19,003 research outputs found

    Discriminative Scale Space Tracking

    Full text link
    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.Comment: To appear in TPAMI. This is the journal extension of the VOT2014-winning DSST tracking metho

    Multi-scale space-variant FRep cellular structures

    Get PDF
    Existing mesh and voxel based modeling methods encounter difficulties when dealing with objects containing cellular structures on several scale levels and varying their parameters in space. We describe an alternative approach based on using real functions evaluated procedurally at any given point. This allows for modeling fully parameterized, nested and multi-scale cellular structures with dynamic variations in geometric and cellular properties. The geometry of a base unit cell is defined using Function Representation (FRep) based primitives and operations. The unit cell is then replicated in space using periodic space mappings such as sawtooth and triangle waves. While being replicated, the unit cell can vary its geometry and topology due to the use of dynamic parameterization. We illustrate this approach by several examples of microstructure generation within a given volume or along a given surface. We also outline some methods for direct rendering and fabrication not involving auxiliary mesh and voxel representations

    Measuring Large Scale Space Perception in Literary Texts

    Full text link
    The center and radius of perception associated with a written text are defined, and algorithms for their computation are presented. Indicators for anisotropy in large scale space perception are introduced. The relevance of these notions for the analysis of literary and historical records is briefly discussed and illustrated with an example taken from medieval historiography.Comment: 8 pages, 1 figur

    Scale-space and edge detection using anisotropic diffusion

    Get PDF
    The scale-space technique introduced by Witkin involves generating coarser resolution images by convolving the original image with a Gaussian kernel. This approach has a major drawback: it is difficult to obtain accurately the locations of the “semantically meaningful” edges at coarse scales. In this paper we suggest a new definition of scale-space, and introduce a class of algorithms that realize it using a diffusion process. The diffusion coefficient is chosen to vary spatially in such a way as to encourage intraregion smoothing in preference to interregion smoothing. It is shown that the “no new maxima should be generated at coarse scales” property of conventional scale space is preserved. As the region boundaries in our approach remain sharp, we obtain a high quality edge detector which successfully exploits global information. Experimental results are shown on a number of images. The algorithm involves elementary, local operations replicated over the image making parallel hardware implementations feasible

    Scale Space Smoothing, Image Feature Extraction and Bessel Filters

    No full text
    The Green function of Mumford-Shah functional in the absence of discontinuities is known to be a modified Bessel function of the second kind and zero degree. Such a Bessel function is regularized here and used as a filter for feature extraction. It is demonstrated in this paper that a Bessel filter does not follow the scale space smoothing property of bounded linear filters such as Gaussian filters. The features extracted by the Bessel filter are therefore scale invariant. Edges, blobs, and junctions are features considered here to show that the extracted features remain unchanged by varying the scale of a Bessel filter. The scale invariance property of Bessel filters for edges is analytically proved here. We conjecture that Bessel filters also enjoy this scale invariance property for other kinds of features. The experimental results presente

    A scale-space approach with wavelets to singularity estimation

    Get PDF
    This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In order to identify the singularities of the unknown signal, we introduce a new tool, "the structural intensity", that computes the "density" of the location of the modulus maxima of a wavelet representation along various scales. This approach is shown to be an effective technique for detecting the significant singularities of a signal corrupted by noise and for removing spurious estimates. The asymptotic properties of the resulting estimators are studied and illustrated by simulations. An application to a real data set is also proposed

    A network for multiscale image segmentation

    Get PDF
    Detecting edges of objects in their images is a basic problem in computational vision. The scale-space technique introduced by Witkin [11] provides means of using local and global reasoning in locating edges. This approach has a major drawback: it is difficult to obtain accurately the locations of the 'semantically meaningful' edges. We have refined the definition of scale-space, and introduced a class of algorithms for implementing it based on using anisotropic diffusion [9]. The algorithms involves simple, local operations replicated over the image making parallel hardware implementation feasible. In this paper we present the major ideas behind the use of scale space, and anisotropic diffusion for edge detection, we show that anisotropic diffusion can enhance edges, we suggest a network implementation of anisotropic diffusion, and provide design criteria for obtaining networks performing scale space, and edge detection. The results of a software implementation are shown

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance
    corecore