212 research outputs found

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Crosstalk-free Conjugate Networks for Optical Multicast Switching

    Full text link
    High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node-disjoint in the switching network. In this paper, we propose a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem. The network resulting from this transformation is called conjugate network. By using the numbering-schemes of networks, we prove that if the route assignments in the original network are link-disjoint, their corresponding ones in the conjugate network would be node-disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, we show that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.Comment: 10 page

    Terabit Burst Switching Final Report

    Get PDF
    This is the final report For Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. The primary objective of the project has been to demonstrate the feasibility of Burst Switching, a new data communication service, which seeks to more effectively exploit the large bandwidths becoming available in WDM transmission systems. Burst switching systems dynamically assign data bursts to channels in optical datalinks, using routing information carried in parallel control channels

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Digital Switching in the Quantum Domain

    Get PDF
    In this paper, we present an architecture and implementation algorithm such that digital data can be switched in the quantum domain. First we define the connection digraph which can be used to describe the behavior of a switch at a given time, then we show how a connection digraph can be implemented using elementary quantum gates. The proposed mechanism supports unicasting as well as multicasting, and is strict-sense non-blocking. It can be applied to perform either circuit switching or packet switching. Compared with a traditional space or time domain switch, the proposed switching mechanism is more scalable. Assuming an n-by-n quantum switch, the space consumption grows linearly, i.e. O(n), while the time complexity is O(1) for unicasting, and O(log n) for multicasting. Based on these advantages, a high throughput switching device can be built simply by increasing the number of I/O ports.Comment: 24 pages, 16 figures, LaTe

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Architecture design and performance analysis of practical buffered-crossbar packet switches

    Get PDF
    Combined input crosspoint buffered (CICB) packet switches were introduced to relax inputoutput arbitration timing and provide high throughput under admissible traffic. However, the amount of memory required in the crossbar of an N x N switch is N2x k x L, where k is the crosspoint buffer size and needs to be of size RTT in cells, L is the packet size. RTT is the round-trip time which is defined by the distance between line cards and switch fabric. When the switch size is large or RTT is not negligible, the memory amount required makes the implementation costly or infeasible for buffered crossbar switches. To reduce the required memory amount, a family of shared memory combined-input crosspoint-buffered (SMCB) packet switches, where the crosspoint buffers are shared among inputs, are introduced in this thesis. One of the proposed switches uses a memory speedup of in and dynamic memory allocation, and the other switch avoids speedup by arbitrating the access of inputs to the crosspoint buffers. These two switches reduce the required memory of the buffered crossbar by 50% or more and achieve equivalent throughput under independent and identical traffic with uniform distributions when using random selections. The proposed mSMCB switch is extended to support differentiated services and long RTT. To support P traffic classes with different priorities, CICB switches have been reported to use N2x k x L x P amount of memory to avoid blocking of high priority cells.The proposed SMCB switch with support for differentiated services requires 1/mP of the memory amount in the buffered crossbar and achieves similar throughput performance to that of a CICB switch with similar priority management, while using no speedup in the shared memory. The throughput performance of SMCB switch with crosspoint buffers shared by inputs (I-SMCB) is studied under multicast traffic. An output-based shared-memory crosspoint buffered (O-SMCB) packet switch is proposed where the crosspoint buffers are shared by two outputs and use no speedup. The proposed O-SMCB switch provides high performance under admissible uniform and nonuniform multicast traffic models while using 50% of the memory used in CICB switches. Furthermore, the O-SMCB switch provides higher throughput than the I-SMCB switch. As SMCB switches can efficiently support an RTT twice as long as that supported by CICB switches and as the performance of SMCB switches is bounded by a matching between inputs and crosspoint buffers, a new family of CICB switches with flexible access to crosspoint buffers are proposed to support longer RTTs than SMCB switches and to provide higher throughput under a wide variety of admissible traffic models. The CICB switches with flexible access allow an input to use any available crosspoint buffer at a given output. The proposed switches reduce the required crosspoint buffer size by a factor of N , keep the service of cells in sequence, and use no speedup. This new class of switches achieve higher throughput performance than CICB switches under a large variety of traffic models, while supporting long RTTs. Crosspoint buffered switches that are implemented in single chips have limited scalability. To support a large number of ports in crosspoint buffered switches, memory-memory-memory (MMM) Clos-network switches are an alternative. The MMM switches that use minimum memory amount at the central module is studied. Although, this switch can provide a moderate throughput, MMM switch may serve cells out of sequence. As keeping cells in sequence in an MMM switch may require buffers be distributed per flow, an MMM with extended memory in the switch modules is studied. To solve the out of sequence problem in MMM switches, a queuing architecture is proposed for an MMM switch. The service of cells in sequence is analyzed

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Switching considerations in storage networks.

    Get PDF
    by Leung Yiu Tong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 96-98).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Thesis Organization --- p.3Chapter 2. --- Storage Network Fundamentals --- p.4Chapter 2.1 --- Storage Network Topology --- p.4Chapter 2.1.1 --- Direct Attached Storage (DAS) --- p.5Chapter 2.1.2 --- Network Attached Storage (NAS) --- p.7Chapter 2.1.3 --- Storage Area Network (SAN) --- p.9Chapter 2.1.3.1 --- SAN and the Fibre Channel Protocol --- p.11Chapter 2.1.4 --- Summary on Storage Network Topology --- p.12Chapter 2.2 --- Storage Protocol --- p.15Chapter 2.2.1 --- Fibre Channel --- p.15Chapter 2.2.1.1 --- Fibre Channel over IP (FCIP) --- p.17Chapter 2.2.1.2 --- Internet Fibre Channel Protocol (iFCP) --- p.19Chapter 2.2.2 --- Internet SCSI (iSCSI) --- p.20Chapter 2.2.3 --- InfiniBand --- p.22Chapter 2.2.4 --- Review on Storage Network Protocol --- p.25Chapter 2.3 --- Standard Organization --- p.27Chapter 2.4 --- Summary --- p.28Chapter 3. --- Switching Design for Storage Networks --- p.30Chapter 3.1. --- Shared Bus Design --- p.32Chapter 3.2. --- Time Division Switch --- p.36Chapter 3.3. --- Share Buffer Memory Switch --- p.37Chapter 3.3.1 --- Parallel Memory Array --- p.40Chapter 3.3.2 --- Distributive Storage --- p.43Chapter 3.4. --- Crossbar Switch --- p.45Chapter 3.4.1 --- Arbitrated Crossbar vs. Buffered Crossbar --- p.46Chapter 3.4.1.1 --- Arbitrated Crossbar Switch --- p.47Chapter 3.4.1.2 --- Buffered Crossbar Switch --- p.48Chapter 3.4.2 --- Switch Scheduling --- p.49Chapter 3.4.2.1 --- Bipartite Matching --- p.50Chapter 3.4.2.2 --- Token-based Distributive Scheduling --- p.53Chapter 3.4.2.3 --- Resource Counting using Semaphore --- p.56Chapter 3.5. --- Algebraic Switches --- p.60Chapter 3.5.1 --- Switching by Conditionally Nonblocking Properties --- p.61Chapter 3.5.2 --- Self-Routing Mechanism with Zero-Bit Buffering --- p.64Chapter 3.5.3 --- Multistage Interconnection of Self-routing Concentrators --- p.69Chapter 3.6. --- Summary --- p.73Chapter 4. --- Investigating Switching Issue in Storage Networks --- p.74Chapter 4.1 --- Choosing a Suitable Switch --- p.74Chapter 4.2 --- Quality of Service (QoS) --- p.76Chapter 4.3 --- Multicasting --- p.77Chapter 4.3.1 --- Crossbar Switch --- p.78Chapter 4.3.2 --- Shared-Buffer Memory Switches --- p.80Chapter 4.3.3 --- Algebraic Switch --- p.82Chapter 4.3.4 --- Application on Multicast Transmission --- p.86Chapter 4.4 --- Load Balancing Mechanism --- p.87Chapter 4.5 --- Optimization on Storage Utilization --- p.91Chapter 4.6 --- Summary --- p.93Chapter 5. --- Conclusion and Summary of Original Contributions --- p.9
    corecore