29,247 research outputs found

    Selection, tinkering and emergence in complex networks: crossing the land of tinkering

    Get PDF
    Complex biological networks have very different origins than technologic ones. The latter involve extensive design and, as engineered structures, include a high level of optimization. The former involve (in principle) contingency and structural constraints, with new structures being incorporated through tinkering with previously evolved modules or units. However, the observation of the topological features of different biological nets suggests that nature can have a limited repertoire of ”attractors” that essentially optimize communication under some basic constraints of cost and architecture or that allow the biological nets to reach a high degree of homeostasis. Conversely, the topological features exhibited by some technology graphs indicate that tinkering and internal constraints play a key role, in spite of the ”designed” nature of these structures. Previous scenarios suggested to explain the overall trends of evolution are re-analyzed in light of topological patterns.Peer ReviewedPostprint (author's final draft

    Network Growth with Preferential Attachment for High Indegree and Low Outdegree

    Full text link
    We study the growth of a directed transportation network, such as a food web, in which links carry resources. We propose a growth process in which new nodes (or species) preferentially attach to existing nodes with high indegree (in food-web language, number of prey) and low outdegree (or number of predators). This scheme, which we call inverse preferential attachment, is intended to maximize the amount of resources available to each new node. We show that the outdegree (predator) distribution decays at least exponentially fast for large outdegree and is continuously tunable between an exponential distribution and a delta function. The indegree (prey) distribution is poissonian in the large-network limit

    Effect of correlations on network controllability

    Get PDF
    A dynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can be driven from any initial state to any desired state in finite time. Here we study the impact of various network characteristics on the minimal number of driver nodes required to control a network. We find that clustering and modularity have no discernible impact, but the symmetries of the underlying matching problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on the nature of the underlying correlations. The results are supported by numerical simulations and help narrow the observed gap between the predicted and the observed number of driver nodes in real networks

    Process Flow Diagram of an Ammonia Plant as a Complex Network

    Full text link
    Complex networks have attracted increasing interests in almost all disciplines of natural and social sciences. However, few efforts have been afforded in the field of chemical engineering. We present in this work an example of complex technological network, investigating the process flow of an ammonia plant (AP). We show that the AP network is a small-world network with scale-free distribution of degrees. Adopting Newman's maximum modularity algorithm for the detection of communities in complex networks, evident modular structures are identified in the AP network, which stem from the modular sections in chemical plants. In addition, we find that the resultant AP tree exhibits excellent allometric scaling.Comment: 15 pages including 4 eps figure

    Population Dynamics on Complex Food Webs

    Get PDF
    In this work we analyse the topological and dynamical properties of a simple model of complex food webs, namely the niche model. In order to underline competition among species, we introduce "prey" and "predators" weighted overlap graphs derived from the niche model and compare synthetic food webs with real data. Doing so, we find new tests for the goodness of synthetic food web models and indicate a possible direction of improvement for existing ones. We then exploit the weighted overlap graphs to define a competition kernel for Lotka-Volterra population dynamics and find that for such a model the stability of food webs decreases with its ecological complexity.Comment: 11 Pages, 5 Figures, styles enclosed in the submissio

    What is a networked business?

    Get PDF
    Due to increasing competitive pressure in their market, many enterprises are implementing changes to the way they conduct business. These changes range from implementing new IT, to redesigning the structure of the organization and entering into all kinds of cooperations with other enterprises, forming what we call a ‘networked business’. In this paper, we try to explain the origin of the networked business from three different, but related, perspectives: resource dependence, transaction cost and IT impact. We also explore some terms that are used to describe interorganizational structures to find their principal components in an attempt to determine relationships between them and find a broad and precise, new definition of the term ‘networked business’

    Scale-free law: network science and copyright

    Get PDF
    No description supplie
    • 

    corecore