1,749 research outputs found

    Synthesizing Switching Controllers for Hybrid Systems by Continuous Invariant Generation

    Full text link
    We extend a template-based approach for synthesizing switching controllers for semi-algebraic hybrid systems, in which all expressions are polynomials. This is achieved by combining a QE (quantifier elimination)-based method for generating continuous invariants with a qualitative approach for predefining templates. Our synthesis method is relatively complete with regard to a given family of predefined templates. Using qualitative analysis, we discuss heuristics to reduce the numbers of parameters appearing in the templates. To avoid too much human interaction in choosing templates as well as the high computational complexity caused by QE, we further investigate applications of the SOS (sum-of-squares) relaxation approach and the template polyhedra approach in continuous invariant generation, which are both well supported by efficient numerical solvers

    Modular Verification of JML Contracts Using Bounded Model Checking

    Get PDF
    There are two paradigms for dealing with complex verification targets: Modularization using contract-based specifications and whole-program analysis. In this paper, we present an approach bridging the gap between the two paradigms, introducing concepts from the world of contract-based deductive verification into the domain of software bounded model checking. We present a transformation that takes Java programs annotated with contracts written in the Java Modeling Language and turns them into Java programs that can be read by the bounded model checker JBMC. A central idea of the translation is to make use of nondeterministic value assignments to eliminate JML quantifiers. We have implemented our approach and discuss an evaluation, which shows the advantages of the presented approach

    Test generation for high coverage with abstraction refinement and coarsening (ARC)

    Get PDF
    Testing is the main approach used in the software industry to expose failures. Producing thorough test suites is an expensive and error prone task that can greatly benefit from automation. Two challenging problems in test automation are generating test input and evaluating the adequacy of test suites: the first amounts to producing a set of test cases that accurately represent the software behavior, the second requires defining appropriate metrics to evaluate the thoroughness of the testing activities. Structural testing addresses these problems by measuring the amount of code elements that are executed by a test suite. The code elements that are not covered by any execution are natural candidates for generating further test cases, and the measured coverage rate can be used to estimate the thoroughness of the test suite. Several empirical studies show that test suites achieving high coverage rates exhibit a high failure detection ability. However, producing highly covering test suites automatically is hard as certain code elements are executed only under complex conditions while other might be not reachable at all. In this thesis we propose Abstraction Refinement and Coarsening (ARC), a goal oriented technique that combines static and dynamic software analysis to automatically generate test suites with high code coverage. At the core of our approach there is an abstract program model that enables the synergistic application of the different analysis components. In ARC we integrate Dynamic Symbolic Execution (DSE) and abstraction refinement to precisely direct test generation towards the coverage goals and detect infeasible elements. ARC includes a novel coarsening algorithm for improved scalability. We implemented ARC-B, a prototype tool that analyses C programs and produces test suites that achieve high branch coverage. Our experiments show that the approach effectively exploits the synergy between symbolic testing and reachability analysis outperforming state of the art test generation approaches. We evaluated ARC-B on industry relevant software, and exposed previously unknown failures in a safety-critical software component

    Verification-based software-fault detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this work new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Verification-based Software-fault Detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this dissertation new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Philosophy of Science and Information

    Get PDF
    Of all the sub-disciplines of philosophy, the philosophy of science has perhaps the most privileged relationship to information theory. This relationship has been forged through a common interest in themes like induction, probability, confirmation, simplicity, non-ad hocness, unification and, more generally, ontology. It also has historical roots. One of the founders of algorithmic information theory (AIT), Ray Solomonoff, produced his seminal work on inductive inference as a direct result of grappling with problems first encountered as a student of the influential philosopher of science Rudolf Carnap. There are other such historical connections between the two fields. Alas, there is no space to explore them here. Instead this essay will restrict its attention to a broad and accessible overview of the aforementioned common themes, which, given their nature, mandate an (almost exclusive) emphasis on AIT as opposed to general information theory
    • …
    corecore