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Abstract

In this work we analyze the topological and dynamical properties of a sim-
ple model of complex food webs, namely the niche model. We describe the
system as an oriented weighted graph and we assign a Lotka-Volterra popu-
lation dynamics on the structure created by the niche model. After this we
introduce “predators” and “prey” weighted graphs from which we underline
patterns of competition among species. We measure topological properties
of such graphs comparing simulated food webs with real data. We find that,
using a combination of projections weights as competition kernel in the Lotka-
Volterra equations, the stability of food webs decreases with its complexity
(measured as the average degree of the web).
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1. Introduction

The study of food webs has recently attracted the interest of complex sys-
tems scientists as one of the clearest example of a network structure whose
property can only be understood by looking at the system as a whole. A
food web is the collection of the predation relations in an environment and
assumes naturally the form of a network that is a mathematical object com-
posed by vertices (the biological species) and their edges (the predation re-
lations). Such a structure is very widespread and can be recovered with
similar statistical properties in a variety of other situations from WWW[1]
and the Internet[2] to protein interactions[3] and social systems[4]. Despite
this similarity, food webs represent one of the most interesting cases of study
for their particular topology. For example vertices can be divided in classes
thanks to their biological meaning (i.e. prey/predators). Also, the structure
is naturally layerized when considering the minimum distance of species from
the external resources. All these properties make these structures extremely
interesting for testing models and algorithms related to complex networks.
Similarly, some of the ideas developed in the area of computer science turned
out to be useful in the case of food webs, signalling some biological meaning
hidden in this topology[5].

Traditionally, the most important quantities in a food web are the number
of vertices N and the number of edges L. Since the maximum number of
edges you may have in such a system grows as N2 (precisely N(N − 1) for
a directed graph) one also considers the density of edges L/N2, a quantity
known in ecology as the directed connectance. The edges are directed and
each of them follows the convention (based on the flux of nutrients) of drawing
the edge from prey to predator. In this work we will consider only trophic

webs, where all species which have exactly the same predators and prey are
merged. Another characterization can be obtained by considering all the
species that have no predators. They are usually indicated as the top (T)
species. Similarly, the species with no prey are called basal species (B).
All the others form the intermediate (I) class. All the species are ultimately
sustained by the transformation into biomass of external resources like water,
mineral sunlight by means of the basal species. It is then customary to
describe this situation with the introduction of an external node, called zero
node, which points to all basal species i.e. to that nodes with only out-
edges. Given this structure, it is easy to define layers of species given by
the distance (i.e. the minimum path) towards the zero node of external
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resources. The distance is measured as the number of edges the biomass
has to travel. As in the Internet[6] some loops can be present in the system
and they account for the stability and resilience of these structures[7]. Food
webs have been modelled in many ways, and the different models have been
validated with the experimental data available. Here we focus on one recent
and successful model on which we create a suitable population dynamics by
means of Lotka-Volterra equations whose parameters are self-determined by
the topology created by the model itself.

2. Niche Model

There are many static models of food webs which reproduce the features
of real ecosystems such as fractions of top, basal and intermediate species,
number of food chains, average chain length, and connectance [8]. The sim-
plest way is to create suitable graphs [9, 10, 11], where (given the linkage
density and the number of nodes), directed edges are assigned to randomly
chosen pairs of nodes. The agreement between real and simulated food webs
is not very good. This is not surprising, since this simple model has many
unrealistic features such as the assumption that every species can in principle
be the predator of every other species.

Recently William and Martinez introduced another static model, called
“niche model” [12]. The authors found a remarkable agreement between
real webs and the synthetic ones generated by the model (much better than
the one measured for cascade model [13]). This is particularly true when
considering features such as cycles and species similarities. The external
parameters of the model (i.e. the quantities fixed from the beginning) are
the number of species S and the directed connectance C = L/S2. To every
node is assigned a uniformly distributed number ni into the interval [0, 1],
the niche space. A species i is characterized by its niche parameter and its
list of prey. Prey are chosen for all species according to the following rule: a
species i preys on all species j with niche parameters nj inside a segment of
length ri centered in a position chosen randomly inside the interval [ri/2, ni],
with ri = xni and x a random variable with probability density function

px(x) = β(x, 1, b) = b(1 − x)(b−1) (1)

Choosing b = (1/2C)− 1 is possible to generate graphs with the desired size
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and connectance1.
Niche model estimates the central tendency of empirical data remarkably

well [12]. Its topological and analytical properties have been widely studied
[15, 16] and it has been shown that the predictions of the model are robust
with respect to the specific form of the px(x) chosen[17, 18].

3. Population Dynamics

Given the network structure, we want to define a population dynamics
for the individuals of the species described in this food web. To each node i
we associate a population i.e. a function of time Ni(t) which represents the
density of individuals of the same trophic species per unit of area.

To describe population dynamics we use the generalized Lotka-Volterra
equations :

dNi

dt
= riNi

(

Ki −
∑S

j=1 αijNj

Ki

)

(2)

where ri is the intrinsic growth rate of species i, Ki his carrying capacity and
αij represents the effect species j has on the population of species i. Pulling
the carrying capacity into the interaction term the equations became

dNi

dt
= riNi

(

1−

S
∑

j=1

αijNj

)

(3)

This doesn’t actually change the equations, but only how the interaction
αij = αij/Ki is defined. For simplicity all self-interacting terms αii are set
to 1.

One can represent both the populations and the growth rates as rows
of numbers (vectors) and the interaction term α as a matrix, called also
competition kernel. Let us suppose that we have only one type of external
resource R produced with a constant rate y (renewability of resources) and
let us also suppose that each basal species consumes a fraction X at a rate
ci. The equation for the resources is:

dR(t)

dt
= R(y −

S
∑

i=1

ciNi) (4)

1In the niche model species with no prey and predators are eliminated and species with
the same list of prey and predators, that is trophically identical species, are merged.
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where the first term considers the renewability and the second one gives the
total rate of consume2.

If we consider the equilibrium conditions for equations that is 2 and 4,
dNi/dt = 0 and dR/dt = 0, we find a relationship between the ecological
parameters given by

y =

S
∑

ij

ciα
−1
ij Kj (5)

This gives a fundamental constraint on all the parameters (except the ri),
especially on the competition kernel which must be invertible.

Some authors use as competition kernel a function of the distances be-
tween species in niche space [19, 20]. The problem with such a choice is that
the topology of the food web is not included in the equations; a simple way to
incorporate it is to use a combination of projections weights, an issue treated
in the next section.

4. Projections Graphs

An adjacency matrix A of S rows and columns represents an aggregated
food web with S trophic species. The elements aij is taken 1 if species j
predates on species i and 0 otherwise. The ecosystem can also be represented
as a bipartite graph [21] where two classes of nodes are present: predators
(top and intermediate species) and prey (basal and intermediate species) and
each directed edge is always disposed between nodes belonging to different
classes. Such a graph can be projected into the predators-network, where
two predators are connected with an edge weighted proportionally to the
numbers of prey they have in common and, correspondingly, into the prey-
network, where two prey are connected according to the number of predators
they share.

The projection graphs are two undirected, weighted graphs whose sizes are
the number of predators and the number of prey in the food web respectively.
The corresponding adjacency matrices Apred and Aprey are symmetric and we

2here is assumed that ci 6= 0 only for basal species.
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define their elements in the following way:

apredij =

∑S
k=1 δaki,1δakj ,1

S(B + I)
(6)

apreyij =

∑S
k=1 δaik ,1δajk ,1

S(T + I)
(7)

We choose to normalize the predators weights over all possible prey, and
the prey weights over all possible predators. Note that apredij = apredji and
apreyij = apreyji . Since the change in the size of the graphs (without loss of
generality) we relabel the vertices in the two graphs and keep the information
about the species they represent [14].

The weights of the projections’ graphs are a measure of the interspecific
competition for resources, giving information on how two species compete (or
are object of competition) in the predation interaction. A more significant
meaning of this quantity should be derived by the analysis of an original
weighted food web where the strength of the predation is also considered.
For this reason, considering equation 2 we propose the following competition
kernel that joins in a self-organized way[22] the topology with the dynamics:

αij = apredij − apreyij (8)

This means that the influence of population i on population j is negative if
species i and j share some prey and positive if they share some predators.
The competition between two species increases with respect to the number of
prey species they share and vice versa. Using the elements defined in eq. 8,
it is possible to simulate a population dynamics on both model and empirical
food webs.

5. Results

The stability of empirical and model food webs has been tested numeri-
cally following this steps:

1. Food web adjacency matrix. We generate it using niche model, where
the input parameters are connectance C and size S. In real cases this
is done considering empirical food webs data.

2. Competition kernel. We derive the competition kernel αij(C) from
equation 8.
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3. Ecological parameters. We fix the parameters ri, ci and Ki:

• As a first approximation the intrinsic growths ri are set all equals
for all species. This means that in the ideal condition of no com-
petition and infinite resources, all the populations should grow at
the same rate. Varying these parameters one can simulate the
different lifetimes of species and their reproduction strategies.

• Setting the carrying capacities Ki of the species means that, in
the ideal condition of no interspecific competition (αij = 0), the
maximum number of individuals per unit of space which are sus-
tainable from the external environment is fixed for every species.

• the consuming rates ci has been set to 0.1 only for basal species.
This is quite realistic because basal species are, by definition, the
species which directly feed on the external environment.

• At this point using equation 5 we fix the renewability of resources
y which depends basicly on the topology of the graph. To avoid
indefinite growth, for simulated food webs, we fix the maximum
renewability yM = 10 and generate graphs with the same con-
nectance and size until we obtain the desired renewability (0 <
y ≤ yM).

4. Integration of equations. Once we have the competition kernel and the
desired y we solve the equations 2 using the 4th order Runge-Kutta
algorithm

5. Stability. The results have been collected in the steady state.

5.1. Projections Topological Properties

We measured topological properties of projections graphs for both em-
pirical and model food webs. The data we used have been selected to be
the largest and highest-quality empirical trophic food webs present in liter-
ature. They represent a wide range of ecosystems, from freshwater habitat
(Skipwith Pond SWP, Little Rock Lake LRL, Bridge Brooke Lake BBL) to
freshwater-marine interface (Chesapeake Bay CPB, Ythan Estuary YE) to
terrestrial habitats (Coachella Valley CDE, Saint Martin Island SMI)

The measure of all topological features (except for averaged weights) is
made by considering the binary matrices of projections where all weights
different from 0 are put to 1.
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Looking at the empirical graphs we find a very symmetric topology (Fig.2,
3). Some projections show the formation of isolated communities both in
predators and in prey graphs (Fig. 4, 5) and sometimes we find only isolated
nodes i.e. specialists in predation or in being a prey. This possibility of
community formation is not considered in directed food webs. In fact, in
both empirical and model graphs, there are no isolated nodes or clusters (in
niche model isolated species are removed).

We can measure this feature by considering the matrices of path lengths
whose elements are given by

d
pred/prey
ij = min{

∑

k,l∈Pij

a
pred/prey
kl } (9)

where Pij is a path connecting node i and j. Putting dij = 0 when the
distance between i and j is infinite i.e. when the nodes are in different
clusters. We compute average path length using two different normalizations:

lG =
1

n(n− 1)/2

∑

i>j

dij lR =
1

[n(n− 1)/2]− (l0/2)

∑

i>j

dij (10)

where l0 is the number of zeros in the matrix of path lengths. With this
definitions lG is the average path length over all possible paths and lR is the
average path length over all real paths. We have 0 ≤ lG/lR ≤ 1 being 0 when
all nodes are isolated and 1 when all nodes are in the same cluster. Together
with this we measure other topological quantities such as clustering, diameter
and average weight, for both projections (Table 1).

One of the first evidences is that the formation of communities is always
common to both projections. Connectance varies from 0.24 of CDE to 0.92 of
SWP, indicating that projections graphs are strongly connected in compari-
son to the original food webs. Average weights, the only quantities measured
considering projections as weighted graphs, vary from 0.04 to 0.21 for preda-
tors and from 0.05 to 0.22 for prey. It seems that 〈w〉 is independent from
original connectance and takes high values compared to model projections.
Furthermore we can say that projections of food webs present all the char-
acteristics of small world networks i.e. small diameter and large clustering
[23].

We then compute the same quantities for projections of graphs derived
from niche model and random graphs in function of the mean degree of orig-
inal directed graphs (Fig. 6). We expect averaged topological properties

8



of random projections to be the same for predators’ and prey’s graphs be-
cause in and out degree distributions of random digraphs have the same form
[11]. Comparing the curves with empirical data we find good agreement for
clustering and average path lengths. The model represents the formation of
competitive communities better than random projections while it overesti-
mates diameters and underestimates average weights. We see how empirical
D is better described through random projections, and how 〈w〉 of empiri-
cal projections is larger than model and random averaged weights. We can
explain this trend considering the feeding rule of niche model which assigns
prey from a single portion of niche space. This reduces the probability of
sharing different resources to a single, well distributed interval, augmenting
the diameter and reducing weights of projections graphs. On the other side,
empirical food webs are not strictly interval and do exhibit a strong bias
towards contiguity of prey [24]. This result suggest that empirical observed
niches, once mapped onto a single dimension, should be composed of various
intervals along niche space.

5.2. Dynamical properties

We tested the stability of these Lotka-Volterra systems using both empir-
ical and model food webs. We remarked that, among all possible behaviors,
using coefficients 8 as competition kernel, the system reaches quite always
the steady state for small S and C. Otherwise the system is no longer sta-
ble and populations sizes go to infinity when complexity, measured as SC,
grows. We tested steady states changing initial conditions, and ecological
parameters.

The only stable empirical food web is Chesapeake Bay (CPB) which is
the one with the lowest complexity. In Fig 7 we present population dy-
namics obtained setting initial population’s densities to 1 for all species and
changing the intrinsic growth of the species. We remarked that the ri are a
measure of the speed of convergence of populations sizes. Augmenting the
intrinsic growths the steady state is reached faster. Populations’ sizes at
the steady state should be equal to the carrying capacities, but the presence
of competition kernel changes the real Ki of every species. We remarked,
however, that this parameters give the size’s order of stable populations and
when Ki = KP mean population is always Kp. We obtain the same result
changing the initial conditions.

To conclude our analysis we simulated population dynamics on niche
model. We fixed S and C and generated 100 realizations of population dy-

9



namics on model graphs for a relevant number of points. We counted how
many times the system reaches the steady state and how many times it di-
verges. Again we find that, using expression 8 as competition kernel, these
are the only two observed behaviors. The probability of reaching a steady
state decreases with complexity (Fig. 8 and 9). Population dynamics on
graphs from niche model is stable only for small S and C which is no longer
true for empirical food webs. Simulating dynamics on graphs with more than
50 nodes is a hard computational task. However it is evident that the model
is stable for SC < 2 and that stability decreases linearly between SC = 2
and SC = 5. This results are robust under the change of initial conditions
and ecological parameters.

With this we show that it is possible to avoid chaotic behaviors of Lotka-
Volterra systems using weights of projections’ graphs as competition kernel.
When a fixed food web topology gives raise to stable populations, its com-
plexity must be small. This confirms recent findings of theoretical ecology
that complex food webs are not necessarily stable.
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[16] J. Camacho, R. Guimerà, L. A. Nunes Amaral, Analytical solution of a

model for complex food webs, Physical Rewiew E, 65030901 (2002)

[17] D. B. Stouffer, J. Camacho, R. Guimerà, C. A. Ng, L. A. Nunes Amaral
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6. Figures and Tables

Figure 1: Diagram of the niche model. To each of the S species (for example S = 6, each
shown as an inverted triangle) is assigned a “niche value” parameter (ni) drawn uniformly
from the interval [0, 1]. Species i consumes all species falling in a range (ri) that is placed
by uniformly drawing the center of the range (ci) from [ri/2, ni].
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Figure 2: Graph of predators’ projections for the food web of Skipwith Pond (SWP)
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Figure 3: Graph of prey’s projections for the food web of Skipwith Pond (SWP).
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Figure 4: Graph of predators’ projection for the food web of chesapeake bay (CPB)
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Figure 5: Graph of prey’s projections for the food web of Chesapeake Bay (CPB), note
the formation of communities and isolated species.
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one species. The ecological parameters are fixed, ri are uniformly distributed between 0
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and C are fixed as input parameters of niche model.
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C are fixed as input parameters of niche model.
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Food Web BBL SWP CDE CPB SMI YE LRL
S 25 25 29 31 42 78 92
L 107 197 262 68 205 374 997
C 0.171 0.32 0.31 0.072 0.12 0.061 0.12

PREDATORS
SPRED 17 24 26 26 36 71 80
LPRED 61 169 278 83 296 989 1129
zPRED 3.58 7.04 10.69 3.19 8.22 13.9 14.11
CPRED 0.448 0.61 0.85 0.25 0.47 0.4 0.35
ClPRED 0.75 0.93 0.9 0.86 0.79 0.89 0.84

< w >PRED 0.17 0.22 0.18 0.07 0.06 0.05 0.07
DPRED 4 2 2 3 3 3 3

((lG)PRED 1.51 1.39 1.14 0.7 1.56 1.76 1.63
(lR)PRED 1.72 1.39 1.14 1.5 1.56 1.76 1.72

(lG/lR)PRED 0.87 1 1 0.46 1 1 0.95
PREY
SPREY 25 25 29 21 35 49 91
LPREY 132 255 318 51 363 694 3133
zPREY 5.28 10.62 10.9 2.42 10.37 14.16 34.4
CPREY 0.44 0.92 0.78 0.24 0.61 0.59 0.756
ClPREY 0.9 0.96 0.92 0.67 0.87 0.85 0.92

< w >PREY 0.19 0.21 0.2 0.06 0.07 0.04 0.06
DPREY 4 2 2 4 3 3 4
(lG)PREY 1.59 1.08 1.22 0.81 1.43 1.42 1.25
(lR)PREY 1.73 1.08 1.22 1.62 1.43 1.42 1.25

(lG/lR)PRED 0.91 1 1 0.5 1 1 0.97

Table 1: topological properties of empirical food webs’ projections. The measure of clus-
tering, Cl, diameter D and average path lengths lg and lR, is made considering the binary
matrices of projections where weights are all put to 1.
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