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Optical Burst Switching (OBS) is an experimental network technology that

enables the construction of very high capacity routers using optical data paths and

electronic control. In this dissertation, we study the design of network components

that are needed to build an OBS network. Specifically, we study the design of the

switches that form the optical data path through the network.

An OBS network that switches data across wavelength channels requires wave-

length converting switches to construct an OBS router. We study one particular

design of wavelength converting switches that uses tunable lasers and wavelength

grating routers. This design is interesting because wavelength grating routers are

passive devices and are much less complex and hence less expensive than optical



crossbars. We show how the routing problem for these switches can be formulated as

a combinatorial puzzle or game, in which the design of the game board determines

key performance characteristics of the switch. In this disertation, we use this formu-

lation to facilitate the design of switches and associated routing strategies with good

performance.

We then introduce time sliced optical burst switching (TSOBS), a variant of

OBS that switches data in the time domain rather that the wavelength domain. This

eliminates the need for wavelength converters, the largest single cost component of

systems that switch in the wavelength domain. We study the performance of TSOBS

networks and discuss various design issues. One of the main components that is

needed to build a TSOBS router is an optical time slot interchanger (OTSI). We

explore various design options for OTSIs.

Finally, we discuss the issues involved in the design of network interfaces that

transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-

gregation and load balancing are the main issues that determine the performance of

a TSOBS network and we develop and evaluate methods for both.
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Chapter 1

Introduction

The size of the Internet has been growing rapidly in recent years, with the amount

of data sent over the network doubling every year [77] and estimates show that it

will continue to do so in the future. Initiatives like the 100×100 project [1] aim to

wire 100 million households in the United States of America with connections at 100

Mbps or more per household. In countries like Japan and Korea, initiatives to wire

households with broadband connections have met with great success.

Wavelength Division Multiplexing (WDM) [12] has made it possible to harness

the enormous bandwidth potential of fiber in a cost-effective way and is thus becoming

the method of choice for information transmission in data networks. Consequently,

transmission capacity in data networks has been able to keep up with the growth of the

Internet. Systems with 40 wavelengths per fiber and each wavelength running at OC-

48 (2.5 Gbps) have been deployed and systems with 160 wavelengths, each supporting

10 Gbps are becoming available [23]. Laboratory experiments [27] have demonstrated

the feasibility of 160 Gbps transmission per wavelength channel, resulting in a capacity

of 12.8 Tbps per fiber with 160 wavelengths per fiber. The number of wavelength

channels per fiber has also been increasing and laboratory experiments [27] have

demonstrated systems with 1022 wavelength channels per fiber.

However, electronic switching speeds have been doubling every eighteen months

following Moore’s law and this leads to a serious disparity between electronic switch-

ing speeds and optical transmission capacity (it can take 5-10 equipment racks to

hold the electronic line cards needed to terminate the channels from just a single

fiber). Optical switching seeks to eliminate electronic switching and switch the data

in its optical form, thus eliminating the opto-electronic components which contribute
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a large fraction of the cost of electronic routers. Optical switching has other poten-

tial benefits, including bit-rate independence, protocol transparency, and low power

consumption.

Optical switching is currently used in networks to provision very high ca-

pacity circuit-switched point-to-point “pipes” and the packet switching is done in

the electronic domain. In these networks, known as wavelength routed networks,

each lightpath or a circuit has the capacity of a wavelength channel and this ca-

pacity is much more than what is necessary for most packet switching applica-

tions [6, 9, 68, 83, 87, 107]. This leads to under utilization of the bandwidth. Optical

burst switching (OBS) is a network technology that uses optics to switch data in a

much smaller granularity resulting in more efficient utilization of bandwidth. In this

dissertation, we study the architecture and design of network components that can

make it cost effective to build optical burst switched networks.

There have been various studies to build packet/burst switched routers using

optical components [10, 37, 21, 40, 46, 54, 31, 30, 71, 89, 102, 104]. Unfortunately,

the optical components needed are expensive making it difficult for optical burst

switching to be an economically effective alternative to electronic networks. Most of

the optical packet switching studies have been done in research laboratories and have

not been successful in demonstrating a case for implementing optical packet switched

networks commercially.

Now we present a brief description of the architecture of an optical burst

switched network and present a summary of existing approaches for building opti-

cal switches.

1.1 Optical Burst Switching Concept

Optical Burst Switching (OBS) [7, 18, 78, 80, 79, 85, 91, 92, 95, 98, 101] is an experi-

mental network technology that seeks to use optical switching for the data path, while

still retaining the flexibility of electronics for control. By exploiting the high chan-

nel counts of advanced WDM systems, it achieves excellent statistical multiplexing

performance with little or no buffering.

The basic burst switching concept is illustrated in Fig. 1.1. The transmission

links carry data on tens or hundreds of wavelength channels and user data bursts

can be dynamically assigned to any of these channels by the OBS routers. One

(or possibly several) channel on each link is reserved for control information that
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Control Channel

Figure 1.1: Burst Switching Concept

is used to control the dynamic assignment of the remaining channels to user data

bursts. Terminals and/or other networks connect to a burst-switched network through

concentrators that convert data on lower speed interfaces (e.g. IP-over-Ethernet at

100 Mb/s or 1 Gb/s), to the burst data format. Concentrators may switch packets

received on low speed interfaces as single bursts, or may aggregate packets to form

larger bursts. Aggregation increases the average burst length on the links, potentially

improving efficiency and reducing the amount of control processing required. When a

concentrator has a burst of data to send, an idle channel on the access link is selected

and the data burst is sent on that channel.

Shortly before the burst transmission begins, a Burst Header Cell (BHC) is sent

on the control channel, specifying the channel on which the burst is being transmitted

and the destination of the burst. The OBS router, on receiving the BHC, assigns the

incoming burst to an idle available channel on the outgoing link leading toward the

desired destination and establishes a path between the specified channel on the access

link and the channel selected to carry the burst. It also forwards the BHC on the

control channel of the selected link, after modifying the cell to specify the channel on

which the burst is being forwarded. This process is repeated at every router along

the path to the destination. The BHC also includes an Offset field which contains

the time between the transmission of the first bit of the BHC and the first bit of

the burst, and a Length field specifying the time duration of the burst. The offset

and length fields are used to perform time switching operations in the OBS routers,

and the offset field is adjusted by the routers to reflect variations in the processing
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delays encountered in the routers’ control subsystems. If a router does not have idle

channels available at the output port, the burst can be stored in a buffer.

Reference [91] describes a scalable OBS router architecture consisting of a set

of Input/Output Modules (IOM) that interface to external links and a multistage in-

terconnection network of Burst Switch Elements (BSE). The interconnection network

uses a Benes topology, which provides parallel paths between any input and output

port. A three stage configuration comprising d port switch elements can support

up to d2 external links (each carrying many WDM channels). The topology can be

extended to 5,7 or more stages. In general, a 2k − 1 stage configuration can support

up to dk ports. For example, a 5 stage network constructed from 8 port BSEs would

support 512 ports. If each port carried 256 channels at 10 Gb/s each, the aggregate

system capacity would be 1, 310 Tb/s.

Input IOMs process the arriving BHCs, performing routing lookups and in-

serting the number of the output IOM into BHCs before passing them on. The BSEs

use the output port number to switch the burst through to the proper output. Each

of the components that does electronic processing on the cell keeps track of the time

spent and updates the offset field in the BHC to maintain synchronization with the

burst.

The focus of the first part of this dissertation is the design of the optical data

path in each BSE. Optical components are used to build the BSEs and they are

electronically controlled by the switch controller to switch the data to the destination

output port, as determined by the route lookup in the IOM. We now present a brief

summary of the available optical technologies that can be employed to build such a

switch.

1.2 Enabling technologies

A typical optical switch has to implement three basic functions: demultiplexing and

multiplexing, switching, and contention resolution. The generic structure of an optical

packet switch is shown in Fig. 1.2. Demultiplexing of the individual wavelengths from

input fibers and multiplexing them back onto outgoing fibers is done using passive

couplers that are quite inexpensive. Switching is performed using high speed switching

components that are discussed later in this section. In a packet switch, contention

occurs whenever two or more packets try to leave the switch fabric on the same

output port at the same time. In electronic switches, contention resolution is handled
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by using buffers and storing the packet that loses out on contention and transmitting

it at a later time when the outgoing channel becomes available. Typically, electronic

routers use buffers that can buffer about one half seconds worth of data or 5 Gigabits

for a 10 Gbps channel. The contention resolution can be done either at the input side

(before the switching) or at the output side (after the switching) or both.

There are three methods of contention resolution in optical systems, optical

buffering, wavelength conversion, and deflection routing. We now present an overview

of the technologies that are available to perform each of these functions [74, 84, 90].

1.2.1 Switching

Switching is the process of directing signals from an input port to an output port

as determined by the address lookup performed on the burst header cell. Optical

switches are available for a range of applications. Wavelength routed networks that

provision connections on a per-wavelength basis require switches with switching times

of the order of a millisecond. Packet switching or burst switching, on the other hand,

requires high speed switches (usually crossbars) to switch packets or bursts onto

outgoing links. The switching speed of the crossbar determines the minimum size of

the bursts that can be switched and the lower the minimum size of bursts, the better

the statistical multiplexing performance of the network. A packet of size 100 bytes is

about 80 ns long on an optical fiber that has a bandwidth of 10 Gbps per wavelength.

If we were to handle bursts of the order of 100 bytes, we need optical crossbars that

have switching times of 1-10 ns.

Apart from the switching time, other important characteristics of switches are

extinction ratio, insertion loss, and crosstalk. These characteristics determine the
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quality of the signal when it is switched through the devices. Higher loss character-

istics imply that the signal needs to be regenerated more often in the network, which

amounts to an increase in cost of the system. Extinction ratio is the ratio of the

output power of a switch in the “on” state (when the input is connected to some

output) to the output power in the “off” state (when the output is not connected to

any input). This ratio should be as high as possible. While mechanical switches have

extinction ratios of 40-50 dB, high-speed switches have extinction ratios of 10-25 dB.

Insertion loss is the fraction of the signal power lost as a result of placing the switch

in the data path and must be as small as possible. In a switch, even if an input is

connected to some output, it is possible that power from other inputs can be coupled

onto the signal at the output. The crosstalk of a switch is the ratio of the power at

an output from the desired input to the power from all other inputs.

The two technologies that have switching times of a nanosecond or less are

Electro-optic Lithium Niobate based switches and semiconductor optical amplifiers

based switches. Other technologies that are commonly found like Micro-Electro-

Mechanical Systems (MEMS) switches [76], Liquid Crystal switches, and Bubble-

based Waveguide switches have switching times of a millisecond or more and cannot

be used for burst switching. Lithium Niobate switches have very fast switching times

of less than 1 ns and allow for modest levels of integration. A 16×16 switch with

nanosecond switching times has been demonstrated [75]. However, they have a rela-

tively high insertion and polarization dependent loss.

Semiconductor optical amplifiers (SOAs) are promising components that can

be used to build fast switches. An SOA is used as an on-off switch and is controlled

by a bias voltage. When in the off state, the signal is absorbed by the device and in

the on state, the signal is amplified. This results in very large extinction ratios. SOA

gate switching has been demonstrated in [33, 34, 53]. Reference [53] discusses the

construction of a 4 × 4 switch matrix using SOA gates and Reference [34] discusses

the construction of an 8 × 8 switch matrix. However, these switches are expensive

components and challenges remain in integrating them into large-scale switching fab-

rics. Also, use of SOAs results in amplified spontaneous emission noise and this leads

to degradation of the signal quality.

Reference [69] tabulates properties of the different switching technologies avail-

able.
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1.2.2 Fiber delay lines

In optical switching systems, the only practical method of buffering is to circulate the

optical signal through a fiber delay line for the amount of time required [58]. If we use

a single lengthy fiber to store the packets, the amount of fiber required is excessive

(half a second corresponds to 150, 000 km of fiber) and fiber delay lines are also not

random access. The other approach to using fiber delay lines is to use a smaller

length fiber and recirculate the signal through the fiber repeatedly until the required

amount of delay is achieved. This method results in excessive signal degradation that

makes it impractical to use. Also, this method requires the use of WDM to maintain

high buffer capacity. Thus, optical packet switching systems typically use very little

buffering if any at all and depend on other contention resolution methods for good

performance.

For small amounts of buffering, fiber delay lines can be packaged by wrapping

the fiber around a cylindrical ring. The cladding diameter of a single mode fiber is

usually 125µm and there is a layer of coating on top of the cladding which makes the

diameter 250µm. A spool of fiber [2] that has an outer diameter of 27 cm (a little less

than 11 inches) and a width of 18 cm (less than 7 inches) holds 50 km of fiber. The

fiber delay lines may have to be temperature controlled depending on the conditions

because temperature variations can cause the signal quality to degrade.

1.2.3 Deflection routing

Deflection routing [16, 43, 51, 57, 72] is another contention resolution method that

has been studied. This is a multiple-path routing technique where packets that lose

contention are routed to nodes other than their next-hop nodes and get routed to the

destination from there on. Deflection routing is also known as hot-potato routing.

Deflection routing could cause out-of-order delivery of packets at the destina-

tion requiring resequencing. Also, the effectiveness of this method depends heavily

on the network topology and the offered traffic pattern. Deflection routing works well

in highly regular networks like the Manhattan Street network or the shuffle-exchange

network since a deflection does not result in a large “detour”. Thus, using deflection

routing reduces the flexibility in designing the network. Deflection routing also re-

sults in an increased delay through the network as compared to a network that uses

buffers to resolve contention. Another issue with using deflection routing is that pack-

ets/bursts can be routed away from the destination endlessly. This behavior, called
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livelock, can be avoided by dropping the packet after a fixed number of hops. We do

not study deflection routing as a contention resolution mechanism in this dissertation.

1.2.4 Wavelength conversion

Wavelength conversion offers effective contention resolution without relying on buffers

at a switching node. By using wavelength conversion, we can switch bursts onto dif-

ferent output wavelength channels. Reference [91] presents the statistical multiplex-

ing performance of a multiplexor that uses wavelength conversion with and without

buffering. Also, wavelength conversion does not rely on the network topology or of-

fered traffic intensities to provide acceptable performance and it is not cumbersome

to use as compared to fiber delay lines. This makes it an ideal choice for contention

resolution in optical burst switches. Wavelength conversion technologies are discussed

in [32, 25, 105]. Very broadly, there are four types of wavelength conversion mecha-

nisms, optoelectronic, optical gating, interferometric, and wave mixing.

The optoelectronic approach converts the optical signal back into electronic

form and then retransmits it using a laser tuned to a different wavelength. There

are three types of optoelectronic converters depending on the kind of regeneration

used. Using 1R regeneration, where the incoming signal is simply amplified, makes

the system transparent to the modulation format of the signal and the converter

can handle analog data also. A wavelength converter employing 2R regeneration

performs reshaping of the signal in addition to amplifying it. This operation can be

performed on digital data only and it introduces additional phase jitter into the signal.

A wavelength converter employing 3R regeneration performs retiming of the signal

in addition to amplifying and reshaping it. This operation completely regenerates

the signal. However, retiming is bit-rate specific and hence, the transparency of

the system is lost. The rate of operation of optoelectronic wavelength converters is

determined primarily by the electronic circuitry and hence, wavelength converters

employing this method encounter bandwidth limitations at very high speeds. Also,

the power consumption of optoelectronic converters is very high. Optoelectronic

wavelength converters operating at 2.5 Gbps have been reported in References [36].

Wavelength converters based on optical gating make use of a device that acts

as a gate modulated by the input optical signal and the input information is trans-

ferred to a probe signal that is on a different wavelength. The target wavelength

is isolated at the output using a filter. The main technique using this principle is
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cross-gain modulation (XGM), using a nonlinear effect in a semiconductor optical

amplifier (SOA). This device can handle bit rates of 10 Gbps and is expected to be

able to handle 100 Gbps. Also, this method of wavelength conversion is polarization

independent, can handle a wide range of input wavelengths, and has reasonably high

conversion efficiency (ratio of the output power to the input power of the probe).

However, this method has several drawbacks too. The achievable extinction ratio is

small and the input signal power must be high. Also, the carrier density and the

refractive index in the SOA varies resulting in pulse distortion and phase variation.

As the carrier density varies with the input signal in an SOA, the phase of the

probe is modulated (This results in pulse distortions in the converters based on the

optical gating technique described above). The phase modulation can be converted

into intensity modulation using an interferometer such as a Mach-Zehnder Interferom-

eter (MZI). This approach is called cross-phase modulation (XPM). The advantage of

this approach is that the input signal power needed is much lesser than in the optical

gating approach and can be used with high input probe power. Also, wavelength con-

verters using this method can achieve better extinction ratios. Reference [70] reports

an implementation of a monolithically integrated tunable wavelength converter on a

single chip using a semiconductor optical amplifier Mach-Zehnder interferometer that

operates at 2.5 Gbps. Wavelength converters using Michelson interferometers have

been demonstrated at 10 Gbps [28, 39] and 40 Gbps [63] respectively.

Four wave mixing is another nonlinear phenomenon that is used to perform

wavelength conversion. This method is transparent to modulation formats and can

handle signals at high speeds. The disadvantages are that signals in other wavelengths

need to be filtered out and the conversion efficiency decreases significantly as the

separation between the input signal wavelength and the probe signal wavelength

increases. This method is most likely to be employed in very high speed systems (≥
40 Gbps). Reference [94] describes a 5-channel wavelength converter using four-wave

mixing with each channel operating at 40 Gbps .

Tunable lasers are essential components of all wavelength converters and there

have been dramatic advances in tunable lasers recently. For optical burst switches,

very fast tuning speeds (of the order of 10 ns) and a wide tuning range are key re-

quirements. Lasers that use mechanical or thermal tuning are unsuitable for packet

switching applications that need tuning speeds of 1-10 ns. Electrically tunable semi-

conductor lasers, such as distributed Bragg Reflector (DBR) lasers [61], satisfy the
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Figure 1.3: Routing matrix of a 4 × 4 WGR

necessary requirements. Injecting current into a semiconductor laser causes the re-

fractive index of the medium to change. This changes the wavelength of the laser’s

output signal. DBR lasers have tuning speeds of a few nanoseconds and can provide

wide tuning range.

Wavelength conversion, however, still remains expensive because most wave-

length conversion technologies use a laser or an equivalent component making it diffi-

cult for switches that use wavelength conversion to achieve lower costs than electronic

routers.

1.2.5 Arrayed Wavelength Grating Routers

An h×h Arrayed Wavelength Grating Router (WGR) is a passive static wavelength-

routing device that provides complete connectivity between its inputs and outputs,

by passively routing h2 optical connections on h wavelengths [24]. A WGR has a

fixed cyclical-permutation-based routing pattern between its input and output ports.

A connection at input i using wavelength k gets routed to the same wavelength on

output (i+k)modh, ∀ i ,k ∈ [0, h−1]. The routing pattern for a 4×4 WGR is shown

in Fig. 1.3. A connection at input I2 using wavelength λ3 gets routed to output O1

and a connection at input I3 using wavelength λ0 gets routed to output O3.

WGRs can be used to switch signals when used in combination with tunable

wavelength converters (TWC). This is shown in Fig. 1.4. Consider a TWC connected

to the ith input of a WGR, 0 ≤ i < h, where h is the number of inputs of the WGR.

If a signal coming in at the TWC is tuned to wavelength k, the signal is routed to

output (i + k) mod h. Thus, a signal arriving at input 0 will be routed to output 3 if

tuned to λ3 (Fig. 1.4(a)) and a signal arriving at input 3 will be routed to output 4

if tuned to λ1 (Fig. 1.4(b).
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Figure 1.4: Examples showing how TWCs and WGRs can be used to switch signals

The use of a WGR has several advantages including easy fabrication, commer-

cial availability and relatively low cost. Also, these devices typically have very low

losses. WGRs are widely used in dense WDM systems currently. Silica-based WGRs

are available commercially with 40 channels or more and larger WGRs are becoming

available [8].

1.3 Related work

In this section, we present the various approaches to implement optical packet switches.

1.3.1 Architecture using wavelength converters and fast op-

tical space switches

Reference [42] describes an optical packet switch that uses wavelength converters, a

space division optical switch and optical buffer (see Fig. 1.5). If d is the number of

input fibers, h is the number of wavelength channels, and b is the buffering capacity,

the space switch is constructed using dh2(b/d + 1) gates and passive optical splitters

and the switch uses dh wavelength converters. The paper studies the performance of

the switch under burst traffic and shows that using wavelength converters can help

increase the throughput of the switch. The switch uses about h/d optical gates and

one TWC for each input port.
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Figure 1.5: Optical packet switch with wavelength converters and buffering using a
space switch [42]

1.3.2 Wavelength routing switches

KEOPS (Keys to Optical Packet Switching) [40, 29] was a project that demonstrated

many key building blocks that are necessary to build optical packet switches. The

project demonstrated systems that used transmission rates of 2.5 Gbps and 10 Gbps

per wavelength channel. Two different packet switch architectures were put together

and demonstrated. The first switch architecture is called a wavelength routing switch

and is shown in Fig. 1.6. Each input carries a single wavelength channel and packets

are of a fixed length. In the WDM version with h wavelength channels per fiber, the

switch has h planes of the wavelength routing switch. The first stage of the switch

distributes packets to the various multiplexors in the middle. The second stage routes

the packets to the output ports on wavelengths that are available at the output. The

fiber delay lines after the distribution stage serve as input buffers and they prevent

head-of-line blocking from occurring. The paper presents algorithms to route packets

to the output ports without creating conflicts at the intermediate stages and at the

outputs. This switch needs two stages of wavelength conversion, thus needing 2dh

tunable wavelength converters, where d is the number of input fibers and h is the

number of wavelength channels per fiber.

Optical Label Switching (OLS) is another technology to perform optical packet

switching. It is very similar to OBS in that the control plane operations are performed
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electronically and the data forwarding is done optically. However, the control header

(label) is sent optically on the same wavelength as the data and the label is extracted

from (or added to) the packet using technologies like sub-carrier multiplexing. Also,

the data payload has to be delayed while the control operations are determined. Ref-

erences [62, 103, 41] describe the implementation of an OLS router. The switch fabric

used is shown in Fig. 1.7. The switch is nonblocking and uses Arrayed Wavelength

Grating Routers (WGRs) in combination with two stages of wavelength conversion,

one of which uses tunable wavelength converters and the other uses fixed wavelength

conversion. The tunable wavelength converter is used to route a packet to the des-

tination port through the WGR. The fixed wavelength converter converts the signal

to a wavelength channel that is not in use at the destination port. It needs a very

large WGR and uses two stages of wavelength converters (2dh wavelength convert-

ers). Reference [41] describes a way to scale the switch while using a small WGR

(256× 256 WGR for a 40 Pbps switch). However, this leads to some blocking within

the switch. In this switch, the cost of wavelength conversion can be a crucial factor

in determining its commercial feasibility.

Reference [108] describes a switch that also uses the wavelength domain to

route data through the switch and the switch is shown in Fig. 1.8. The switch

architecture uses two stages of tunable wavelength converters and three WGRs to

switch the data signals. Also, the switch uses one stage of input buffering or output
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buffering using fiber delay lines to resolve contention. For a system with d input

fibers and h wavelength channels per fiber, the switch uses 2dh tunable wavelength

converters and needs WGRs of the order of dh×dh. Here again, the size of the WGR

needed is not scalable for large systems and the cost of wavelength conversion makes

this switch relatively expensive as compared to electronic routers. The WASPNET

switch [31] also uses two stages of tunable wavelength converters in combination with

a 2dh × 2dh AWGRs. The switch uses a few ports of the WGR to provide buffering

using fiber delay lines.
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1.3.3 Broadcast and Select switch architectures

In broadcast and select architectures, packets from input ports are sent to all output

ports on different wavelengths and each output port chooses the packet that it has to

transmit using a wavelength selective device (like a tunable optical receiver). In gen-

eral, Broadcast and Select architectures can support only a limited number of input

ports (up to the number of wavelength channels) because there would be wavelength

conflicts otherwise. Thus, they are suitable for building switches that have a rela-

tively small aggregate bandwidth. Broadcast and Select switches naturally support

multicasting making them attractive options to build switches that need to support

this capability.

Reference [35] describes a broadcast and select switch with a recirculating

buffer. Each input carries data on some wavelength and packets are of some fixed

length. The number of wavelengths, h, is greater than the number of inputs, d. Each

input signal is tuned to some wavelength using a tunable wavelength converter and

the different signals are combined using a passive coupler and the combined signal is

transmitted to d tunable optical filters and h fixed optical filters. Also, the signals,

that are recirculated, pass through a delay line that can hold one packet in each

wavelength and are then fed back into the coupler. Of the signals in the coupler, up

to d of them are transmitted to the output ports using the tunable filters and up to h

are recirculated back into the coupler. This architecture uses one tunable wavelength

converter and one tunable filter for each input channel. Also, the recirculation buffer

uses h fixed filters and h gates.
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The KEOPS project demonstrated a broadcast and select switch that is shown

in Fig. 1.10. The switch operates on fixed packet lengths. Here again, each packet

is transmitted using a different wavelength into the buffers. Using the gates and the

multiplexors, it can be shown that this switch emulates an output buffered switch

with a buffer capacity of b packets at each output.

1.3.4 Switching in the time domain

Photonic Slot Routing [19, 106] is a time domain switching mechanism where data is

transmitted in fixed length timeslots and the switching is performed across timeslots.

Each timeslot corresponds to a fixed duration of transmission across all wavelength

channels and a timeslot is switched as a whole unit. Hence, all wavelength channels

are treated as a single transmission channel as far as switching is concerned. This

approach is similar to Time Sliced Optical Burst Switching (TSOBS) that we propose

in this dissertation. However, in TSOBS, the timeslots on each wavelength channel

are switched independently. This leads to better utilization of the network bandwidth.

The switch designs discussed for TSOBS could be applied to Photonic Slot Routing

switches.

Terahertz optical asymmetric demultiplexor (TOAD) is a device that can work

as an AND gate and is described in Reference [86]. It has been demonstrated at a

line speed of 100 Gbps. In a demonstration of a single routing node, packets from

slower speed sources were interleaved onto the 100 Gbps link and a bank of TOADs

extract individual streams.
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1.3.5 Optical switch fabrics in electronic switches

Recently, there has been interest in using optics to build the switch fabric within

an electronic switch because of the capacity offered by optical switches. It has been

identified that the main deterrent to building high speed internet routers is the power

density of the switch fabric racks [65]. By using optics to build the switch fabric,

the power requirement can be reduced and thus, this makes it possible to build very

high speed switch fabrics. Reference [65] describes a design for a switch, that has an

aggregate capacity of 100 Tbps. A key observation, made in the paper, is that a switch

fabric can be built by using a static interconnection of links, each link having twice the

bandwidth capacity as the input link speed. Since optics gives us abundant bandwidth

capacity, the switch uses optics for the interconnection network. The switch uses

MEMS switches used in a static configuration to provide the interconnection network

that is reconfigurable in the face of linecard failures.

Reference [52] describes a switch fabric that is built using tunable lasers and

a WGR to route the signals to the output port. The switch aggregates packets

electronically at the line card and switches them to the output using the switch

fabric as described in Section 1.2.5 (tunable lasers are used instead of wavelength

converters). The paper describes a demonstration that uses four ports each running

at 40 Gbps through a switch fabric that can support an aggregate capacity of 1.2

Tbps.

1.4 Dissertation outline

The problem with the optical switches that have been discussed is that they use

components that are expensive and hence, make the systems expensive relative to

electronic routers. Most designs that use tunable wavelength converters and wave-

length grating routers require two tunable wavelength converters per input channel

and require a very large Arrayed Grating Router to resolve contention. Other designs

require both tunable wavelength conversion and fast optical switches.

The objective of this dissertation is to develop less expensive and more eco-

nomically viable optical switches that can be used in the data path of burst routers.

We propose a design for wavelength converting switches, used in OBS routers, that use

passive wavelength grating routers in place of optical crossbars. This design makes

the switch less expensive because wavelength grating routers are easier to fabricate
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and are much less expensive than optical crossbars. Also, the size of the wavelength

grating routers needed are determined by the number of wavelength channels used

and not the number of input ports. However, the use of wavelength routers introduces

some blocking in the switch. We model the blocking in the switch through the help of

a combinatorial puzzle or a game and discuss the various research problems involved.

The design of wavelength converting switches is presented in Chapter 2.

We then propose a variant of burst switching called Time Sliced Optical Burst

Switching (TSOBS) that eliminates the need for wavelength conversion by switching

data in the time domain in Chapter 3. Optical time slot interchangers are key com-

ponents that are required to implement time slotted switching. We discuss the design

of time slot interchangers and the scheduling algorithms needed to implement the

required switching operations. Through a cost analysis, we show that that TSOBS

has the potential of being cheaper than electronic routers and is a promising solution

to implement optical burst switching commercially.

Time sliced optical burst switching uses fixed length time slots to switch data.

This requires that the data packets from hosts are of comparable size to a time slot

to maintain good data transmission efficiency. The average size of packets in the

Internet is too small for the time slots used in practical TSOBS networks. Thus,

we need an aggregation mechanism at the network interfaces, that connect hosts to

a TSOBS network. When multiple hosts transmit packets to the same destination

network, we can aggregate the packets to form a “super-packet” that utilizes time

slots more efficiently. We discuss an aggregation algorithm and study its performance

in a TSOBS network in Chapter 4.

In TSOBS networks, since data is switched in the time domain, individual

wavelength channels can get loaded with uneven amounts of data causing a degra-

dation in the network performance. This problem can be alleviated by using load

balancing techniques at the network interfaces where we have the freedom to choose

the wavelength that a burst is sent on. We study four algorithms for addressing this

problem and evaluate their performance in Chapter 5.
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Chapter 2

Design of Wavelength Converting

Switches

A wavelength converting switch is one that switches data signals that are carried

on a wavelength channel of an input fiber to any wavelength channel of an output

fiber. Wavelength converting switches require wavelength converters to switch the

data across wavelength channels and to provide acceptable statistical multiplexing

performance, the number of wavelength channels needs to be large (at least tens,

preferably hundreds). More details on the statistical multiplexing performance of

optical burst switching can be found in [91].

Each Burst Switch Element (BSE) in a burst switch requires a wavelength

converting switch, capable of switching an optical signal from any of the BSE’s d

input fibers to any of its d output fibers (Fig. 2.1). A BSE with d = 8 and h = 256

wavelengths would have an aggregate throughput of 2 Tb/s, assuming 10 Gb/s per

wavelength.

h wavelengths
per fiber

d input and
output fibers

Figure 2.1: Wavelength converting switch with d input/output fibers and h wave-
length channels per fiber
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Figure 2.2: Wavelength converting switch using Tunable Wavelength Converters
(TWC), Optical Crossbars and Passive Multiplexors and Demultiplexors

We describe two designs for wavelength converting switches. The first uses

wavelength conversion in combination with fast optical crossbars to perform the re-

quired switching operations. This switch design is strictly non-blocking. However, the

fast optical crossbars required are expensive components. The second design replaces

the crossbars with Wavelength Grating Routers, which are passive devices, resulting

in a lower cost switch design.

2.1 Switch Based on Optical Crossbars

Fig. 2.2 shows the first wavelength converting switch design. Each of the d input

sections has an optical demultiplexor that separates the different wavelength channels

from each other before propagating through Tunable Wavelength Converters that

quickly tune to any of the h output wavelengths. The wavelength converters are

followed by h × d crossbars. Outputs of each crossbar are then connected to distinct

passive multiplexors, which constitute the output section of the switch. The crossbars

can be decomposed into d × d sections, followed by additional passive multiplexors,

reducing the required size of individual crossbar components. Note that the crossbars

implement a combination of switching and multiplexing, since there may be several

signals on a given input fiber that are propagated to the same output fiber. If they

are converted to distinct wavelengths, these signals may share the same crossbar
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Figure 2.3: Wavelength switch using Tunable Wavelength Converters (TWC) and
Passive Wavelength Grating Routers (WGR)

output, so long as the optical crossbar technology is designed to support this. SOA-

based crossbar technology is capable of implementing this combined switching and

multiplexing function.

To route an incoming burst to an output, the input wavelength is converted

to any available wavelength at the required output, and the crossbar is configured

to propagate the signal to the required output. The switching and multiplexing

capability of the crossbar ensures that there is no blocking, so long as there is an

available wavelength on the selected output. Because burst arrival is unpredictable,

there will be times in an OBS router when no output wavelength is available for

an arriving burst. In routers with no internal buffering, such bursts are discarded.

Fortunately, with high channel counts, the probability of burst discards is very low.

As this design requires both tunable wavelength converters and high-speed

crossbars, the cost of the system is relatively high and may make it impractical for

commercial systems. However, the design is strictly nonblocking making it a good

choice for comparison with other switch designs.

2.2 WGR-Based Switch Design

The WGR-based switch design we are interested in is shown in Fig. 2.3. Each of

the d input sections consists of four components, an optical demultiplexor, a bank

of tunable wavelength converters, a wavelength grating router and a bank of optical
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multiplexors. The router and the multiplexors are joined through a fixed permutation

pattern. We will see that the blocking characteristics of the switch depend critically

on the choice of this permutation pattern. Each output section consists of a single

optical multiplexor. Each input section is connected to each output section by an

optical fiber carrying up to h optical signals on different optical wavelengths. Since

each wavelength can be used only once on each output fiber, the signals arriving at

an output section from different input sections must use distinct wavelengths.

In high performance optical networks, hundreds of different optical signals may

be carried on a single fiber, using different wavelengths of light. The optical demulti-

plexor in each input section separates these signals, so that they can be individually

switched to different output fibers. The tunable wavelength converters use a tunable

laser and an optical modulator to transfer the information carried on one input wave-

length to a different (and dynamically selectable) output wavelength. This wavelength

conversion is needed to allow input signals on different input fibers to be switched to

the same output fiber, even if the input signals are carried on the same wavelength.

The wavelength grating router is a passive optical device that switches optical signals

based on their wavelength. Specifically, an optical signal carried on wavelength i at

input j is switched to output (j + i) mod h where h is the number of wavelengths.

Thus, the choice of wavelength used for a given signal determines which output section

the signal is forwarded to. A demonstration of a combination of tunable wavelength

converters and wavelength routers has been discussed in Reference [96].

In this construction, there are h/d different wavelengths that can be used by a

given input signal to reach a particular output, but different inputs may use different

sets of wavelengths to reach the same output. The permutation patterns used in

each of the input sections determine these wavelength sets. To reach an output fiber,

the wavelength converter at the input is tuned to one of these wavelengths and the

incoming signal is “steered” to the required output through the wavelength router. In

this design, the wavelength converters play the dual role of selecting the free output

wavelength as well as providing the required space switching through the switch.

Since a given input channel is not able to use any wavelength to reach a given

output fiber, blocking can occur. That is, there may be situations where all of the

wavelengths that can be used to get to a desired output are in use at the output,

causing blocking to occur even when there are free wavelengths available on the

outgoing link. In the next section, we present this blocking problem as a puzzle on
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a game board in order to make the nature of this blocking problem more apparent,

and to clarify the issues that affect the blocking performance.

2.3 Design of WGR-based switches

In this section we study the routing problem in WGR-based switches and show how

the blocking performance of these switches is affected by the permutation pattern

used within each of the input sections of the switch.

2.3.1 Routing Multiple Channels Simultaneously

The problem of simultaneously routing a set of channels through a WGR-based switch

can be formulated as a combinatorial puzzle. This formulation makes it easier to

understand the intrinsic structure of the problem, yielding insights that are useful in

design and analysis.

The puzzle is played on a game board made up of dh2 squares arranged in h

columns and dh rows. The board is divided into d square blocks of h rows each. Each

square has one of d different colors, with each row containing h/d squares of each

color and each column containing h squares of each color. To setup the puzzle we

place colored tokens beside some or all of the rows. A setup can include at most h

tokens of any color. An example of a setup game board with d = 2 and h = 8 is

shown in Fig. 2.4(a). To solve the puzzle, we must place each token on a square of

the same color, in the row where the token was placed. The token placement must

also satisfy the constraint that no two tokens of the same color be placed in the same

column. An example solution to the puzzle is shown in Fig. 2.4(b).

Each row in the puzzle corresponds to one of the h input channels on one of the

d input fibers. More specifically, row i in block j of the game board corresponds to

input channel i of input fiber j. The color of the token that is placed by a row corre-

sponds to the output fiber that the corresponding input channel is to be switched to.

More specifically, placing a token of color r on row i of block j corresponds to switch-

ing channel i of input fiber j to output fiber r. The columns of the array correspond

to different output wavelengths. Placing a token in a particular column corresponds

to choosing that output wavelength. The color of each square corresponds to the out-

put that is reached if the wavelength converter for the input channel corresponding

to that square’s row is tuned to the wavelength corresponding to the column. So,
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(a) Example puzzle setup (b) Example solution

Figure 2.4: An example puzzle setup and solution

placing a token of color r in column q of row i of block j corresponds to switching

channel i of input fiber j to channel q of output fiber r. Note that the puzzle rule

requiring that no two tokens of the same color occupy the same column corresponds

to the requirement that no two input signals going to the same output fiber use the

same wavelength.

In order to complete the correspondence between the puzzle and the routing

problem, we note that within each block the rows must have closely related color

patterns, in order to model the routing characteristics of the WGRs. Specifically, the

pattern of colors within each row can be obtained from the previous row’s pattern by

a cyclic rotation of one column. This relationship only holds within each block. There

is no requirement that different blocks have similar color patterns. The color pattern

for each block corresponds to the permutation pattern within the input sections of

the switch. This is illustrated in Fig. 2.5 which shows two example configurations of

a system with d = 2 and h = 8 and the corresponding game boards.

Whenever the puzzle has a solution, it means that there is a way to route the

input signals to the output channels that are specified by the tokens placed by each

row. If the puzzle does not have a solution, then there is no way to route all the

channels simultaneously. If, for all possible puzzle setups, there is a solution, the
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Figure 2.5: Two configurations and the corresponding game boards of a system with
d = 2 and h = 8

switch is rearrangeably non-blocking. It is easy to see that the switch in Fig. 2.5a is

not rearrangeably non-blocking, since the puzzle setup in which tokens of one color

are placed in even-numbered rows and tokens of the other color are placed in odd-

numbered rows has no solution. On the other hand, this setup does have a solution

when played on the game board in Fig. 2.5b.

To generalize the problem of routing connections simultaneously, we restrict

the number of tokens of a particular color to some value k ≤ h.

Definition 2.3.1 A game board is k-solvable if every puzzle setup with at most k

tokens of each color has a solution.

We show below that no game board is h-solvable. Fortunately, in practice, it

can be sufficient to find game boards that are k-solvable for values of k fairly close to

h.
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2.3.2 Routing problem as a bipartite matching problem

The problem of solving the puzzle can be reformulated as a matching problem in a

bipartite graph. We start by constructing the bipartite graph. The graph consists

of two subsets of vertices; let us call them the “left” and “right” subsets. The “left”

subset includes vertex u(i, j) that corresponds to row j in block i of the game board (or

channel j of input fiber i). The “right” subset includes a node v(q, r) that corresponds

to color q and column r (or channel r of output fiber q). We include the edge

{u(i, j), v(q, r)} in the graph if the color of the token in row j of block i is q and

the color of the square in column r of row i and block j is q. In terms of the WGR

switch, you include the edge if the signal on input fiber i, channel j is to be switched

to output fiber q, and you can reach output fiber q using wavelength r.

In each row of the game board, there are h/d squares of the color corresponding

to output q or h/d wavelengths that switch signals to output q. Thus, for each token

that is placed at row j of block i, there are h/d edges that are drawn from the “left”

subset to the “right” subset. One observation about this graph is that it breaks apart

into separate subgraphs corresponding to the different outputs. This just corresponds

to the fact that the placement of tokens of one color is independent of the placement

of tokens of other colors.

This is illustrated in Fig. 2.6(a) for a system with 2 input fibers and 8 wave-

lengths per fiber for one output. The token placed in the second row of block 0 has

four squares of the same color as the token in columns 1, 4, 5, and 7 respectively. This

results in 4 edges in the bipartite graph from vertex (0, 1) to vertices corresponding

to λ1, λ4, λ5, and λ7 at the output. Similarly, 4 edges are drawn from vertex (1, 3) to

vertices corresponding to λ2, λ3, λ5, and λ7 at the output. This is repeated for each

token placed beside the game board.

Now find a maximum size matching in this bipartite graph. If there is an

edge for every token, you have a solution. In particular, if {u(i, j), v(q, r)} is in the

matching, then put the token in block i and row j in column r (equivalently, tune the

wavelength converter for channel j of input fiber i to output wavelength r). Using a

well-known maximum size matching algorithm based on max flows in unit networks,

one can solve the puzzle in O(h5/2) time, assuming a solution exists.

A maximum size matching for the bipartite graph in the example is shown

in Fig. 2.6(a). Note that one of the left vertices, (1, 7), cannot be matched to any

output vertex because there does not exist an available vertex at the output that can

be matched to this vertex. Given the matching in the graph, we can place the tokens
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(0,7)

(1,3)

(a)

Token cannot be placed
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Figure 2.6: (a) Example bipartite graph formulation of a puzzle; (b) Solution to
puzzle

on the game board as shown in Fig. 2.6(b). For example, token (0, 1) is placed in the

second column of the game board corresponding to λ1, token (0, 7) is placed in the

fourth column, and token (1, 3) is placed in the eighth column respectively.

The connection with matching also yields an algorithm for rearranging existing

connections to accommodate new ones, which corresponds directly to the augment-

ing path algorithm for bipartite graphs. This can be described in terms of the game

board as follows. If it is not possible to place a token of color x in row r1 (satisfy-

ing the required constraints), then find an “x-augmenting path” in the game board

starting at some square of color x in row r1. Call this square (r1, c1) where c1 is the

column number. An x-augmenting path in the game board is a sequence of squares

(r1, c1), (r2, c2), (r3, c3), ..., (rm, cm) satisfying the following properties:

• All squares in the sequence have color x.

• Squares (r2, c1), (r3, c2), ..., (rm, cm−1) all contain a token of color x.

• There is no token of color x in column cm.
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Given such a path, we place a token on (r1, c1) and for 1 < i ≤ m we move the token

on square (ri, ci−1) to (ri, ci).

We can find such a path by performing a breadth-first search through the game

board. We construct the search tree as follows. The nodes, Ni (1 < i ≤ hd), of the

tree correspond to the rows of the game board. To place a token of color x in row

r1, let Nr1 be the root node of the tree. If column c in row r1 has a square of color x

and row rk has a token of color x in column c, then we add an edge from Nr1 to Nrk

in the tree. There are h/d nodes adjacent to node Nr1 . We can construct the tree by

recursively adding nodes at distance 1 from the newly added nodes. The search stops

when we have a row that has a column with no token of color x placed in it; that is,

we can move the token in the row to this free column.

Note that once a node Nri
has been added to the tree, another node corre-

sponding to the same row ri will not be added at a lower level. This is because the

subtree at both the nodes will be the same and the augmenting path is the shortest

through the first instance of the node (since this is a breadth-first search). The search

can stop without finding an augmenting path. This happens when none of the nodes

in the tree has a column of color x with no token placed in it and we cannot add more

nodes to the tree (other than nodes corresponding to rows that have already been

added). In this case, the new token cannot be placed on the board and the puzzle

cannot be solved.

Fig. 2.7 illustrates the rearrangement algorithm for a system with d = 3 and

h = 9. Fig. 2.7(a) shows the state of the system before the placement of a token at

(1, 2). The game board configuration shows only the first two blocks. We assume

that the last block does not have any tokens placed on it. Also, only the squares

corresponding to the output we are interested in are represented by the dark squares.

The other 6 squares (light colored squares) in each row correspond to the other two

output fibers and the row configuration for them does not affect the token placement

for the output we are interested in.

To place the token, we start a breadth first search starting with the row we

want to place the token in, (1, 2), as the root node. The columns that this row can

use to reach the output are 0, 3, and 7. All three columns are occupied by other

rows. The algorithm searches for a free column in rows that have tokens in the above

columns. Thus, (0, 0), (0, 6), and (0, 2) are added as the first level nodes in the search

because they have tokens in columns 0, 3, and 7 respectively. The columns that the

two rows share are indicated beside the edge in the graph. All three rows do not
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Figure 2.7: (a) Game board before placing token; (b) Rearrangement to place new
token; (c) Breadth first tree to rearrange tokens on the game board

have free columns to move their tokens to. The algorithm searches one more level of

nodes. Row (0, 0) shares columns 2 and 5 with rows (1, 0) and (1, 6) respectively and

neither of these has a free column. So, the algorithm adds nodes (1, 0) and (1, 6) as

children of node (0, 6) in the tree. Row (1, 3) shares the column 8 with row (0, 6) and

column 6 is available. Thus, the search terminates and we have an augmenting path

((1, 2), 3), ((0, 6), 8), ((1, 3), 6). The breadth first tree is shown in Fig. 2.7(c). The

token in row (1, 3) is moved to column 6, the token in row (0, 6) is moved to column

8, and the new token is placed in column 3 of row (1, 2). Fig. 2.7(b) shows the game

board after the token is placed.
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2.4 Finding Good Game Boards

The design of the game board has a big influence on our ability to solve the puzzle.

Since the game board design corresponds to the permutation pattern of the input

section, this means that the permutation pattern affects the likelihood of blocking.

The game board in Fig. 2.5a has many puzzle setups that have no solution, making it

a poor design, from the perspective of the puzzle solver. What makes it a poor design

is that many rows have exactly the same pattern of colors. This means that if tokens

of the same color are placed in these rows, the number of columns they have to choose

from is limited, and may be smaller than the number of tokens. This suggests that a

good game board design will be one in which different rows have different patterns,

and in particular, have as few columns in common as possible with squares of the

same color.

Definition 2.4.1 A cover of some row, say i, for some color “blue” is defined as the

set of columns that have a blue square in row i in the game board.

The cover of a set of rows R is defined as the union of the covers of each of

the rows that is contained in the set R.

A game board is k-solvable if and only if in each of its associated bipartite

graphs, there is a matching of size t between any set of t ≤ k inputs and all its outputs.

By the well-known Marriage Theorem for bipartite matching, such a matching exists

if and only if every set of t ≤ k nodes in the “left” subset has at least t neighbors in

the “right” subset. We can restate this in terms of the puzzle, as follows. A game

board is k-solvable if and only if for all colors j and all r ≤ k, all sets of r rows cover

at least r columns.

2.4.1 Upper bounds on puzzle solvability

We first show that no game board is h-solvable. Consider an arbitrary game board

and color blue. There are exactly h blue squares in any column of the game board,

meaning that there are dh − h squares that are not blue. If we select any h rows

from among the dh−h rows that do not have blue squares in the given column, then

any puzzle setup that has blue tokens in these h rows is unsolvable, since none of the

tokens can be placed in the selected column, and we must place each of the h tokens

in a distinct column. Similarly, if we consider any i ≤ d − 1 columns, there must be

at least (d − i)h rows that do not contain blue squares in any of these columns. So,
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any puzzle setup that has blue tokens in more than h− i of these rows is unsolvable.

These results make it clear that we cannot expect to construct a WGR-based switch

that will guarantee our ability to place more than h − d + 1 tokens of the same

color. Fortunately, the value of h is typically much larger than d for configurations of

practical interest, which means that the degree of blocking implied by this limitation

may be acceptable. This gives us

Theorem 2.4.2 For any k-solvable game board on d colors and h columns, k ≤
h − d + 1

For larger values of d, we can get a stronger bound using the following theorem

which is proved in Reference [82].

Theorem 2.4.3 Let G be a game board on d colors and h columns and let s be any

integer that satisfies

dh
(
h − (h/d)

)s
/hs ≥ h − s + 1

where xr = x(x − 1) . . . (x − r + 1). If G is k-solvable, then k ≤ h − s − 1.

Fig. 2.8 shows the upper bound of the number of tokens that can placed as

a function of the number of wavelengths, h, for various values of d. For h = 256

and d = 8, 15 is the largest value of s that satisfies the inequality, giving a limit of

240 on the solvability of game boards with h = 256 and d = 8. If we increase d to

16, the largest s increases to 41 and the limit becomes 214. If we fix a value of d

and let h → ∞, the theorem implies that k ≤ h − �logd/(d−1) d�. Since logd/(d−1) d

is roughly d ln(d) for larger values of d, we can use h − d ln d as an estimate of the

bound, which for larger values of d is significantly smaller than the h− d + 1 implied

by Theorem 2.4.2. However, for h >> d, even this stronger bound does not rule out

the existence of practically useful game boards.

2.4.2 Contiguous game boards

A repetitive game board is a game board whose d blocks are the same. A contiguous

game board is a repetitive game board in which the first row of each block is divided

into d contiguous monochrome blocks of size h/d each. Remarkably, for d = 2,

contiguous game boards are h− 1 solvable. To see this, fix a color and note that any

set of i rows in the same block covers at least (h/d) + i − 1 columns. Any set of k

rows in the game board must have at least �k/d� rows in some block, and so must
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Figure 2.9: Example showing rows sharing columns

cover at least (h/d) + �k/d� − 1 columns. For k = h − 1, this is 2(h/d) − 1, which is

h − 1 when d = 2. That is, a contiguous game board with d = 2 is (h − 1)-solvable,

matching the upper bound in the previous sub-section. For arbitrary values of d, we

have the following theorem from Reference [82].

Theorem 2.4.4 A contiguous game board on h columns with d colors is k-solvable

if and only if k−�k/d� ≤ h/d− 1. The largest value of k that satisfies this condition

is

k∗ =

{
(h/(d − 1)) − 1, if d − 1 divides h/d,

(h/(d − 1)) − (h/d mod d − 1)/(d − 1), otherwise.

The first part of the theorem follows directly from the discussion above. The

second part can be shown by substitution.
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2.4.3 Random Game Boards

We now show how random game boards can be good choices for constructing switches

with good blocking performance. Any row in a game board has h/d squares of the

same color. When two or more rows have a square of the same color in a column,

the column is said to be shared by the rows. The number of columns covered by any

two rows in a game board is 2h/d minus the number of columns that are shared by

these rows. Consider any two rows in the same block of the game board, row 1 and

row k, without loss of generality. By the construction of the game board, row 1 is

circularly shifted k squares to the left to obtain row k. Suppose row 1 has a square

of some color in column i and a square of the same color in column i + k, then row

k has a square of the same color in column i because the square in column i + k in

row 1 moves to column i in row k when shifted left by k squares. Thus, the two rows

share the ith column. In general, the number of columns shared by row 1 and row k

is the number of pairs of squares that are at a distance of k from each other in row

1. Fig. 2.9 illustrates this.

To construct good game boards, we need to maximize the number of columns

covered by any set of rows. This is equivalent to minimizing the number of columns

shared by the set of rows. Thus, we need to minimize the number of pairs of squares

that are at a distance k from each other, for all values of k. Regular constructions of

game boards can minimize the number of columns shared by rows for some values of

k but may do poorly for other values of k. Randomizing the positions of the squares

within a row can be expected to spread the distances between pairs of squares across

all possible values. This reduces the number of columns shared by all possible row

sets.

Our criterion for a good game board is one in which any set of r rows covers at

least r columns, for each color. For larger values of h and d, we can expect random

game boards to do well, in this respect. Consider an arbitrary set of r rows within

a single block of a random game board. The probability that a particular column is

not covered for some fixed color is

h − r

h

h − r − 1

h − 1
. . .

h − r − h/d + 1

h − h/d + 1
=

(h − r)h/d

hh/d
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Figure 2.10: Number of columns not covered by row sets of all sizes (h = 256)

Thus, within one block, the expected number of columns not covered by r rows is

h
(h − r)h/d

hh/d

The expected number of columns not covered by r rows selected from d independent

random blocks in the game board is

= h
(h − r1)

h/d

hh/d

(h − r2)
h/d

hh/d
.....

(h − rd)
h/d

hh/d

≤ h

(
(h − r/d)h/d

hh/d

)d

where r = r1 + r2 + . . . + rd, and ri is the number of rows in the ith block of the

game board. The expected number of columns not covered is plotted as a function of

the size of the row set, r in Fig. 2.10. The expected number of columns not covered

gives us an upper bound on the probability that a given set of rows fails to cover one

or more columns. In the figure, the curve labeled “tolerable number of uncovered

columns” is h minus the size of the row set.

For the values of d of most practical interest (≤ 16), the number of columns not

covered by any random row set is much less than the tolerable number. For d = 8, the

probability that a set of 140 or more rows fails to cover any column is less than one in

a million. Another way to look at this is to note that while a nonblocking switch can

implement all mappings of the input channels to output links, the blocking switch

can implement all but a minuscule fraction of the set of possible mappings.
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Token cannot be placed

Figure 2.11: Example showing that a blocker with more than h/d tokens of some
color can beat a naive setter

2.5 Routing Connections Online

The puzzle introduced above corresponds to the version of the routing problem in

which we are asked to simultaneously route a whole set of connections. More often,

we are interested in routing individual connections one-at-a-time, without disturbing

connections routed previously. This problem can be formulated as a two player game,

played on the same game board as the puzzle.

Let’s call the first player the blocker and the second player, the setter. The

blocker is given k ≤ h tokens of each of the d different colors. The blocker takes a

turn by removing zero or more tokens from the board and placing one token beside

some unoccupied row of the board. The setter takes its turn by placing the token put

down by the blocker, in a square of the same color as the token in the selected row.

When placing the token, the setter must not use any column that already contains a

token of the same color. The blocker wins if the setter is not able to place the token

on the board without violating the conditions. The blocker loses if the setter is able

to keep the game going indefinitely.

The switch is strictly nonblocking if no matter how badly the setter plays, there

is no way for the blocker to force a win. The switch is wide-sense nonblocking if there

is a winning strategy for the setter (that is a strategy that will keep the game going

forever, regardless of how well the blocker plays).
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Figure 2.12: Birth-death modeling an output of the switch

Since a winning strategy for the setter would imply that the corresponding

puzzle always has a solution, we cannot expect a winning strategy in versions of

the game where the blocker has more tokens than allowed by the upper bounds in

Section 2.4. It’s easy to see that the setter has a trivial winning strategy when the

number of tokens of each color is limited to ≤ h/d. Hence, the switch is strictly

nonblocking in these cases. It’s also easy to see that the blocker can beat a naive

setter if the blocker is allowed more than h/d tokens of each color. This is illustrated

in Fig. 2.11. The blocker just needs to get the setter into a state where the h/d

columns of some row are already being used by other tokens. In Fig. 2.11 the new

token cannot be placed because the columns it can use to place the token are already

in use by other tokens. In other words, the switch is strictly nonblocking if and only

if the blocker is limited to ≤ h/d tokens of each color.

We now present an approximate analytical model for evaluating the perfor-

mance of wavelength converting switches in OBS routers. The performance metric

used is the fraction of arriving bursts that must be discarded. This is called the burst

rejection probability. We phrase the model in terms of the game board. Since the

tokens of different colors are independent, we focus on tokens of a single color. New

tokens arrive at rate λ, and if possible are placed on the game board. Tokens stay on

the game board for an average time period of 1/µ. If the token interarrival time and

the token “dwell time” are exponentially distributed, we can model the system by

the birth-death process shown in Fig. 2.12, where the state index corresponds to the

number of tokens on the game board. The transition rate from state i to state i − 1

is iµ, where 1/µ is the expected time duration for which a token stays on the game

board. The transition rate from state i to i + 1 varies for different states since the

probability that an arriving token is actually placed on the game board decreases as

the number of tokens on the board increases. The rate, λi, is the rate at which tokens

are placed on the board, and is equal to λ times the probability that an arriving

token is successfully placed. So, for i < h/d, λi = λ. For i ≥ h/d and a random game
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board, we can approximate λi by

λi = λ

(
1 −

(
h − h/d

i − h/d

)
/

(
h

i

))

Note that
(

h
i

)
is the number of sets of columns that can be used by i tokens and(

h−h/d
i−h/d

)
is the number of column sets used by i tokens that would prevent placement

of a new token.

If we let πi be the steady state probability that the system is in state i, then

it can easily shown that

πi =
λ0λ1 . . . λi−1

i! µi
π0

Using π0 +π1 + . . .+πh = 1 and solving for π0, we can determine the individual

steady state probabilities. The burst rejection probability is then given by

Prejection(ρ) =
h∑

i=h/d

πi

(
h − h/d

i − h/d

)
/

(
h

i

)

where ρ is the offered load to the system given by λ/hµ and
(

h−h/d
i−h/d

)
/
(

h
i

)
is the prob-

ability of a burst being rejected in state i.

2.5.1 Simulation results for random game boards

We now study how the blocking characteristics of the WGR-based switch affects the

statistical multiplexing performance of an OBS router using simulation and compare

the results with the analysis.

Here, we consider only the case of routers in which there are no buffers available

to store bursts which can’t be routed to the proper output without a wavelength

conflict. Burst arrivals on each input channel are independent and each arriving

burst is randomly assigned to a different output fiber. Burst lengths and the idle

times between successive bursts on the same channel are exponentially distributed.

The simulations used random regular permutation patterns at the input sections of

the switch. Arriving bursts are assigned to a random wavelength that takes them to

the proper output that is not already in use at that output.

The burst rejection probabilities for systems with different values of d and h and

varying loads are shown in Fig. 2.13. Also shown are the burst rejection probabilities

for systems that use strictly nonblocking switches in place of WGR-based switches.
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Figure 2.13: Burst rejection probabilities of different system configurations (d = 8)
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Figure 2.14: Burst rejection probabilities of different game boards (d = 8,h = 256)

For a system with d = 8 and h = 256, the rejection probability is 10−6 at a load of

approximately 0.62 for the WGR-based switch and at a load of 0.75 for the strictly

nonblocking switch. For systems designed to operate with a burst rejection ratio

of 10−6, the WGR-based switch can provide a throughput which is approximately

82% of what the nonblocking switch can provide. We also show the burst rejection

probabilities as determined by the analysis of the burst switch. The analysis is pretty

accurate as can be seen in Fig. 2.13.
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2.5.2 Effects of game board configurations

The next set of results show how different game board configurations can affect system

performance. Fig. 2.14 shows the result of using four different configurations for a

system with d = 8 and h = 256. The first configuration corresponds to a “contiguous”

permutation pattern, wherein, each input block’s first h/d outputs are connected to

the first output, the next h/d outputs are connected to the second output, and so on.

The second configuration corresponds to a perfect shuffle between the wavelength

router stage and the input side couplers. The third configuration corresponds to

a randomly generated game board. The fourth configuration is a hand generated

configuration where colors corresponding to any output in a row are distributed such

that two rows have very little overlap and hence, the number of wavelengths available

to reach a given output between a set of rows is increased. As can be seen from Fig.

2.14, the first two configurations perform poorly. This is because they do not try to

maximize the number of wavelengths available to a subset of input rows uniformly.

The fourth configuration performs slightly better than the random pattern and has a

burst rejection probability of 10−6 at a load of 0.65. With this design, the WGR-based

switch achieves 87% of the throughput that is achieved with the strictly non-blocking

switch.

2.5.3 Effect of reconfiguring connections in the switch

The simulations described above were done with the restriction that once assigned to

a wavelength channel, a burst occupies that wavelength for its entire duration. We

also simulated a situation in which bursts could be dynamically switched to different

wavelengths to accommodate newly arriving bursts. Although this is not a realistic

scenario, it allows us to separate the effects due to the intrinsic blocking character of

the WGR-switches from those due to the restriction on rearrangements. The simu-

lations were done using the rearrangement algorithm described in Section 2.3.2. The

burst rejection probabilities in these simulations matched the strictly non-blocking

results almost exactly for the given traffic pattern. This confirms the implications of

Fig. 2.10. Even though the WGR-based switch is not rearrangeably nonblocking, it

performs nearly as well as a rearrangeably nonblocking switch, when rearrangements

are allowed. This suggests that a better wavelength assignment strategy (the strat-

egy used by the setter to place tokens on the game board) may help reduce the burst

rejection probabilities further, when rearrangement is not allowed.
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2.5.4 Effect of the wavelength assignment algorithm

In an OBS router, bursts can arrive at unpredictable times and we need to be able

to find an available wavelength at the output to send the burst out on. In a strictly

non-blocking switch, it is sufficient to select any available wavelength at the output

and as long as there are no more than h bursts that need to be routed to an output

at any time, where h is the total number of wavelength channels per fiber, there will

be no blocking. However, we have shown that there is blocking in the switch design

we are interested in. Thus, we need to try to minimize the blocking in the switch by

appropriately routing any burst through the wavelength channel that maximizes the

probability of other bursts that arrive in the future having wavelengths available at

the outputs. In the game formulation described in 2.5, this translates to defining a

strategy for the setter to place tokens on the game board.

Note that the wavelength assignment does not play a role in determining the

performance for the interleaved game board configuration. In this configuration, if a

set of rows share some column in the game board, they share all h/d columns. So, it

does not matter which column we place the token in.

To obtain the results presented in Section 2.5.1, experiments on the game

boards were performed by using a random available wavelength assignment algorithm.

In this algorithm, the arriving burst is assigned to a random wavelength channel at the

output that is unused. We examined three other wavelength assignment algorithms.

Two of those algorithms, first available wavelength assignment algorithm and least

affecting wavelength assignment algorithm, did not yield better performance than the

random available wavelength assignment algorithm. The most available wavelength

assignment algorithm resulted in a much improved performance for the contiguous

board configuration and marginal improvement in the performance for the random

and hand-generated game boards.

First available wavelength assignment algorithm

The first available wavelength assignment algorithm picks the first wavelength at

an input that is not already in use at the output. This corresponds to placing the

token in the leftmost square in the game board that is available. We performed

experiments with a switch with 8 input/output fibers (d), 256 wavelengths per fiber

(h) and random traffic with exponentially distributed interarrival times and burst
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Figure 2.15: Least affecting wavelength assignment example

lengths. The first available wavelength assignment algorithm did not perform any

better than the random available wavelength assignment algorithm.

Least affecting wavelength assignment algorithm

When a token of some color is placed by the setter in a column of some row, the

column cannot be used to place tokens in the other h − 1 rows that have squares of

the same color. This does not affect rows that are occupied with a token placed in

them (each row can have only one token placed in them at a time). However, the

unoccupied rows get affected by losing one column that could have been used to place

a token when it arrives. Thus, when the token needs to be placed by the setter in

some row, we first find the columns that are available. For each available column,

we count the number of unoccupied rows that get “affected” by choosing this column

for token placement. The least affecting wavelength assignment algorithm places the

token in a column such that the least number of unoccupied rows get affected.

To illustrate the algorithm, let us assume that the state of a switch is as

represented by the game board with h = 8 and d = 2 shown in Fig. 2.15. We consider

connections to the output that has colored squares (as opposed to white squares) and

let us assume that tokens to the output have already been placed as indicated in the

figure. Denote rows as (i, j), where i represents the block and j represents the row

within the block. If we have to place a dark token in row (1, 4), we have two columns,
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column 2 and column 6, that are available. Also let us suppose that inputs (0, 2),

(0, 3), (1, 0), and (1, 6) are currently free. By choosing column 2, we are reducing

the number of wavelengths available to three rows, (0, 3), (1, 0), and (1, 6), by one.

However, choosing 6 reduces the number of wavelengths available to only two rows,

(0, 2) and (1, 0), by one. Thus, the least available wavelength assignment algorithm

picks column 6.

To evaluate the performance of the algorithm, we performed experiments for a

switch with 8 input/output fibers and 256 wavelengths per fiber and random traffic

with exponentially distributed interarrival times and burst lengths. It was observed

that the performance of the least affecting wavelength assignment algorithm is com-

parable to the performance of the random available wavelength assignment algorithm.

The problem with the algorithm is that it does not ensure that all rows have columns

that can be used to place tokens. In the example shown in Fig. 2.15, row (0, 2) has

only one column (column 6) available where a dark token can be placed. Placing the

token at row (1, 4) in column 6 results in row (0, 2) having no columns available to

place a dark token. Thus, if a dark token is placed beside row (0, 2) by the blocker, the

setter will not be able to place it on the game board. In other words, a burst arriving

at input (0, 2) will have to be dropped because there are no available wavelengths to

route the burst through the switch.

Effect of using most available wavelength assignment algorithm

We now present a routing algorithm that attempts to maximize the number of wave-

lengths available to free inputs to any output and study the effects of using the

algorithm on the performance of the switch.

Define availability, aij, of a row i for color j to be the number of columns that

have a j-colored square and are available in the row and we define these columns to

be available columns. Equivalently, aij is the number of wavelengths at an input i

that take us to output j and are not used by any other input.

Let us suppose a token of color m needs to be placed in row n. If c1, c2, . . . , ck

are the available columns in row n that have an m-colored square (That is, anm = k),

we need to make a choice among one of the k available columns. Let i1, i2, . . . , is

be the rows that are free currently in the game board and ai1m, ai2m, . . . , aism be

their availabilities for color m. If we place the token in column cl, the availability

of rows that have cl as an available column gets decremented by one. Let the new
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Figure 2.16: Switch state for routing example

availabilities be al
i1m, al

i2m, . . . , al
ism, where

al
ikm =

{
aikm − 1 if cl is an available at row ik

aikm otherwise

Now we can define the availability vector, Acl
, of a column, cl, as the ordered

vector of the resultant availabilities of the free rows if cl is the column that is chosen

for a new token in row n. That is

Acl
= Sort(al

i1m, al
i2m, . . . , al

ism)

Among the columns cl, 1 ≤ l ≤ k, we choose the column that has the maximum

availability, where the maximum availability is the lexicographic maximum of all the

availability vectors. Specifically, if A = {a1, a2, . . . , ax} and B = {b1, b2, . . . , bx} are

two availability vectors then

A > B if ∃i ≤ x, such that a1 = b1, . . . , ai−1 = bi−1

and ai > bi

By choosing the column with the maximum availability, we maximize the number of

options available to the row with the minimum number of options for placing tokens

of color m.
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Figure 2.17: Burst rejection probabilities of different game boards with the most
available wavelength assignment (d = 8,h = 256)

To illustrate the routing algorithm, let us assume that the state of a switch

is as represented by the game board with h = 8 and d = 2 shown in Fig. 2.16. We

consider connections to the output that has colored squares (as opposed to white

squares) and let us assume that tokens to the output have already been placed as

indicated in the figure. Here again, denote rows as (i, j), where i represents the block

and j represents the row within the block. Suppose we have to place a dark token

in row (1, 3), we have two columns, column 2 and column 5, that are available. Also

suppose inputs (0, 2), (0, 4), (1, 0), and (1, 6) are currently free, then the availabilities

of these inputs are 2, 4, 3, and 3 respectively. The rows that are affected when column

2 is used are (0, 4), and (1, 0) and the row that is affected when column 5 is used is
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Figure 2.18: Input section of the WGR-based switch with multiple wavelength routers

(1, 0). Thus the availability vectors for the two columns are given by

A2 = {2, 2, 2, 3}, and A5 = {2, 2, 3, 4}

and we can see that A5 > A2. Thus, we choose column 5 to place the token in.

The simulation results of using the most available wavelength assignment algo-

rithm for different permutation patterns are shown in Fig. 2.17. The algorithm gives

tremendous improvement in throughput for the contiguous permutation pattern. It

gives reasonable improvement for the random and the hand-tuned permutation pat-

terns. For the hand-tuned permutation, it improves the throughput to about 89% of

the non-blocking case at a blocking probability of 10−6 with a utilization of 68%.

2.6 WGR-based switch using multiple wavelength

routers

An extension to the basic switch design is to use multiple wavelength routers in place

of one and expand the routing capability of the switch. Fig. 2.18 shows an input

section of this design. The wavelength router in each of the input sections is replaced

with w wavelength routers and the signal from the TWC is switched through one of

the wavelength routers using a 1×w optical switch. Each wavelength router connects

to the output section using a different permutation pattern. Thus, a single wavelength

channel can be used to route bursts to one of up to w output fibers by switching the
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Figure 2.19: A block of the game board corresponding to the input section in Fig. 2.18

signal through the appropriate wavelength router. For instance, tuning the signal to

some wavelength i and switching the signal through the first wavelength router can

route the signal to output 1. However, switching the same signal through the second

wavelength router can route the signal to a different output 2. This increases the

number of wavelengths available to each input to route the signal to an output.

The game formulation can be modified to model this design as follows. The

game board still has d blocks, each with h × h squares corresponding to the input

fibers. Each square in the game board is now colored using w colors instead of one,

corresponding to the wavelength routers. A token can be placed in a square of the

game board if the color of token is one of the colors used to color the square. A square

in column i of some row r of the game board is colored using colors c1, c2, . . . , cw if

by tuning the TWC of input r to wavelength i, the signal is routed to output cj if

we switch the signal through the jth wavelength router, where 1 ≤ j ≤ w. Thus,

if a token of color cj is placed on the square by the setter, we tune the TWC to

wavelength i and switch the signal through the jth wavelength router to reach output

cj. Here again, the game board is constructed such that a row can be obtained by

circularly shifting the previous row within the block to the left by one square because

of the routing property of the wavelength router. The game board can be viewed

as a multilayer game board, where each layer corresponds to the game board of the

corresponding wavelength router had it been used independently in a switch and not

in conjunction with the other wavelength routers. An example block of a game board

for a system with d = 3, h = 6, and w = 2 is shown in Fig. 2.19. Each square is

represented by w numbers and the numbers correspond to the colors of the square.

Each wavelength router has h/d wavelengths to reach an output. Ideally, we

would like to have wh/d wavelengths available to an input to reach an output in

a switch with w wavelength routers. However, wavelength channels used to reach
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an output can overlap between the different wavelength routers. To maximize the

number of wavelengths available to any input to reach an output, we must ensure

that the game board blocks corresponding to each wavelength router are sufficiently

complementary to each other. An easy method to construct the game boards is to

take a row’s configuration and exchange the positions of the colored squares in a

cyclic fashion. Specifically, if the colors are represented by 1, 2, . . . , d, and we have a

configuration of a game board block of the first wavelength router, then assign the

color (c + 1) mod d to the corresponding square in the block for the next wavelength

router, where c is the color of the square in the block corresponding to the first

wavelength router. This ensures that the column set covered by a row is disjoint for

the different wavelength router sections. Equivalently, given that a square is colored

c1 in a game board of a wavelength router, we color the square with colors c1, c2, . . . , cw

such that c2 = (c1 + 1) mod d, c3 = (c1 + 2) mod d, . . . , cw = (c1 + w − 1) mod d in a

configuration with w wavelength routers. In this construction, the number of columns

with a square that has a particular color is given by wh/d. We use this procedure

to derive game boards for the multiple wavelength router constructions from a game

board for a single wavelength router. Observe that the case of w = d leads to a

trivial construction where the number of wavelengths available to an input to reach

an output is h and the switch is strictly non-blocking.

2.6.1 Upper bound

Theorem 2.6.1 For any k-solvable game board on d colors, h columns, and w layers,

k ≤ h − d
w

+ 1

The proof of this theorem is very similar to the proof of Theorem 2.4.2. Consider

a game board constructed as described above with each row having wh/d squares

containing some color blue. Each column has exactly wh squares that contain the

color blue. If we consider any i ≤ d
w
− 1 columns, there can be at most iwh rows

that have a square with color blue in any of these columns. Thus, there must be

at least (d − iw)h rows that do not contain squares with color blue in any of these

columns. So, any puzzle setup that has blue tokens in more than h − i of these rows

is unsolvable. Thus, we cannot expect to construct a switch that will guarantee our

ability to place more than h − d
w

+ 1 tokens of the same color.
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2.6.2 Random game boards

Random boards resulted in good performance in the construction using a single wave-

length router and we can expect them to give good performance in constructions using

multiple wavelength router too. We construct a random game board by constructing

a random game board for a single wavelength router and deriving the game board

for the multiple wavelength router construction. Consider an arbitrary set of r rows

within a single single block of a random game board. The probability that a particular

column is not covered for some fixed color is

h − r

h

h − r − 1

h − 1
. . .

h − r − wh/d + 1

h − wh/d + 1
=

(h − r)wh/d

hwh/d

Thus, within one block, the expected number of columns not covered by r rows is

h
(h − r)wh/d

hwh/d

The expected number of columns not covered by r rows selected from d independent

random blocks in the game board is

= h
(h − r1)

wh/d

hwh/d

(h − r2)
wh/d

hwh/d
.....

(h − rd)
wh/d

hwh/d

≤ h

(
(h − r/d)wh/d

hwh/d

)d

where r = r1 + r2 + . . .+ rd, and ri is the number of rows in the ith block of the game

board. The expected number of columns not covered is plotted as a function of the

size of the row set, r for w = 2 in Fig. 2.20(a) and for w = 3 in Fig. 2.20(a). Also,

Fig. 2.20(c) shows the expected number of columns not covered as a function of the

size of the row set for different values of w. For d = 8 and h = 256, the probability

of a set of 70 rows or more not covering one column is less than one in a million for

w = 2 and the probability of a set of 45 rows or more not covering one column is less

than one in a million for w = 3. Thus, a switch with multiple wavelength routers will

reduce the performance difference between the WGR-based switch and the strictly

nonblocking switch.
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Figure 2.20: Number of columns covered by row sets of all sizes (h = 256)

2.6.3 Statistical multiplexing performance

The game version for this design is very similar to the game in the single wavelength

router design. The only difference is that the setter places the token in a square on the

game board such that the token’s color is any of the colors used to color the square.

We modify the approximate model presented in Section 2.5 for the single wavelength

router design to model this design with multiple wavelength routers. Here too, we

focus on tokens of a single color since the tokens of different colors are independent.

We model the system by a birth-death process shown in Fig. 2.12, where the state

index is the number of tokens placed on the game board. In this design with mul-

tiple wavelength routers, the transition rate from a state i to state i + 1 is different

from the rate in the single wavelength router case because the probability of a token

being placed is higher when there are more wavelength routers. The rate, λi, can be
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Figure 2.21: Burst rejection probabilities for different values of w (d = 8, h = 256)

approximated by

λi = λ

(
1 −

(
h − wh/d

i − wh/d

)
/

(
h

i

))

where w is the number of wavelength routers in each input section. Note that
(

h
i

)
is the number of sets of columns that can be used by i tokens and

(
h−wh/d
i−wh/d

)
is the

number of column sets used by i tokens that would prevent placement of a new token.

If we let πi be the steady state probability that the system is in state i, then

it can easily shown that

πi =
λ0λ1 . . . λi−1

i! µi
π0

Using π0 +π1 + . . .+πh = 1 and solving for π0, we can determine the individual

steady state probabilities. The burst rejection probability is then given by

Prejection(ρ) =
h∑

i=h/d

πi

(
h − wh/d

i − wh/d

)
/

(
h

i

)

where ρ is the offered load to the system given by λ/hµ and
(

h−wh/d
i−wh/d

)
/
(

h
i

)
is the

probability of a burst being rejected in state i.

The burst rejection probabilities for varying numbers of wavelength routers for

a system with d = 8 and h = 256 are shown in Fig. 2.21. For a system that uses two

wavelength routers (w = 2), the throughput provided is 93.4% of the throughput of

a strictly nonblocking switch and a system with three wavelength routers and four

wavelength routers, the throughput provided is 96% and 97.3% respectively.
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Figure 2.22: WGR-based switch with buffering ports

2.7 WGR-based switches with buffering

Buffering can be expected to improve the performance of the switch and this can bring

down the performance gap between the WGR-based switch design and the strictly

nonblocking switch further. Another extension to the basic switch design (Fig. 2.22)

is to have a few ports that convert the optical signal back to electronic form and

store them in buffers and transmit them using tunable lasers when the output ports

become available. The input section of each input fiber now transmits signals to d+ b

ports instead of d ports in the original design, where d is the number of input/output

fibers and b is the number of buffering ports. The number of wavelengths each input

can use to reach an output (or a buffering port) is 
h/(d + b)� and the few additional

wavelengths are assigned to random outputs. At the input section of each buffering

port, the signals are demultiplexed into the individual wavelength channels and then

converted into electronic form using fixed optical receivers. The signals are then stored

in electronic buffers, each of which can hold up to s bursts. Each buffering port has h

buffers, one corresponding to each wavelength channel. Once a wavelength becomes

available at the output, the signals are transmitted to the output ports using a tunable
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laser through a wavelength router. Each electronic buffer has h/d wavelength channels

to reach an output.

This form of buffering, commonly referred to as recirculation buffering, is at-

tractive because the buffers can be shared by all the inputs and hence, the cost of

adding additional ports is shared among all inputs (as opposed to adding buffers

to each input). The addition of one buffering port requires h optical receivers, h

electronic buffering units, h tunable lasers, a wavelength router, and the optical mul-

tiplexors and demultiplexors for the interconnection between the input and the output

sections. The performance gains due to the addition of the buffering ports must jus-

tify this cost. Assuming that a channel in the buffering port is as expensive as a

channel in the input section of the switch, the increase in cost can be estimated as

b/d times as much as the cost of the switch without buffering. For a system with

d = 8, the addition of one buffering port increases the cost of the system by 12.5%

and the addition of two buffering ports increases the cost by 25% approximately.

The game formulation does not capture the dynamics of the routing process

effectively and so, we do not describe the routing problem using the game formulation.

However, the game board structure can still help us understand the routing issues

involved in the switch.

In this case, the game board of the switch is constructed as follows. The routing

matrix has d+b blocks, each having h×h squares. The first d blocks correspond to the

d input/output fibers and the last b blocks correspond to the buffering ports. Each

row in the first d blocks represents an input of the switch, each column corresponds

to a wavelength channel. The squares in the rows of the first d blocks are colored

using one of d + b colors, where the first d colors correspond to the output ports and

the next b colors correspond to the buffering ports. There are 
h/(d + b)� squares of

each color in each row. The remaining hmod(d+b) squares are assigned to randomly

chosen colors. The routing matrix, also, has the constraint that each row within a

block is derived by circularly shifting the previous row to the left by one square. The

squares in the rows of the last b blocks, corresponding to the buffering ports, are

colored in the same manner as squares in a game board with no buffers. The squares

of each row in a block corresponding to a buffering port are colored using one of the

d colors corresponding to the outputs. An example game board for a switch with

d = 2, h = 8, and b = 1 is shown in Fig. 2.23.

Each input has at least 
h/(d+b)� wavelengths to reach an output and another

b
h/(d + b)� wavelengths to reach buffering ports if the burst cannot be routed to
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Figure 2.23: Game board of a switch with d = 2 and h = 8 and one buffering port,
b = 1

the output directly. Each row in the last b blocks represents a buffer in the buffering

ports and each buffer in the buffering port has h/d wavelengths to reach an output.

In terms of the burst switch, this implies that whenever an incoming burst does

not have a wavelength that is available, the burst is routed to a buffering port. If the

burst cannot be routed to a buffering port, the burst is dropped. The burst is stored

electronically in buffers in the buffering port. It is then transmitted from the buffer

to the output port when a wavelength channel that routes the burst to the output

becomes available. Note that we can buffer up to s bursts in each buffer. When there

is more than one burst in a buffer, head of line blocking can reduce the performance of

the switch. If the first burst in a buffer is destined to some output and no wavelength

is available to send the burst to the output, the second (and the subsequent) burst in

the buffer cannot be sent even though it could have been sent had it been in the front

of the queue. This problem can be solved using virtual output queues to store the

bursts, where each burst is stored in a separate logical queue corresponding to the

outputs in the buffer. Thus, even if a burst destined to some output cannot be sent,
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bursts to other outputs can still be sent. The use of virtual output queues has been

studied extensively in the context of crossbar scheduling. Using virtual output queues

increases the information needed to route and forward bursts through the switch and

increases the average processing time needed per burst. In this study, we do not use

virtual output queues. Instead, we forward the bursts in the buffers in a first in first

out order.

By adding buffering ports, the number of wavelengths available to an input

goes up to 
h/(d + b)�+ b
h/(d + b)�, including the wavelengths used to route bursts

to buffering ports. However, we reduce the number of wavelengths an input can use

to route bursts to an output directly from h/d to 
h/(d + b)�. Also, while routing

bursts from the buffering ports to an output, the wavelength used cannot be used

by other inputs. The performance gain due to buffering needs to be greater than

the performance reduction due to the increased blocking in the switch to justify the

addition of buffering ports.

2.7.1 Extra ports for routing as a special case of buffering

A special case of using extra ports is one that has no electronic buffers in the buffering

ports (s = 0, where s is the number of bursts that can be stored in a buffer). Instead,

the extra ports are used to provide additional routing paths to outputs. We refer to

these extra ports as rerouting ports. Each rerouting port has h rerouting channels,

one for each wavelength channel and each rerouting channel has a tunable wavelength

converter instead of the fixed receiver, the electronic buffer, and the tunable laser.

The tunable wavelength converter is used to retune the signal to another wavelength

and transmit the signal through a wavelength router. The rerouting ports provide

us with another stage of routing within the switch. If an input needs to transmit a

burst to some output and no wavelength is available to transmit the burst directly,

we determine a rerouting channel, that is not already in use, in some rerouting port

such that a wavelength is available to send the burst from the input to the rerouting

channel and a wavelength is available to send the burst from the rerouting channel

to the output. If such a rerouting channel exists, we route the burst to the output

through this rerouting channel. Otherwise, we drop the burst.

Each input has 
h/(d+b)� wavelengths to reach an output directly. In addition,

it has b
h/(d+b)� wavelengths to reach rerouting channels in the rerouting ports and

each rerouting channel has h/d wavelength channels to reach the output. The game
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board is constructed exactly as in the case with buffers. A rerouting channel is a row

in the block corresponding to the rerouting ports. If the square in column j of some

input row i is colored k, where k corresponds to a rerouting port, a burst transmitted

on wavelength channel j from input i is routed through the jth rerouting channel in

rerouting port k.

Definition 2.7.1 A rerouting channel j in rerouting port k is said to be accessible

to a row i in the game board if it has a square in column j of row i that is colored k.

A column w is said to be accessible to some row i for a color o in the game

board if there exists a square in column w of row j in some block k that is colored o

such that row j in block k is accessible to row i.

For a switch, whose game board is shown in Fig. 2.23, the row (6, 2) in block 2

corresponding to a rerouting channel in the rerouting port is accessible to row (0, 0)

because column 6 of the row (0, 0) in the game board is colored with the rerouting

port’s color. Also, column 7 is accessible to row (0, 0) through the rerouting channel

(6, 2) to reach the output corresponding to the dark colored squares. Note that

column 7 is not directly available to row (0, 0) to reach the output.

Definition 2.7.2 A row i is said to directly cover a set of columns for color o if the

set of columns have a square of color o in row i.

The cover of a row i for some output o is defined as the set of columns in the

game board that have an o-colored square in row i or have an o-colored square in row

r, where r is an accessible rerouting channel of input i.

The cover of a set of rows, R, is defined as the union of the covers of each of

the rows contained in R.

In other words, the cover of an input is the union of the set of wavelength

channels that it covers directly and the set of wavelength channels that are accessible

to it through rerouting channels. A good switch construction is one that maximizes

the cover of the input channels to all outputs.

Random game boards

As in the game board constructions without buffering ports, a random routing matrix

is a natural choice for switches with rerouting ports (or buffering ports). Assuming a

random routing matrix construction, we now derive the average number of columns
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covered by a set of rows. Consider r = r1 + r2 + . . . + rd rows, where ri is the number

of rows in the ith block of the game board. In any row, the number of squares that

belong to an output is given by 
h/(d+ b)�. We ignore the hmod (d+ b) squares that

are assigned to random inputs. These squares increase the routing capability within

the switch and hence, the average number of columns covered is more than estimated

by this analysis. Denote the number of accessible rerouting channels of a set of r

rows that belong to a rerouting port by cb. The columns covered by these rerouting

channels for some color give us the accessible columns of the set of rows.

The number of rerouting channels that are accessible to any row is given by


h/(d + b)�. We can show that the expected number of accessible rerouting channels

of a set of r rows for one rerouting port is

cb ≤ h − h

(
(h − r/d)x

hx

)d

where x = 
h/(d+ b)�. This result can be obtained by using the equations derived in

Section 2.4.3 and using 
h/(d+ b)� instead of h/d as the number of columns available

to an input.

The probability that rows in a rerouting port, that are accessible to the set of

input rows, miss a column is given by

(h − cb)
h/d

hh/d

Equivalently, this is the probability that a column is not accessible to the set of input

rows through rerouting channels.

The probability that the input rows miss a column is given by

≤
(

(h − r/d)x

hx

)d

Thus, the expected number of columns that are neither covered by the r rows

directly nor are accessible through rerouting channels is given by

≤ h

(
(h − r/d)x

hx

)d
(

(h − cb)
h/d

hh/d

)b
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Figure 2.24: Number of columns not covered by row sets of all sizes for (a) b = 1 and
(b) b = 2 (h = 256)

The expected number of columns that are not covered is plotted as a function

of the size of the row set r in Fig. 2.24 for one and two extra ports respectively. The

number of columns not covered is dramatically decreased because of the rerouting

ports. For d = 8, the probability that about 5 rows miss one column is one in

a million with one rerouting port and the probability that about 3 rows miss one

column is one in a million with two rerouting ports. Thus, the addition of rerouting

ports dramatically increases the available routing options for large values of h/d.

Also, the number of columns not covered for small values of h/d (d = 32 or 64) is

reduced drastically. Thus, adding rerouting ports is an effective method of increasing

the performance of the switch without increasing the cost by much.

2.7.2 Performance of random game board constructions with

buffering

Next we study the performance of the switch with buffering ports or rerouting ports

in a burst switching scenario. To study the performance, we use random routing

matrices for values of d = 8, h = 256, and one and two buffering (or rerouting) ports.

We simulate the system for independent burst arrivals with exponentially distributed

interarrival times and exponentially distributed burst lengths with each burst assigned

to a random output fiber. We simulated the system for different burst store sizes, s.

In the case with buffering, we select the first available wavelength to transmit

the burst to an output. If no wavelength is available to send the burst, we select the
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Figure 2.25: Burst rejection probabilities of random game boards for (a) b = 1 and
(b) b = 2 (d = 8, h = 256)

first wavelength that selects a buffer that has not exceeded its storage capacity to

send the burst to. At the buffer, we select the first available wavelength to send the

burst to the output. In the case of rerouting, we select the first available wavelength

to transmit the burst to an output. If a wavelength is not available to send the burst,

we select the first wavelength that selects a rerouting channel that has a wavelength

channel available to send the burst to the output.

The burst rejection probabilities for a system with one buffering port are shown

in Fig. 2.25(a) and for a system with two buffering ports in Fig. 2.25(b). The case

s = 0 represents the switch when the extra ports are used as rerouting ports. Also,

shown are the results for a system with no buffering or rerouting port (b = 0).

The burst rejection probabilities for a strictly non-blocking switch with and without

buffering are indicated by the dashed curves.

Note that with just one rerouting port with no electronic buffers, the perfor-

mance of the switch matches the performance of a strictly nonblocking switch with no

buffering. This is in accord with the earlier result that even a set of 5 rows covers the

entire set of 256 columns with a very high probability. For a burst rejection probabil-

ity of 10−6, the throughput of a system with one buffering port and burst store sizes

of s = 1, 2, and ∞ are 115%, 117%, and 119% of the throughput of a strictly non-

blocking switch with no buffering respectively. A strictly nonblocking switch with one

port of buffering and burst stores of s = 1 and 2 has a throughput of 122% and 125%

of the throughput of a strictly nonblocking switch with no buffering respectively. For
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a WGR-based switch with two ports of buffering and burst stores of s = 1, 2, and ∞,

the throughput of the switch is 118%, 121%, and 123% of the throughput of a strictly

nonblocking switch with no buffering. A strictly nonblocking switch with one buffer-

ing port and s = 1 has a throughput of 160% of a strictly nonblocking switch with no

buffering. Since the increase in cost of the switch with the addition of one buffering

port and two buffering ports is 12.5% and 25%, the addition of one buffering port for

this system results in a performance gain that best outweighs the cost increase.

2.8 Conclusion

Wavelength converting switches are essential components needed to build optical

burst switches. We have studied two wavelength converting switch designs in this

chapter. The first uses tunable wavelength converters in combination with optical

crossbars to switch the bursts to the output fibers. The use of wavelength converters

and optical crossbars make this design relatively expensive. The second design re-

places the optical crossbars with wavelength grating routers. This design is attractive

because wavelength grating routers are passive components and are hence, relatively

inexpensive.

The use of wavelength grating routers, however, results in some blocking in

the switch. Although the blocking nature of these switches results in higher burst

rejection probabilities, the performance penalty is small enough to make them a

viable alternative. By formulating the routing problem as a combinatorial puzzle or

game, we have been able to develop insights that facilitate the analysis and design

of WGR-based switches. We have shown that the problem of solving the puzzle can

be reformulated as a matching problem in a bipartite graph. Also, an average case

analysis shows us that we can almost always solve the puzzle. Further, we have

shown some basic limits to the nonblocking potential of WGR-based switches and

have also shown that by selecting the permutation patterns appropriately, one can

greatly improve their performance. Simulation results show that in practical switch

system configurations, routers using WGR-based switches can achieve more than 87%

of the throughput of routers using strictly non-blocking switches.

Our simulations also showed that if we allow bursts to be reassigned to dif-

ferent wavelength channels during transmission, the performance of the WGR-based

switch matches the strictly non-blocking one almost exactly. We then presented the

most available wavelength assignment algorithm and studied its performance in the
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switch. We noticed that this algorithm improved the throughput of the switch using

the contiguous permutation pattern. However, it did not yield significantly better

performance for the randomized permutations. Using this algorithm, WGR-based

switches can achieve 89% of the throughput of routers using strictly non-blocking

switches.

A design option to make the performance of the switch better is to use multiple

wavelength routers in place of one in the input sections of the switch. We showed that

a system with two wavelength routers can achieve more than 93% of the throughput of

a strictly nonblocking switch and a system with three wavelength routers can achieve

96%.

Another design option is to use buffering to store bursts when they are blocked.

We do this by adding a few buffering ports to the switch and routing the bursts to

these ports when a burst cannot be routed to the desired output fiber. The burst is

then transmitted from the buffering port to the output when a wavelength channel

becomes available. We showed that with one buffering port, the switch achieves 115

to 119% of the throughput of a strictly nonblocking switch depending on the amount

of burst storage available. The extra ports can also be used as an extra stage of

routing and having no buffers. This greatly increases the available routing options

and performs comparably to a strictly nonblocking switch even with one extra port

when the total number of ports is 8 and the number of wavelength channels is 256.

2.9 Future Work

There are several ways in which we can augment the switch to provide additional

functionality.

A simple method to augment the switch with multicasting capability is to use

the electronic buffers in buffering ports to perform the multicasting. The electronic

buffers can make copies of the burst and send the bursts sequentially to the output

ports. The performance of the switch needs to be studied, since the extra load added

by the multicast traffic will increase the number of buffering ports needed to achieve

the required performance.

The wavelength assignment algorithms that we studied in this chapter were

for a system that forwards bursts in a first come first serve order. For a switch that

needs to support Quality of Service guarantees for flows, the scheduling algorithm

must be modified to support it.
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Limited range TWCs are a cheaper alternative to full range ones. The use

of limited range TWCs potentially increases the blocking within the switch further.

The game board configuration also changes because of the use of limited TWCs. An

analysis of the performance of this switch would help us evaluate its effectiveness for

burst switching.

Reference [52] describes a switch fabric for electronic routers that uses an

optical switch based on tunable wavelength lasers and wavelength grating routers.

The size of the WGR used places a limit on its scalability. The WGR-based switch

design described in this dissertation with tunable lasers instead of tunable wavelength

converters could be used to scale the capacity of that switch fabric. If this were done,

the scheduling algorithm used in the router would need to be changed to accommodate

this switch because of its blocking nature.
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Chapter 3

Time Sliced Optical Burst

Switching

Time Sliced Optical Burst Switching is a proposed variant of optical burst switch-

ing, in which switching is done in the time domain, rather than the wavelength do-

main. Fig. 3.1 illustrates the concept of a time-sliced optical burst switched network.

Switches are connected with WDM links with multiple wavelength channels carrying

data. The information sent on each wavelength is organized into a series of frames,

each of which is sub-divided into fixed length timeslots. Terminals and/or other

networks connect to a TSOBS network through concentrators that convert data on

lower speed interfaces (e.g. IP-over-Ethernet at 100 Mb/s or 1 Gb/s), to the TSOBS

data format. Concentrators transmit user data bursts in time-division channels. The

control information needed to switch the data bursts is sent in Burst Header Cells

(BHC), which are carried on separate control wavelengths. A given fiber optic link

may contain multiple control wavelengths. If the ratio of the expected burst length

to the BHC length is L, each link will require about one control wavelength for every

L − 1 data wavelengths. Concentrators may switch packets received on low speed

interfaces as single bursts in the TSOBS network, or may aggregate packets to form

larger bursts. The issue of aggregation is addressed in detail in the following chapter.

The switching of data bursts through a TSOBS network is done entirely in the

optical domain. Space-division optical switches are dynamically configured to switch

the data from incoming timeslots to timeslots on the appropriate outgoing links. This

is done using carefully-timed switching operations to transfer user data bits from input

links to output links. Switching a timeslot may involve delaying the data, to shift it

from one timeslot position to another. Frames transmitted on different wavelengths
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Figure 3.1: Time sliced optical burst switched network architecture

are synchronized with one another, allowing the timing of switching operations on the

data wavelengths to be determined from the frame timing on the control wavelengths.

Solid-state optical switches can perform switching operations with a precision

of 10 ns or less. To allow for timing uncertainties, timeslots must be separated by a

guard time of at least 10 ns and possibly as large as 100 ns. To achieve reasonable

data transmission efficiencies, timeslot durations should be at least ten times the

guard time, or 100 ns to 1 µs. A 1 µs time slot would allow roughly 1100 bytes of

user data to be sent in a single time slot, assuming a transmission rate of 10 Gb/s

per wavelength, or 4400 bytes of user data, assuming a transmission rate of 40 Gb/s.

With a 1 µs timeslot duration and 40 Gb/s transmission speeds, a system with 350

timeslots per frame would support an individual channel rate of about 100 Mb/s.

This would correspond to a frame duration of 350 µs. This is the maximum period

that a timeslot would have to be delayed when passing through a TSOBS router. By

contrast, a conventional router may have to delay data by hundreds of milliseconds in

order to provide acceptable performance, requiring very large amounts of data storage.

Of course, a shorter timeslot duration or a smaller number of timeslots per frame

would allow this maximum delay for a TSOBS router to be reduced proportionally.

In a large TSOBS network, bursts may pass through many hops before reaching

their destination, leading to excessive degradation of the optical signal [84]. To avoid

the need for strict limits on the number of hops and/or the distance traveled by

bursts, we provide for periodic regeneration of bursts. This is done by including fields

in the BHC, which record the distance traveled by a burst since its last regeneration
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and the number of optical switching operations that the burst has been subjected

to since its last regeneration. This information can be used to regenerate bursts as

necessary, as they pass through a large network. Each switch includes some small

number of either all optical or opto-electronic regeneration circuits that bursts can be

passed through when regeneration is needed. If bursts can travel through an average

of ten or more routers before requiring regeneration, TSOBS could achieve a decisive

cost advantage over electronic routers. Since each switch operation that a burst is

subjected to attenuates the signal and adds noise, it is important to minimize the

number of switching operations required by each router. The number of switching

operations is hence a key metric for TSOBS router designs.

3.1 Statistical multiplexing performance

The statistical multiplexing performance of a TSOBS network is determined primar-

ily by the number of timeslots per frame. A simple case of a TSOBS switch is a

multiplexor that corresponds to a S × 1 switch receiving bursts from S input chan-

nels that can be accommodated by a single timeslot. If the multiplexor assigns each

arriving burst to the first available outgoing timeslot, the multiplexor operates like

an M/D/1 queueing system with a buffer capacity of N , where N is the number of

timeslots per frame.

Fig. 3.3(a) shows the burst discard probabilities for a multiplexor with var-

ious values of N . Notice that the discard probability drops very quickly with N ,

but increases beyond a certain point yielding diminishing returns. 32 timeslots is

sufficient to maintain a discard probability of 10−6 at an offered load of about 83%.

Doubling N increases the load at which this target discard probability is reached to

about 92%. While increasing the number of timeslots per frame improves the statis-

tical multiplexing performance, this improvement comes at the cost of longer frame

Guard time

Data

t1 t2 t3 t4 tN

Frame with N time slots

Figure 3.2: Format of a frame and a time slot within it
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Figure 3.3: (a) Burst discard probability for a system with 16 sources and different
frame times (N)s; (b) Burst discard probability for varying average burst lengths for
a system with frame size of N = 32

durations, which translates to larger optical buffering requirements. This illustrates

the central trade-off for TSOBS networks. In Section 3.4 we look in more detail at

the performance of a TSOBS router, using simulation. Variable length bursts lead

to higher discard probabilities, but the number of timeslots per frame remains the

key determinant of performance. Fig. 3.3(b) shows the burst discard probabilities

with varying average burst length in time slots. We can see that the performance of

the system rapidly degrades with increasing burst lengths. Thus, we need to keep

the average burst lengths small to achieve good performance. However, if we try to

reduce the average burst length, the number of bursts that are transmitted increases.

This leads to an increase in the amount of control information sent (in the form of

burst header cells). So, there is a tradeoff between reducing the average burst length

and the amount of control information that the network can handle.

TSOBS has been designed to make wavelength conversion unnecessary. At

the same time, the overall architecture does not preclude the switching of bursts to

different wavelengths, should wavelength conversion become inexpensive enough to

make this practical.
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Figure 3.4: The overall Time-Sliced Optical Burst Switch design

3.2 Switch architecture

3.2.1 Overview

Fig. 3.4 shows the overall design for a TSOBS router. Each incoming WDM link termi-

nates on a Synchronizer (SYNC) which synchronizes the incoming frame boundaries

to the local timing reference. This is done using variable delay lines, with feedback

control of the delays being provided through the system controller. The synchro-

nizers are followed by Optical Time Slot Interchangers (OTSI), which provide the

required time domain switching for all wavelengths. The OTSIs also separate the

control wavelengths carrying the BHCs and forward those to the system controller.

In addition the input OTSIs separate the data wavelengths and forward these on

separate fibers to each of a set of Optical Crossbars at the center of the diagram. The

crossbars perform the required space division switching operation. These are followed

by a set of passive optical multiplexors, which combine the data wavelengths with

the control wavelengths (carrying the outgoing BHCs) on the output fibers. The con-

troller uses the information in the BHCs to make switching decisions and generates

electronic control signals which are used to control the operation of the OTSIs and

the crossbars.

Fig. 3.5 shows a high level design for one of the OTSIs. Each OTSI contains

a set of optical crossbars for switching timeslots among the inputs, outputs and a

set of delay lines. The signals are demultiplexed to perform the switching operations

and re-multiplexed onto the delay lines, allowing the cost of the delay lines to be

shared by the different wavelengths. The number of delay lines and the choice of

delay line values are key design parameters, significantly affecting both the cost and

performance of the OTSI.
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Another factor that determines a good OTSI design is the average number of

times a burst gets switched within the OTSI. Each time a burst gets switched through

the crossbar, the optical signal quality degrades. Thus, the most suitable OTSI design

is one that also minimizes the average number of switching operations performed on

each burst.

The complexity of the scheduling operation to switch a burst onto an outgoing

timeslot plays an important part in the design of OTSIs. Longer burst sizes lessen the

burden on the control subsystem because the number of burst header cells that require

processing is smaller. However, longer bursts lead to a reduction in the statistical

multiplexing performance of the switch. Thus, the control subsystem should be able

to handle smaller bursts. Consider a switch with 16 input and output fibers, 128

wavelengths per fiber, 10 Gbps capacity per wavelength channel, a timeslot duration

of 1µs, and an average burst length of 10 timeslots (or 100 kilobit average burst size,

assuming 100% data efficiency of the time slots). When the incoming channels are

fully loaded, we need to process up to 16 burst header cells every 10µs (one BHC for

each port) for each wavelength. Since the scheduling of different wavelength channels

are independent, we can use parallelism to obtain the necessary performance.

3.2.2 Nonblocking OTSIs

We can classify OTSI designs as either blocking or nonblocking. While nonblocking

designs provide the best performance, they are significantly more expensive than

blocking designs. We start with the conceptually simplest nonblocking design, which

has N delay lines with a delay value equal to the duration of one time slot. With this

design, each incoming timeslot i can be delayed by d timeslot intervals by recirculating
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it through the ith delay line d times. Since each timeslot is assigned to a separate delay

line, there are no conflicts, hence the design is nonblocking. It also uses the smallest

possible total delay line length (N , where the unit is the distance light propagates

in one timeslot interval). Unfortunately, it requires a large number of separate delay

lines (N) and large optical crossbars ((N + 1) × (N + 1)). The optical crossbars are

a particular concern since their cost grows as the product of the number of inputs

and outputs. Finally, the design can subject a signal to up to N optical switching

operations, causing excessive degradation to the optical signal quality, when N is

large. This last fault can be corrected by replacing the delay lines of length 1, with

delay lines of length 1, 2, . . . , N . This allows each timeslot to be switched through

just a single delay line, reducing the number of switching operations to 2. Of course,

it comes at the cost of increasing the total delay line length from N to approximately

N2/2.

A more practical nonblocking switch design uses delay lines of length 1, 2,

3,...,(A− 1), where A is an integer parameter, plus additional delay lines of length A,

2A, 3A,...,(B − 1)A time slots, where B is a second integer parameter. We call these

two sets of delay lines the short delay lines and the long delay lines. Let us suppose a

time slot has to be delayed by a value of T time slots. T can be expressed as a sum,

k2A + k1, where k1 ∈ [0, A) and k2 ∈ [0, B). To delay the time slot by T , we pass

the data through the long delay line of length k2A and then pass it through the short

delay line of length k1. The maximum we can delay a signal using this configuration

is (B−1)A+(A−1) and since the maximum delay needed is N −1, this gives us the

relation AB ≥ N . The number of delay lines in this design is A + B − 2 and hence,

choosing A = B = �√N� gives us the minimum number of delay lines. It can be

easily seen that these values of A and B generate all values between 0 and N because

k1 and k2 are the digits of T when expressed in base �√N� notation.

We next show that this design is nonblocking. Consider any two input timeslots

i and j that are to be delayed by amounts di and dj, where i + di 
= j + dj. Suppose

first that �di/A� = �dj/A�. Then both time slots will pass through the same long

delay line, but since they arrive at different times, they will emerge from the delay line

at different times. Hence, they cannot conflict with each other when entering a short

delay line. Since i+di 
= j+dj, they must emerge from the short delay lines at different

times, ensuring no conflict at the output. Now suppose that �di/A� 
= �dj/A�. In

this case, the time slots may emerge from their respective long delay lines at the same

time, creating a potential conflict if they must be switched to the same short delay
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Figure 3.6: (a) Recursive TSI design; (b) Recursive switching of time slots

line. However, such a conflict can only occur if i + di = j + dj, contradicting the

condition on the overall delays. Hence, the design is nonblocking, assuming timeslots

are always switched first through a long delay line, then through a short delay line.

The size of the crossbar required for this design is (2�√N�− 1)× (2�√N�− 1)

(31 × 31 for N = 256) and the length of the fiber required is N�√N�/2 (2,048

when N = 256). Thus, we have reduced the size of the crossbar at the expense of

increased fiber length, relative to the first design. This design also limits the number

of switching operations that a timeslot is subjected to, to at most three. Also note

that it is very easy to determine the switching operations needed to switch a timeslot.

Rearrangeably nonblocking TSI design

References [59] and [64] describe a timeslot interchanger design that is rearrange-

ably nonblocking meaning that it can be configured to permute a set of N timeslots

in an arbitrary way, assuming that the required permutation is given in advance.

For different permutation patterns, the switch is configured in different ways. In a

TSOBS network, packets arrive at a switch at arbitrary times. In a rearrangeably

non-blocking switch, we may need to reroute existing connections within the switch

to accommodate a new connection. This is not possible in a TSOBS network. Thus,

the packet has to be dropped even though an output timeslot is available. The design

described in Reference [64] is suitable for systems that use 2 × 2 size crossbars. We

present an extension of this design for larger sized crossbars.

The TSI is constructed in a recursive fashion as shown in Fig. 3.6(a). A TSI

for a system in which each frame carries N time slots, TSIN , is constructed by com-

bining a pair of “coarse-grained” switching operations with a “fine-grained” switching



70

operation using an N/d timeslot TSI, TSIN/d. The coarse switching operations are

done using a pair of time slot classifiers, CN,d. The incoming frame is split into d

sub-frames of N/d time slots each and the classifiers switch any time slot from one

sub-frame to another such that the position of the time slot in the input sub-frame

is same as the position in the output sub-frame. The N/d timeslot TSI switches on

the basis of these sub-frames.

To switch a signal from input time slot i to output time slot j, we select

a sub-frame f and configure the left classifier to switch input time slot i to time

slot imodN/d of sub-frame f . Similarly, we configure the right classifier to switch to

output time slot j from time slot jmodN/d of sub-frame f . To complete the operation,

the TSIN/d is configured to switch from input time slot i mod N/d to output time

slot j mod N/d in sub-frame f . This is illustrated in Fig. 3.6(b). Suppose we want

to switch time slot i in sub-frame SF4 to time slot j in sub-frame SF2, we select an

intermediate sub-frame, SF3, to switch this slot to. Time slot i is switched to time

slot p by the left classifier such that i mod N/d = p mod N/d and p is in SF3 . Time

slot p is switched to time slot q within that sub-frame by the smaller TSI, such that

q mod N/d = j mod N/d. Finally, time slot q is switched to time slot j by the right

classifier.

Notice that two input time slots i1 and i2 can be switched into the same sub-

frame by a classifier only if i1 mod N/d 
= i2 mod N/d. Similarly, at the output of

the TSI, two time slots j1 and j2 can be switched from the same sub-frame only if

j1 mod N/d 
= j2 mod N/d. So, to perform a set of time slot switching operations, we

must select mutually compatible sub-frames in order to allow the switching operations

to take place. Consider the example shown in Fig. 3.7(a). The input frame’s time

slots 1, 5, 9, and 13 are at the same relative positions within a sub frame and thus,

need to be switched into different outgoing frames at the left classifier. Similarly, the

output time slots 1, 15, 16, and 3 are at the same relative positions within a sub-frame

and thus, need to arrive from different sub-frames.

The sub-frame assignment problem can be stated as follows. Given a set of

switching operations (x1-y1), (x2-y2),...,(xN -yN), where xi corresponds to input time

slots and yi corresponds to output time slots, and integer d, assign a sub-frame SFi

to (xi-yi) such that:

SFi = SFj only if xi mod N/d 
= xj mod N/d, and (3.1)

yi mod N/d 
= yj mod N/d (3.2)
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Figure 3.7: (a) Example permutation of the incoming frame (for N = 16 and d = 4);
(b) Bipartite coloring problem to determine how to switch time slots; (c) The output
time slots after each stage in the TSI

The problem of finding a compatible set of sub-frame assignments can be

formulated as a bipartite graph edge coloring problem. To solve this, define a bi-

partite graph with two sets of vertices, {L1, L2, ...LN/d} (the “left” vertices) and

{R1, R2, ...RN/d} (the “right” vertices). The graph has an edge from Lxi mod N/d to

Ryi mod N/d for each connection (xi,yi). Note that each vertex has at most d edges

incident to it. So, we can use standard edge coloring methods to assign 1 of d colors

to each edge in such a way that no two edges incident to the same vertex are assigned

the same color. If some color k is assigned to an edge that corresponds to a connec-

tion (xi,yi), then we select SFk as the intermediate sub-frame to switch xi into. If
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xi mod N/d = xj mod N/d, then the two edges corresponding to (xi-yi) and (xj-yj)

are adjacent to the same vertex, Lxi mod N/d, and thus, have different colors assigned

to them. Since the colors correspond to the sub-frames, SFi 
= SFj. This satisfies

the first condition in the sub-frame assignment problem. Satisfaction of the second

condition can be argued in a similar manner.

Fig. 3.7(b) shows the bipartite graph and the corresponding edge coloring for

the example presented in Fig. 3.7(a). The colors have been indicated beside the edges

of the graph. Thus, we can see that input time slots 3, 7, 11, and 15 have to be

colored differently to use different sub-frames and thus, time slot 3 is switched into

sub-frame SF3, time slot 7 is switched into sub-frame SF2, and so on. Fig. 3.7(c)

shows the time slots at the output of the switching stages of the TSI.

The time slot classifier is implemented using a switch of size d × d and a set

of delay lines of lengths corresponding to N/d, 2N/d,...,(d − 1)N/d time slots as

shown in Fig. 3.8. Consider an incoming frame of size N . We first switch the first

N/d incoming time slots corresponding to the sub-frame SF1 onto the delay line of

length N(d− 1)/d, then switch the time slots of sub-frame SF2 onto the delay line of

length N(d − 2)/d and so on. After a time of N(d − 1)/d time slots, we end up in a

configuration that is shown in Fig. 3.8.

The time slots at the head at the ports of the crossbar are the first time slots

in each sub-frame and correspond to the vertex L1 of the bipartite graph. Thus,

the first slot sent out through the output port corresponds to the first slot of the

outgoing sub-frame SF1 and this is determined by the edge coloring. The first slot

of the second sub-frame SF2 of the outgoing frame is switched onto the delay line of

length N/d and is thus, sent out of the classifier after a delay of N/d. Similarly, the
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first time slot of the third sub-frame is switched onto the delay line of length 2N/d

and so on. After completing this switching operation, the next set of time slots that

correspond to the vertex L2 can be permuted and the switching is determined by the

edge coloring at vertex L2. The operations at the right classifier are similar and are

determined by the coloring at the “right” vertices.

Even though, we have used multiple d × d switches for each of the classifiers

and the smaller TSI, we can implement the entire switching operation using a single

large switching matrix, assuming we have one of that size. The size of the switch

needed is one more than the number of delay lines used and that is given by x × x,

where x = 2(d−1)(logdN −1)+d. This is plotted for various values of d as a function

of the number of time slots, N , in Fig. 3.9(a). The length of delay lines needed is

given by (N −1)d+d(d−1)/2 and is plotted as a function of N for various values of d

in Fig. 3.9(b). The number of switching operations required is given by 2 logd −1 and

is plotted in Fig. 3.9(c). The size of the crossbar required and the amount of fiber

required to implement the delay lines are the least for d = 2. However, the number

of switching operations needed is higher for d = 2. Thus, there is a tradeoff between

the number of switching operations we can afford to use for switching timeslots and

the cost of the switch.

For d = 2, this approach can be implemented using two sets of delay lines of

length 1, 2, . . . , N/4 and a single delay line of length N/2, where N is assumed to be

a power of 2. This gives 2(log2 N) − 1 delay lines and a total delay line length of

(3N/2) − 2. On the other hand, it requires 2(log2 N) − 1 switching operations (15

for N = 256) and it requires that the full permutation be known in advance, or that

the entire switch configuration be changed as new timeslots are received, making it

difficult to apply in the TSOBS context.

Table 3.1 summarizes the four nonblocking TSI designs discussed above and

shows their complexity characteristics. Only the third design is a real candidate for

practical use, and even it is somewhat expensive, both in terms of total fiber length

and crossbar complexity. Also shown is the cost of implementing a blocking design,

which is discussed in the next section. We can clearly see that the blocking design

has much lower cost.
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Figure 3.9: (a) Size of the switch required; (b) Length of fiber required for the delay
lines; (c) Number of switching operations needed

3.2.3 Blocking OTSIs

Blocking OTSIs are an alternative to nonblocking OTSIs, offering lower complexity,

at the cost of some small non-zero blocking probability. In the TSOBS context, the

impact of a blocking TSI will be to reduce the statistical multiplexing performance

slightly.

Perhaps the most natural choice of delays for a blocking TSI is the set {1, 2,

4,. . ., N/2}. This allows any time-slot to be switched to any of the output timeslots,

provides small total delay (255 for N = 256) and small crossbar size (8×8 for N=256).

We show below that an OTSI with these delays can be operated so as to achieve a

small average number of switching operations (≤ 3 under most conditions), and that

the impact of blocking on the statistical multiplexing performance is very small.



75

Table 3.1: Table showing the complexity of the TSI designs
Delay line lengths Crossbar Size Fiber Length (in timeslots) Switching Operations

N = 256 N = 256 N = 256

N × 1 N + 1 257 N 256 N 256
1, 2, . . . , N − 1 N 256 N2/2 32896 2 2

1, . . . , A, 2A, . . . , (B − 1)A 2�√N� − 1 31 N�√N�/2 2048 3 3
2 × (1, 2, 4, . . . , N/4), N/2 2 log2 N 16 (3N/2) − 2 382 2(log2 N) − 1 15

Blocking TSI: 1, 2, . . . , N/2 log2 N 8 N − 1 255 variable 2 to 3

For a blocking TSI, we need to define a search procedure to find a sequence of

delay lines through which we can switch an arriving timeslot, to deliver it to a free

output timeslot. This needs to be done without creating any conflicts at any of the

delay lines. The key to implementing the search procedure is a schedule that allows

us to keep track of which delay lines are available for use at each point in time. The

schedule is represented by an array of bits, sched[i, t] with k+1 rows and N columns,

where k is the number of delay lines and N is the number of timeslots per frame.

For i ∈ [1, k], we let sched[i, t] = 1 if the ith delay line is “busy” at time t. We say

a delay line is busy at a given time, if there is some timeslot scheduled to exit the

delay line at that time. For simplicity, we define t = 0 to be the current time. We let

sched[0, t] = 1 if the output link of the OTSI is busy at time t.

Fig. 3.10(a) shows an example of the schedule array for k = 3 and N = 8. The

delay values for each of the delay lines is shown next to its row. The schedule array

implicitly defines a directed graph G = (V,E) that can be used to find a sequence of

delay lines leading to a free output timeslot, that can be used for an arriving burst.

The vertex set V , is {u0, . . . , uN−1}. Each vertex corresponds to a potential delay

that a timeslot may be subjected to. The set of edges E consists of all pairs (ui, uj)

for which there is some delay line h with delay j− i, and sched[h, j] = 0. Fig. 3.10(b)

gives an example of the graph defined by the schedule in Fig. 3.10(a).

To find the best sequence of delay lines, we essentially perform a breadth-first

search on this graph, starting from node u0. Such a search constructs a shortest path

tree in the graph, as illustrated in Fig. 3.10(c). The unshaded nodes have delay values

that correspond to free timeslots on the output link. The path in the tree to such

an output defines a sequence of delay lines that can be used to reach that output.

The delay line corresponding to an edge (ui, uj) on such a path, is the delay line with

delay value j − i. The number of switching operations is minimized by selecting a

path of minimum length from u0 to an unshaded vertex. When there are two or more

unshaded vertices on minimum length paths from u0, we select the vertex ui with the

smallest value of i, in order to minimize the delay that a timeslot is subjected to. In
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Figure 3.10: (a) Example of the schedule array for k = 3 and N = 8; (b) Directed
graph corresponding to example schedule; (c) Search constructing the shortest path
tree (shown in bold)

Fig. 3.10(c), u3 is selected at the conclusion of the search, and the timeslot is then

switched through the delay lines of length 1 and 2.

The example selects a sequence of delay lines for a burst that has one timeslot.

For a burst that has multiple timeslots, we determine the sequence of delay lines for

the first timeslot. Since the timeslots of any burst occupy the same relative position

within a frame, the rest of the timeslots can be scheduled by using the same sequence

of delay lines in the subsequent frames.

The search can be done using the schedule array. The procedure does construct

the shortest path tree, but does not explicitly construct the graph. A code fragment

implementing the required search procedure is shown below. In this procedure, q is

a list of nodes from which the breadth-first search needs to be extended next, p(ui)

is the parent of ui in the shortest path tree constructed by the search procedure and

n(ui) is the number of edges on the path from u0 to ui in the tree. The variables
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δ1 < δ2 < · · · < δk are the k different delay values and s is the number of timeslots

that the burst being scheduled requires.

q := [u0];

p(ui) := Ø for all i;

n(ui) := ∞ for all i;

b := −1;

while q 
= [ ] do

ui := q[1]; q := q[2..]; // remove ui from q

if sched[0, d(ui)] = 0 then

if b = −1 or

n(ui) < n(ub) or

n(ui) = n(ub) and i < b then

b := i;

end;

end;

for h = 1 to k loop

Let uj be the vertex with j = i + δh;

if sched[h, j] = 0

and n(ui) + 1 < n(uj) then

p(uj) := ui; n(uj) := n(ui) + 1;

if uj 
∈ q then

q := q & [uj]; // add uj to q

end;

end;

end;

end;

When a search terminates successfully, b is the delay value associated with the

selected output timeslot. If the path from u0 to ub (defined by the parent pointers)

goes through nodes u0 = ui1 , ui2 , . . . , uir = ub the timeslot is switched through the

delay lines with delay values i2 − i1, i3 − i2, . . . , ir − ir−1. The schedule must be

updated to indicate the busy status of the selected delay lines. This is done by

setting sched[jq][iq] = 1, for 1 < q ≤ r, where jq is the index of the delay line with

delay value iq − iq−1.
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The search procedure can be terminated early under certain conditions. In

particular, if the node ui, removed from the front of q, has n(ui) > n(ub), then there

is no point in continuing the search, since no shorter paths to “exit nodes” will be

found. We can also terminate the search early if n(ui) exceeds some pre-specified

limit on the path length. In this case, the search fails without finding a solution,

forcing us to drop the burst being scheduled.

The above search procedure determines a set of delay lines for the first timeslots

in a frame. For the rest of the timeslots of a burst, the same sequence of delay lines

can be used in the subsequent frames.

Table 3.1 gives the complexity of using a blocking TSI and shows the size of

the crossbar required, the length of the delay lines, and the number of switching

operations. We can see that the blocking design gives us a decisive cost advantage

over the nonblocking ones.

3.2.4 Design Issues for the Synchronizers

As a result of the varying length of fibers that terminate at input ports, chromatic

dispersion within the fiber, temperature variation leading to phase drift of the optical

signals and other fiber transmission non-linearities, the frames arrive at the input

ports at random times and completely misaligned with each other. In order to enable

the required synchronous switching operations, they must first be realigned. This is

the function of the Synchronizers in Fig. 3.4. To synchronize the incoming data, we

first need to determine where the frame boundaries are. Assuming that the frames

carried on different wavelengths of a given fiber were synchronized when they were

transmitted by the upstream router (or network terminal), we can determine the lo-

cation of the frame boundaries by extracting the requisite timing information from

the control wavelengths. Since propagation delay is wavelength-dependent, frames

on different wavelengths will not be precisely aligned with the frames on the con-

trol wavelengths, but because the differences are systematic, it is straightforward to

compensate.

Once we know the start times of the frames on different wavelengths, we need

to delay the received data to bring the start times into alignment. This can be

done using the same kind of structure that is used for the OTSI. There are two key

parameters that affect the cost of the synchronizers, the precision and the range. The

precision of a synchronizer is the difference between successive delay values that the
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synchronizer can provide. The range is the maximum delay that it provides. The

ratio of the range to the precision defines the number of distinct delay values that

the synchronizer must provide. This affects the number of fibers and the size of the

optical switch needed to route the signal through one or more fibers to produce the

required delay. To minimize the cost of the synchronizer, we’d like to minimize the

ratio of range to precision, by reducing the range and/or increasing the precision.

The precision determines where the data in a timeslot can be placed, relative

to the nominal start time of the frame. The guard times that separate data blocks

in adjacent frames provide some flexibility in where exactly the data must be placed.

For example, consider a system with a timeslot duration of 1 µs in which data is

transmitted for 900 ns. If we require a minimum guard time of 20 ns at the start

and end of each timeslot interval, it’s sufficient to place the start of the data block

within a time interval of 60 ns. This defines the precision required of the synchronizer,

assuming that we know where in the timeslot interval, the data block starts. This

information can be carried in the BHCs of transmitted bursts and updated in succes-

sive routers as the bursts pass through synchronizers that shift the data blocks of a

burst within the timeslot interval. Notice that if the total guard time is too large, we

sacrifice transmission efficiency, so we prefer to keep the total guard time a reasonably

small fraction of the timeslot interval. The minimum guard time is determined by

how accurately switching operations can be timed. With current technology, values

as low as 5-10 ns are certainly feasible.

To synchronize the start of all incoming frames to a common time value, we

need a range equal to the time duration of a frame. However, it’s possible to reduce the

required range to the timeslot duration, using a time shifting switch controller. The

electronic controller that schedules the switching operations can operate with input

links that are only synchronized to a common timeslot boundary rather than a frame

boundary, so long as it knows where the frame boundary is, relative to a common

frame reference time. Using this information, it can compensate for different time

shifts within the frame period, when it switches the data through the OTSIs.

Using both of these techniques, the precision-to-range ratio can be as low as

10:1. This makes it feasible to implement the synchronizer using a separate delay line

for each delay value. This has the advantage that it limits the number of switching

operations that the data is subjected to by the synchronizer to two (one to switch

the data into the selected delay line and one to switch it back out of the delay line

to the output). This can be cut to a single switching operation by using a slightly
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different implementation, in which the delay lines are fed forward through a passive

coupler rather than back through the switch.

In systems with a larger number of distinct delay values, we can keep the

cost of the synchronizer low by adapting the nonblocking OTSI design described in

Section 3.2.2. The size of the crossbar required for this design is (2�√S� − 1) ×
(2�√S� − 1) (15 × 15 for S = 16) and the length of the fiber required is S�√S�/2
times the precision (32 when S = 16). The number of switching operations required

is three, but this can be reduced to two using a feed forward configuration, in which

we arrange the long and short delay lines in two stages with an intermediate switch.

This also reduces the switch cost by almost a factor of four.

3.3 Cost Analysis

For the architecture in Figure 3.4, let d be the number of external fibers, N be the

number of timeslots per fiber, h be the number of wavelengths per fiber, m be the

number of delay lines in each OTSI, S be the alignment accuracy accuracy, l be the

total number of delay lines in each SYNC, D be the total delay line length in each

OTSI, and Ds be the total delay line length in each SYNC. Also, let Cf be the cost

per unit length of the fiber, Cx be the cost per crosspoint of an optical crossbar and

let Cm be the cost per input of an optical multiplexor (also, the cost per output

of a demultiplexor). If the data transmission rate for each wavelength channel is R

Gbps and there is a 10% overhead for guard times and assuming that we use the

second design for the SYNC with the feed forward arrangement, the cost per Gbps

of transmission capacity is given by

[(
(m + 1)2 +

l

2
+

(
l

2

)2

+ d

)
Cx + 2

(
m + l +

l

4
+ 1

)
Cm + (D + Ds)

Cf

h

]
/.9R

For a switch with d = 16, h = 128, N = 128, m = 7, l = 6, D = 40 km, Ds = 6 km,

and R = 10, then the cost per Gbps of capacity is

10.2Cx + 3.5Cm + 0.04Cf

The above cost does not include the cost of the electronic control subsystem. If

we estimate the cost per km of fiber at $100, the last term in the above expression

contributes an insignificant value and hence, can be ignored. If we assume that the
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data path of a TSOBS router should cost no more than $200 per Gbps of capacity and

also assume that Cx = Cm, then we need both to be about $15. This means that an

8×8 crossbar should cost no more than $960, while a 128 port multiplexor should cost

no more than $1920. While current prices are above these values, there seems to be no

fundamental obstacle in achieving these price levels. Also, usually Cm < Cx because

multiplexors are passive components, and thus the above assumption is pessimistic.

Note that the cost of the system scales linearly with the number of wavelengths.

Also, it should be noted that the cost of the optical components is largely independent

of the bit rate used on the individual wavelength channels, so if we have R = 40

instead of R = 10, the cost per Gbps of capacity drops by a factor of 4. This means

that we could tolerate a cost of $3840 for an 8× 8 crossbar and $7680 for a 128 port

multiplexor. If devices can be engineered to bring the costs down to the above values,

TSOBS can become a cost effective alternative to electronic networks.

3.4 Performance of a TSOBS Router

In this section, we study the performance of a TSOBS router using the blocking OTSI

design discussed in the previous section. When a BHC is received by the controller

announcing the imminent arrival of a burst at one of the input links, the controller

does an address lookup to determine the appropriate outgoing link. It must then

determine the set of timeslots that are available on the wavelength being used by the

burst, both on the outgoing link and at the output of the OTSI for the input link

where the burst is to arrive. It then performs the search discussed in the last section

to find a set of delay lines through which it can switch the burst, in order to shift it

into an available outgoing timeslot.

To evaluate the performance of the OTBS router using a blocking OTSI, we

performed simulations using different OTSI configurations. Our primary performance

metric is the burst discard probability, which is the fraction of bursts that need to be

discarded, due to blocking at either the outgoing link or due to the OTSI. We also

measured the number of switching operations that were used to switch the bursts

through the OTSIs. The simulations were done for uniform random traffic with

binomially distributed arrivals and deterministic burst lengths of one timeslot. The

number of input and output links was 16.

Fig. 3.11(a) shows the packet discard probabilities for a range of different

frame sizes. The OTSIs used delay values of 1, 2, 4, . . . with the largest delay value
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Figure 3.11: Charts for different number of time slots per frame, N

being equal to half of the frame size. Also shown are the discard probabilities with

nonblocking OTSIs. We can see that we do not lose much in the way of performance

by using the blocking OTSIs instead of the nonblocking ones, considering that the

cost of using nonblocking OTSIs is significantly higher. Figure 3.11(b) shows the

average number of switching operations that each burst is subjected to. For loads

up to about 70% the average number remains below 2, meaning that the average

burst passes through just one delay line and for loads up to about 90% the average

number remains below 3, meaning that the average burst passes through two delay

lines only. Fig 3.11(c) shows the tail of the distribution of the number of switching

operations. Specifically, we define F (k) to be the fraction of bursts that require at

most k switching operations. So, 1− F (k) is the fraction of bursts that require more

than k switching operations. Note that the chart uses a logarithmic scale for the

values of 1 − F (k). Fig 3.11(c) shows 1 − F (k) when the offered load on the output
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links is 90%. For N = 64, less than 45% of the bursts require more than two switching

operations, so almost 55% use at most two, meaning they only use a single delay line

and less than 0.5% of the bursts require more than three switching operations, so

almost 99.5% use at most three, meaning they only use two delay lines.

The set of results in Fig. 3.12 shows the effect of placing an upper bound on

the number of switching operations that are allowed for each burst. These results

are for a system with a frame size of 64. Fig. 3.12(a) shows that if we restrict the

number of switching operations too much, we cause a large increase in the burst

discard probability, but with a limit of 3, the burst discard probability is almost the

same as when there is no limit. The utilization at a blocking probability of 10−6 is

approximately 0.83 when the number of switching operations is restricted to 3 and is

0.88 when it is 7, giving about 6% reduction. This is consistent with what we observed

in Fig 3.11(c). Fig. 3.12(b) shows the average number of switching operations when

the number of switching operations is limited. For loads up to 85% the limit has a

negligible effect on the number of switching operations, but for loads greater than

90% it produces a significant reduction. Fig. 3.12(c) shows the fraction of bursts

using k or more switching operations, when the number is limited.

The final set of simulations were performed to quantify the effect of reducing

the number of delay lines available. For this set of simulations, the frame size was

fixed at 64. The number of delay lines was varied from 1 to 6, with the longer delay

lines being omitted, when the number is restricted. So, for example, when 3 delay

lines are used, the delay values are 1, 2 and 4. Fig. 3.13(a) shows the packet discard

probabilities. We see that four delay lines gives a comparable blocking performance

to six. This is significant, since with four delay lines, the total delay line length

is reduced by a factor 4. Fig 3.13(b) shows the effect on the number of switching

operations when the number of delay lines is limited. We can see that decreasing the

number of delay lines from six to four increases the number of switching operations

at high loads. At loads of 90% the average number of switching operations with four

delay lines is about 3.3 and is 2.5 for six delay lines, whereas it is 1.87 and 1.85 at

loads of 70% for four and six delay lines respectively. Thus, given the benefits we do

not lose much by way of the number of switching operations by reducing the number

of delay lines to four. Fig 3.13(c) shows the tail of the distribution of the number

of switching operations. Here, the differences are more evident, but the absolute

magnitudes remain small.
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3.5 Conclusion

In this chapter, we have introduced a promising variant of optical burst switching,

in which switching is done in the time domain rather than the wavelength domain.

This eliminates the need for wavelength converters, the largest single cost component

of systems, which switch in the wavelength domain. This may allow optical burst

switching to become cost-competitive with electronic packet switching, potentially a

very significant development, since no previous optical packet switching architecture

has shown any real promise of becoming cost-competitive with electronic alternatives.

Our performance results show that a system with as few as 64 timeslots can

provide excellent statistical multiplexing performance, even with blocking OTSIs with

just four delay lines. With a timeslot duration of 1 µs, each OTSI would require a
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total delay line length equal to the distance that light travels in fiber in 15 µs (under 4

km). For routers terminating wide area optical links spanning hundreds or thousands

of kilometers, this is a very modest overhead. The average number of switching

operations that bursts are subjected to is also quite modest, less than four switching

operations per hop, for loads up to 90%. This makes it likely that most bursts could

be switched from end-to-end with no intermediate conversion to electronic form.

3.6 Future Work

We have shown in this chapter that TSOBS is a promising technology that can used

to build optical routers that are cost competitive with electronic routers. There are

several other issues and design choices that need to be addressed to implement TSOBS
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networks. Two issues, data aggregation and load balancing on wavelengths, shall be

addressed in the next chapters.

In a TSOBS network, we could decide to adopt existing protocols like the In-

ternet Protocol for addressing and routing. However, since TSOBS can serve as a

subnetwork technology, it is possible to use protocols that are more suited for its

requirements. One particular functionality we need in order to perform aggregation

of data (discussed in Chapter 4) is the ability to classify packets from hosts in terms

of their destination network interfaces, where they exit the TSOBS network. The

network interfaces can act as gateways between the legacy networks and the TSOBS

network. Additional work, that examines possible addressing and routing mecha-

nisms, is necessary to determine one that fits TSOBS networks the best.

In any network, we can expect to have congestion when the load on the network

is beyond what it can handle. Congestion is problem that can acutely affect the

performance of TSOBS networks because we do not have buffering in the switches.

Congestion can, in general, be handled in two ways. Congestion control is a reactive

mechanism that lowers the sending rates of the sources to reduce the load on the

network. Congestion avoidance ensures that the sources transmit data at a rate that

can be handled by the network. In a TSOBS network, data can be stored electronically

at the network interfaces, where we can expect to have a lot of buffering capacity and

the congestion avoidance/control can be handled by the network interfaces. Another

design choice we have is whether or not the messages indicating congestion are handled

end-to-end, like in TCP (Transmission Control Protocol). We can augment a TSOBS

network by adding functionality to send messages that indicate congestion to the

network interfaces.

Each TSOBS router is equipped with a few ports of regenerators that are used

to regenerate bursts when necessary. There can be contention among bursts to get

to the regenerator ports within the switch as there is to reach the outputs. It is

necessary to quantify the number of regenerator ports needed in order to achieve

good performance. We can define a threshold on the number of hops a burst travels

and beyond this threshold, the burst is regenerated, even if it can travel a few more

hops without needing regeneration. So, even if a burst cannot be regenerated because

of contention, the signal quality of the burst is still good and it can be regenerated at

a downstream router. This can help reduce the number of regenerator ports needed.
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The regenerator ports can also be used to provide multicasting capability in

the switch by making copies of the bursts and forwarding them to the desired out-

puts. The multicast traffic can interfere with the traffic within the switch and cause

degradation of the switch throughput. We need to analyze the amount of multicast

traffic a switch can handle without a degradation of its performance.

The scheduling mechanism that we have studied in this chapter does not take

into account Quality of Service requirements. To provide Quality of Service in the

network, we need to augment the scheduling algorithm with methods in which we

can prioritize the bursts we transmit when there is contention. The provision of QoS

guarantees requires further study.
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Chapter 4

Data Aggregation for Time Sliced

Optical Burst Switching

The network interface or concentrator shown in Fig. 3.1 is responsible for assem-

bling the data from hosts, that connect to the network using lower speed interfaces,

into bursts and transmitting the bursts in the TSOBS format. Transmission of a

burst involves determining a wavelength channel and a route through the network

to transmit the burst. The concentrator collects packets from hosts to a particular

destination or destination network to form “superpackets” or bursts that are larger

in size than typical packets. Once the bursts are received by the concentrator at the

destination network, the bursts are unpacked and the packets are routed individually

to the destination host.

In this chapter, we examine the problem of aggregating packets to form bursts.

We present an algorithm to aggregate packets and present an analysis to determine

the parameter values that give the best performance.

4.1 Related Work

In Reference [48], a simple algorithm for performing aggregation in burst switched

networks was proposed. A time counter Ti is started any time a packet arrives that

is destined to some network interface i and the queue for destination i is empty. The

algorithm waits for a time period Wi, called the burst aggregation period and during

that period, collects all arriving packets for destination interface i in the queue. At

the end of the time period, a burst is created with the collected data and queued for
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transmission through the network. Finally, the time counter is reset to 0 and remains

so until the next packet arrival for destination i.

Reference [100] describes a temporal burstification algorithm or aggregation

algorithm where burst generation is triggered either when the burst size reaches a

threshold or when a timer expires.

Reference [22] evaluates the impact of aggregation on TCP Reno flows from a

source’s point of view. It is shown that aggregation tends to have two opposite effects.

Sources experience delay penalties due to the delay experienced by the packets at the

interface which cause a source to reduce its “send rate”. However, since multiple

packets from a source have a tendency to get aggregated onto the same burst, a

burst delivery or a burst loss results in delivery or loss of consecutive TCP packets

respectively. Simulations show that this results in a “correlation benefit” and the

send rate of sources with aggregation tends to be higher than the send rate without

aggregation. For low access bandwidth sources, the delay penalty tends to be the

dominant effect and this results in a lower TCP send rate than without aggregation.

For high bandwidth sources, the correlation benefit tends to be stronger and results in

a higher send rate. This is because the higher the access bandwidth of the source, the

higher the likelihood of multiple packets from the source getting aggregated into the

same burst. It is suggested that a reasonable burstification period is around 10-20%

of the round trip time.

Reference [15] studies the performance of three aggregation algorithms for

TCP/IP traffic, namely Fixed-Assembly-Period (FAP), MinBurstLengthMaxAssem-

blyPeriod (MBMAP), and Adaptive-Assembly-Period (AAP) algorithms. It is shown

that the AAP algorithm performs better than the other algorithms because it adapts

the aggregation period based on the sending TCP window sizes.

Reference [50] studies the performance of TCP in Optical Burst Switched Net-

works when the network uses the latest available unused channel - with void filling

(LAUC-vf) scheduling algorithm, described in Reference [101], to determine the data

channel to transmit a burst on. The paper studies the impact of burst drop proba-

bility, burst-assembly delay, and buffering on the performance of TCP.

In OBS networks, small burst sizes affects the volume of control traffic gener-

ated. However, it does not have an effect on the utilization of the network. In Time

Sliced Optical Burst Switched networks, a timeslot is the minimum unit of data and

if bursts are smaller than a timeslot worth of data, the timeslot is not utilized fully.
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Per-destination queues Burst aggregation timer

Outgoing WDM linkPackets from hosts

Figure 4.1: The aggregation mechanism in a concentrator

Aggregation helps in creating large bursts that utilize the timeslots more efficiently

as well as reduce the volume of the control traffic.

4.2 Burst aggregation mechanism

Hosts are connected to a TSOBS network through concentrators and they send pack-

ets on low speed interfaces. The concentrator aggregates the packets from the hosts,

that are addressed to the same destination network, into a burst and transmits the

burst in the TSOBS format. Each concentrator is equipped with a tunable transmitter

or a transmitter array to transmit the burst on the outgoing WDM channels.

The aggregation mechanism at a concentrator is shown in Fig. 4.1. When a

packet arrives from a host at the concentrator, the destination network that the packet

is addressed to is determined. The packet is then stored in a queue corresponding

to the destination network the packet is addressed to. The concentrator starts a

timer and waits for a given period of time during which packets accumulate in the

queues. When a sufficient number of packets are collected, a burst is formed and

transmitted through the network. When a burst is received at the concentrator of

the destination network, the individual packets are extracted from the burst and sent

to the destination hosts.

Aggregation of packets to form larger bursts is necessary in TSOBS for two

reasons. First, the number of bursts transmitted is reduced by a factor proportional

to the ratio of the average burst size to the average packet size. This reduces the

number of control cells that need to be processed by any TSOBS router. Consider a

single fiber link with 64 wavelength channels and 10 Gbps bandwidth per wavelength.

If we have minimum size IP packets of 48 bytes and link utilization of 60%, we have
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to be able to forward 1 billion packets per seconds for each fiber link that terminates

at a router. This does not scale well while using electronic processing for control

information. Also, the duration of each packet can be as low as 40 ns and switching

data optically at this granularity seems to be out of reach of current technology.

Secondly, as the average burst size increases, the timeslots are utilized more

efficiently. In TSOBS networks, a timeslot is the minimum unit of data and a timeslot

worth of data is much larger than typical data packets. IP packets can be as small

as 48 bytes and each timeslot can store 1100 bytes in TSOBS networks with timeslot

durations of 1 µs and 10 Gbps bandwidth per wavelength channel. By aggregating

packets into a single burst, the concentrator is able to utilize a timeslot more efficiently

by packing the data into the timeslots. To illustrate this, consider a TSOBS network

with bursts that are i timeslots long on average and let us assume that the size of each

timeslot is l bytes. Also, define burst aggregation efficiency as the ratio of the actual

size of the burst carried to the bandwidth used to carry the burst. This is a measure

of the effective utilization of the bandwidth used to transmit the bursts. Usually in

each burst, the last timeslot is not going to be utilized completely. Assume that on

average, the utilization of the last timeslot of every burst is 50%. The actual amount

of data carried is given by (i − 0.5)l and the average burst aggregation efficiency is

given by 1 − 0.5/i. Thus, if the average burst is 1 timeslot long, the average burst

aggregation efficiency is 50%. With burst lengths of 4 and 16 timeslots long, the

average burst aggregation efficiencies are 88% and 97% respectively.

A good aggregation algorithm is one that forms large bursts without waiting for

a long period of time. The aggregation algorithm we examine in this paper is similar

to the MinBurstLength-MaxAssemblyPeriod algorithm described in [15]. For each

queue in the concentrator, we define two parameters, the burst aggregation period

(denoted by T ) and the target burst length (denoted by B timeslots). Denote the

size of a queue by S and the timer that is used to keep track of the burst aggregation

period by t. The aggregation algorithm is described by the following procedure:

for each queue

if S = 0 and packet received then

start timer(t);

end;

if packet received then

S := S + size of(packet);
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end;

if t = T or S ≥ B then

transmit burst;

reset timer(t);

S := 0;

end;

end;

The burst aggregation period is the maximum time period we wait from the

moment we receive the first packet to the time a burst is formed and transmitted on

the network. However, if we receive enough packets such that size of the burst is at

least as large as the target burst length, we pack the burst and transmit it, even if

the burst aggregation period has not expired. Note that bursts can be longer than

the target burst length.

The burst aggregation period and the target burst length are key parameters

that determine the performance of the aggregation algorithm. In the Internet, the

round trip time can be up to a few hundreds of milliseconds. Thus, we can afford

to have a burst aggregation period of around 1-10 ms and still not affect the round

trip time by much. A larger value of burst aggregation period results in larger bursts

because it gives enough time for the concentrator to build up the queue. However, a

packet has to be delayed until the burst is formed and transmitted. Thus, a larger

burst aggregation period increases the delay experienced by a packet through the

network. By imposing the target burst length constraint, a burst is transmitted as

soon as the size of the burst exceeds the target burst length. Hence, the concentrator

need not wait for the burst aggregation period to expire and this reduces the average

delay experienced by a packet due to the aggregation process. The value of the

target burst length needs to be chosen such that the burst aggregation efficiency is

acceptable. The key to the performance of the aggregation process is that the bursts

generated should be sufficiently large even when the load on the wavelength channels

is low and the delay incurred due to the aggregation process should be as small as

possible.

Consider a TSOBS network with 100 destination interfaces and let us assume

that 100,000 hosts connect to the network through some interface and each host sends

data at a rate of 100 Mbps each. If 1% of the hosts transmit to some destination

interface, the net traffic that is sent is 100 Gbps. This can be carried using about 10

wavelength channels each operating at 10 Gbps. On the other hand, if 0.02% of the
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Figure 4.2: Model for fixed packet length analysis

hosts are sending to some destination interface, the amount of data sent goes down

to 2 Gbps. This can be carried on a single wavelength channel operating at a load

of 20%. The aggregation process should result in good performance for both of these

cases. We use the burst aggregation efficiency as the metric to measure performance

of the aggregation process. In this chapter, we analyze the aggregation algorithm and

suggest values for the aggregation period and target burst length that result in good

performance. We measure the performance of the algorithm for load values as low

as 20% for different values of the burst aggregation period and target burst lengths.

When the amount of traffic sent to some destination interface is much lower, the

aggregation efficiency does not affect the utilization of the network significantly.

4.2.1 Analysis of the algorithm

We now present an analysis of the aggregation algorithm when the data packets

transmitted by the hosts are of a fixed length and extend the analysis to study the al-

gorithm when the packet length is variable. We analyze the algorithm by determining

the length distribution of the bursts that are formed by the aggregation algorithm.

Given the burst length distribution, we can determine the efficiency of the aggregation

process.

Fixed packet length analysis

An approximate model for a queue in the concentrator with the assumption that

hosts transmit packets of a fixed length is shown in Fig. 4.2. Define the state of the

system, X, to be the number of packets received by the queue from hosts and let

πi(t) be the probability of the system being in state i at time t. The model is a

discrete time model and we initialize the system at time 0 and iteratively compute

the state probabilities after each time step. The state probabilities at time T (T =

burst aggregation period) gives us the burst length distribution of the aggregation
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Figure 4.3: Results of fixed packet length analysis for aggregation period of 0.1 ms
and timeslot duration of 1 µs (Average packet length = 0.1 µs for (a) and (b))

process. Let B be the target burst length in bytes. If the packet length is x bytes,

then Bm = B/x is the minimum number of packets needed to form a burst that is as

long as the target burst length.

If pi denotes the probability of receiving i packets in a time unit, the transition

probability from state j at time t to state j + i at time t + 1 is given by pi. The ag-

gregation timer does not start until we receive the first packet. Thus, the aggregation

process starts from state 1. Also, once the amount of data in the queue reaches the

target burst length or more, the burst is transmitted. Thus, once we reach one of the

states Bm, Bm + 1, . . . , the state of the system does not change because the size of

the burst is given by that state.
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In this model, we assume that the packet arrivals follow a Poisson process

and hence, pi is given by the probability of i arrivals in a Poisson process. That is,

pi = λie−λ/i!, where λ is the mean number of arrivals in a time unit. Given these

transition probabilities, we can determine the probabilities of the system being in

any state at the end of the aggregation process (at time T ) by iterating through the

transitions. We initialize the system by letting π1(0) = 1 and we determine the state

probabilities of the system at time T using the following set of equations:

πi(t + 1) =




i∑
j=1

πj(t)pi−j, if 1 ≤ i ≤ Bm − 1,

Bm−1∑
j=1

πj(t)pi−j + πi(t), if i ≥ Bm.

If l denotes the size of a timeslot and x is the fixed packet length, the average

burst length (in timeslots) and the average burst aggregation efficiency are given by

Bavg =
∞∑
i=1

� iπi(T )x
l

�

Beff =
∞∑
i=1

iπi(T )

� iπi(T )

l
�l

To estimate the performance of the aggregation process using this model, we

assume a timeslot duration of 1 µs, an aggregation period of 100 µs and a time-step

of 0.1 µs. The number of iterations needed to compute the final state probabilities

is 1000. Although, the model described above has an infinite number of states, we

can approximate it by assuming that the probability of getting very large bursts is

zero. For the purpose of this analysis, we assume that the maximum burst we can

get for an aggregation period of 100 timeslots is 128 timeslots. If N is the number of

states in the model, the number of state transitions is approximately Nm−m2/2. If

we assume that the packet length of 0.1 µs, a timeslot duration of 1 µs, and a target

burst length of 16 timeslots, the number of state transitions is about 200,000. Thus,

the total number of transitions we need to compute is about 200 million.

We can expect this model to accurately estimate the performance of the aggre-

gation process when the packet size is much smaller than a timeslot. Fig. 4.3(a) shows

the average burst length estimated by the model for a system with timeslot duration

of 1 µs, burst aggregation period of 100 µs and packet length of 0.1 µs (at 10 Gbps

= 125 bytes) for different target burst lengths. The burst length reaches the target

burst length even for relatively small loads for an aggregation period of 100 µs except
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Figure 4.4: Model for variable packet length analysis

for the larger target burst lengths of 32 and 64. Fig. 4.3(b) shows the average burst

aggregation efficiency for different target burst lengths. We achieve an efficiency of

90% even for small target burst lengths of 4 timeslots. There is not a significant gain

in efficiency by using 32 timeslot target burst lengths as compared to 16 timeslots.

Fig. 4.3(c) and 4.3(d) show the aggregations efficiencies for different values of packet

lengths for a target burst length of 16 and 32 timeslots respectively. We can see that

there is not much of a difference between the different packet lengths. For a target

burst length of 16, the aggregation efficiencies are within 3% of each other and 2%

of each other for a target burst length of 32. Thus, the packet lengths do not have a

significant impact on the performance of the aggregation algorithm.

Variable packet length analysis

We now extend the fixed packet length analysis model to include variable packet

lengths as shown in Fig. 4.4. The state of the system is the size of the queue, S,

in bytes and πi(t) is the probability of the system being in state i at time t. P (j)

represents the probability that we get packets from hosts in a time unit whose total

size is j bytes. In this model, the aggregation process stops as soon as the queue size

grows to B bytes or more. The aggregation process starts as soon as we get the first

packet and the probability that we start in state i is the probability that we get a

packet of size i bytes. Assuming that the packet sizes are geometrically distributed,

we get πi(0) = p(1 − p)i−1, where 1/p is the mean packet size.

To calculate the probability of receiving packets in u seconds whose net size is

j bytes, we assume that the packet arrivals follow a Poisson process. Thus,

P (j) =
∞∑

h=0

P (j|h arrivals)P (h arrivals)

For a Poisson process, the probability of h arrivals is given by λhe−λ/h!, where

λ is the mean number of arrivals in a time unit. The probability that the sum of h
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Figure 4.5: Results of the variable packet length analysis for aggregation period of
0.1 ms and timeslot duration of 1 µs (Average packet length = 0.1 µs for (a) and (b))

packets is j bytes assuming that the packet sizes have a geometric distribution with

a mean of 1/p bytes and are identically and independently distributed is derived in

Appendix A and is given by:

P (j|h arrivals) =

(
j − 1

h − 1

)
ph(1 − p)j−h

We calculate the state probabilities using the equations below:

πi(t + u) =




i∑
j=1

πj(t)P (i − j), if 1 ≤ i ≤ B − 1,

B−1∑
j=1

πj(t)P (i − j) + πi(t), if i ≥ B.
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If l denotes the size of a timeslot, the average burst length and the average

burst aggregation efficiency can be calculated as:

Bavg =
∞∑
i=1

� iπi(T )
l

�

Beff =
∞∑
i=1

πi(T )

�πi(T )

l
�l

In this model too, the number of states and the number of state transitions are

dependent on the value of the time-step and the packet length we choose. To keep

the computation manageable, we choose a time-step of 0.1 µs, a timeslot duration of

1 µs, and we assume that packet sizes are in increments of 0.1 µs. We compute the

results, shown in Fig. 4.5(a) and 4.5(b), for an average packet size of 1.2 timeslots.

We also show the results obtained through a simulation of the aggregation process

with geometrically distributed burst lengths using dashed curves. Fig. 4.5 shows the

performance estimates of the model for an aggregation period of 100 µs. The average

burst lengths for various values of target burst lengths are shown in Fig. 4.5(a). The

burst lengths are close to the target burst lengths for target burst length values of

up to 16 even for small loads. Fig. 4.5(b) shows the average aggregation efficiencies

for different target burst lengths. The difference between the aggregation efficien-

cies when using a target burst length of 16 timeslots and 64 timeslots is about 2%.

Fig. 4.5(c) shows the aggregation efficiencies for a system with a target burst length

of 16 timeslots and different average packet lengths and the efficiencies are within

1% of each other. Thus, the packet lengths does not affect the performance of the

aggregation algorithm significantly for target burst lengths of 16 timeslots or more.

4.3 Simulation results

The analysis presented above is an approximate one because the packet length from

hosts is geometrically distributed. This is not true with respect to traffic on the

Internet. It has been shown that the traffic on the Internet is more bursty and has

a heavy-tailed distribution [67, 20]. This property works in favor of the aggregation

process because we can expect the aggregation queues to get filled in a shorter period

of time.

To study the effects of heavy-tailed traffic on the aggregation process, we per-

formed simulation experiments using sources that transmit packets whose interarrival
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Figure 4.6: Results for different values of target burst length (Burst Aggregation
Period = 100 timeslots, average packet length = 1.2 timeslots)

times are exponentially distributed and packet sizes are Pareto distributed with a

shape parameter of 1.2. We performed the experiments with 2, 000 sources trans-

mitting at a rate of 10 Mbps each, all transmitting to the same destination network.

The bursts are transmitted on a link operating at 10 Gbps and we assume that each

timeslot is 1 µs long. We measure the average burst lengths and the average burst ag-

gregation efficiency of the aggregation process for different values of burst aggregation

periods and target burst lengths.

4.3.1 Varying the Target Burst Length

Fig. 4.6 shows the results with different target burst lengths for an aggregation period

of 100 µs. Fig. 4.6(a) shows the average burst lengths and Fig. 4.6(b) shows the

aggregation efficiencies for different values of the target burst length. The difference
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Figure 4.7: Results for different values of burst aggregation period (Target burst
length = 16 timeslots, average packet length = 1.2 timeslots)

in the aggregation efficiency is about 2% between a target burst length of 8 timeslots

and a target burst length of 16 timeslots and the difference in efficiency between 16

timeslots and 32 timeslots is 1%. Fig. 4.6(c) shows the aggregation efficiencies for

varying average packets lengths for a system with a target burst length of 16 timeslots

and they are within 2% of each other. However, the efficiencies are higher for smaller

packet lengths.

4.3.2 Varying the Burst Aggregation Period

Until now we have seen how the length of the bursts are affected by the burst aggre-

gation process. Fig. 4.7 shows the results with different values of burst aggregation

period for a target burst length of 16 timeslots and packets from sources having an
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TSOBS multiplexor

d concentrators

Figure 4.8: System configuration to measure the effect of burst drops on the perfor-
mance of the aggregation process

average size of 1500 bytes or 1.2 timeslots approximately (here again, the packet

length does not affect the performance significantly). With an aggregation period of

64 − 128 timeslots, the aggregation process forms bursts that are close to the target

burst lengths even for small loads. Fig. 4.7(a) shows the average time taken to aggre-

gate the bursts. Fig. 4.7(c) shows the average aggregation efficiencies of the bursts for

different aggregation periods. With an aggregation period of 64 timeslots, we achieve

an efficiency of 97 % even for small loads. This suggests that an aggregation period of

around 100 timeslots or 100 µs should be sufficient for the burst aggregation process.

4.4 Effect of Burst Drop Probability

In a TSOBS network, the burst drop probability increases with the burst length.

This makes it easier for smaller bursts to pass through the network. However, we

have seen that transmitting larger bursts results in better utilization of the network

bandwidth from an aggregation perspective. In this section, we study the effect of

the burst drop probability on the performance of the aggregation algorithm. To

illustrate this effect, we analyze the performance of the algorithm when multiple

concentrators transmit bursts through a TSOBS multiplexor as shown in Fig. 4.8.

The concentrators send bursts on time division channels on each wavelength of the

outgoing fiber. The multiplexor switches the data across timeslots when there is

contention. Since each wavelength is switched independently, we study the system

for one of the wavelengths. We assume that the concentrators transmit bursts on

this wavelength such the bursts have exponentially distributed interarrival times.

We derive the burst length distributions for different target burst lengths from the

simulation experiments using heavy-tailed traffic for an aggregation period of 100 µs.
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Figure 4.9: Density functions of the burst length distributions

We refer to the load at the concentrator as the “access link load” and the term load

refers to the load on the output link of the TSOBS multiplexor. The density functions

of the burst length distributions for various access link loads are shown in Fig. 4.9 for

a target burst length of 8 and 16 timeslots respectively.

We measure the burst drop probabilities of bursts for a TSOBS system with

128 timeslots per frame when 16 concentrators transmit through the multiplexor.

To measure the performance of the aggregation process, we define a metric called

burst transmission efficiency which is defined as the ratio of the amount of success-

fully transmitted data to the amount of bandwidth used to transmit it. The burst

transmission efficiency is given by:

Bx-eff = (1 − Pdrop)Beff

where Pdrop is the burst drop probability and Beff is the burst aggregation

efficiency.

The burst transmission efficiency for different values of target burst lengths is

shown in Fig. 4.10 for access link loads of 0.2, 0.6, and 1.0. The burst aggregation

efficiency is a more dominant effect and hence, the transmission efficiency is higher

for larger bursts. We can see that a target burst length of 8 to 32 timeslots results in

good performance.
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Figure 4.10: Transmission efficiency results for different target burst lengths and
access link loads for a TSOBS network with N = 128

4.5 Conclusions

Time Sliced Optical Burst Switching (TSOBS) is a network technology in which data

is transmitted in fixed size timeslots through the network. Aggregation of the data

traffic from hosts that connect to the TSOBS network through concentrators results

in better utilization of the network bandwidth. In this paper, we have studied this

aggregation process. We presented an algorithm that can be used for aggregating data

at the concentrators and presented an analysis that helps us select the parameters that

determine the performance of the algorithm. Through the analysis and experiments,

we have shown that a burst aggregation period of around 100 µs and a target burst

length of 8 to 32 timeslots results in good performance.
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4.6 Future Work

We have examined the aggregation mechanism for a broad range of typical traffic

models and shown its performance from a network performance perspective. It is

also important to characterize the effect of the aggregation mechanism from a single

source’s point of view. Sources in a TSOBS network could use a wide range of proto-

cols (TCP, RTP, etc.) to transmit data and each protocol has different performance

criteria and the aggregation mechanism can either reduce the performance of the

protocol or could be beneficial. For example, in the case of TCP, it has been shown

in OBS networks that the sources with small transmission rate do not perform well

with aggregation and sources with larger transmission rates are positively affected by

the aggregation mechanism. Additional work is necessary to study the effect of the

aggregation mechanism we propose on the source’s transmission characteristics.

Each aggregation queue has to deal with a large amount of traffic when the

traffic going to a destination interface is large (100 Gbps, possibly more). Current

memory speeds places restrictions on the data rates we can handle and typically tend

to be the bottleneck in high speed routers. It is necessary to determine memory

architectures that can handle very high data rates.
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Chapter 5

Load Balancing in Time Sliced

Optical Burst Switched Networks

In an OBS network, routers switch bursts in the wavelength domain using wavelength

converting switches. When a wavelength channel of a link gets overloaded, bursts are

switched to other wavelengths. Hence, the load on each wavelength is not an issue.

However, in a TSOBS network, bursts are switched in the time domain and hence,

bursts cannot be switched to other wavelengths during contention. If the load on a

few wavelengths becomes larger than others, this leads to inefficient network usage

because the traffic on the overloaded wavelengths generally have a higher burst discard

probability.

In a TSOBS network (Fig. 3.1), the bursts are transmitted into the network

by concentrators. Each concentrator uses the burst aggregation algorithm described

in Chapter 4 to collect packets from hosts in aggregation queues and it assembles the

packets into bursts. The bursts are then transmitted on a timeslot channel on one

of the wavelengths of the output fiber. The network interface distributes the bursts

evenly on all wavelength channels through a load balancer. This is shown in Fig. 5.1.

When the burst aggregation process sends a burst, the load balancer determines a

wavelength to transmit the burst and forwards the burst to the burst transmission

queue corresponding to the wavelength. Laser transmitters transmit bursts from the

transmission queues into the network in the TSOBS format.

Since bursts travel on different wavelength channels, they can experience vari-

able delays in the network. Each TSOBS router can delay a burst by up to N

timeslots, where N is the number of timeslots per frame in the network. Thus, two

bursts leaving the concentrator at the same time and traveling on different wavelength
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Figure 5.1: Load balancing in a network interface

channels can be off by up to NE timeslots after going through E hops in the network.

At the destination interface, the bursts are stored in resequencing buffers where they

are put back in sequence. The bursts are then disassembled and the packets are sent

to the destination hosts.

When 100,000 hosts, each transmitting data at 100 Mbps, connect to the

TSOBS network through a concentrator and 1% of them transmit to a destination

interface, the net traffic originating from a concentrator to a destination interface

can be as much as 100 Gbps. The bandwidth supported by one timeslot channel in

a TSOBS network with 128 timeslots per frame and a transmission rate of 10 Gbps

per wavelength is about 80 Mbps. Thus, within a 1 µs period, we can receive several

bursts from a single aggregation queue in the concentrator.

The performance of the TSOBS network is affected by how well the load bal-

ancer distributes bursts across the wavelength channels. In this chapter, we study

load balancing algorithms that result in better network utilization. The load balanc-

ing is performed on each individual aggregation queue independently. This is because

the bursts in each aggregation queue have the same destination interface and can be

expected to take the same path through the network, except in the event of routing

changes which are not expected to occur frequently. We also assume that the load

balancers of different concentrators operate independent of one another. In other

words, the load balancing is performed in a completely distributed fashion. It is pos-

sible to use some form of feedback from the network to appropriately adapt the load

balancers to the network conditions. The feedback messages will be delayed through

the network and hence, cannot indicate the current state of the network accurately.

Although network feedback could help in performing load balancing more efficiently,

we do not study methods that use feedback here.
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Fair load balancing on multiple channels has been studied before in the context

of striping protocols in Reference [4]. It has been shown that fair load balancing can

be viewed as the inverse of a certain class of fair queueing protocols. The paper

also describes an algorithm to reassemble packets at the destination and put them

back in sequence by using a matching fair queueing protocol at the destination. To

use the fair queueing protocol to reassemble the packets, bursts from the different

origin concentrators need to be stored in separate queues. This protocol has several

advantages such as simplicity of implementation and requires no sequence numbers

to mark packets for resequencing purposes. Since TSOBS is a new protocol, we have

the flexibility of deciding the functionality that goes into the network. Thus, while it

is desirable to do without sequence numbers for packets, it is not a big concern for

TSOBS networks.

We now examine the effect of unevenly loaded wavelengths on the network

utilization.

5.1 Effect of unevenly loaded wavelength channels

on network utilization

Unevenly loaded wavelength channels result in a higher burst discard probability in

the network than in a network with evenly loaded wavelength channels and hence,

reduces the utilization of the network. To illustrate the effect of load imbalance on

the network utilization, consider a simple TSOBS multiplexor that operates on two

wavelengths and let us assume that sources transmit packets that are one timeslot

long. Let the average input load on the first wavelength be ρ1 and the average input

load on the second wavelength be ρ2. We can calculate the burst discard probabilities

for each wavelength channel in the multiplexor using the M/D/1 model as shown in

Fig. 3.3(a). Let the burst discard probabilities of the channels be P (ρ1) and P (ρ2)

respectively. Now if we need to send a burst through the system, the burst discard

probability of the system is given by 1
2
[P (ρ1)+P (ρ2)], assuming that the burst could

have been sent on either wavelength with equal probability.

On the other hand, if the wavelength channels of the multiplexor are evenly

loaded, the average input load on each wavelength channel is given by ρ = 1
2
(ρ1 + ρ2)

and the burst discard probability is given by P (1
2
(ρ1 + ρ2)).
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Define input load imbalance to be (ρ1−ρ2)/ρ. This is a measure of the amount

of imbalance in the input loads on each wavelength channel. The burst discard

probabilities of a TSOBS multiplexor with 128 timeslots per frame (N = 128) and 16

concentrators connecting to it (d = 16) is plotted as a function of the input load in

Fig. 5.2 for load imbalances of 5%, 10% and 20%. The “balanced” plot corresponds

to a system when both the wavelengths are balanced and in this case, the multiplexor

achieves a utilization of 96% with a burst discard probability of 10−6. With a 5%

imbalance, the utilization goes down to 94% and with imbalances of 10% and 20%,

the utilization goes down to 92% and 88% respectively.

5.2 Causes of load imbalance in a TSOBS network

We now examine how wavelength channels become unevenly loaded in a TSOBS net-

work. Several concentrators connect to a TSOBS network and each of them performs

load balancing independently. When concentrators transmit bursts that use a par-

ticular link in the path to the destination, the load on each wavelength channel of

the link is determined by the net amount of traffic sent by the concentrators on the

wavelength. There are several effects that can cause load imbalances in the network.

First, when transmitting a burst, a concentrator has no information on what

wavelengths the other concentrators will be using to transmit bursts. Thus, con-

centrators transmitting through a common link can get “synchronized” and transmit

bursts using some wavelength all at the same time, causing the wavelength channel to
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become overloaded. If a link has h wavelengths and if at some time, each concentrator

has h bursts, the concentrators can transmit one burst on each wavelength channel

and the wavelengths will be equally loaded. However, the number of bursts that each

concentrator transmits need not be a multiple of h. In this case, the concentrator

transmits to a subset of the wavelengths only. This can lead to overloading of the

wavelengths, that are picked by more concentrators.

Second, the lengths of the bursts are variable and have a length distribution

determined by the burst aggregation process as shown in Fig. 4.9. In a TSOBS

network, each burst is transmitted by allocating one timeslot at the same position

within a frame. In a TSOBS network that has N timeslots per frame, a burst that

is x timeslots long occupies a timeslot channel in a wavelength for x frames, and the

timeslot cannot be used by another burst for xF timeslots, where F is the frame

duration. Thus, a long burst occupies a timeslot channel within a frame for a longer

time than a short burst. Consider two wavelength channels of the link and consider the

case when concentrators transmit relatively longer bursts to one wavelength channel

and shorter bursts to the other. Even if the number of bursts transmitted to each

wavelength channel is the same, the wavelength channel with the longer bursts is

loaded for a longer period of time. Consequently, it is not sufficient to balance the

number of bursts sent to each wavelength channel.

Third, all concentrators need not be equipped with transmitters that can send

bursts over the entire set of wavelength channels. The number of wavelength channels

a concentrator needs to support depends on the total amount of traffic sent by the

hosts that are connected to the concentrator. If concentrators perform “fair” load

balancing over all wavelength channels, the wavelengths supported by these concen-

trators will have higher load in the network.

Finally, since the cost of a TSOBS router is proportional to the number of

wavelength channels, routers, that need to support a relatively lesser amount of traffic,

need not implement switching over the entire range of wavelengths. Thus, the traffic

from these routers can overload the wavelengths, that it supports, at a downstream

router, that implements the entire set of wavelengths.

The last two are long term effects that can be dealt with over a longer period

of time. In this paper, we study load balancing schemes that address the short term

effects and do not study the long term ones.
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5.3 Load balancing algorithms

In this section, we study different load balancing algorithms that we can employ and

evaluate their performance in a TSOBS network. Consider a link in the TSOBS net-

work. Several concentrators, distributed across the network, send bursts through this

link. This link can be modeled using a simple multiplexor as shown in Fig. 5.3. The

multiplexor operates on h wavelength channels and each wavelength has N timeslots

per frame. The link is used by d concentrators to send bursts and each concentrator

uses a load balancer to spread the bursts across the wavelength channels. Bursts

transmitted from each concentrator experience different amounts of delay through

the network. However, the operation of the load balancing algorithm is unaffected by

the delay. Thus, we can ignore the delay from the concentrators to the link. An algo-

rithm that performs well and results in utilizing the link efficiently can be expected

to perform well in a network setting too.

We use this model to evaluate the performance of load balancing algorithms

through simulation experiments. For the purpose of the experiments, we assume that

the TSOBS multiplexor operates with a timeslot duration of 1 µs. Also, we assume

a Target Burst Length of 16 timeslots and a Burst Aggregation Period of 100 µs for

the burst aggregation process. This gives us the burst length distributions that were

determined in Chapter 4. We also assume that the load balancer receives bursts that

have exponentially distributed inter-arrival times.

We saw earlier in Section 5.1 that the performance of a load balancing algo-

rithm depends on how evenly it spreads the bursts across the wavelength channels.

To evaluate how well the algorithms distribute the bursts and the load, we measure

the number of bursts and the number of timeslots transmitted by the concentrators
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on each wavelength channel in 500 µs intervals of time. Let Bi(t1, t2) be the total

number of bursts transmitted on wavelength i from time t1 to t2 and let Di(t1, t2) be

the total number of timeslots transmitted by the concentrators on wavelength i from

time t1 to t2.

Definition 5.3.1 Define the deviation ratio of a number ni, given a set of x numbers,

n1, n2, . . . , nx as the ratio of the number to the average of all the numbers in the set.

DevRatio(ni) = ni/Avg(n1, n2, . . . , nx)

Define the maximum deviation ratio of a set of x numbers as the deviation

ratio of the maximum of the x numbers. Similarly, define the minimum deviation

ratio as the deviation ratio of the minimum of the x numbers.

The maximum and the minimum deviation ratios give us an estimate of the

imbalance of a set of numbers. For a system with minimal imbalance, the maximum

and the minimum deviation ratios will be close to 1. We are interested in the im-

balance in the number of bursts and the number of timeslots sent to the wavelength

channels of the multiplexor. The cumulative deviation ratios (maximum and mini-

mum) of the number of bursts (and the number of timeslots) sent to the wavelength

channels is the deviation ratios of the cumulative number of bursts sent until time

t. This gives us an estimate of how well the load balancing algorithms distribute

the bursts (or timeslots) in the long term. The cumulative deviation ratios for the

number of bursts and the number of timeslots sent are given by the deviation ratios

of the set of numbers, Bi(0, t) and Di(0, t), 0 ≤ i < h respectively.

We define the short term deviation ratios as the deviation ratios of the number

of bursts and the number of timeslots sent in each 500 µs period, and is given by the

deviation ratios of the set of numbers, Bi(t, 500 + t) and Di(t, 500 + t), 0 ≤ i < h

respectively for each t (in µs). This gives us the variation in the number of bursts

and timeslots sent to the multiplexor over a 500 µs period (approximately 4 frames).

We denote the maximum and minimum deviation ratios by MAX/µ and MIN/µ

respectively. In the case of the short term deviation ratios for the number of timeslots,

we also calculate the deviation ratio for the number of timeslots that a wavelength

can handle without overflowing its capacity. Since, we assume a timeslot duration of

1 µs, the maximum number of timeslots that can be sent on any wavelength is 500.

We denote this deviation ratio by Limit/µ. If MAX/µ is larger than Limit/µ, this

results in a burst loss.



112

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

0.2 0.4 0.6 0.8 1 1.2
Time (in s )

D
ev

ia
tio

n 
ra

tio
 o

f 
bu

rs
ts

 r
ec

ei
ve

d
RANDMAX/ µ

MIN/ µ

(a) Cumulative

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0.2 0.4 0.6 0.8 1 1.2
Time (in s )

D
ev

ia
tio

n 
ra

tio
 o

f 
tim

es
lo

ts
 r

ec
ei

ve
d

RAND
MAX/ µ

MIN/ µ

(b) Cumulative

Figure 5.4: The deviation ratios of the number of bursts and the number of timeslots
received by the multiplexor when using the RAND algorithm

We also measure the burst discard probability of the TSOBS multiplexor for

the load balancing algorithms to evaluate their performance. Note that load balancing

would not be an issue if each TSOBS router were equipped with wavelength converters

(WCs). Wavelength converters can be used to switch the data across wavelengths and

hence, during periods of overload of some wavelength, the bursts on the wavelength

can be switched to a wavelength that is not as loaded. Ideally, we would like the

load balancing algorithms in a network with no wavelength converters to spread the

bursts across wavelengths such that the network performance is same as a network

with wavelength conversion. Thus, the performance of a network with wavelength

conversion is an upper bound on the performance of the load balancing algorithms.

We evaluate the load balancing algorithms by comparing their performance with the

performance of a network with wavelength conversion. We now present four load

balancing algorithms and their performance results.

5.3.1 RAND

When a burst arrives at the load balancer from the burst aggregation process, algo-

rithm RAND selects a wavelength channel at random and the load balancer sends the

burst on this channel. The random algorithm (RAND) can be expected to distribute

load evenly on a long term, but does not result in ideal load balance conditions in

the short term. The advantage of using the algorithm is that it is very simple to

implement and it can be done at very high speeds.
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lots per frame (N) with h = 8 and d = 16

For determining the deviation ratios, we assume that 16 concentrators are

transmitting to the multiplexor (d = 16), each frame carries 128 timeslots (N = 128),

and the multiplexor operates with 4 wavelength channels (h = 4). Fig. 5.4(a) and

Fig. 5.4(b) show the cumulative deviation ratios of the number of bursts and the

number of timeslots sent for an average input load of 0.85 for a period of 1 second

respectively. If the algorithm balances the load effectively, we can expect the MAX/µ

and the MIN/µ curves to converge to 1. Algorithm RAND does not balance the

load both in terms of the number of bursts and in terms of the number of bursts

effectively and the variance in the loads of the wavelength channels is relatively large.

The imbalance (given by MAX/µ−MIN/µ) in the number of bursts is within 3% and

in the number of timeslots is within 4%.

For determining the burst discard probability of the load balancing algorithms

in the single multiplexor model, we performed simulation experiments in which we

used 16 concentrators (d = 16), 128 timeslots per frame (N = 128), and 8 wavelength

channels (h = 8) as reference values. If we vary a parameter, we hold the others at

their reference values.

Fig. 5.5 shows the burst discard probabilities of the multiplexor when the

RAND algorithm is used in the load balancer for different values of N . Also shown

using dashed curves are the burst discard probabilities of the system with wavelength

conversion. The system using RAND achieves a utilization of about 0.68 when it

operates with N = 128 at a burst discard probability of 10−6 and a utilization of 0.8

when N is 256. The optimum achievable utilization (with wavelength conversion) is

approximately 0.92 and 0.96 with N = 128 and N = 256 respectively. So, the RAND

algorithm achieves about 74% of the maximum achievable utilization with N = 128
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Figure 5.6: The deviation ratios of the number of bursts and the number of timeslots
received by the multiplexor when using the RR algorithm

and about 83% with N = 256. Also, we observed that the performance of RAND

does not improve with an increase in the number of wavelengths.

5.3.2 RR

The next algorithm we study, denoted by RR, picks a wavelength channel in a fixed

round robin order to transmit the bursts that arrive from the burst aggregation pro-

cess. This algorithm balances the load on the wavelength channels at a burst level

and does not factor in the length of bursts when choosing the wavelength channel.

This algorithm works well if we had equal length bursts. However, when the burst

lengths are variable, RR has a bad worst case when the long bursts are sent on the

same wavelength and the shorter bursts are sent on others.
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Figure 5.7: Results of using the RR algorithm for load balancing

Also, if a few concentrators get “synchronized” and transmit bursts on some

wavelength channel, they’ll transmit successive bursts on the same successive wave-

length channels. Thus, they could remain synchronized for a long period of time.

This problem can be alleviated by having each concentrator use a different random

permutation pattern to order its burst transmissions. Even if a few concentrators

send bursts using the same wavelength channel at one time, the next wavelength

channel that they use is determined by the random order and hence, there is a high

probability that they will not remain synchronized.

Fig. 5.6(a) and Fig. 5.6(b) show the cumulative deviation ratios for a system

with h = 4, d = 16, and N = 128 for a system load of 0.85 over a period of 1 second.

RR balances the number of bursts transmitted over the wavelength channels and we

can see that the deviation ratios of the number of bursts transmitted quickly converge

to 1. However, the deviation ratios of the number of timeslots transmitted do not

converge to 1 quickly because RR does not balance the bursts based on their lengths.

The short term deviation ratios (over 500 µs periods) in the number of timeslots

and bursts sent are shown in Fig. 5.6(c) and Fig. 5.6(d) respectively. The imbalance

(MAX/µ−MIN/µ) in the number of bursts tends to be within 40% and in the number

of timeslots tends to be within 20%, in most cases.

Fig. 5.7 shows the burst discard probabilities of the system when the concen-

trators use the RR algorithm for load balancing. Fig. 5.7(a) shows the burst discard

probabilities for different values of N . Here again, the dashed plots correspond to the

case with wavelength conversion for N = 128 and 256 respectively. The RR algorithm
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achieves a utilization of 0.82 for N = 128 and 0.89 for N = 256 and this corresponds

to 90% of the achievable utilization for N = 128 and 93% for N = 256.

Fig. 5.7(b) shows the burst discard probabilities for different values of h, the

number of wavelength channels. The algorithm performs better with more wavelength

channels, but the performance approaches a limit as the number of channels grows

beyond 8.

5.3.3 WMin

RR does not balance the bursts based on their burst lengths and this can lead to

concentrators sending longer bursts to a wavelength channel, causing an imbalance

in the input load. The next algorithm we study, WMin, performs load balancing

based on the total volume of traffic sent on each wavelength channel. Algorithm

WMin keeps track of the amount of data sent on each wavelength channel by the

concentrator. When a burst arrives at the load balancer, WMin picks the wavelength

that has the least amount of data sent on it.

Note that the amount of data sent on a wavelength channel i can never be

larger than the amount of data sent on some other wavelength by more than the size

of the burst that was last transmitted on the wavelength i. Let the amount of data

transmitted on wavelength channel i be D(i) and the amount of data transmitted

on wavelength j be D(j). Also, let the last burst transmitted on wavelength i be of

size k timeslots. If D(i) − D(j) > k, then D(i) − k > D(j). Thus, this burst should

not have been sent on wavelength i because it was not the wavelength with the least

amount of data sent. Thus, D(i) − D(j) ≤ k.

Fig. 5.8(a) and Fig. 5.8(b) show the cumulative deviation ratios for a system

with h = 4, d = 16, and N = 128 for a system load of 0.85 over a period of 1 second.

WMin balances the number of timeslots sent on the wavelengths and not the number

of bursts. Thus, it takes a long time for the deviation ratios of the number of bursts

sent to converge to 1. However, the number of timeslots sent converge to 1 very

quickly.

The short term deviation ratios in the number of timeslots and bursts sent are

shown in Fig. 5.8(c) and Fig. 5.8(d) respectively. The imbalance in the number of

bursts tends to be within 60% in most cases. This is more than the imbalance in the

number of bursts sent by the RR algorithm and this can be expected because RR

balances the number of bursts sent and WMin does not. Unexpectedly, the imbalance
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Figure 5.8: The deviation ratios of the number of bursts and the number of timeslots
received by the multiplexor when using the WMin algorithm

in the number of timeslots is more than the imbalance when using RR and tends to

be within 30%, in most cases. This is surprising because WMin balances the number

of timeslots sent on the wavelengths.

The reason WMin has a larger imbalance in the number of timeslots sent

than RR is because WMin can send a bunch of small bursts to some wavelength

to compensate for sending a large burst on other wavelengths. To illustrate this,

consider this simple example. Let us assume that a concentrator transmits bursts on

two wavelengths and that it has 10 bursts to transmit at time 0, where the first burst

is 10 timeslots long and the rest are 1 timeslot long. WMin sends the long burst on

one wavelength and sends the remaining 9 bursts on the other wavelength. Thus, in

the outgoing frame, one wavelength has 9 timeslot channels that are occupied and

the other wavelength has only 1 timeslot channel that is occupied (because each burst
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Figure 5.9: Results of using the WMin algorithm for load balancing

occupies only one timeslot channel in each frame). This can result in a short term

overload in the number of timeslots that are sent to the multiplexor. RR, on the other

hand, sends 5 bursts on each wavelength and thus, each wavelength has 5 occupied

timeslot channels.

Fig. 5.9 shows the burst discard probabilities of the multiplexor when using

the concentrators use the WMin algorithm for load balancing. Fig. 5.9(a) shows the

burst discard probabilities for different values of N . The dashed plots correspond to

the optimum performance when using wavelength conversion. The algorithm achieves

a utilization of 0.78 for N = 128 and a utilization of 0.87 for N = 256 when the burst

discard probability is 10−6. This corresponds to 85% of the maximum achievable

utilization for N = 128 and 90% for N = 256. In general, the performance of WMin

is better that RR when the number of timeslots per frame is small (≤ 32). However,

when N is larger, RR performs better than WMin.

Fig. 5.9(b) shows the burst discard probabilities for varying values of h, the

number of wavelength channels. As with RR, the algorithm performs better with more

wavelength channels. However, the performance improvements approach a limit as

the number of wavelength channels grows beyond 8.

Surplus Round Robin (SRR) is an algorithm described in Reference [4] that

can be used to perform load balancing. This algorithm defines a quantum of data

that can be sent on each channel during a “round” in the round robin scheme. In each

round, a channel can be used to transmit bursts such that the net amount of data

transmitted is equal to the quantum allocated to the channel. If it exceeds its quota,

the surplus is deducted from the next round’s quantum. Let us denote channel i’s
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surplus by S(i) and the quantum by Q(i). For fair round robin all the quantums are

the same. When sending bursts on channel i, the quantum is added to the surplus

and bursts are sent until the surplus becomes negative. The main advantage of this

method is that it is simple to implement. However, for it work effectively the quantum

has to be at least the size of the largest burst. This is a very large value and could

potentially results in a lot of small bursts being sent on a wavelength channel in one

round. The number of bursts could be larger than the number that is sent by the

WMin algorithm.

5.3.4 TSMin

WMin does not perform well because it balances the amount of traffic sent on each

wavelength in the long term and not in the short term. This results in a large

imbalance in the number of timeslot channels used in the wavelengths. Algorithm

TSMin balances the number of timeslot channels that are in use at a concentrator

at any given time. When a burst arrives, TSMin picks the wavelength with the

least number of timeslot channels that are occupied. When there is a tie among

wavelength channels, the first wavelength in some fixed order can be picked. However,

all concentrators could pick the same wavelength, resulting in an imbalance. To avoid

this, we select the wavelength that is closest to the wavelength, that was used to send

the last burst, in some order. If the number of wavelength channels is h, and if we

used wavelength i to transmit the last burst, wavelength (i+1)modh has the highest

priority to transmit the next burst, followed by wavelength (i + 2) mod h, and so on.

TSMin, clearly, does not have the problem, that WMin has, of a large im-

balance in the number of timeslot channels used in the wavelengths. However, like

RR, TSMin can assign longer bursts to a particular wavelength channel. To see this,

consider a system at time 0 with an alternating pattern of long and short bursts.

Let us assume that the length of long bursts is 10 timeslots and the length of short

bursts is 2 timeslots. TSMin behaves exactly like RR for the first two frames, as-

signing the long bursts to one wavelength channel and the short bursts to another.

However, after the first two frames, some of the short bursts exit the system, freeing

the timeslot channels they were using. This creates an imbalance in the number of

timeslot channels that are in use. TSMin rectifies this imbalance by assigning the

next couple of bursts to the timeslot channels that were freed. RR, however, does

not rectify this imbalance and continues to assign the long bursts to the overloaded
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Figure 5.10: The deviation ratios of the number of bursts and the number of timeslots
received by the multiplexor when using the TSMin algorithm

wavelength channel. Thus, while TSMin can create a short term imbalance in the

load on the wavelengths by assigning longer bursts to a particular wavelength, it is

better than RR because it rectifies the imbalance when it detects one. Hence, TSMin

can be expected to perform better than RR too.

Fig. 5.10(a) and Fig. 5.10(b) plot the cumulative deviation ratios for the num-

ber of bursts and timeslots sent respectively, when the concentrators use TSMin to

perform load balancing. The deviation ratios of the number of bursts and timeslots

sent converge to 1 in the long term. However, the deviation ratios of the number of

bursts do not converge as quickly as they do when using RR and the deviation ratios

of the number of timeslots do not converge as quickly as they do when using WMin.

Fig. 5.10(c) and Fig. 5.10(d) show the short-term deviation ratios of the number

of bursts and timeslots sent respectively. The imbalance in the number of bursts sent

is almost the same as the imbalance when using WMin. However, the imbalance in
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Figure 5.11: Burst discard probabilities of the system for different values of N

the number of timeslots sent is smaller than the variance when using either RR or

WMin and is within 10% for most cases. This is because each concentrator balances

the number of timeslots that are in use in each wavelength. The difference between

Limit/µ and MAX/µ is larger than when using the other three algorithms and this

implies that the probability of burst discards is relatively low.

In Fig. 5.11, we plot the burst discard probabilities of all four algorithms for

varying values of N . TSMin performs the best for all values of N and the perfor-

mance difference between the system using TSMin and a system with wavelength

conversion becomes smaller as N grows. For N = 128, TSMin achieves a utilization

of approximately 0.89 for a burst discard probability of 10−6 and this about 97% of

the maximum achievable utilization. For N = 256, TSMin achieves a utilization of

approximately 0.95 and this corresponds to 99% of the maximum achievable utiliza-

tion.
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Note that RR performs better than WMin when the number of timeslots per

frame is large (N = 128, 256). However, WMin performs better when N = 32 and

at lower loads when N = 64. This is because RR results in an imbalance in the long

bursts that are sent to wavelength channels. When N is small, the longer bursts tend

to occupy a larger fraction of the timeslot channels causing a larger burst discard

probability. When N is large, the imbalance in the long bursts has a smaller effect.

RAND performs the worst in all cases.

Fig. 5.12 shows the burst discard probability of a system with N = 128 and

d = 16 for various values of h. The performance of TSMin is better with larger values

of h and here again, the performance approaches a limit as the number of wavelength

channel becomes larger.

Among the four algorithms, TSMin performs the best in all the system con-

figurations we have studied. We have shown that it is not sufficient to balance the

load in the long term and in the case of WMin, this results in a very bad short term

performance, as indicated by the imbalance in the short term deviation ratios of the

number of timeslots sent to the multiplexor. TSMin balances the load in the short

term and this results in much better performance, even though it has a relatively

larger long term imbalance in the number of timeslots sent.

5.4 Performance of load balancing algorithm in a

TSOBS network

The performance of the load balancing algorithms was studied using a single TSOBS

multiplexor and we expect that the algorithm that performs best can be expected to
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Figure 5.12: Burst discard probabilities using the TSMin algorithm for varying num-
ber of wavelength channels (h) with N = 128 and d = 16
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d × d TSOBS Switch

Hop 1 Hop 2 Hop 3

Cross-traffic

Figure 5.13: A TSOBS network model

perform the best in a network of TSOBS switches too. We can verify this claim by

modeling the network as shown in Fig. 5.13. We measure the burst discard probability

of the traffic originating from one concentrator that passes through D switches (or

D hops). In each switch we have cross-traffic coming from d− 1 other concentrators.

This cross-traffic exits at the next switch. The average load is kept the same across

all hops. The concentrators, that send the cross-traffic, perform load balancing using

the same algorithm as the concentrator we measure. For very low probabilities, the

burst discard probability in the network is approximately the sum of the burst discard

probabilities of the individual hops.

Fig. 5.14 shows the burst discard probabilities of the TSOBS network for D =

2, 4, and 6 respectively for N = 128. In all three cases, TSMin performs the best,

followed by RR and WMin respectively.

5.5 Conclusion

In Time Sliced Optical Burst Switched (TSOBS) networks, bursts are not switched

across wavelengths and hence, once a burst is transmitted on some wavelength, it

remains in the same wavelength channel in the network. The wavelength channel

that a burst is transmitted can be chosen at the network interfaces or concentrators

at the edges of the network. Since the concentrators have no knowledge of what

wavelengths other concentrators are using to transmitting bursts in the network, the

choice of wavelengths used by the concentrator could load certain wavelength channels

more than others. An imbalance in the load of the wavelength channels directly affects
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Figure 5.14: Burst discard probabilities of a TSOBS network

the utilization of the network bandwidth. In this chapter, we studied the issue of load

balancing in TSOBS networks. We studied the performance of four algorithms.

RAND balances the load by choosing wavelengths at random. The imbalance

in the load is fairly large and this results in a relatively high burst discard probability.

RR selects wavelengths in a round robin order and balances the number of bursts sent

on each wavelength. It does not, however, balance the load based on the length of

the bursts. This results in a bad worst case behavior. WMin distributes bursts such

that the number of timeslots sent on any wavelength channel does not exceed the

number of timeslots sent on any other wavelength channel by more than the size

of the largest burst. This results in very good long term balance in the amount of

traffic sent on each wavelength channel. However, WMin results in a very large short

term imbalance. This results in high burst discard probabilities and the performance

of WMin is lesser than the performance of RR in practical TSOBS networks. We
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then proposed TSMin, an algorithm that balances the load on the wavelength in a

short term by balancing the number of active timeslot channels on each wavelength.

This results in much better short term behavior and hence, results in much better

performance in a TSOBS network.

5.6 Future Work

The load balancing algorithms examined in this chapter assumed that the concen-

trators operated in an isolated environment without any knowledge of the network

conditions. However, the network can send feedback to the concentrators that give

an estimate of the loads on each wavelength channel. This feedback could be in the

form of regular messages that capture the load on each wavelength channel in the

path (number of timeslot channels in use in each wavelength channel) or it could be

an indicator when a burst gets dropped on a wavelength channel. These feedback

signals can be used by the concentrators to modify their sending patterns and hence,

improve the utilization.

Within a concentrator, the bursts need to be switched to burst transmission

queues from the load balancers. When multiple load balancers transmit to the trans-

mission queues, there is contention in the switch. We need to study the effect of

this contention on determining the complexity of the switch that is necessary in the

concentrator.

Due to cost factors, some concentrators need not support the entire range

of wavelengths. Similarly, TSOBS routers may not implement switching for all

wavelengths. The traffic from these concentrators or routers increase the load on

these wavelengths. Thus, concentrators implementing the entire range of wavelengths

should send lesser traffic on the wavelength channels that the “sub-equipped” con-

centrators or routers support to keep the load on all wavelengths balanced. We need

to investigate methods that allow concentrators to adapt their load balancers to such

conditions.
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Chapter 6

Summary

Implementing the data path of Internet routers using optical switching techniques can

be attractive because electronic switching speeds are not growing as fast as optical

transmission rates. Optical switching has several other advantages such as bit rate

independence, protocol transparency, and low power consumption. Unfortunately,

optical switches that have been built so far have not been able to demonstrate a

case for deploying optical switches commercially. Part of the reason why optical

switches lack commercial appeal is that most of the systems built to date switches

are complex and use expensive components. Also, it is not practical to use optical

buffering because fiber delay lines are the only practical method for optical buffering

and the amount of fiber required for typical buffer requirements is enormous.

Optical Burst Switching (OBS) is a network technology that combines the ben-

efits of optical transmission in terms of its scalability and the flexibility of electronics

for control processing. It gives very good statistical multiplexing performance without

needing optical buffers. In this dissertation, we addressed the problem of designing

optical switches for burst routers that use as fewer expensive optical components,

without compromising the throughput achievable by the system.

6.1 Design of wavelength converting switches

Wavelength converting switches are essential components in optical burst routers

that support wavelength conversion. We described a design for wavelength convert-

ing switches that uses tunable wavelength converters (TWCs) and passive wavelength

grating routers (WGRs). Tunable wavelength converters are the only active compo-

nents used in this switch and the size of the WGR needed is equal to the number of
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wavelength channels, making the switch scalable to high bandwidth rates. However,

the switch is not nonblocking. By formulating the routing problem as a combina-

torial puzzle or game on a game board, we showed that the interconnection pattern

between the input and output sections of the switch can affect the performance of the

switch. We showed that WGR-based switches can achieve 89% of the throughput of

routers using strictly non-blocking switches. We could increase the performance of the

WGR-based switches by using additional wavelength routers or by adding buffering

ports.

This design uses one tunable wavelength converter per input wavelength chan-

nel. Tunable wavelength converters use a laser or an equivalent device. This, unfor-

tunately, makes cost of the switch high because bulk of the cost of electronic routers

is contributed by the optoelectronics. However, if tunable wavelength converters be-

come cheaper and more readily available, the WGR-based switch becomes a very

appealing choice to implement the switching functionality in a router.

6.2 Time Sliced Optical Burst Switching

Optical Burst Switching systems were conceived for networks that use switches with

wavelength conversion capability and they exploit the switching in the wavelength

domain to provide good statistical multiplexing performance. Wavelength convert-

ers, unfortunately, are relatively expensive components. Time Sliced Optical Burst

Switching (TSOBS) is a switching mechanism that switches bursts in the time do-

main instead of the wavelength domain. Bursts are transmitted in timeslot channels

in a frame structure and fast optical switches are used to switch bursts across the

network.

We studied a switch architecture that uses timeslot interchangers and a space

switch to perform the time domain switching. We identified four nonblocking and a

blocking design for timeslot interchangers and showed that the performance penalty

incurred by using the blocking design is not much, considering the gain in terms of

the cost reduction of the switch. Synchronizers play a key role in the implementation

of this switch and we showed that using a guard band, that uses 10% of the timeslot

bandwidth, it is possible to implement synchronizers that have a relatively low cost.

Through a cost analysis, we showed that TSOBS routers are capable of becoming

cost-competitive to electronic routers. Although the switches use optical crossbars,
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the cost requirement on the optical crossbars is relatively low, making TSOBS a

promising solution for implementing optical routers.

6.2.1 Data Aggregation in TSOBS Networks

In TSOBS networks, a timeslot is the minimum unit of data that we can transmit.

Most packets of average size (for example, in the Internet) tend to have a much

smaller size than a timeslot and this can lead to under-utilization of the timeslot

bandwidth. A solution to this problem is to aggregate packets from sources to form

bursts that have a longer duration and hence, utilize timeslots more efficiently. We

described an algorithm to perform the aggregation and identified the parameters that

affect the performance of the aggregation process. We then presented an analysis of

the algorithm that help us determine the values of the parameters that result in good

performance.

6.2.2 Load Balancing in TSOBS Networks

Since TSOBS networks switch data in the time domain, the wavelength channels of

a link can get unevenly loaded. The utilization of a network with unevenly loaded

wavelength channels is smaller than in a network with balanced loading. In a TSOBS

network, the network interfaces at the edges of the network have the flexibility of

choosing the wavelength channel a burst is sent on. We examined the problem of

load balancing of the wavelength channels at the network interfaces. When the net-

work interfaces perform load balancing without knowledge of what wavelengths other

network interfaces are using, this results in load imbalance. We examined four load

balancing algorithms to determine the algorithm that results in the least imbalance.

We showed that algorithm WMin does not perform well, even if it balances the load

in the long term. We proposed an algorithm called TSMin, that balances the load in

the short term and results in the best performance.
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Appendix A

Sum of geometrically distributed

variables

Theorem A.0.1 If x1, x2, . . . , xh are identically and independently distributed geo-

metric random variables with a mean 1/p, then

P (x1 + x2 + . . . + xh = j) =

(
j − 1

h − 1

)
ph(1 − p)j−h

where j ≥ h.

�

We prove the theorem using induction. For h = 1, the theorem is trivially true. For

h = 2,

P (x1 + x2 = j) =

j−1∑
k=1

P (x1 = j − k|x2 = k)P (x2 = k)

=

j−1∑
k=1

p(1 − p)j−k−1p(1 − p)k−1

=

j−1∑
k=1

p2(1 − p)j−2

= (j − 1)p2(1 − p)j−2
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Assume that it is true for h = 1, h = 2, . . . , h = t. Then,

P (x1 + x2 + . . . + xt+1 = j) =

j−t∑
k=1

P (x1 + x2 + . . . + xt = j − k|xt+1 = k)P (xt+1 = k)

=

j−t∑
k=1

(
j − k − 1

t − 1

)
pt(1 − p)j−k−tp(1 − p)k−1

= pt+1(1 − p)j−(t+1)

j−t∑
k=1

(
j − k − 1

t − 1

)

= pt+1(1 − p)j−(t+1)

j−2∑
x=t−1

(
x

t − 1

)
, where x = j − k − 1

=

(
j − 1

t

)
pt+1(1 − p)j−(t+1)

It can be easily shown by induction that
j−2∑

x=t−1

(
x

t−1

)
=
(

j−1
t

)
. Hence, proved.
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