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ABSTRACT
In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images
for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic
Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant
of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling
(FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction
and shape detail preservation. MSERs of each scale space image are found and then combined through a
decision level fusion strategy, namely “selective scale fusion” (SSF), where contrast and boundary curvature of
each MSER are considered. The performance of the proposed method is evaluated using real multitemporal
high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with
several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change.
One of the main outcomes of this approach is that different objects having different sizes and levels of contrast
with their surroundings appear as stable regions at different scale space images thus the fusion of results from
scale space images yields a good overall performance.
Keywords: Change detection, multitemporal SAR images, log-ratio image, scale space representation, MSER,
fusion.

1. INTRODUCTION
With the advent of improved sensing technologies in spaceborne and airborne systems, multitemporal remote
sensing images have been actively utilized to infer dynamics of regions being monitored. Change detection
analysis has been one of the key concepts aiding several disciplines such as environmental monitoring and urban
planning. The goal of change detection is to identify any physical changes in the scene such as natural disasters,
land cover change, flood, etc. as well as changes in man-made structures and in location of objects including
movement, appearance and disappearance between the image acquisition times. Even if the interest of change is
constrained to a specific event, the same kind of event can have different signatures depending on where it takes
place and on the characteristics of the sensor.1 Thus an ideal change detection algorithm should be void of false
detections that can be induced by SAR artifacts such as side-lobes, moving reflectors and/or inherent sensor noise,
speckle, radar illumination, incidence or aspect angle changes.2 In order to carry out meaningful data analysis
and hence perform change detection, most often preprocessing steps are adopted including speckle reduction,
sensor calibration, radiometric calibration and geometric registration of multitemporal images to circumvent the
effects of the abovementioned artifacts to some extent.

In the literature, within a binary classification rationale, several unsupervised change detection algorithms are
brought forward aiming to spot regions of change in multitemporal images in the absence of any accompanying
prior information to model classes. For instance, Mercier et al.3 presented a methodology quantifying the proba-
bility density function evolution of the multitemporal SAR images between the acquisition times to spot abrupt
ground changes in which the backscatter returns of temporal images are modeled with Gaussian mixtures. Bazi et
al.4 proposed a feedback driven unsupervised change detection scheme based on Kittler-Illingworth (KI) thresh-
olding technique applied on the generalized Gaussian distribution used to model the changed and unchanged
classes. The method achieves automatic change detection through minimizing a modified KI criterion cost by
exploiting a pre-defined set of filtering iterations on multitemporal SAR images. Moser et al.5 extended the
KI minimum-error thresholding algorithm by modeling SAR amplitude data with Nakagami-Gamma, Weibull
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and log-normal probability density distributions. The approach attains promising results besides automating
the threshold selection procedure by minimizing the generalized Kittler and Illingworth (GKIT) criterion cost
provided that the ratio image is adequately filtered where the adaptive Gamma-MAP filter is used to reduce
speckle noise. The selection of the number of filtering iterations remains empirical and an extensive analysis of
optimum filtering iterations is not performed. In all the preceding techniques, the pixel backscatter amplitudes
are assumed independent identically distributed random variables forming a process where no spatial correlation
is exploited. Within a statistical perspective, context independent unimodal statistical fitting becomes inap-
propriate where sea surface, different ice types, extremely heterogeneous clutter such as urban regions, bare
ground surfaces are mostly known to follow Weibull, modified beta, G0, and normal distributions respectively.6

Huang et al.7 developed a local texture analysis based change detection algorithm making use of various spatial
texture features calculated from Gray-level Cooccurrence Matrix (GLCM) of temporal images. Next, decision
level fusion is performed by aggregating and majority voting the decisions of each feature specific change maps
obtained by virtue of the EM algorithm. Zhang et al.8 utilized probabilistic patch-based filter (PPB) along with
graph-cut segmentation algorithm to reduce speckle noise and to initialize the change map prior. The initial
change mask is then used to aid MAP estimation assuming the difference image follows a generalized Gaussian
distribution (GGD). Though the graph-cut algorithm provides spatial prior information, this information is not
fully utilized in the subsequent MAP estimation and each pixel is independently classified using ratio of posterior
probabilities which involves experimental threshold selection. Celik et al.9 proposed the use of the genetic algo-
rithm to obtain a change detection mask without explicitly computing a difference image. A multiobjective cost
function is defined to sort out chromosomes used to breed in the next generation where both crossover and mu-
tation operators are exploited. The method performs well for a wide range of change detection applications but
suffers innate computational cost of genetic algorithms. Yetgin10 adopted k-means clustering of the feature space
consisting of vectors that are obtained by block partitioning the log-ratio image and properly modified via Local
Gradual Descent Matrix (LGDM) to introduce local contextual information. The qualitative and quantitative
results of the algorithm demonstrate that it performs well in detecting the boundaries of changes accurately. To
incorporate spatial contextual information, Moser et al.11 suggested Markovian data fusion on multichannel ratio
image obtained from multichannel SAR amplitude images utilizing the GKIT technique to set the hypothesis
prior for each pixel. The fusion is then accomplished within an energy function where parameter estimations are
carried out using the Landgrebe and Jackson Expectation Maximization (LJ-EM) algorithm. Though the joint
multivariate probability density function of channels are not elaborated upon, weighting of marginal probability
density functions are considered going beyond a naive independence assumption thus in turn generating accurate
change map.

Recently, transform domain methods and multiscale analysis steered the research predicating on the idea
that different compromises on speckle reduction and shape detail preservation help obtain an enriched set of
representation. To exemplify, Inglada et al.1 introduced a local similarity measure between multitemporal im-
ages, namely Kullback-Leibler distance between probability density functions approximated by Edgeworth series
expansion, aimed to obtain a change map indicating a confidence level of change at each pixel. The selection of
different window sizes inherent to local statistics estimation is made use of generating a multiscale representation
enabling fusion of scales, yielding a better performance than a monoscale detector. Bovolo et al.12 introduced
a multiscale driven change detection approach by applying wavelet decomposition to the log-ratio image and
analyzing local coefficient of variation at each pixel to help determine its set of reliable scales. An independent
set of threshold values, determined either automatically or manually, is used to binarize the scale images and
several fusion methodologies mapping correspondences between reliable scale sets and binarized scale images
are studied. The approach acquires good performance only to be affected by the thresholding process adopted.
Bazi et al.13 employed a series of scalar Mumford-Shah segmentations on multiresolution representation of the
difference image by starting from the coarsest resolution image and treating the prior segmentation result as
the initiation for the succeeding finer resolution image based on the idea that each segmentation result needs
only be upsampled by a factor of two. The change map is then obtained when the finest resolution image is
segmented. Celik14 proposed a multiscale representation of the log-ratio image using the Undecimated Discrete
Wavelet Transform (UDWT) coupled with k-means clustering on multiscale feature vectors extracted by sam-
pling of neighborhood data at each pixel thereby obtaining intra-scale feature vectors aspiring to incorporate
spatial contextual information. The proposed algorithm is shown to be robust to speckle noise realizing superior
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performance compared to EM-based and MRF-based methods. Celik et al.15 offered a multiresolution image
analysis motivated unsupervised change detection method where UDWT is exploited providing different repre-
sentations of the ratio image in terms of resolution, hence constituting a feature vector at each pixel. The scalar
Chan-Vese active contour model segmentation is extended to vector-valued images and the evolved contour upon
convergence of the algorithm designates the outer boundary of the regions forming the change map. The effect
of the number of multiresolution levels on algorithm performance is carried out but the investigation of the
optimum set of levels is not fully considered.

To evaluate the main trends in the literature, in general, the performance of thresholding based methods
suffer from inadequate statistical model selection, specifically when the scene at hand is comprised of different
clutter types, and is highly affected by the parameter estimation technique used. Lack of spatial contextual
information results in construction of changed areas having discontinuous and inaccurate boundaries. On the
other hand, though MRF-based methods take spatial dependency of backscatter amplitudes into consideration,
they are generally computationally demanding. Segmentation- based approaches intend to properly recover
object boundaries, built on some spatial similarity metric, and have been integrated within change detection
algorithms recently.

In this paper we propose a segmentation-coupled change detection approach by making use of Maximally
Stable Extremal Region (MSER)16analysis on multiscale images obtained by Feature Preserving Despeckling
(FPD)17applied on log-ratio image owing to the fact that the changed areas are in contrast with their surroundings
due to backscatter amplitude increase or decrease between image acquisition times. The advantage of applying
FPD is twofold. Firstly, it helps reduce speckle noise thus reconstructs images composed of homogeneous regions
in terms of texture. Secondly, utilizing different parameter choices, and hence exploring different trade-offs
between speckle reduction and detail preservation through FPD, leads to the construction of a nonlinear scale
space where boundaries of objects are better kept. The MSER analysis of scale space images yields that highly
changed regions having a high contrast signature in the log-ratio image are properly segmented provided that
an adequate amount of speckle reduction is achieved. Meanwhile, depending on the parameters of the FPD
operator, this speckle reduction can result in a complete diffusion of slightly changed regions having relatively
lower contrast signature in the log-ratio image into background clutter hampering their segmentation. Taking
advantage of a decision level fusion strategy of MSERs obtained from each scale space image helps prevent
possible misdetections achieving promising change detection results both on synthetically generated and real
multitemporal SAR images and forms the main motive of the paper.

The paper is organized as follows. Section 2 describes and elaborates on the proposed change detection
algorithm. Section 3 introduces the data sets and the experimental analysis and finally Section 4 concludes the
paper giving insights for potential future work.

2. THE PROPOSED CHANGE DETECTION ALGORITHM
Let us assume that two geometrically registered SAR amplitude images are obtained where a radiometrically
indifferent acqusition process is employed and let It1 : [0, H[∩N×[0, W [∩N→ R, It2 : [0, H[∩N×[0, W [∩N→ R
denote the multitemporal images of size H ×W pixels, acquired on the same geographical area but at different
times, t1 and t2, respectively. The purpose of the change detection algorithm is to map the domain of the image,
on which the multitemporal images are defined, to a binary set where any changes in the natural environment or
in man-made structures are differentiated. Hence the output of the algorithm, generally called the change map,
can be represented as ICM : [0, H[ ∩ N× [0, W [ ∩ N→{0, 1}.

Our proposed change detection method is comprised of four stages (as depicted in Fig. 1):
1) generation of the log-ratio image,
2) creating a nonlinear scale space by virtue of FPD,
3) MSER extraction of scale space images, and
4) change map generation through fusion using the proposed – selective scale fusion (SSF) method.
These steps are detailed in the subsequent subsections.
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Figure 1: Overview of the proposed change detection algorithm.

2.1 Generation of the log-ratio image
The first step of the proposed algorithm is to generate the log-ratio image. As rationing is able to identify relative
backscatter amplitude change between image acquisition dates irrespective of the level of backscatter amplitude
difference and due to the ever-decreasing slope of the logarithm function between zero and one, log-ratio method
is generally opt for SAR imagery to provide contrast stretching. Let ILR denote the log-ratio image, we propose
to slightly modify the log-ratio operator in order to handle the cases of objects entering and departing the scene
between image acquisition times. These cases are associated with backscatter amplitude increase or decrease at
a given pixel. In this way, we eliminate the need of a two-pass change detection algorithm. In particular, we
define the log-ratio image as follows:

ILR = 1−min
{

log
(

1 + It1

It2

)
, log

(
1 + It2

It1

)}
. (1)

2.2 Nonlinear scale space creation
Cetin et al.17 formulated the SAR image reconstruction from complex-valued data problem as an optimization
problem with a cost functional consisting of data fidelity and prior information. We propose to use a special case
of this approach on the real valued log-ratio image to obtain its several different reconstructions, constituting
the scale space representation ISS , i.e.,

ISS =
{

ˆI1
SS ,

ˆI2
SS , ...,

ˆIN
SS

}
ˆIn
SS = arg min J (In

SS)
In

SS

J (In
SS) = ‖ILR − In

SS‖
2
2 + (λn

1 )2 ‖In
SS‖

k
k + (λn

2 )2 ‖DIn
SS‖

k
k (2)
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(a) Log-ratio image. (b) ˆI1
SS with λ1

1 = 0 and λ1
2 = 15.

(c) ˆI2
SS with λ2

1 = 0 and λ2
2 = 30. (d) ˆI3

SS with λ3
1 = 0 and λ3

2 = 45.
Figure 2: Scale space representation of a log-ratio image using three different reconstructions.

where ˆIn
SS is the nth reconstruction of the log-ratio image in the scale space constituted of N different reconstruc-

tions, ‖.‖k denotes the lk norm, D is the 2-D derivative operator, λn
1 and λn

2 are scalar parameters weighting
the terms of the cost function for the nth reconstruction. Specifically, the first term of the cost function is
the data fidelity term, the second and the third terms are for enhancing point based and region based features
respectively. The relative magnitudes of weights help smooth out the image, thus resulting in homogeneous
regions in terms of texture, while preserving edges and bright point reflectors. Fig. 2 shows a sample scale space
representation with three different reconstructions of a log-ratio image. It can be observed from Fig. 2 that
when the relative weight of λ2 is increased, low contrast regions are gradually merged with their surrounding
background completely losing their texture while high contrast regions are reconstructed with their contours
smoothed.

2.3 Maximally Stable Extremal Region analysis of scale space images
Matas et al.16 introduced an affinely-invariant stable local detector aimed to map correspondences between
pair of images taken from different viewpoints. The rationale of obtaining extremal regions is to threshold a
given amplitude image with all possible values within its dynamic range and to construct a hierarchical tree
where nodes at each depth represent connected components. The analysis of each branch of the component
tree yields maximally stable extremal regions where regions whose size remains approximately the same between
consecutive nodes denoting parent and child are sought. To elaborate, a particular connected region Qt obtained
by thresholding the image at a value t is maximally stable, if

Υ (Qt) = |Qt+4 \Qt−4| / |Qt| (3)
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attains a local minimum of the branch of interest where |.| denotes the cardinality, \ denotes the set difference,
and 4 is the stability range parameter denoting the step size of threshold increments. Since the value of t
satisfying the stability criterion can differ for each region, MSER analysis constructs each extremal region by
thresholding a given image at a particular value, rather than a global threshold, to obtain the binary image. As
the log-ratio image generally suffers from speckle noise, it is mostly impractical to use MSER analysis directly,
so we propose to use MSER analysis on the reconstructions of the log-ratio image, namely scale space images,
to obtain changed regions composing the change map. Within our context, on the one hand, as FPD achieves
reconstructions with speckle noise reduction yielding homogeneous regions while not neglecting shape detail
priors, changed regions having high contrast in the log-ratio image are easily detected as maximally stable
extremal region candidates dissociating from background clutter. On the other hand, slightly changed regions
having relatively lower contrast in the log-ratio image might merge with the background upon applying the FPD
operator.

2.4 Change map generation through fusion
In order to mitigate the problem of not recovering relatively low contrast regions as maximally stable extremal
regions and to circumvent the possible boundary extension of smoothed regions, we propose to combine the
MSERs of scale space images within a fusion scheme. Having obtained MSERs of each scale space image,
we introduce a feature-based fusion method, which we call “selective scale fusion” (SSF), where contrast and
boundary curvature of each MSER are considered. The method is iterative starting MSER investigation at scale
N and going down to the initial scale, and consists of the following seven stages:

1) Initialization: Let X = [0, H[∩N× [0, W [∩N be the domain on which the scale space images are defined
and let DCM ⊂ X be the subset of the change map domain representing the set of changed pixels determined by
our fusion algorithm. Adopting to map unchanged pixels to a binary value of 0 and changed pixels to a binary
value of 1, our fusion algorithm is initialized by setting ICM : X → 0, and DCM = Ø.

2) MSER sets construction: In order to be able to analyze MSERs found in all the scale space images and
to extract features to be used in the decision of incorporating MSERs to the change map, connected component
analysis is done:

Sk = {∪Rkj}
j=1, ..., Mk

, k = 1, ..., N (4)

where k represents the scale index, j represents the connected region index, and Sk represents the MSER set of
cardinality Mk constituted of connected regions Rkj obtained from the kth scale space image.

3) MSER association and classification: To carry out fusion of MSERs from scale space images, MSERs are
further classified to be of intra-scale or inter-scale type. Intra-scale type MSERs are members of an MSER set
of a single scale. Inter-scale type MSERs are members of MSER sets of more than one scale. This classification
is done to identify whether an MSER is possibly originated from speckle noise for an intra-scale type and to
provide a scale selection capability for a possibly changed region candidate for an inter-scale type. At the
MSER investigation of ith scale space image and for the jth particular connected region Rij , this classification
is achieved by a simple association of the connected region between scales defined as follows:

ck = argmax |Rij ∩ {∪Rkj′}|
j′=1, ..., Mk

, k = 1, ..., i (5)

where all the connected regions composing the MSER set of scale space images starting from the initial scale to
the scale being analyzed are investigated. The corresponding connected region index ck from the kth scale space
image having maximum intersection with the connected region Rij is kept. The classification of the MSER is
then defined as follows:

Rij ∈

{
inter-scaleMSER, if ∃k ∈ {1, ..., i− 1} : |Rkck

∩Rij | / |Rij | ≥ Γregion

intra-scaleMSER, otherwise
(6)
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(a) A connected region obtained from
1st scale space image(left), and 2nd scale
space image(right).

(b) A connected region obtained from
1st scale space image(left), and 2nd scale
space image(right).

Figure 3: Connected regions exemplifying (a) inter-scale and (b) intra-scale type MSERs.

which requires a certain amount of intersection achieved between connected regions to be considered as an inter-
scale MSER controlled by a threshold of value Γregion. Fig. 3 demonstrates a particular example of inter-scale
type and intra-scale type MSERs involving two scale space images. In Fig. 3a the MSER in the 2nd scale space
image is classified as inter-scale type since the intersection threshold is exceeded between regions, whereas the
MSER in the 2nd scale space image in Fig. 3b is classified as intra-scale type since the minimum intersection
criterion is not satisfied.

4) Feature extraction: After the type of the MSER region, Rij , is determined, contrast and boundary curvature
features from the associated connected regions and the region being analyzed are extracted. A feature metric
combining contrast and boundary curvature is formed. The feature metric favors connected regions having
smooth boundaries with the curvature term and avoids selecting the connected regions whose boundaries are
extended during the scale space construction with the contrast term. The feature metric of the associated
connected regions is calculated as:

fk =
{
αcur {Rkck

}+ (1− α) cont {Rkck
} , if |Rkck

∩Rij | / |Rij | ≥ Γregion

0, otherwise
, k = 1, ..., i (7)

where cur {.} ∈ [0, 1] ∩ R, cont {.} ∈ [0, 1] ∩ R denote the curvature and contrast operators, and α ∈ [0, 1] ∩ R
is the feature blending parameter used to weigh the contribution of the curvature and contrast features. The
curvature operator can be implemented using any algorithm such as the k-cosine curvature algorithm18 , and the
contrast operator can be implemented by applying morphological operators.

5) Incorporation of MSER to the change map: The scale member having the best feature metric for an
inter-scale type MSER, and an intra-scale type MSER whose feature metric is above a threshold is added to the
change map. With this strategy, scale selection capability for an inter-scale type MSER is introduced jointly
evaluating the associated connected regions. Meanwhile, intra-scale type MSERs not bearing sufficient feature
metric and thus possibly originating from speckle noise are eliminated. The scale selection and the update of
the change map domain are obtained as:

b = argmax
k=1, ..., i

fk (8)

DCM =
{
DCM ∪Rbcb

, if Rij ∈ inter-scaleMSER

DCM ∪Rij , if Rij ∈ intra-scaleMSER ∧ fi ≥ Γfeature
(9)

where b represents the scale index having best feature metric among all the associated regions, and Γfeature is
the feature metric threshold value for an intra-scale type MSER to be considered as a changed region.

6) MSER sets reduction: As a concluding step of the analysis of a particular inter-scale type MSER, associated
connected regions of the unselected scales are masked for the succeeding iteration to avoid duplicate investigation
since a connected region having best feature metric is already added to the change map. For an intra-scale type
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(a) It1 sea clutter image. (b) It2 sea clutter image with syn-
thetic change.

(c) Ground truth image.

Figure 4: First data set consisting of multitemporal images and the ground truth change map.

(a) It1 seaport image acquired on
October 20, 2011.

(b) It2 seaport image acquired on
December 25, 2011.

Figure 5: Multitemporal seaport images of New York acquired on October 20, 2011 and December 25, 2011.

MSER this step is irrelevant since no such association is present between MSER sets of scale space images. The
masking is simply achieved as follows:

Sk =
{
Sk \Rkck

, if Rkck
6= Ø ∧ Rij ∈ inter-scaleMSER

Sk, otherwise
, k = 1, ..., i. (10)

7) Change map generation: After all the MSERs of all scale space images are investigated by repeating steps
3-6, the change map is generated by mapping the domain DCM to a binary value of 1, i.e.,

ICM : DCM → 1. (11)

3. EXPERIMENTAL RESULTS
3.1 Data sets
In order to assess the performance of our proposed change detection algorithm, two different data sets are used to
conduct the experiments. The first data set is comprised of multitemporal images in which changes are generated
synthetically, whereas the second data set is comprised of real multitemporal images. These data sets are formed
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from images of New York City acquired by the TerraSAR-X satellite on October 20, 2011 and December 25,
2011 in spotlight single polarization mode and of size 19000× 20000 pixels.

The first data set is comprised of two different sea clutter image patches. The images are of 4000 × 4000
pixels with a spatial resolution of 1 m. A synthetic change image constituted of different shapes with several
orientations, sizes, and backscatter amplitude levels representing a variety of possible changes is superimposed
on one of the image patches to form the first set of multitemporal images. These synthetic changes almost
constitute 10% of the area of the observed scene. Fig. 4 shows this first data set along with the ground truth
map of the synthetic change image.

The scene of interest in the second data set is a seaport. These images are also of 4000× 4000 pixels in size
with a spatial resolution of 1 m where no ground truth map is available. The second set of multitemporal images
are depicted in Fig 5.

3.2 Quantitative measures
To quantitatively evaluate the performance of our change detection algorithm on the first data set in the following
subsections, we revisit some of the popular metrics used. Letting IGT and DGT be the ground truth image and
the domain of changed regions respectively, i.e., IGT : {DGT ⊂ X} → 1, the metrics are defined as follows:

Jaccard Index is a type of a metric used to measure the similarity and diversity between sample sets, defined
to be:

J(DGT , DCM ) = |DGT ∩DCM |
|DGT ∪DCM |

(12)

The Jaccard index penalizes false detections to the extent it rewards true detections making it a widely used
performance evaluator.

Precision reveals the rate of true detections among all the detections, i.e.,

Precision = |DGT ∩DCM |
|DCM |

(13)

Recall measures the rate of true detections among all the changed regions, i.e.,

Recall = |DGT ∩DCM |
|DGT |

(14)

3.3 Effect of scale space size
One of the most critical impacts on algorithm performance is the size of the scale space, namely the number of
log-ratio image reconstructions composing the scale space images. In order to demonstrate that the information
provided from each scale space image is additive irrespective of a detailed analysis and selection of reconstruction
parameters for a given scale space size, we propose to setup an experiment on the first data set introduced in
subsection 3.1 by linearly sampling the interval of predefined parameters used to generate reconstructions. After
an empirical analysis of the effect of parameter selections, we decided to use the following set of parameters and
thresholds for scale space generation and MSER fusion:

λ
n∈[1,N ]∩N
1 = 0, λ1

2 = 15, λN
2 = 47

Γregion = 0.8, Γfeature = 0.7, α = 0.5

Quantitative results of the effect of scale space size analysis are tabulated in Table 1. The change detection
algorithm and the experiments are realized in C++ using OpenCV 2.4 API with a workstation of an Intel
i7 3.06 GHz CPU with 4 cores and 8 hardware thread support where specifically NVidia GTX 560 TI 1.65
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Table 1: Jaccard index, precision, and recall performance values of the proposed change detection algorithm
applied on first data set along with execution times for various scale space sizes.

N Jaccard Index Precision Recall Total execution time in seconds
2 0.742 0.987 0.749 10.511
3 0.758 0.986 0.766 14.225
4 0.825 0.981 0.838 18.348
5 0.882 0.987 0.892 22.408
6 0.896 0.987 0.907 27.015
7 0.938 0.983 0.953 30.385
8 0.938 0.981 0.956 35.004
9 0.943 0.987 0.955 40.464
10 0.936 0.984 0.950 44.582
11 0.956 0.987 0.968 48.872
12 0.959 0.987 0.971 53.365

(a) MSER analysis of ˆI1
SS . (b) MSER analysis of ˆI2

SS . (c) MSER analysis of ˆI3
SS . (d) MSER analysis of ˆI4

SS .

(e) MSER analysis of ˆI5
SS . (f) MSER analysis of ˆI6

SS . (g) MSER analysis of ˆI7
SS . (h) Change map result.

Figure 6: Qualitative results obtained on the first data set.

GHz GPU with 384 cores is utilized to implement the FPD operator. From the acquired results, the total
execution time of the algorithm seems to scale linearly with the scale space size. Besides, as can be seen from the
performance metrics, the increase in scale space size results in improved values of recall signifying the additive
change information provided from each scale space image, whereas among all the detections almost the same
precision values are achieved supporting the robustness and efficiency of our proposed fusion scheme. The
performance of the algorithm saturates when scale space size is further increased which is not shown Table 1.
The small fluctuations in the performance metrics when scale space size increases are due to the linear sampling
of parameters where each time not same set of previously reconstructed images form the scale space when an
additional scale space image is to be generated.
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(a) MSER analysis of ˆI1
SS . (b) MSER analysis of ˆI2

SS . (c) MSER analysis of ˆI3
SS . (d) MSER analysis of ˆI4

SS .

(e) MSER analysis of ˆI5
SS . (f) MSER analysis of ˆI6

SS . (g) MSER analysis of ˆI7
SS . (h) Change map result.

Figure 7: Qualitative results obtained on the second data set.

(a) It1 seaport image acquired on
October 20, 2011.

(b) It2 seaport image acquired on
December 25, 2011.

(c) It2 seaport image acquired on
December 25, 2011 with changes
marked in color.

Figure 8: Qualitative results obtained on the second data set demonstrating the objects that have probably
entered/departed the scene of interest.
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3.4 Change detection analysis on data sets
Based on the results obtained for the first data set which are shown in Table 1, the use of seven scale space
images results in good overall performance whilst detecting changes in a fairly changed scene of interest in half
a minute reaching a moderate compromise between computation time and algorithm performance. Using the
same set of parameters to generate scale space representation and MSER fusion we exhibit our qualitative results
obtained on the data sets in Fig. 6 and Fig. 7. Due to the different reconstructions achieved in scale space
images, various different connected component tree representations are realized during MSER analysis. This
eventually leads to different MSERs found from scale space images. Fig. 6 and Fig. 7 visually demonstrate the
fact that no complete subset-superset relation holds in between MSER sets of scale space images supporting the
idea that each scale space image can provide different information. In order to present a visually more pleasing
qualitative result of the change map obtained using the second data set, objects that have probably departed
the scene between image acquisiton times are marked in green color whereas objects that have probably entered
the scene are marked in red color and depicted in Fig. 8. The encolouring is based on the mean backscatter
amplitude change analysis of regions composing the change map.

4. CONCLUSION
In this paper, an unsupervised change detection method for SAR imagery is proposed based on MSER analysis
of scale space images. The scale space images achieving various levels of speckle noise reduction and shape detail
preservation in reconstructing the log-ratio image are formed using the FPD operator. On the one hand, since
this is a segmentation based approach, highly changed regions with a high contrast signature in the log-ratio
image easily pass as MSER candidates and formed with accurate boundaries with the help of speckle reduction
achieved by virtue of the FPD operator. On the other hand, slightly changed regions with a low contrast
signature in the log-ratio image might suffer from a complete texture loss and merge with the background during
the scale space construction, which necessitates a fusion algorithm studying MSER analysis of each scale space
image. Our proposed fusion algorithm, SSF, investigates intra/inter-scale MSERs and constructs the change map
composed of MSERs selected by a feature metric combining curvature and contrast measures which mitigates the
problem of not recovering slightly changed regions, as well as eliminates regions possibly originating from speckle
noise. The qualitative and quantitative results demonstrate that the proposed fusion method works effectively
in constructing the boundaries of changed regions achieving high precision.

Within the context of our proposed change detection algorithm, it has been demonstrated that the information
provided by each scale space image is additive hence resulting in higher change detection performance when the
scale space size, which is a parameter to be selected, is increased. An important issue is the automatic selection
of reconstruction parameters to obtain the scale space representation for a predetermined number of scale space
size, which is a topic worth studying in future work.
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