2,828 research outputs found

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    Optimal co-design of control, scheduling and routing in multi-hop control networks

    Full text link
    A Multi-hop Control Network consists of a plant where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. Given a SISO LTI plant, we will address the problem of co-designing a digital controller and the network parameters (scheduling and routing) in order to guarantee stability and maximize a performance metric on the transient response to a step input, with constraints on the control effort, on the output overshoot and on the bandwidth of the communication channel. We show that the above optimization problem is a polynomial optimization problem, which is generally NP-hard. We provide sufficient conditions on the network topology, scheduling and routing such that it is computationally feasible, namely such that it reduces to a convex optimization problem.Comment: 51st IEEE Conference on Decision and Control, 2012. Accepted for publication as regular pape

    Fault detection and isolation of malicious nodes in MIMO Multi-hop Control Networks

    Full text link
    A MIMO Multi-hop Control Network (MCN) consists of a MIMO LTI system where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. We provide necessary and sufficient conditions on the plant dynamics and on the communication protocol configuration such that the Fault Detection and Isolation (FDI) problem of failures and malicious attacks to communication nodes can be solved.Comment: 6 page

    On Link Estimation in Dense RPL Deployments

    Get PDF
    The Internet of Things vision foresees billions of devices to connect the physical world to the digital world. Sensing applications such as structural health monitoring, surveillance or smart buildings employ multi-hop wireless networks with high density to attain sufficient area coverage. Such applications need networking stacks and routing protocols that can scale with network size and density while remaining energy-efficient and lightweight. To this end, the IETF RoLL working group has designed the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). This paper discusses the problems of link quality estimation and neighbor management policies when it comes to handling high densities. We implement and evaluate different neighbor management policies and link probing techniques in Contiki’s RPL implementation. We report on our experience with a 100-node testbed with average 40-degree density. We show the sensitivity of high density routing with respect to cache sizes and routing metric initialization. Finally, we devise guidelines for design and implementation of density-scalable routing protocols

    QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks

    Get PDF
    A wireless sensor/actuator network (WSAN) is a group of sensors and actuators that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Actuators react to this information by performing appropriate actions. WSANs thus enable cyber systems to monitor and manipulate the behavior of the physical world. WSANs are growing at a tremendous pace, just like the exploding evolution of Internet. Supporting quality of service (QoS) will be of critical importance for pervasive WSANs that serve as the network infrastructure of diverse applications. To spark new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSANs. A brief overview of recent progress is given.Comment: 12 pages, 1 figure; revie
    • …
    corecore