10,324 research outputs found

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    Lightweight and static verification of UML executable models

    Get PDF
    Executable models play a key role in many software development methods by facilitating the (semi)automatic implementation/execution of the software system under development. This is possible because executable models promote a complete and fine-grained specification of the system behaviour. In this context, where models are the basis of the whole development process, the quality of the models has a high impact on the final quality of software systems derived from them. Therefore, the existence of methods to verify the correctness of executable models is crucial. Otherwise, the quality of the executable models (and in turn the quality of the final system generated from them) will be compromised. In this paper a lightweight and static verification method to assess the correctness of executable models is proposed. This method allows us to check whether the operations defined as part of the behavioural model are able to be executed without breaking the integrity of the structural model and returns a meaningful feedback that helps repairing the detected inconsistencies.Peer ReviewedPostprint (author's final draft

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Resource Oriented Modelling: Describing Restful Web Services Using Collaboration Diagrams

    No full text
    The popularity of Resource Oriented and RESTful Web Services is increasing rapidly. In these, resources are key actors in the interfaces, in contrast to other approaches where services, messages or objects are. This distinctive feature necessitates a new approach for modelling RESTful interfaces providing a more intuitive mapping from model to implementation than could be achieved with non-resource methods. With this objective we propose an approach to describe Resource Oriented and RESTful Web Services based on UML collaboration diagrams. Then use it to model scenarios from several problem domains, arguing that Resource Oriented and RESTful Web Services can be used in systems which go beyond ad-hoc integration. Using the scenarios we demonstrate how the approach is useful for: eliciting domain ontologies; identifying recurring patterns; and capturing static and dynamic aspects of the interface

    A model-driven approach to broaden the detection of software performance antipatterns at runtime

    Full text link
    Performance antipatterns document bad design patterns that have negative influence on system performance. In our previous work we formalized such antipatterns as logical predicates that predicate on four views: (i) the static view that captures the software elements (e.g. classes, components) and the static relationships among them; (ii) the dynamic view that represents the interaction (e.g. messages) that occurs between the software entities elements to provide the system functionalities; (iii) the deployment view that describes the hardware elements (e.g. processing nodes) and the mapping of the software entities onto the hardware platform; (iv) the performance view that collects specific performance indices. In this paper we present a lightweight infrastructure that is able to detect performance antipatterns at runtime through monitoring. The proposed approach precalculates such predicates and identifies antipatterns whose static, dynamic and deployment sub-predicates are validated by the current system configuration and brings at runtime the verification of performance sub-predicates. The proposed infrastructure leverages model-driven techniques to generate probes for monitoring the performance sub-predicates and detecting antipatterns at runtime.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Meta-model Pruning

    Get PDF
    Large and complex meta-models such as those of Uml and its profiles are growing due to modelling and inter-operability needs of numerous\ud stakeholders. The complexity of such meta-models has led to coining\ud of the term meta-muddle. Individual users often exercise only a small\ud view of a meta-muddle for tasks ranging from model creation to construction\ud of model transformations. What is the effective meta-model that represents\ud this view? We present a flexible meta-model pruning algorithm and\ud tool to extract effective meta-models from a meta-muddle. We use\ud the notion of model typing for meta-models to verify that the algorithm\ud generates a super-type of the large meta-model representing the meta-muddle.\ud This implies that all programs written using the effective meta-model\ud will work for the meta-muddle hence preserving backward compatibility.\ud All instances of the effective meta-model are also instances of the\ud meta-muddle. We illustrate how pruning the original Uml metamodel\ud produces different effective meta-models
    corecore