1: zdirect � a measurement from camera in a form of coordinates
2: Rdirect � the covariance matrix associated with the measurement zdirect

3: loop � Infinite loop while a node is running
4: if a new sensing result is available then
5: if an object is detected within the sensing field at time tk then
6: Provide tracker module the new measurement (zdirect, Rdirect)
7: else � No object is detected
8: Provide tracker module a NULL measurement
9: end if

10: end if
11: end loop

< MAC layer >
1: packet(i) � a packet transmitted by node i
2: NodeId[Size] � an array to store the list of node IDs
3: isDetecting � a boolean indicating whether the node is currently detecting an

object or not
4: Ttimeout � the periodic time interval to send NodeIDs to tracker module
5: A timer is set to expire at every Ttimeout

6: loop � Infinite loop while a node is running
7: if a new packet(i) is available with EEN bit set then � Indirect sensing
8: Insert i into storage NodeId
9: end if

10: if timer is expired || NodeId is full then
11: Send storage NodeId to tracker module and Reset timer and storage

NodeId
12: end if
13: if a packet is ready to be sent && channel is clear then
14: EEN bit of the packet ← isDetecting
15: end if
16: end loop
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Algorithm 4.2 Object tracking via indirect sensing using KF in the tracker module:
Cross-layer interaction at the tracker module
< Tracker Module >

1: zindirect(i) � the center of the sensing field of node i
2: Rindirect(i) � the ellipsoidal approximation of the sensing field of Node i repre-

sented as a covariance matrix
3: loop � Infinite loop while a node is running
4: if an arrayNodeId[N ] is received from MAC layer then � Indirect sensing
5: for n := 0 to N − 1 step 1 do
6: Kalman(zindirect(NodeId[n]), Rindirect(NodeId[n])) � calls Function
7: end for
8: else if a new (zdirect, Rdirect) is received from application layer then �

Direct sensing
9: if zdirect �= NULL then

10: Set isDetecting ← True in the MAC layer
11: Kalman(zdirect, Rdirect) � calls Function
12: else Set isDetecting ← False in the MAC layer
13: end if
14: end if
15: end loop
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when a node detects a packet with its EEN bit set to 1, then the MAC layer can

provide the ID of the sender to the tracker module. The tracker first converts the

ID of the sender into (z, R) using the field-of-view information obtained during the

initialization stage. The Kalman filter then uses (z, R) as an input to update the

state vector of the object. Figure 4.2 illustrates this process.

The estimation of the state vector of an object by indirect sensing only (i.e., by

event packet detection) poses an interesting challenge: How should the node that

detects the EEN bit associate observation uncertainty with the object position at the

sender of the EEN bit? The approach taken in our work is to assume that the mean

position of the object is at the center of the field-of-view of the sender. We further

assume that the covariance of the object position can be approximated by the area of

the field-of-view of the sender. In other words, an indirect sensing measurement ob-

tained by a packet sent by node i takes a form of a Gaussian distribution (μ(i), Σ(i)),

where μ(i) is the center of the field-of-view of node i and Σ(i) the covariance matrix

approximated by the area of the field-of-view of node i. This simple Gaussian ap-

proximation enables our predictive duty cycle adaptation scheme to be applied even

to the extremely resource-constrained wireless embedded devices. One could use a

nonlinear estimator such as a Particle filter at the cost of larger resource overhead.

We want to note that a naive approach of updating the object state vector each

time a node receives an indirect sensing measurement may result in inaccurate and

biased state estimation. As mentioned before, as an object is being tracked, all the

nodes in the vicinity of the object can acquire measurements via direct and indirect

sensing. If a cluster is created among the nodes that are detecting the same object,

one of them will be elected as the cluster head and the rest its members. Depend-

ing on the role of a node in a cluster, the traffic rate generated by each node could

vary significantly; mostly the cluster head generates more traffic for reporting the

updated object states to the base station and for performing various cluster opera-

tions. Therefore, if a node updates its tracker each time it receives an indirect sensing

measurement (i.e., detects an EEN-set packet from one of the clustering nodes), then
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the estimation of the tracker would likely be biased toward the center of the sensing

field of the cluster head.

To resolve this issue, we devise in the MAC layer an array for storing the node

IDs and a timer with a timeout threshold Ttimeout. The MAC layer stores the ID

of the sender of an EEN-set packet in the array unless the ID is already in the list.

Whenever the timer expires or the array is full, the MAC layer sends the list of node

IDs to the tracker module and resets the list. The tracker then converts the node IDs

into a set of measurements (z, R) and updates its states.

Of course, this time-window based approach introduces a latency in the Kalman

filter update. However, we argue that the benefits of avoiding estimation bias and

instability far outweigh the slightly increased latency in the Kalman filter update.

One strategy for reducing the effects of the increased latency is to set the EEN

bit of a packet only after making sure the channel is clear right before the packet is

transmitted. The nodes receiving this packet can estimate the time that the measure-

ment was actually taken by subtracting the expected transmission delay of the packet.

Since the transmission delay is consistent for the packets with the same length, the

detector can estimate the measurement time quite accurately.

If a packet with its EEN bit set is detected along with its corresponding time

stamp, and a time synchronization is maintained among the nodes, we can easily

obtain a reasonably precise time measurement and accurately compute the time in-

crement δk [61]. Even when the measurement time is not accurate, note that the

received measurement in the MAC layer via indirect sensing is already a good ap-

proximation to the actual position of the object. Thus it is reasonable to assume

that any inaccuracies caused by time jitter in indirect sensing can be expected to be

negligible.

Algorithm 4.1 and 4.2 summarize the Kalman filter based tracking at each node.
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4.3 Spatio-Temporal Event Probabilities

Given an event (or object) j at a time instant tk, the corresponding spatio-

temporal event probability (STEP) distribution at a particular position u, denoted

as Sj
k+1|k(u), is defined as the probability of the predicted position of the event j at

position u at time tk+1 = tk + δk , where δk is the prediction interval. That is, let

pj
k+1|k be the predicted position of the event, then the STEP at position u at tk+1 is

given by

Sj
k+1|k(u) = Pr(pj

k+1|k = u). (4.3)

Note that Sj
k+1|k(u) and pj

k+1|k correspond to the prediction at a future time instant

tk+1. The prediction interval δk should be determined to be larger than the time

needed for a node to change its network parameters such as the duty cycle and the

time needed for the change to actually take place so that the node can complete the

adaptation process before the event actually occurs at the node.

Once the tracker module receives a list of node IDs from the MAC layer and com-

pletes all updates, the tracker estimates the STEP distribution by using its prediction

module to make a prediction of the future position of the target. Assuming the cur-

rent estimated state is x̂k|k after completing all updates, the predicted position of the

target pj
k+1|k for time tk+1 is given by

pj
k+1|k =

⎡
⎢⎣ 1 0 0 0

0 1 0 0

⎤
⎥⎦ x̂j

k+1|k.

Since the prediction interval δk is not known at time tk, the prediction is carried

out using a pre-defined δk. The STEP at position u at tk+1 then can be estimated

according to using Eq. (4.3).
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Figure 4.3.: The state transition diagram that describes the steps to determine a new
network parameter value based on FEDP.
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5. PREDICTIVE NETWORK ADAPTATION BY
TRACKING

While the network protocol stack keeps track of a target object by the tracker module

utilizing the event information from the bottom of the network, we would want the

adaptation of the network parameters to take place simultaneously in the individual

protocol layers connected to the tracker module. For a network layer to be able to

adapt its parameters, it is necessary to translate the estimated state of an object

of interest into a quantity based upon which the adaptation is carried out. In this

chapter, we first describe the overall system architecture and then introduce two

metrics that are used for converting the currently estimated state of the object into

a proper level of parameter that would need to be adopted in the future.

5.1 Overall System Architecture

The proposed framework, which we will refer to as Predictive Network Adaptation

by Tracking (PNAT), can be applied to any network systems with synchronous MAC

protocols where a sender and its potential receivers share the same active periods.

Figure 5.1 shows how the framework can be added on to an existing network system.

The protocol stacks in a typical network system have a single-path packet flow from

the physical layer at the bottom to the top application layer. Equipped with PNAT as

an add-on, a cross-layer interaction between all of the layers in the protocol stack via

tracker module is now made possible. More specifically, each of the network layers that

are connected to the tracker module feeds event-related information into the tracker

so that the tracker can update the state of the event/object. At the same time, each

layer is able to consult with the tracker about the current state of the event/object

and if necessary adapt its network parameters. As a result, a PNAT-enabled network
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Figure 5.1.: Overall system architecture of PNAT: The tracker module is implemented
separately, not belonging to any layer within the protocol stack. The adaptation
modules reside in individual layers since each of them is responsible for adapting
different network parameters in different layers. The tracker and adaptation modules
are connected to each other and the whole system can be implemented as an add-on
to an existing network system as the figure depicts.

can achieve high energy efficiency and tracking performance. Such synergy is created

when each node in the camera network performs both object tracking and network

parameter adaptation simultaneously.

5.2 Network Parameter Adaptation

Network parameter adaptation at a node may be carried out either on the basis

of the probability of detecting the object in the field-of-view of the node or on the

basis of the expected arrival time of the object. In this section, we will first show

how each node can estimate the probability of detecting an object in its field-of-view

by computing how much the STEP overlaps with the field-of-view. We define this

probability as the Future Event Detection Probability (FEDP) at a node. We will

then show that how each node can estimate the mobility-based time-of-arrival of the

event, which is defined as the Expected Time-of-arrival of Event (EToE).



66

(a) (b)

Figure 5.2.: STEP distribution for an event j and FEDP of Node A and B: (a)
The FEDP value of Node A and B, S

(j,A)
k+1|k and S

(j,B)
k+1|k, are the integration of STEP,

Sj
k+1|k(u), over G(A) and G(B), respectively. (b) The FEDP values can be approx-

imated by a Riemann sum with m partitions: In this example, the sensing field of
each node is divided into six partitions.
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5.2.1 Future Event Detection Probability

Given the STEP distribution of an event j at time tk, each node predicts how

likely the event will occur within its field-of-view at time tk+1 using the prediction

module of the tracker. The probability that an event j will occur within the sensing

field of node i at time tk+1, S
(j,i)
k+1|k, is computed by:

S
(j,i)
k+1|k = Pr(pj

k+1|k ∈ G(i))

=
ˆ

u∈G(i)

Pr(pj
k+1|k = u)du

=
ˆ

u∈G(i)

Sj
k+1|k(u)du,

where G(i) denotes the sensing field of the node i as illustrated in Figure 5.2(a).

This future event detection probability (FEDP) is computed as the integration of

STEP over the field-of-view of a node. This figure also illustrates that the STEP

distribution associated with the object being tracked may span the field-of-view of

multiple cameras.

The state transition diagram shown in Figure 4.3 describes how FEDP is computed

with Kalman filter. While the state of the Kalman filter is updated whenever a new set

of measurements is available, the network parameter adaptation block also computes

a new FEDP based on the updated states in the Kalman filter. According to the new

FEDP, the node determines a new parameter value for adaptation in each individual

layer. The FEDP at a node is approximated by dividing the field-of-view into m

partitions and performing a Riemann sum:

S
(j,i)
k+1|k ≈ ∑

n=[0,m−1]
Sj

k+1|k(un)f(un).

where f(un) is the size of each cell in the discretization of the field-of-view.
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Figure 5.3.: Tracking by Kalman filter at each node. Small and large red circles
indicate the current and the predicted positions of an object as estimated by the
Kalman filter at the current cluster head. Small and large green circles are those
estimated by the Kalman filter at each of non-cluster nodes. The color of the node
indicates the probability that the object will enter its field-of-view in the near future
(4 seconds).

5.2.2 Expected Time-of-arrival of Event

Since each node runs its own tracker and since there will be losses in packets

containing indirect sensing information, the estimated object state and its associated

covariance matrix are likely to be different at different nodes.

Figure 5.3 illustrates this effect where the Kalman filter estimates of the current

object position and the predicted position made at the cluster head are shown as red

ellipses and the estimates made at other nodes (including those that are not part of

a cluster) are shown as green ellipses. As we can see in Figure 5.3, nodes 11, 14,

and 18 are more distant to the current object position than nodes 12 and 10. Due

to the disparity in Kalman filter estimates at the different nodes, however, nodes 11,

14, and 18 measure a smaller distance to the target than nodes 12 and 10 in terms

of the Mahalanobis distance (described as the color of a bar on top of each node).
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While such disparity is not evident in the predicted position itself, it is significant in

its associated uncertainties (represented as the size of the green ellipsoids).

Given the estimate of the predicted position at time tk+1 as the mean of the

STEP distribution, then a node can estimate the expected time-of-arrival of the

event (EToE) since the node is aware of the speed of the object and the distance to

the future position of the object. However, depending on the process noise in the

tracker, in general, we can expect to see fluctuations in the velocity state. So, instead

of directly using the current velocity state, therefore, one could employ a method to

measure the mobility on a longer term basis in order to smooth out the fluctuations.

How such smoothing should be carried out, would vary from target to target. For

example, the noise properties related to pedestrian movements are obviously very

different from the noise properties related to the movement of automobiles. A node

must therefore observe a target before deciding on the best approach to use for the

smoothing.

An understanding of the long-term mobility properties of a target object can be

carried out by employing a circular buffer of size Nmobility that stores the most recent

Nmobility estimated speeds of the object whenever the tracker is updated and averaging

them. That yields a time-window-based average speed of the object. Note that the

size of the circular buffer, Nmobility, should not be too long in case that the mobility

of an object may change over time. Yet the size should be set large enough to reveal

its typical mobility.
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(a) (b)

Figure 5.4.: The continued depiction of a WCN engaged in tracking a moving object
at two subsequent time instants. The red star indicates an event and the black
solid arrows its moving direction. The regions divided by black solid circles indicate
examples of a contour map of the STEP of the event predicted by a node.
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6. SIMULTANEOUS MULTI-LAYER NETWORK
ADAPTATION

Radio is obviously one of the biggest energy consumer in wireless sensors including

wireless cameras, and the control of radio operation and the scheduling of packet

transmission is governed by the MAC layer protocol employed. Adding the PNAT

to the MAC layer, it is made possible for a node to adapt its radio duty cycle even

before an object of interest appears in its field-of-view — which will be referred to

as the Predictive Duty Cycle Adaptation (PDCA) — while the node is tracking the

object beyond its own field-of-view, and thus a significant energy saving can be made

in radio operation while supporting the QoS requirements to the application.

Yet as we described earlier, collaborative visual processing entails extremely high

energy expenditure, necessitating tackling energy efficiency in multiple layers and

multiple components simultaneously, especially for those components who consumes

energy most. In addition to minimizing the energy consumption at radio, therefore,

it is critical to also minimize the energy consumption at the camera and in all the

image processing modules from image acquisition to high-level vision processing since

it requires intensive computation. Table 6.2 summarizes the energy expenditures

of different hardware components of Imote2 mote [57] in different operation modes.

Adding the PNAT to the application layer, therefore, the camera sensing rate in the

application layer can be adapted in advance before an object of interest appears in

its field-of-view — which we will refer to as the Predictive Sensing Rate Adaptation

(PSRA).

In this chapter, we first show two examples of how an individual layer adapts its

parameters by consulting the event tracker on how likely an object of interest would

appear in the field-of-view in the near future: one in the MAC layer (i.e., PDCA) and

the other in the application layer (i.e., PSRA). Note that multiple layers can adapt
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their parameters simultaneously, and in the next chapter we will show the energy

saving in two cases when PNAT is applied to a single layer (i.e., PDCA only) and

multiple layers simultaneously (i.e., PDCA + PSRA), respectively.

6.1 Predictive Duty Cycle Adaptation

While the tracker module keeps track of a target object, we would want the adap-

tation of the network parameters to take place in the individual protocol layers con-

nected to the tracker module. As an example of such optimization, in this section

we present how such adaptation can be carried out in the MAC layer with regard to

the duty cycle at each node on the basis of FEDP and EToE. As we will show, the

predictive duty cycle adaptation (PDCA) strategy we present for the MAC layer ad-

justs the duty cycle of a node in advance according to the FEDP or EToE before the

target object is visible to the camera at the node. PDCA enables a node to quickly

ready for the anticipated high traffic.

6.1.1 Determining an Appropriate Value for the Duty Cycle

Once the FEDP or EToE is computed in the tracker module at a node, each node

chooses a value for its duty cycle in the MAC layer. A higher FEDP or a lower EToE

would cause a node to choose a larger value for the duty cycle. Let’s say we allow

for N different levels of the duty cycle, d0, d1, ..., dN−1, with dN−1 being the highest.

Let dc be the current value for the duty cycle level. Whenever a STEP update occurs

at a node, the node computes its new FEDP or EToE and accordingly a new duty

cycle level dm. If dm �= dc, then the node schedules a change of duty cycle to dm and

adopts the new schedule based on the new duty cycle level dm. Subsequently, the

node broadcasts this fact to its neighbors so that they can be aware of the updated

communication schedule at the sender.

Consider an example illustrated in Figure 5.4 where a target is being tracked

and its future position is being predicted. The circles (in general, these will be



73

ellipses) represent the equiprobable contours of the STEP distribution. If the target,

which was initially detected by node F, moves to the sensing field of node B, thereby

triggering packet transmissions from node B, as shown in Figure 5.4(a), then the EEN

bit will be set for all the packets transmitted by node B, informing node A and H

of the detection of the target at B. Upon the reception of a packet from node B, a

Kalman filter in both node A and H will be created, initialized, and updated due to

this indirectly sensed measurement. Nodes in the neighborhood of node B will then

compute the current STEP Sj
k+1|k(u) and FEDP S

(j,i)
k+1|k with respect to their sensing

fields. Consider for example the actions taken by node A: The STEP computed by

node A based on the detected packets from node B is illustrated in Figure 5.4(a). At

this moment, node A predicts that it is highly likely that the event will be detected in

the next measurement due to a high FEDP value S
(j,A)
k+1|k, and consequently schedules

to alter its duty cycle to the highest level dN−1 at tk+1. At a subsequent time instant,

shown in Figure 5.4(b), node A acquires an observation of the target and computes a

new STEP and FEDP. At this point, node A realizes that the target is moving away

from its sensing field, i.e., the new FEDP indicates that it would not need the highest

duty cycle level by the time it acquires the next measurement. Note that since each

node computes its own STEP independently based on not only its own measurements

but also the detected packets from its neighbors, the STEP estimated at each node

can be slightly different. Note also that since the sensing field of node A is closest to

the center of the predicted event position in Figure 5.4 (a), its FEDP would be the

highest among the nodes, causing it to have the highest duty cycle value dN−1, while

the other nodes would have relatively smaller FEDP values, resulting in adopting the

same or lower duty cycle values.

In contrast with the enhanced traffic levels generated by the appearance of a target

in the field-of-view of a node, the disappearance of the target can only be inferred by

the absence of packets with EEN set for a period of time. This translates into a soft

state approach for duty cycle adaptation. That is, we set a timeout period whenever a

duty cycle modification occurs. Upon the expiration of the timeout period, we assume
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Table 6.1: Parameters and symbols used

Symbol Parameter
N The maximum number of duty cycle level
Tn The frame length of the base (lowest) duty cycle level dn

M The base of the exponentially varying frame length
tc The current time
tcf The time when the current frame started
tbf The time when the previous base frame started
tnf The time when the next frame is scheduled to start

the target has left the augmented sensing field of the node, and the duty cycle is reset

to the lowest level d0. This soft state approach also prevents a node from changing

its duty cycle too frequently. The duty cycle adaptation procedure is summarized in

Algorithm 6.1. The definitions of parameters used are summarized in Table 6.1.

Algorithm 6.1 Duty cycle adaptation
1: loop � Infinite loop while a node is running
2: if an object exists within the sensing field then � Direct sensing
3: Schedule to adopt the highest duty cycle level dN at the earliest time slot
4: else if current time is almost scheduled time then
5: Compute STEP Sj

k+1|k(u) for event j and FEDP S
(j,i)
k+1|k for a node i

6: Determine its proper duty cycle level dm based on FEDP
7: Schedule/reschedule to adopt the new duty cycle level dm at tk+1
8: end if
9: if dc �= dm then

10: Set dm to be the current duty cycle level with a timeout
11: else � dc == dm

12: Refresh timeout of dc

13: end if
14: if a new schedule is adopted then
15: Broadcast the new schedule to neighboring nodes
16: end if
17: end loop
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6.1.2 Exponential Frame Length Adjustment

After a target is considered detected, directly or indirectly, and the corresponding

duty cycle ascertained as described previously, the system next calculates the frame

length, which is the sum of the on-time and the off-time for the radios. Any changes to

the frame length are carried out by adjusting it exponentially. Let Tc be the current

frame length corresponding to the duty cycle value of dc, T0 the frame length for d0,

the smallest value for the duty cycle, and M the base of an exponentially varying

frame length. Then, Tc is one of

Tn = T0

Mn
,

where n ∈ {0, ..., N −1}, and M ∈ N
∗. Note that in DSMAC and AMAC, M is always

set to two, whereas in the proposed PDCA scheme it could be any non-negative integer

number. If M is set to either 2 or 3, the frame length would change by doubling or

tripling the interval between the starting time of the active period of two consecutive

frames. For some MAC protocols such as TMAC, the length of the active and sleep

period changes dynamically according to the current network conditions while the

frame length remains fixed. Our PDCA scheme dynamically changes the length of

the frame itself, regardless of whether the active and sleep periods change or not in a

given frame length.

This exponentially varying adaptive frame method guarantees that any pair of

nodes is able to communicate within a shared active period even if the nodes operate

at different duty cycles. Suppose, for example, that two nodes in and im operate at

duty cycle levels dn and dm, and that n < m. Suppose both nodes are initially active

at time t0. Node in has wake up times at t0 + kTn where k ∈ N, and node im at

t0 + lTm where l ∈ N. Hence, whenever l
k

= Mm−n, the active periods of both nodes

will coincide. As a consequence, every node in the network is able to communicate

with its immediate neighbors at least during the active periods of the base frames,

which correspond to the frames given by the lowest possible duty cycle level d0.
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Figure 6.1.: Timeline for adopting a schedule with a higher duty cycle.
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6.1.3 Adopting A New Schedule

After a node ascertains that its duty cycle must be changed to a new value — let’s

call it dm — it is necessary to define mechanisms that allow for the communication

schedule at the node to be modified without breaking synchronization with the neigh-

boring nodes. In order to not cause a break in the synchronization, any modifications

to this schedule must take place at the beginning of a frame. Let tc denote the time

instant when a node figures out that its new duty cycle should be dm. The node must

next determine when to start the new communication schedule with the new duty

cycle.

Let tcf be the time that the current frame started, tbf the time when the previous

base frame started, and tnf the time when the next frame will start according to the

current schedule. If a node decides to change its duty cycle to a different level dm at

time tc , it schedules the beginning of the next frame to t
′
nf = tc + �, where �, the

residual time to the beginning of the next frame, is given by

Δ = min
[
U

(
T0

Mdm

)
− (tc − tbf )

]
, (6.1)

subject to Δ > 0, where U ∈ {1, . . . , Mdm}. Since all the parameters in Eq. (6.1) are

known and Mdm is relatively small, this minimization problem can be solved quickly

by simply searching over all the possible values of U .

Consider for example the timeline shown in Figure 6.1. In this figure, solid vertical

lines illustrate the beginning of the active periods of the current schedule, and the

dashed vertical lines show the beginning of the active periods of the new schedule to

be adopted. Suppose that the parameters in this case are M = 2, N = 5, and the

current duty cycle level of the node is dc = 1. At time tc, the node decides to increase

its duty cycle to dm = 2. Then, the parameter U will be chosen as the minimum

between 1 and Mdm = 22 that satisfies Δ > 0. Since tc − tbf > T1
2 in this example, it

turns out that U is 3. Next, Δ is computed by setting U = 3 in Eq. (6.1), and the

beginning time of the next frame t
′
nf is rescheduled accordingly.
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6.1.4 Communications Among Heterogeneous Schedules

A pair of synchronized nodes with different duty cycles can communicate with each

other successfully only if they share a common active period. This overlap between

the active periods at two different nodes is determined by the node with the shorter

duty cycle.

In general, when a node attempts to send a packet to another node, it is not trivial

to know whether the intended recipient is active or not when the nodes are allowed to

have different radio schedules. In existing adaptive MAC protocols, the sender just

tries to transmit a packet, hoping that the receiver is active. If ACK is not received,

then the sender may try multiple retransmissions of the same packet in the same or

the next active period. Such a trial-and-error approach obviously incurs additional

overhead in terms of energy, traffic, and latency.

In order to overcome these limitations, we employ a novel frame numbering strat-

egy that provides to the transmitting node an assurance that the receiving node is

active. This completely eliminates the overhead associated with the trial-and-error

approach yet at the cost of broadcasting a SYNC packet whenever a node changes

its duty cycle to notify its neighbors of the change. The main idea is to assign a

sequence of integer numbers to each frame that indicates the position of the current

frame with respect to the base frame in such a way that the assigned frame number

is consistent for all the neighboring nodes that share the same frame although they

may have different duty cycles. Recall that the base frame length T0 is the length

of a frame when the duty cycle is at the lowest level d0. Suppose node A is operat-

ing at the highest duty cycle level dN−1, thus having MdN−1 frames within one base

frame length. In this case, we can simply number each frame consecutively from 0

to MdN−1 − 1. Now suppose a neighboring node B is operating at a lower duty cycle

level dc, c < N − 1, and thus can only have M (dN−1−dc) frames in one base frame

length. If we again consecutively number these frames from 0 to M (dN−1−dc) − 1, the

frame number of the frames that node A and B share will be different at node A and
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B, resulting in inconsistency in frame numbering as shown in Figure 6.2(a). To avoid

such inconsistency, we use the following simple equation to generate a sequence of

frame numbers for a node with a particular duty cycle dc:

f(i + 1) = (f(i) + M (dN−1−dc)) mod MdN−1 (6.2)

where f(i) is the frame number of the i-th frame and f(0) = 0. With this consistent

frame numbering strategy as shown in Figure 6.2(b), the active periods of a node and

the active periods of a neighboring node operating at a duty cycle dpeer
c are guaranteed

to overlap whenever the following condition is true:

f(i) mod (MdN−1−dpeer
c ) == 0. (6.3)

For successful unicast communications, the node should transmit a packet to its

neighbor only in such frames.

While the strategy presented above solves the problem of unicast communica-

tions between two nodes with different schedules, we still have the issue of broadcast

communications among such nodes. For broadcast communications, multiple trans-

mission policies are at out disposal: One could restrict the communications so that a

node can broadcast a packet only if all of its neighbors can receive it, that is, only if

Condition (6.3) is true for all of its neighbors. This approach, evidently, incurs longer

transmission delays for broadcast packets. On the other hand, it is also possible to

broadcast messages as long as at least one neighbor is awake, that is, if Condition

(6.3) is true for at least one neighbor. Although this may reduce the chance of neigh-

bors receiving the packets, the PDCA scheme employs this approach since the nodes

in the vicinity of an event are highly likely to have the same or even higher duty cycle,

and the event-related information is usually delay-sensitive.
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(a) (b)

Figure 6.2.: (a) An example of inconsistent frame numbering, when M = 2 and
N = 3. (b) An example of consistent frame numbering, when M = 2 and N = 4.
From the top timeline, dc corresponds to 0, 1, 2, and 3, respectively.
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6.1.4.1 Neighbor Synchronization

All synchronous MAC protocols require that SYNC messages be exchanged by

the nodes in order to maintain time synchronization. What is placed in the SYNC

packets depends on the MAC protocol and its synchronization policies. For our case,

in order to enable PDCA, the SYNC packets also contain (1) the address of the

schedule initiator; (2) the current duty cycle level dc; (3) the residual time to the

beginning of the next base frame; (4) the age of the current schedule; and (5) a 2-bit

field for EEN and EERN that is discussed in the next section. The age of a schedule

refers to the number of times that the schedule was broadcasted by the initiator in

periodic exchanges. PDCA also requires that the SYNC packet be sent whenever a

schedule change occurs at a node due to a change in the local duty cycle.

Algorithm 6.2 Support for fast delivery of routing packets related to an object of
interest.

1: pin(i) � a packet received from node i via unicast � Intended recipient
2: pout(i) � a packet to be transmitted to node i
3: isEventRouting � a flag indicating whether a node is part of a routing path of

event-related packets
4: loop � Infinite loop while a node is running
5: if a new pin(i) is detected with EEN or EERN bit set then
6: Set isEventRouting with a timeout
7: dm ← drouting

8: Schedule/reschedule to adopt the new duty cycle level dm

9: end if
10: if a packet pout(i) is ready then
11: pout(i).EERN ← isEventRouting
12: end if
13: if timeout expires then
14: Unset isEventRouting
15: dm ← d0
16: Schedule/reschedule to adopt the new duty cycle level dm

17: Broadcast the new schedule to neighboring nodes
18: end if
19: end loop
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Table 6.2: Energy expenditures at different hardware components of Imote2 [62,63]

Components Mode Power (mW)
Imote2 w/o radio Active 192.4
Imote2 w/o radio Idle 156.4

Camera Active 72.0
Camera Idle 26.4
Radio Active 82.4

6.1.5 Fast Delivery of Event-related Packets

To reduce latency in the delivery of the packets containing event-based information

back to the base station, the system must be able to identify the intermediate nodes

along the routing path to be used for the delivery of such packets. As we previously

discussed, nodes that detect events, directly or indirectly, set the EEN bit in the MAC

header of the outgoing packets. In order to indicate that a node has been selected for

routing event-related packets to the base station, we define the Explicit Event-Routing

Notification (EERN) bit in the MAC header.

A node that is on a routing path increases its duty cycle to a pre-defined level

drouting to minimize the end-to-end latency. For example, drouting could be set to the

maximum duty cycle dN−1. Consider, for example, the WCN shown in Figure 4.1(c).

Since the nodes B, H, C, D, and Sink are along the routing path of the event-related

packets, their duty cycle would be increased to drouting upon the reception of packets

originated from nodes E or F.

The routing-path membership of a node is considered to be a soft state that must

be refreshed periodically by the reception of packets with EERN set. If a node does

not receive a routing packet within a specific period of time, it will reduce its duty

cycle to the lowest level d0. Duty cycle adaptation for routing event information is

summarized in Algorithm 6.2. In the algorithm, the variable isEventRouting indicates

whether a node is currently a part of a routing path.
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(a) (b)

Figure 6.3.: Adaptive scheduling of radio and sensing: The time periods colored as red
and blue indicate the active periods of radio and the period of the image processing,
respectively. The schedule of sensing and radio activation is illustrated when the
FEDP is high and low in (a) and (b), respectively.

(a) (b) (c)

Figure 6.4.: The Purdue RVL Wireless Camera Network Testbed used for the per-
formance evaluation consists of 13 Imote2 motes with cameras deployed along the
doorway across three rooms: (a) A 3D model of the testbed with the field-of-view
of each camera depicted as a colored polygon on the floor; (b) A plan view of the
testbed with the physical location of each camera drawn as a small red box and the
center of its field-of-view drawn as a small black box connected to the red box with
a dotted line; and (c) An example of the trajectory of a mobile object estimated by
the testbed.
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Figure 6.5.: A snapshot of a real object and the GUI-based visualization of the object
tracking by the Purdue RVL WCN testbed: The plan view and the 3D model of the
testbed are in the left and in the middle, respectively, while tracking a real mobile
object on the floor as shown in the right.
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6.2 Predictive Sensing Rate Adaptation

The event tracker implemented as a separate module along with the protocol

stack is designed to be connected by each individual layer including the application

layer. The camera management system in the application layer can consult with

the event tracker and thus control the camera sensing rate efficiently in a predictive

manner while providing application-level QoS. We refer to this as Predictive Sensing

Rate Adaptation (PSRA) and present in this section how the PSRA is carried out by

taking advantage of the event tracker.

Provided the FEDP or EToE estimated in the tracker module at a node, each

node can choose a proper value for its sensing rate in the application layer. A higher

FEDP or a lower EToE would cause a node to choose a larger value for its sensing rate

since the camera needs to watch the environment with more caution. In a cluster-

based object tracking application, the maximum sensing rate at a node would be

determined by taking into account both the data aggregation rate at the cluster head

and the maximum sensing rate that the hardware supports. If the data aggregation

at the cluster head takes place at every second, for example, the cluster member does

not need to capture images faster than this although the hardware allows capturing

images at a higher rate.

The minimum sensing rate, on the other hand, would be determined based on what

the application allows as to how much it would be tolerable in terms of the network-

level and node-level detection delay. Note that the network-level and the node-levl

detection delays are different in that the network-level detection delay counts how far

an intruder, for example, can reach inside the sensing coverage of the entire network

while the node-level delay does so for the sensing coverage of an individual node. The

network-level detection delay is usually more tolerable than the node-level one, since

the network-level detection delay is just an one-time delay for an intruder or a new

object even for tracking applications while the node-level delay keeps contributing
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to the overall performance of the cluster-based tracking application as a new node

detects the object and joins to the existing cluster.

Note that using the proposed PSRA approach, each node is allowed to set its

minimum sensing rate corresponding to application-specific requirement in terms of

the network-level detection delay, since once an object of interest appears within the

sensing coverage of the network, the PSRA allows each node to be alerted in advance

and sets its sensing rate appropriately if the object is likely to appear to the node in

the near future. If the sensing rate adaptation is carried out in a reactive manner,

on the other hand, the minimum sensing rate must be bounded by more stringent

node-level detection delay than the network-level detection delay.

As long as there is a gap between the lower and the upper bounds of the sensing

rate, it should be possible that the energy consumption can be further minimized by

adapting the sensing rate in between these bounds depending on the network state

while supporting the application-level QoS in terms of the detection delay.

Let us suppose there is L different levels of the sensing rate, c0, c1, ..., cL−1,

with cL−1 being the highest. Let cc be the current value for the sensing rate level.

Whenever a STEP update occurs at a node, the node computes FEDP or EToE

and accordingly a new sensing rate level cm is determined. If cm �= cc, then the

node changes the sensing rate to cm. The way that a camera adapts its sensing rate is

obviously similar to the way that a radio does, yet we want to point out that the duty

cycles of radios and cameras are not necessarily the same, because the minimum and

maximum duty cycles of them are controlled by different requirements with different

thresholds.

Note that there could be a delay between the time when a node detects a new

object within its sensing range and the time when the node reacts to the new detection

in terms of communication activity (such as cluster formation and joining the existing

cluster) since the radio of the node could be in the sleep mode due to duty cycling.

Even though the node is already a cluster member, there is still a delay to report the

measurement to the cluster head since the cluster head could be in the sleep mode.
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To minimize such delay, we can schedule an image sensing in such a way that

the radio is expected to start its active period immediately after the entire image

processing chain is completed from the image acquisition to the high-level processing

so that the radio turns on with the most up-to-date results. Figure 6.3(a) shows how

such scheduling can take place along with radio duty cycling.

Even when the radio is sleeping and not scheduled to be turned on after the

completion of all the image processing, a node with reactive approaches, however,

still needs to capture images periodically at a high rate so as to trigger the radio to

be turned on in case the radio is off when an object is detected. As mentioned earlier,

the sensing rate at nodes with reactive approaches is determined based on the node-

level detection delay. Provided that a node can make predictions on the future state

of the object using the event tracker in our framework, however, it is unnecessary

to capture images unless the radio is scheduled to be on after the completion of

the image processing. Thus, it is possible that a node controls its sensing intervals

according to the schedule of radio activation as illustrated in Figure 6.3(b). The

PSRA is therefore a natural extension of PDCA, which will be described in details in

the following section.
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7. PERFORMANCE EVALUATION

In this chapter, we present a series of evaluations of the proposed predictive network

adaptation by tracking (PNAT) framework where it is applied to a single layer (i.e.,

MAC layer) and multiple layers simultaneously (i.e., MAC and application layers).

As stated in the previous chapter, the predictive adaptation in the MAC layer results

in predictive duty cycle adaptation (PDCA) while the predictive adaptation in the

application layer the predictive sensing rate adaptation (PSRA). We first evaluate the

MAC protocols with and without PDCA to show how well the dynamic change of the

environment in terms of the event-driven traffic can be handled by the PDCA-enabled

MAC protocol and at the same time how much energy saving can be achieved when

the PNAT is applied to the MAC layer. Then we evaluate how much energy saving

can be further made by applying the PNAT to both MAC and application layers (i.e.,

PDCA + PSRA) simultaneously compared to when the PNAT is applied only to the

MAC layer (i.e., PDCA only).

We perform such evaluations based on a real wireless camera network testbed

deployed in a lab environment, which will be described in detail in the following

sections, as well as large-scale simulations.

7.1 Predictive Adaptation in the MAC Layer

We now present two evaluations of the PDCA-enabled MAC protocol approach

with others that do not have PDCA: one is computer-simulation based and the other

on an actual wireless camera network consisting of Imote2 nodes equipped with cam-

eras.

Our evaluation is based on metrics that include Quality-of-Service (QoS) metrics

designed specifically for wireless camera networks. Note that, in general, the defini-
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tion of QoS depends on the intended application of a WSN. Bianchi et al. [64], for

example, analyzed the throughput and access delay of the IEEE 802.11 MAC proto-

col as a function of various contention windows. Their QoS evaluation metrics were

the prioritization capabilities of the several MAC operation modes, including network

utilization, latency and throughput. He et al. [65] presented a novel way to achieve

energy efficiency in a WSN for an object tracking system using a sentry-based power

management. They claim that the precision in the location estimate and the latency

in reporting an event to the base station are important QoS metrics for the specific

application of tracking performance.

Our primary application space is target tracking with a WCN. Since this appli-

cation requires that the nodes engage in collaborative processing of the sensed data

for scene interpretation, the QoS metrics used must reflect this fact. The widely

used performance metrics such as latency and throughput do not capture the unique

properties of WCNs and thus are not sufficient for our evaluation. We therefore in-

clude application-level QoS metrics that were designed specifically for WCNs. These

QoS metrics are intended to evaluate performance in data aggregation and clustering

operations for collaborative processing in WCNs. Using a QoS metric for data ag-

gregation (i.e., the average TIBPEA which will be reviewed in the next subsection)

and three QoS metrics for clustering operations (which will be elaborated in Section

7.1.3) as well as energy efficiency (in terms of the average effective duty cycle), we

conduct performance evaluation, first, with a large-scale simulation, and, then, on a

real testbed based on Imote2 motes with cameras.

Before presenting the rest of the material in this evaluation, we recall that the

PDCA framework is an add-on functionality for network systems with a synchronous

MAC protocol. We have chosen the well-known synchronous MAC protocol known

as TMAC [6] as the basic MAC protocol for our experiments. We retrofit PDCA to

TMAC for predictive duty cycling. We refer to this combination as P-TMAC. We

compare the performance of P-TMAC with just TMAC to validate the predictive

duty cycling approach presented in this paper. Note that our PDCA can be applied
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to different MAC protocols as long as they maintain a synchronous communication

schedule among the nodes.

7.1.1 Quality-of-Service Metric

Eariler in Chapter 2.1, we have shown how a typical cluster-based collaborative

processing is modeled as a state transition diagram as described in Figure 2.2. We also

use this state transition diagram to define the following QoS metric: Time-Bounded

Parameter Estimation Accuracy (TIBPEA) [17]. As to the parameter that should

become the focus of this accuracy, we leave that to the user of this metric. The choice

of the parameter would depend on what a WCN is being used for. If suppose a WCN

is being used for tracking targets, then the accuracy achieved would concern target

localization assuming that it is moving at a certain speed and that a node cluster (as

it is propagating with the target) has only limited time to make inferences about the

target.

While TIBPEA applies straightforwardly at a high-level in the manner explained,

it is possible to create a purely communication version of this metric by defining it as

the rate of successful internode message exchange within a specified time period. Ob-

viously, the greater the reliability with which the cluster members can communicate

with each other, the greater the accuracy of any parameter that must be computed

collaboratively. When defined in this manner, TIBPEA is computed by the average

percentage of neighbors that successfully reply to the broadcast messages in State 3

of the state transition diagram within a certain timeout period. In the context of

visual processing in WCNs, TIBPEA can be interpreted as the precision with which

a vision task can be completed by a node cluster in a time-bounded manner in the

presence of bursty communications entailed by collaborative computing amongst the

cluster members.

Consider again the WCN shown in Figure 4.1. Suppose an event occurs to Node

B and it is elected as a cluster head while its one-hop neighbors such as Node E, F,
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H, and A are its cluster members as in Figure 5.4 (a). Then, when Node B transmits

a broadcast message to request measurements from its members, it expects to receive

four measurements within a timeout. If Node B ends up receiving only three of them

due to severe contention or whatever reason, then TIBPEA in this round would be
3
4 = 0.75. Suppose again the event occurs to Node H as in Figure 5.4 (a) and it

is elected as a cluster head afterward. If it receives only two measurements from

its members when it requested measurements, then TIBPEA would be computed as
2
3 = 0.67 since it has three cluster members such as Node A, B, and C. The network-

wide average of TIBPEA values over time will then be used in performance evaluation

with other approaches.

Obviously, the new QoS evaluation measure we have introduced, TIBPEA, is

application specific. But, we believe, that that is the way it should be. It would

be much too naive to assume that a WSN designed for keeping track of suspects

in a crowded marketplace would work equally well for keeping track of high-speed

traffic at a busy interchange. That is, the evaluation of a WSN must be specific to

a category of applications and the research community must specify a suite of vision

tasks for measuring the QoS for each category. For our research, we have chosen

to use TIBPEA for evaluating the proposed PDCA method in a WCN for tracking

simple objects.

7.1.2 Simulation-based Evaluation

While TMAC allows for active time adaptation, it does not allow for frame length

adaptation, and, even more importantly, it does not allow for adaptation to be based

on prediction. TMAC only reacts to the current network conditions by adapting the

length of the active period. By applying the PDCA scheme to TMAC, the frame

length also becomes dynamic, and duty cycle adjustments are carried out in a pre-

dictive manner. The result is better adaptation without any design conflict. TMAC

modified in this manner will be called P-TMAC.



92

Table 7.1: Summary of simulation parameters.

Tx range ∼ 100meters SYNC 22Bytes

Tx power 42.24mW RTS/CTS 14Bytes

Rx power 38mW ACK 14Bytes

Sleep power 15μW DATA 44Bytes

Idle power 3mW Sim. time 2400Sec.

In TMAC, different nodes in the network may operate under different schedules

because a node can randomly initiate its own schedule in the initialization stage if

it does not receive any schedule for a certain period of time, which often results in

multiple border nodes with different schedules. Since border nodes create severely

unbalanced energy consumption in the network and introduce additional delays in

routing, for simplicity, we employ a simple global scheduling scheme in the entire

network solely for performance evaluation purposes. If a node that has a schedule

receives a new schedule, then it adopts the schedule that was created earlier.

We evaluate P-TMAC in the context of target tracking using the Castalia sim-

ulator [66] which is based on OMNeT++. We simulate a network consisting of 200

TelosB nodes equipped with cameras hung randomly from the ceiling and pointing

downwards. The nodes cover a 200m × 200m area. The sensing range of each camera

is a circle with a radius of 40m. A randomly moving object is assumed to exist in the

network during one third of the total simulation time.

We compare the performance between P-TMAC and TMAC. The base frame

length of P-TMAC is set to T = 1000ms, its active period to 30ms, and its frame

length is allowed to vary among N = 4 levels, corresponding to T , T/2, T/4, and

T/8, that is, M = 2. Since the active period remains constant, these frame lengths

correspond to duty cycles of 3%, 6%, 12%, and 24%, respectively. To ensure a fair

comparison, we evaluate TMAC operating at the same four duty cycles. In our exper-

imental results, these different TMAC instances are identified as TMAC-3, TMAC-6,

TMAC-12, and TMAC-24. The detailed parameters used in our evaluation are sum-

marized in Table 7.1.
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We simulated two types of scenarios: In the first scenario, each node that detects

an object directly reports that fact to a base station. In the second scenario, whenever

a node detects an object, it creates a new cluster or it joins an existing cluster.

The elected cluster head broadcasts a request message to its members to perform

collaborative sensing and processing, and each cluster member replies by unicasting

its measurement. In the first scenario, we evaluate the performance of the MAC

protocols in terms of a set of traditional metrics such as latency, throughput, and

energy efficiency. The energy efficiency is evaluated based on the consumed energy

only by the radio. To successfully capture the performance characteristics of the MAC

protocols in the second scenario, we employ the aforementioned application-level QoS

metric TIBPEA.

7.1.2.1 Individual Processing and Reporting Scenario

Because of the adaptive frame length design, P-TMAC is expected to show perfor-

mances in between TMAC-3 and TMAC-24. Figure 7.1(a) shows that the latency of

P-TMAC is comparable to that of TMAC-24 at different sampling intervals. Figure

7.1(b) shows the throughput evaluation results. Obviously, shorter sampling intervals

entail higher packet rates.

To interpret this result, let us define the period from the time an object of interest

enters the sensing field of a node to the time it leaves it as the sensing round. Let

us also define the first packet transmitted during each sensing round as the link

initializing packet. With the same object motion, higher sampling rate causes more

packet generation per sensing round, resulting in a small proportion of link initializing

packets to the overall number of packets. TMAC is designed to work best when the

rate of link initializing packets is low because of low sampling interval or slow object

movement. As we can see in Figure 7.1(a), the average per-hop latency of TMAC-3

increases as the sampling interval increases while P-TMAC retains its performance

similar to that of TMAC-24.
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(a) (b)

(c)

Figure 7.1.: Simulation results of network performance in terms of (a) latency, (b)
throughput, and (c) energy consumption of P-TMAC and TMAC with four different
duty cycles.
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(a) (b)

Figure 7.2.: Simulation results of the average TIBPEA with different average target
speeds: (a) 6m/s and (b) 24m/s.

Providing performance that is comparable to TMAC-24 on the basis of latency

and throughput, P-TMAC achieves an energy efficiency level between TMAC-3 and

TMAC-6, as shown in Figure 7.1 (c). It implies that P-TMAC substantially improves

the tradeoff between energy and latency compared to TMAC.

7.1.2.2 Collaborative Processing and Reporting Scenario

When a node detects an object of interest in this scenario, it tries to collect

its neighbors’ measurements to obtain more in-depth understanding of the object

by collaborative data processing. We conduct two sets of simulations with average

target speeds of 6m/s and 24m/s. In each set, the average TIBPEA is measured

with different timeout bounds. In all simulations, when the timeout bound is tight,

the performance of P-TMAC is comparable to that of TMAC-24, as shown in Figure

7.2. When the timeout bound is loose, P-TMAC still shows better performance

than TMAC-3 but worse than TMAC-24. This is caused by the inherent additional

communication overhead of P-TMAC for broadcasting SYNC messages whenever a

duty cycle adaptation occurs. Nonetheless, the superior performance of P-TMAC for

delay-critical applications satisfies our design goal.
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7.1.3 Evaluation Using Real Data on Imote2-based Testbed

With regard to performance evaluation with real data, we have evaluated PDCA

on a testbed consisting of 13 Imote2 nodes that span three rooms, each roughly

20ft × 20ft, as shown in the 3D model of the rooms in Figure 7.3(a) and the plan

view in Figure 7.3(b). It is important to note that this spatial layout is located in

one of the oldest buildings on campus and that the rooms are separated by thick

masonry walls with embedded wire meshing for reinforcement. So the usual formulas

for the single-hop distance one may associate with the radio emanations from Imote2

nodes would not apply in this case. The linear distance between the node at one end

(node 1 in Figure 7.3(b)) and the node at the other end (node 8 in the same figure) is

approximately 80 ft. It takes two radio hops for the node at one end to communicate

with the node at the other end. The cameras at the locations shown in the plan view

in Figure 7.3(b) are oriented in such a way that it is safe to assume that as a target

object travels in the area monitored by the 13 cameras, it will always be visible to

more than two cameras at a time. Note that each of the cameras is calibrated. What

that means is that each camera knows its position and orientation in a global frame

of references. When tracking “flattish” objects, each camera can use its calibration

parameters to calculate the center of mass of the object on the floor, assuming that

the object is visible to the camera. Since such calculations are standard in computer

vision [67], we will not go into them here. Figure 7.3(c) shows the track as computed

by the network for an object piloted by a remote controller.

For the MAC layer in our experiments, the base M of the exponentially varying

frame length is set to 2 while the maximum duty cycle level is also 2 (that is, N is set

to 2 in Section 5.2), and the length of the active period of a frame is set to 300ms

while the base frame length is 4000ms. Therefore, the individual nodes in the network

can have up to three different duty cycle levels at any given time. This translates into

the maximum duty cycle being 300/(4000/22) = 30% and the minimum duty cycle
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(a) (b) (c)

Figure 7.3.: The RVL wireless camera network testbed used for this validation consists
of 13 Imote2 motes with cameras deployed across three rooms: (a) A 3D model of
the testbed with the sensing region of each camera depicted as a colored polygon on
the floor; (b) A plan view of the testbed with the physical location of each camera
drawn as a small red box and the center of its sensing range drawn as a small black
box connected to the red box with a dotted line; and (c) An example of a mobile
object’s trajectory estimated by the testbed.
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being 300/(4000/20) = 7.5%. With regard to the object tracked in these experiments,

we used a toy vehicle that can be navigated with a handheld controller.

With regard to evaluating the effectiveness of the duty cycling achieved, we use the

TIBPEA QoS metric and energy efficiency. Our choice of TIBPEA is dictated by the

fact that the more traditional network-level performance metrics such as end-to-end

latency and throughput do not capture the performance of a WCN that must engage

in collaborative processing of sensed data. As we will point out later in this section,

even TIBPEA has certain limitations with regard to capturing the true benefits of

using our adaptive approach to duty cycling. Said another way, while the information

conveyed by TIBPEA is necessary, it is not sufficient. Therefore, in addition to

showing performance evaluation with TIBPEA, we will present comparative results

using other criteria. As we explain later, the shortcoming of TIBPEA is not relevant

to our simulation results.

Our experimental evaluation is a 4-way comparison between the following: (1)

PDCA with the EEN bit set in the MAC header; (2) PDCA without the EEN bit

in the MAC header, but now the cluster head must broadcast the state information

in separate packets periodically; (3) Reactive duty cycling in which the duty cycle

at a node is modified only when the node directly sees the target; and (4) The same

reactive duty cycling but with a higher minimum duty cycle. In our presentation of

the results, we refer to the first case as P-TMAC-imp, where “imp” stands for implicit

notification of event information using the EEN bit, and the second case as P-TMAC-

exp, where “exp” stands for explicit broadcast of the state by the cluster head. We

refer to the third and fourth cases as R-TMAC-1 and R-TMAC-2, respectively, where

’R’ stands for “reactive”.

With regard to the two reactive schemes in our comparative study, R-TMAC-1

and R-TMAC-2, the minimum duty cycle of R-TMAC-2 is set at twice the level of

the other three approaches while maintaining its maximum duty cycle to be the same

as others. Consequently R-TMAC-2 has only two levels of duty cycle while the other

three approaches have three. R-TMAC-2 can therefore be expected to yield high
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(a) (b)

Figure 7.4.: Performance comparison in terms of (a) energy efficiency measured as
the average effective duty cycle and (b) the average TIBPEA with varying timeouts.
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(a) (b)

Figure 7.5.: Performance comparisons in terms of (a) the expected number of data
aggregations per second at the cluster heads for Kalman updating of the object posi-
tion; and (b) the expected number of measurements per second that are reported to
the cluster heads during tracking.

performance in tracking but at the cost of low energy efficiency. By the same token,

we can expect R-TMAC-1 to yield high energy efficiency and low object tracking

performance. Including these two reactive approaches in our comparative study allows

us to demonstrate the performance gain of the proposed predictive method in terms

of both application-level performance (i.e., tracking) and energy efficiency.

Figure 7.4 shows the performance comparison between P-TMAC-imp, P-TMAC-

exp, R-TMAC-1, and R-TMAC-2 in terms of energy efficiency measured as the average

effective duty cycle, as shown in Figure 7.4(a), and the average TIBPEA, as shown in

Figure 7.4(b), with varying timeouts. The average effective duty cycle is computed

by the total active duration of the radios divided by the total running time. As

expected, R-TMAC-1 consumes less energy than the other three approaches. Note

that R-TMAC-2 has a higher minimum duty cycle than others that would result in

higher overall energy consumption in a large-scale network where only a small subset

of nodes are expected to adapt their duty cycle as an object is tracked while the

rest are at the minimum duty cycle. Since our testbed consists of only 13 camera
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nodes, the energy consumption caused by a larger duty cycle at the nodes in the

vicinity of an object tends to make a larger impact on the overall energy efficiency

than would be the case in a larger network in which a smaller fraction of the nodes

would be engaged in actual object tracking at any given time. Figure 7.4(b) shows

that P-TMAC-imp outperforms the other three approaches in terms of the average

TIBPEA. Figure 7.4(b) establishes conclusively that a reactive approach with a duty

cycle twice as long as the other reactive approach does not yield a commensurate

increase in the performance as measured by the average TIBPEA. With regard to a

comparison of the predictive versus the reactive approaches in Figure 7.4(b), on the

basis of the average TIBPEA results shown in Figure 7.4(b), it does not appear that

the predictive approaches are overwhelmingly superior to the reactive approaches.

Obviously, the predictive approaches are no worse than the reactive approaches. In

what follows, we will explain that the story told by the performance curves in Figure

7.4(b) for the predictive approaches vis-a-vis the reactive approaches is incomplete.

In other words, those curves are necessary but not sufficient for fully characterizing

the network performance that is achieved with predictive approaches — especially

the predictive approach presented in this paper.

TIBPEA assumes that the clusters have already elected their cluster heads for the

parameters it measures — it measures the rate at which the cluster members succeed

in communicating their measurements to the cluster head given a certain timeout.

Although a necessary measure of the performance of a camera network, TIBPEA

does not measure the main reason for predictive duty cycling, which is the ability

to increase the duty cycle at a node in advance of the object actually arriving in its

field-of-view for agile handling of upcoming traffic. As mentioned previously, such

advance alteration of the network parameters allows for various clustering operations

(for example, cluster formation, propagation, fragmentation, coalescence, etc.) to be

executed smoothly while tracking objects. Therefore, to appreciate the full power of

a predictive duty cycling approach such as ours, we also need to evaluate it from the
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Figure 7.6.: Performance comparisons in terms of the number of measurements that
a cluster head expects to receive from its cluster members within a varying timeout
during object tracking. The data shown is averaged over all the clusters formed during
tracking.
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standpoint of the efficiency with which the clustering operations can be carried out.

Average TIBPEA does not measure those effects in a network.1

To evaluate how well the clustering operation is supported by the MAC layer

protocol, we have measured (1) the expected number of data aggregations per sec-

ond at the cluster heads for Kalman-filter based updating of the object position; (2)

the maximum expected number of measurements per second that can be reported to

the cluster heads during tracking; and (3) the expected number of measurements per

second that are actually reported to the cluster head within a varying timeout. By

experimental design, a cluster head polls the cluster members every 950ms for any

data they may have to report. This implies that a data aggregation at a cluster head

can be carried out every 950ms. Figure 7.5(a) shows the expected number of data

aggregations per second at the cluster heads for the four different approaches. These

numbers are calculated by dividing the total number of data aggregations made at

all the cluster heads by the total time during which the object was present within the

sensing coverage of the network. Figure 7.5(b) then shows the maximum expected

number of measurements per second that can be reported to the cluster head. More

specifically, the results shown in Figure 7.5(b) are computed as the total number of

measurements generated at the cluster members to be reported to their cluster heads

divided by the total time when the object was present in the network. Figure 7.6

then shows how many of the generated measurements at the cluster members would

be successfully reported to the cluster heads within a certain timeout. Since in the

cluster-based distributed object tracking, more measurements at a higher data aggre-

gation rate at the cluster head would yield a higher tracking accuracy with a lower

error bound, we believe that the results shown in Figure 7.6 strongly demonstrate

how well our predictive MAC protocol supports the distributed object tracking appli-

cation. In both Figures 7.5(a) and (b), it is evident that our proposed P-TMAC-imp
1In the comparative results in Section 6.2 where we have only used the average TIBPEA metric,
note that those involved only one adaptive approach — our predictive approach. In this section,
however, all the duty cycling approaches we are comparing are adaptive — even the reactive ones
— with different adaptation strategies that have a bearing on the efficiency of clustering operations.
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outperforms R-TMAC-1 while being comparable to R-TMAC-2 which incurs a higher

energy cost. In Figure 7.6, P-TMAC-imp significantly outperforms both reactive ap-

proaches in terms of the expected number of measurements within a varying timeout.

These results demonstrate that our proposed predictive approach better supports the

dynamic changes in event-driven network operations, allowing for more frequent data

aggregations with more measurements made available to the cluster heads.

7.2 Predictive Adaptation in Both MAC and Application Layers

We now present the performance evaluations of different network adaptation ap-

proaches such as (1) two reactive adaptation approaches and (2) a predictive adap-

tation approach for radio duty cycling in the MAC layer (i.e., RDCA and PDCA,

respectively) and (3) a predictive adaptation of both the radio duty cycle in the MAC

layer and the camera sensing rate in the application layer (i.e., PDCA + PSRA). The

reactive adaptation method allows nodes to adapt their parameter only after detect-

ing an event of interest. Thus, the radio duty cycle at a node is also increased only

after the node itself detects an object.

Our evaluation is based on performance metrics that reflects application-level QoS

for WCNs as well as energy efficiency. The QoS is in general defined in different ways

in different applications. The application-level QoS metrics that we are interested in

are, however, characterized by performance in clustering operations, since our primary

application space is target tracking applications using a WCN, and a cluster is the

one who keeps track of the state of the object while dynamically assigning different

roles to different nodes and allowing nodes to join and leave the cluster as an object

moves. Therefore, the performance metrics for clustering operations are intended to

evaluate how well the data aggregation is and how smoothly the dynamic clustering

operations are carried out within the cluster. In an ideal case, as long as a mobile

object is present within the sensing coverage of the network, at least a cluster is

formed with the nodes in the vicinity of the object, and the cluster is dynamically
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propagated without discontinuity (i.e., persistently) as the object moves. In addition,

the aggregation of the measurements from the cluster members at the cluster head

must be carried out for collaborative vision processing as scheduled on a regular basis

with at least a certain success rate. In addition, the lifetime of the network also needs

to be maximized for extended period of operation. More details on how well these

requirements are met by each approach will be presented in the following sections.

To evaluate the performance of the three approaches, we chose a well-known syn-

chronous MAC protocol known as TMAC [6] as the basic MAC protocol for our

experiments. On top of TMAC, we apply each of the three approaches, resulting

in synchronous MAC protocols with different adaptation strategies of network pa-

rameters such as radio duty cycle and camera sensing rate. We refer to the TMAC

protocol with (1) a reactive duty cycle adaptation (RDCA) with duty cycles same as

in the predictive approaches and (2) TMAC with a RDCA with a higher minimum

duty cycle as as R-TMAC-1 and R-TMAC-2, respectively, where ’R’ stands for “re-

active”. The TMAC protocols with a predictive duty cycle adaptation scheme and

TMAC also with a predictive sensing rate adaptation as well as PDCA are referred to

as P-TMAC-single (i.e., TMAC with PDCA only) P-TMAC-multi (i.e., TMAC with

both PDCA and PSRA), respectively, where ’single’ and ’multi’ stand for single- and

multi-layer, respectively.

The reason why we also compare our proposed approach with R-TMAC-2 that has

a higher minimum duty cycle than others is because R-TMAC-1 being expected to be

more energy-efficient than predictive approaches due to its passiveness, we want to see

the impact of spending extra energy in reactive approaches on the performance. If the

conversion of energy into performance occurs, then although predictive approaches

would outperform reactive ones in terms of application-level performance, it should

entail the cost of higher energy expenditure and then we cannot claim that our pro-

posed approach improves the tradeoff between energy and performance. It will turn

out that due to the inherent limitation of the reactive approaches, such conversion

never happen using reactive approaches even with spending extra energy.
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We want to note that TMAC is already able to adapt the length of the active

periods depending on the current traffic yet with fixed frame length and only in a

reactive manner. Being equipped with PDCA, P-TMAC can adapt both the length

of the active period and the frame length itself in a predictive manner before any

event happens.

7.2.1 Evaluation Environment

In this section, we introduce the Purdue RVL Wireless Camera Network Testbed

and the cluster-based object tracking application that runs on each node of the

testbed.

The RVL testbed consists of 13 Imote2 motes each of which is equipped with a

IMB400 multimedia board [68] that includes a camera based on OV7670 image sensor.

These camera nodes are deployed in a way that they cover three consecutive rooms

connected through a doorway where the size of each room is roughly 20ft × 20ft

as shown in the 3D model of the rooms and its plan view in Figure 6.4(a) and (b),

respectively. The exact sensing coverage of the testbed is also illustrated in Figure

6.4(a) as a colored polygon on the floor for each camera. The cameras are carefully

deployed in such a way that most of each particular point within the sensing coverage

of the network is covered by at least two cameras at the same time. Thus, as long as

an object is moving within this region, the testbed is able to create a dynamic cluster

with multiple cameras and track the object. Figure 6.4(c) shows an example of the

track of an mobile object estimated by the testbed.

The softwares for image processing and network protocols are all implemented

using TinyOS 2.x. But, obviously there are other great alternative operating systems

for wireless sensor networks including Contiki [69]. The reason why TinyOS is used

in this paper is only for the sake of the continued project development though the

collaboration of multiple contributors in our group.



107

Image Processing Chain From the acquisition of an image, a visual measurement

is processed by a series of image/vision processing modules in the following order;

upon the reception of a request message from the application, the camera driver

in TinyOS issues a command to OV7670 image sensor to capture an image. Then

a frame buffer that contains an array with two bytes-long data is returned, where

the two bytes are formated to include 5-, 6-, and 5-bits long red, green, and blue

color information, respectively. Thus, the two bytes-long data undergo a loop to be

converted into three-dimensional RGB array. A color-histogram based blob detector

takes this image as an input and computes the center of mass of the detected blobs

by recursively finding connected points. Note that each recursion to find connected

points among the neighboring pixels increases the stack size. Due to the limited

amount of memory, the maximum depth of the stack is also limited. Thus, the center

of mass of a large blob cannot be correctly computed at once by a single run of the

recursion-based blob detector, resulting in multiple segments for a single large blob.

A connected component labeling algorithm is thus required to find the actual center

of mass of the blob. The global coordinate of the center of mass of the detected blobs

and their sizes are finally obtained and used later as a measurement for tracking

purpose.

The processing time for the entire image processing chain from the acquisition to

the blob detection takes roughly 900ms on average with the camera node configured

that the microprocessor of each Imote2 mote runs at 208MHz and the image format

is the color image with size of 320 × 240.

Note that the camera driver supported in TinyOS is not proprietary and thus not

optimized. The camera driver provided in TinyOS is rather extremely primitive in

that image acquisition and processing is not pipelined so that only after the image

processing is completed, a new image acquisition process can start. Although the

OV7670 camera supports image capturing rate up to 30fps, therefore, due to the

primitive camera driver support and limited communication between Imote2 node and

the IMB400 multimedia board where the camera is located, the achievable maximum
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Figure 7.7.: Performance comparisons in terms of (1) the average effective duty cycle
of radio and (2) the average sensing rate of camera. Lower indicates better energy
efficiency for both cases.

camera sensing rate with minimal image processing is roughly less than 2fps. There

is, of course, a huge room to optimize the software further for more efficient processing

and capturing of images, yet we leave it as a future work and consider it as a given

condition for this performance evaluation.

Dynamic Cluster-based Object Tracking Each node runs a Kalman filter-based

distributed object tracking application on top of a clustering protocol as presented

in [12]. When a new object is detected by a node using the aforementioned vision

processing, the node broadcasts a message to see if there’s any existing cluster for

this object. If so, the node joins the existing cluster as a cluster member and start

contributing to the data aggregation for collaborative object tracking. If not, on

the other hand, the node declares itself as a cluster head and starts tracking while

allowing other nodes to join if they are detecting the same object. If the object is out

of sight of a cluster member, then the cluster member sends a message saying that

it is leaving the cluster. If a cluster head is no longer detecting the object, then it

will also broadcast a message that triggers a procedure among the cluster members

to elect a new cluster head.
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For each round of data aggregation, the cluster head sets a timeout during which

the cluster members are allowed to report their measurements. Upon the expiration

of the time out, the cluster head estimates the current location of the object using the

Kalman filter employed. The final estimate is reported to the base station, and the

cluster starts a next round of aggregation. The measurements arrived at the cluster

head after the timeout expires are ignored since new measurements will be available

for the next round of aggregation.

Network Parameter Configuration For the adaptive duty cycling of radio in our

experiments, the exponentially varying frame length is set to be doubled or halved

in case that a change of duty cycle occurs. Each node is configured to choose three

different levels of duty cycle, thus the maximum duty cycle is four times higher than

the minimum duty cycle. The length of an active period of a frame is set to 300ms

while the base frame length is 4800ms. This translates into the maximum duty cycle

being 300/(4800/22) = 25% and the minimum duty cycle being 300/(4800/20) =

6.25%. With regard to the object tracked in these experiments, we used a toy vehicle

that can be navigated with a handheld controller.

The sensing schedule of the camera at a node with PSRA scheme can be matched

to the radio sleep and wake-up schedule in such a way that the end of the image

processing would become the beginning of the active period of radio as said earlier.

Since the frame length of radio at a node is one of 4800ms, 2400ms and 1200ms,

the nodes with PSRA are also set to capture an image at every 4800ms, 2400ms or

1200ms, depending on the state of the object of interest relative to the field-of-view

of the nodes, resulting in the sensing rate being in between 0.83fps and 0.21fps.

The nodes without PSRA, on the other hand, are set to capture an image at every

1200ms, that is, at 0.83fps.
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Figure 7.8.: Performance comparisons in terms of (a) the average and (b) the maxi-
mum lifetime of a cluster that indicate how far a cluster can be smoothly propagated
while tracking a mobile object.
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7.2.2 Evaluation on Clustering Operations

If there is an object of interest within the sensing coverage of the network, then

a cluster with the nodes that are detecting the same object will be formed in the

vicinity of the object. Since the cluster is the one who carries out the object tracking

task, in this section, we therefore evaluate how well the clustering operations take

place with support from different network adaptation strategies.

Since the cluster is supposed to monitor the object during its presence, the cluster

must be dynamically propagated in a timely manner as the object moves. To keep

track of the object without discontinuity, therefore, how long the dynamic cluster can

follow the object is a key metric to evaluate how well the underlying network protocol

stack supports the application. Since the discontinuity in cluster propagation directly

indicates the tracking failure, we measure how persistent the cluster-based object

tracking is carried out in terms of the average and maximum lifetime of a cluster.

Once a cluster head loses the object, then the dynamic clustering protocol [12,16]

that is currently employed for this evaluation lets the cluster head broadcast a message

that would trigger the cluster head re-election process and goes to an idle mode,

hoping that some of the neighboring nodes that are detecting the same object receive

the message. Unless at least a node among the nodes that are detecting the same

object is in active mode when the message was broadcasted by the former cluster

head, the cluster head re-election process would not take place, resulting in forming

a new cluster for the same object yet with the initialization of the state of the object

since the previous cluster has been dismissed and thus there is no clue on whether

the object is previously seen or not. As shown in Figure 7.8(a) and (b), such failure

of cluster propagation occurs more frequently in the reactive approach, R-TMAC-1,

than the predictive approaches. Providing more energy and thus more bandwidth

to the reactive approach, which results in R-TMAC-2, increase the performance in

terms of the persistent tracking yet does not exceed the other predictive approaches.

Recalling that P-TMAC-multi allows nodes to have a lower sensing rate for energy
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conservation while P-TMAC-single keeps nodes to have a fixed sensing rate, it is

clearly shown in the figure that P-TMAC-multi achieves comparable performance in

terms of persistent clustering while providing higher energy efficiency than P-TMAC-

single as will be shown later.

In addition to the persistency in tracking an object, the number of measurements

that contributes to a single aggregation is also a important metric in tracking perfor-

mance since that significantly affects the degree of the uncertainty of the estimated

object state. Thus, we also measure the average number of cluster members in a

cluster, the expected rate of measurements generated at the cluster members that can

potentially be reported to the cluster head, and the expected rate of measurements

that are actually received at the cluster head within a varying timeout. In an ideal

case where there is no packet loss, the later two metrics must yield the same results.

In practice, however, a significant amount of packet loss or an excessive delay could

occur when the measurements are reported from the cluster members to the clus-

ter head due to severe contention for the medium — the highest peak of traffic in

fact occurs in this data aggregation stage. Figure 7.10 empirically shows how much

measurements can be successfully reported from cluster members to the cluster head

within a certain timeout during tracking. Given a timeout, there could be up to

40% − 60% of packet loss since the measurements received after the timeout expires

would be considered to be useless. Even with a large timeout, the packet loss rate

could reach easily around 20% for all of the approaches.

In Figure 7.9(a) and (b), the advantages of employing the predictive approaches

over the reactive ones in terms of the metrics for the data aggregation seem marginal

yet it is more evident in Figure 7.9(c) that shows how much measurements are ex-

pected to arrive at the cluster head within a certain timeout while tracking a mobile

object. Given the fact that the RVL testbed consists of only 13 Imote2-based wireless

cameras, which is honestly a small-scale testbed, we admit that the testbed may not

be sufficiently large to empirically demonstrate the performance evaluation, yet we
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(a) (b) (c)

Figure 7.9.: Performance comparisons in terms of (a) the average number of cluster
members in a cluster; (b) the expected rate of measurement generation at the cluster
members that can potentially be reported to the cluster heads during tracking; and
(c) the expected rate of measurements that are actually delivered to the cluster heads
from the cluster members within a varying timeout for the data aggregation using
the Kalman filter. The data shown is averaged over all the clusters formed during
tracking.

Figure 7.10.: Performance comparisons in terms of the time-bounded parameter es-
timation accuracy (TIBPEA) [17] that is computed by the average percentage of the
cluster members that successfully reply to the cluster head within a certain timeout
period.

believe the advantages of our proposed approach would be even more evident if a

larger testbed is used.
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Figure 7.11.: Performance comparisons in terms of the average overall energy con-
sumption for communication and image processing by radio, camera, and micropro-
cessor in different adaptation approaches on Imote2-based wireless camera platforms.
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7.2.3 Evaluation on Energy Efficiency

There is no doubt that the energy efficiency is of utmost importance. To demon-

strate and compare the energy efficiency achieved by different network adaptation

strategies, we measure the average effective duty cycle for the radios and the average

sensing rate for the cameras. The average effective duty cycle reflects how efficiently

the radio sleep/wakeup scheduling is controlled and is computed by the total active

duration of the radios divided by the total running time.

As expected, Figure 7.7(a) shows that the reactive approach with the same duty

cycling configuration with the predictive approaches, which is R-TMAC-1, consumes

less energy in radio than others; however, our proposed approach that can also adapt

the duty cycle of the camera as well as the radio, which is P-TMAC-multi, conserves

more energy in camera with a much lower sensing rate on average as shown in Figure

7.7(b).

To assess the overall energy saving in both radio and camera, we establish an

energy model as the following:

E = Dr · Pron + (1 − Dr) · Proff

+Dc · Pcon + (1 − Dc) · Pcoff

+Dp · Ppon + (1 − Dp) · Ppoff ,

where Dr, Dc, and Dp indicate the duty cycle of radio (’r’), camera (’c’), and micro-

processor (’p’), respectively, and Pron, Proff , Pcon, Pcoff , Ppon, and Ppoff indicate the

power consumption when each of radio, camera, and microprocessor is at on and off

state, respectively. The duty cycle of camera and microprocessor can be computed

as the rate of the time for acquiring an image and for processing the image from low-

to high-level, respectively, using the information in Table 6.2. The average overall

overhead in terms of energy consumption for communication and image processing by

radio, camera, and microprocessor in Imote2-based wireless camera platform is shown

in Figure 7.11 where it clearly demonstrates that our proposed simultaneous multi-
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layer adaptation of the duty cycles of both radio and camera, which is referred to

as P-TMAC-multi, significantly outperforms the single-layer and/or reactive adapta-

tion approaches in terms of the energy efficiency while providing the application-level

performance in terms of clustering operations and tracking accuracy, which is higher

than reactive approaches and comparable to the state-of-the-art predictive approach,

P-TMAC-single.
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8. CONCLUSION AND FUTURE WORK

In this dissertation, we first investigated unique characteristics of Wireless Camera

Networks (WCNs) in terms of communication, resource demand and quality-of-service

and accordingly necessary design considerations for such networks. We then showed

existing adaptive approaches including adaptive MAC protocols are not suitable for

WCNs. As a solution, we proposed the Predictive Network Adaptation by Tracking

(PNAT) framework that actively adapts the network parameters of nodes in advance

before the appearance of an object of interest and the abrupt change in traffic pattern

triggered by the object detection. To enable this ability, we introduced an concept

of tracking an object through indirect sensing in the MAC layer. By localizing the

current object beyond the direct sensing range and predicting the future state of the

object, each node can determine and adapt to the proper level of parameters within a

range prior to any significant event in order to handle the upcoming traffic in a timely

and efficient manner or promptly detect an object. The realization of PNAT in the

MAC and application layers resulted in the predictive duty cycle adaptation (PDCA)

and the predictive sensing rate adaptation (PSRA), respectively. Since the PDCA

scheme allows each node to have a different duty cycle based on its local decision,

we also proposed an efficient algorithm that enables successful communication among

nodes with different duty cycles. As a consequence, the PNAT framework improves

the fundamental tradeoff between energy efficiency and application-level performance

by supporting the QoS of the applications while minimizing the energy consumption.

The performance evaluations on the RVL wireless camera network testbed with 13

real Imote2-based wireless cameras and on a large-scale simulation demonstrated that

(1) the TMAC with the PDCA scheme outperforms the original TMAC in terms of

such network performance metrics, (2) our predictive framework outperforms reactive
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approaches, and (3) the simultaneous multi-layer network adaptation does so the

single layer-based adaptation.

To the best of our knowledge, the PNAT scheme is (1) the first attempt to adapting

the duty cycle of nodes by tracking the object of interest in the MAC layer, (2) the

first attempt to employing a Kalman filter in the MAC layer for that purpose, (3) the

first attempt to solving the problem of efficiently communicating among nodes with

different duty cycles in adaptive synchronous MAC protocols, and (4) the first attempt

to adapting the parameters in the MAC and application layers simultaneously.

One fundamental issue associated with any adaptive approach is how to decide

the range of adaptation, that is, what should be the optimal lower and upper bounds

within which a network parameter such as duty cycle is adapted. The existing adap-

tive MAC approaches as well as our proposed approach focus only on “how to” adapt

the duty cycle assuming the range of adaptation is given. For optimal adaptation,

however, the range “within which” a node adapts its duty cycle should be addressed

because the duty cycle needs to be adapted within the optimal bounds in an optimal

way. Since this report proposed an “optimal way” of adapting duty cycle for WCNs,

the next step would include to obtain the optimal range of duty cycle adaptation for

the same networks.

A further step toward the extension of the PNAT framework is to allow nodes to

perform a predictive network adaptation using PNAT framework even in the presence

of multiple objects within the augmented sensing field since the PNAT framework

presents the case of single object of interest.
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