research

Digital Switching in the Quantum Domain

Abstract

In this paper, we present an architecture and implementation algorithm such that digital data can be switched in the quantum domain. First we define the connection digraph which can be used to describe the behavior of a switch at a given time, then we show how a connection digraph can be implemented using elementary quantum gates. The proposed mechanism supports unicasting as well as multicasting, and is strict-sense non-blocking. It can be applied to perform either circuit switching or packet switching. Compared with a traditional space or time domain switch, the proposed switching mechanism is more scalable. Assuming an n-by-n quantum switch, the space consumption grows linearly, i.e. O(n), while the time complexity is O(1) for unicasting, and O(log n) for multicasting. Based on these advantages, a high throughput switching device can be built simply by increasing the number of I/O ports.Comment: 24 pages, 16 figures, LaTe

    Similar works

    Available Versions

    Last time updated on 17/03/2019