Test Generation for High Coverage with
Abstraction Refinement and Coarsening (ARC)

Doctoral Dissertation submitted to the
Faculty of Informatics of the University of Lugano
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Mauro Baluda

under the supervision of
Prof. Mauro Pezze
co-supervised by

Prof. Giovanni Denaro

April 2014

Dissertation Committee

Prof. Antonio Carzaniga University of Lugano, Switzerland

Prof. Nate Nystrom University of Lugano, Switzerland
Prof. Paolo Tonella Fondazione Bruno Kessler, Trento, Italy
Prof. Andreas Zeller Saarland University, Saarbriicken, Germany

Dissertation accepted on 30 April 2014

Prof. Mauro Pezzé
Research Advisor
University of Lugano, Switzerland

Prof. Giovanni Denaro
Research Co-Advisor
University of Milano-Bicocca Milano, Italy

Prof. Igor Pivkin Prof. Stefan Wolf
PhD Program Director PhD Program Director

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program.

Mauro Baluda
Lugano, 30 April 2014

Abstract

Testing is the main approach used in the software industry to expose failures. Pro-
ducing thorough test suites is an expensive and error prone task that can greatly
benefit from automation. Two challenging problems in test automation are gener-
ating test input and evaluating the adequacy of test suites: the first amounts to
producing a set of test cases that accurately represent the software behavior, the
second requires defining appropriate metrics to evaluate the thoroughness of the
testing activities.

Structural testing addresses these problems by measuring the amount of code
elements that are executed by a test suite. The code elements that are not covered
by any execution are natural candidates for generating further test cases, and the
measured coverage rate can be used to estimate the thoroughness of the test suite.
Several empirical studies show that test suites achieving high coverage rates exhibit
a high failure detection ability. However, producing highly covering test suites
automatically is hard as certain code elements are executed only under complex
conditions while other might be not reachable at all.

In this thesis we propose Abstraction Refinement and Coarsening (ARC), a goal-
oriented technique that combines static and dynamic software analysis to automati-
cally generate test suites with high code coverage. At the core of our approach there
is an abstract program model that enables the synergistic application of the differ-
ent analysis components. In ARC we integrate Dynamic Symbolic Execution (DSE)
and abstraction refinement to precisely direct test generation towards the coverage
goals and detect infeasible elements. ARC includes a novel coarsening algorithm for
improved scalability.

We implemented ARC-B, a prototype tool that analyses C programs and pro-
duces test suites that achieve high branch coverage. Our experiments show that the
approach effectively exploits the synergy between symbolic testing and reachability
analysis outperforming state of the art test generation approaches. We evaluated
ARC-B on industry relevant software, and exposed previously unknown failures in
a safety-critical software component.

Contents

Contents
List of Figures

List of Tables

1 Introduction
1.1 Research Hypothesis and Contributions
1.2 Structure of the Dissertation.

2 Related Work

2.1 Classification of Test Data Generation Approaches
2.1.1 Structural, Functional and Non Functional test Design
2.1.2 Dynamic and Static Implementation Techniques.
2.1.3 Random, Path Oriented and Goal Oriented Automation . . .

2.2 Background Techniques for Automated Test Data Generation (ATDG)
2.2.1 Symbolic Execution L.
2.2.2 Model Based Testing
2.2.3 Random Testing and Adaptive Random Testing
2.2.4 Search-based Testing

2.3 State of the Research in Automated Test Data Generation (ATDG) .
2.3.1 Symbolic Execution
2.3.2 Model Based Testing
2.3.3 Random Testing and Adaptive Random Testing
2.3.4 Search-based Software Testing
2.3.5 Hybrid Symbolic and Search-based Testing

2.4 State of the Research in Reachability Analysis

3 Foundations
3.1 Weakest Precondition Calculus
3.1.1 Deductive Verification
3.1.2 Reasoning about Programs

iii

ix

S

© © © 0o OOy U

N N = = = = =
W N O oo v o O

vi

Contents

3.1.3 Dijkstra’s Weakest Precondition.
3.1.4 The WP Functions
3.1.5 Weakest Precondition for Industrial Programming Languages
3.2 Symbolic Execution. Lo o
3.2.1 The Symbolic Execution Analysis
3.2.2 The Path Explosion Problem
3.2.3 Complex Constraints
3.2.4 Concolic Testing
3.3 Abstraction Refinement
3.4 Constraint Solving
3.4.1 Satisfiability
342 SMT Theories.« i

Abstraction Refinement and Coarsening
4.1 Obtaining High Structural Coverage
4.1.1 Ordering Coverage Targets
4.1.2 Static and Dynamic Analysis
4.1.3 Analysis-specific Synergies in ARC
4.2 The ARC Iterative Analysis
4.3 The Generalized Control Flow Graph (GCFG)
4.3.1 The Interprocedural GCFG Model
4.4 The Coverage Domain Frontier
4.4.1 Realizable Coverage Frontier
4.5 Test Case Generation
4.5.1 Coverage Frontier Selection.
4.5.2 Tracing Executions on the GCFG Model.
4.6 Abstraction Refinement 0L
4.6.1 Detecting Infeasible Elements
4.6.2 Directing Test Generation Precisely
4.7 The GCFG Coarsening

Prototype Implementation
51 Using ARC-B
52 ARC-B Workflow
5.3 The GCFG Model
5.4 ARC Frontier Analysis
5.5 Dynamic Analysisin ARC: GDB
55.1 ARC Coverage Tracer
56 ARC Refinement

53
54
54
95
56
o7
59
62
63
64
66
67
68
68
70
72
74

vii

Contents

6 Evaluation

6.1 Effectiveness of the ARC Search Heuristics

6.2 Approximating Full Coverage on Industrial Programs

6.2.1 Threats to Validity
6.3 Failure Detection in Safety-Critical Software
6.3.1 The Experiment Setup
6.3.2 Results
6.3.3 Threats to Validity

7 Conclusions

7.1 Contributions
7.2 Future Directions

A The ARC-B Prototype Code

A.1 The ARC-B Iterative Loop.
A.2 Functional Style Memory Access.

B Experiments

B.1 The Linear and Binary Search Functions
B.2 Week Number Computation Function from MySQL

Bibliography

107

...... 108
...... 109

113

...... 113
...... 114

117

...... 117
...... 119

121

viii Contents

Figures

3.1

3.2
3.3

3.4

4.1

4.2
4.3
4.4

4.5
4.6
4.7
4.8

4.9
4.10

5.1
5.2
5.3
5.4

9.5

Code that swaps two integers when the first is greater then the sec-
ond, and the corresponding symbolic execution tree, where transi-
tions are labeled with program control points. Image from Kurshid
etal. [KPVO3].
A function that uses non linear conditions (from [GKS05])
The Counterexample Guided Abstraction Refinement (CEGAR) it-
erative verification loop. L
The pattern oriented refinment approach in Synergy.

Testing and Reachability Analysis benefit each other when applied
to the same program elements (the coverage domain)
Pseudocode for the ARC execution loop.
The iterative analysis performed by ARC and its main components. .
code for function coprime (a), the initial GCFG (b) and a refined
GCFG model (¢). oo

Interprocedural Generalized Control Flow Graph model: an example.

Interprocedural Coverage Frontier.
code for the function scan.o
Execution of Abstraction Refinement and Coarsening (ARC) on scan,
the initial GCFG (a) and a refined GCFG model (b)
Code for the function valves
Comparison of the number of nodes in the GCFG during the analysis
of the program tcas when coarsening is enabeld (blue), and disabled

The logical modules and workflow of ARC-B.
A simple test driver for ARC-B.
Semantics of the C arithmetic operators / and %.
Function is_frontier checks if a GCFG transition e is part of the
coverage frontier. L. oL
The vertex2inputs data structure supports the efficient retrieval of
test inputs for frontier analysis.

83

84

Figures

5.6

9.7

6.1
6.2
6.3

Al
A2

Function that searches for test cases that are compatible with a given

coverage target. L. L Lo 85
Computation of alias-aware, Weakest Precondition (WP)-based re-

finement predicates. Lo 88
Movement of joint 2 when executing a test case 103
Movement of joint 3 when executing a test case 103
Velocity of joint 2 when executing a test case 104
Function Run that implements the main iterative loop of ARC-B. . . 113

Function traverseFrontier that implements the coverage frontier

analysisof ARC-B. 114

Tables

2.1

6.1

6.2
6.3
6.4

Classification of the State of the Research according to the dimen-
sions defined in section 2.1: Design approach, Automation approach,
Implementation technique

Results of ARC-B, CREST-dfs, CREST-cfg and KLEE on variants
of the programs scanl and valvesl
Results of ARC-B execution on 16 industrial subject programs.

Comparison of branch coverage scores of ARC-B and CREST
Failures detected by automatically generated test cases

Xi

xii

Tables

Chapter 1

Introduction

Testing is the premier technique for assessing the quality of software products in
industry, it consists of executing a program with a sample of the possible inputs to
observe the program behavior and detect failures. Testing activities are responsible
for a large part of the overall cost of software production, and therefore a high de-
gree of automation in testing is highly desirable, not only to reduce costs, but also
to improve the predictability of the quality of software products [PY07; Ber07]. In
this Thesis we present and evaluate Abstraction Refinement and Coarsening (ARC)
a novel approach to Automated Test Data Generation (ATDG) that combines dif-
ferent software analysis techniques to produce test suites systematically.

Because of the enormous amount of behaviors that even small software systems
can exhibit, exhaustive testing is not practical. For this reason test designers have
to sample the input space on a finite set of test cases. Quality managers can evaluate
the maturity of test suites using different criteria, one of the most successful being
structural coverage. Structural coverage measures the thoroughness of testing based
on the code elements exercised by executing the test suites. Given a specific type
of code element, coverage is measured as the ratio between the elements of that
type that the test exercises and the total number of those elements. Statement and
branch coverage are the most popular criteria in the industrial setting so far.

On one hand, structural coverage is certainly useful in finding new test targets
to direct the testing effort. In fact, coverage analysis can be used to identify the set
of code elements that are not executed yet by any test case, and adding new test
cases that cover these elements is an obvious way for improving the quality of a test
suite. On the other hand it would be desirable to use structural coverage as a proxy
measure for the quality assessment of a test suite. As coverage measures are numer-
ical and unbiased, they would provide quality managers with a solid justification
for the decision of continuing or terminating the testing effort.

A large body of research studied the problem of the correlation between the
structural coverage and the failure detection power of a test suite. While some

evidence for this correlation have been found, the debate is still active [HFGO94;
FI98|. In the last few years, several empirical studies questioned the effectiveness of
coverage as a good measure for testing effectiveness by analyzing larger and more
realistic subjects [WMO12; GGZ*13; FSM™13; TH14].

A deeper look into the empirical studies on the effectiveness of structural testing
shows that these apparently contrasting results arise from the analyses of test suites
obtaining different levels of coverage. Most studies agree that test suites that achieve
high structural coverage (over 90%) are highly effective: For example, Hutchins et
al. show that test effectiveness is correlated with the level of coverage and high levels
of coverage indicate highly effective test suites [HFGO94|. Frankl et al. obtained
similar results analyzing larger test subjects and noticed a low structural testing
effectiveness with low coverage levels [F198].

This distinction between low and high levels of structural coverage is acknowl-
edged by the most recent papers on the topic as well. The following quotation from
the recent work by Inozemtseva et al. that contrasts the use of coverage criteria as
a test quality assurance measure, highlights the point [IH14|:

“Some of the previous studies found that a relationship between cov-
erage and effectiveness did not appear until very high coverage levels
were reached. Since the coverage of our generated suites rarely reached
very high values, it is possible that we missed the existence of such a
relationship. That said, it is not clear that such a relationship would
be useful in practice. It is very difficult to reach extremely high levels
of coverage, so a relationship that does not appear until 90% coverage
is reached is functionally equivalent to no relationship at all for most
developers.”

Our research is motivated by the observation that structural coverage close to
100% is rarely obtained either with manually or automatically generated test suites,
and this factor is the main responsible for the reduced effectiveness of structural test-
ing. The inability of generating test suites that reach high coverage levels stems from
the difficulty of both generating test cases that satisfy complex branch conditions
and detecting infeasible elements.

To approximate 100% structural coverage, test designers are expected to produce
a set of inputs that drive the program execution towards all the coverage targets.
Unfortunately, computing exactly such set of inputs is known to be an infeasible
problem. In practice, generating a test input that covers a given code element can be
very hard, it requires deep understanding of the program internals and the solution
of a complex chain of interdependent constraints.

Moreover, undetected infeasible elements that cannot be executed under any
program input, can divert the test generation effort and prevent the quality manager
from obtaining a precise coverage measure. Infeasible elements can appear in code

3 1.1 Research Hypothesis and Contributions

for several reasons ranging from bad programming practice to deliberate use of
infeasible code elements for example in defensive programming [HH85|. Moreover
in the case of complex structural testing criteria, several paths statically identified
on the program control structure may be not executable even in the absence of dead
code elements [Wey90].

1.1 Research Hypothesis and Contributions

In my PhD work I approached automatic structural testing as a twofold problem
by employing existing and novel analysis techniques to 1) generate test cases that
exercise code elements not yet covered, and 2) identify a large portion of the infeasi-
ble elements. The intuition that supports this idea is that testing can identify large
portions of reachable elements, while detecting unreachable elements prevents from
wasting effort in searching test inputs able to execute such elements. The simple se-
quential combination of techniques for generating test cases and detecting infeasible
elements does not produce the expected results because of the risk of being trapped
in the failing attempt to execute complex execution paths that may become a sink
for the technique. We hypothesize that the continuous interplay between the two
types of technique and the sharing of their partial analysis results can be effective
in achieving high coverage and scaling to reasonable sized applications.

This dissertation aims to investigate the following research hypothesis: Can an
analysis technique that is based on scalable program abstractions and that exploits
the synergies between symbolic test generation and reachability analysis generate test
suites with high code coverage for industrially relevant software systems?

We detailed the main research hypothesis in the following research questions:

Q1 Can the symbolic approach to test input generation be combined with reach-
ability analysis techniques to produce test suites with high coverage?

Q2 Can such a hybrid framework scale to industrially relevant software by ex-
ploiting efficient program abstractions?

Q3 Isthe ARC approach able to expose previously unknown failures in industrially
relevant software?

This thesis contributes to the state of the research by:

e Proposing a framework for high-coverage structural testing leveraging the in-
terplay of different program analysis techniques.

e Evaluating existing techniques to tackle the problem of testing code while at
the same time identifying its infeasible portion.

e Designing a scalable abstraction management technique able to support both
test generation and reachability analysis

4 1.2 Structure of the Dissertation

e Evaluating empirically the effectiveness of the proposed approach.

1.2 Structure of the Dissertation

Automatic Structural Testing was studied extensively in the past decades as a means
to automate the tedious and error prone activity of selecting a set of test inputs
achieving full structural coverage. Chapter 2 describes the state of the art in ATDG
and discusses the main open challenges.

ARC combines dynamic test generation techniques with static reachability anal-
ysis. Chapter 3 introduces the fundamental software analysis approaches that con-
stitute the foundations of ARC: Weakest Precondition (WP), Symbolic Execu-
tion (SE), Constraint Solving and Abstraction Refinement.

ARC augments a test suite combining concolic execution with abstraction re-
finement, driven by a model of the coverage domain. A coarsening procedure makes
the analysis practical by keeping the size of the coverage model minimal. Chapter 4
describes how the envisioned interplay can produce higher structural coverage rates
by both augmenting the number of code elements that get executed and identifying
a large fraction of the infeasible code.

The ARC approach was implemented in a prototype tool called ARC-B which
is able to generate test cases for C programs. ARC-B targets branch coverage and
deals with dynamic memory access and procedures. Chapter 5 discusses the design
and implementation decisions involved in the construction of ARC-B.

The ARC approach was evaluated by applying ARC-B on a number of industrial
programs. ARC-B obtained higher coverage rates respect to state of the art tools
by covering more elements and detecting several infeasible ones. Chapter 6 reports
about the experimental campaign we conducted and the evidence we could collect.

Chapter 7 summarizes the contribution of the dissertation and delineates the
conclusions and the future directions.

Chapter 2

Related Work

Automated Test Data Generation is one of the main challenges for
researchers working on software testing and has been studied extensively
in the past decades. Test automation has the potential to reduce dramat-
ically the cost of testing and improve ultimately the reliability of soft-
ware systems. This chapter describes the state of the art in Automated
Test Data Generation focusing particularly on structural testing, and
discusses the main open challenges.

Automated Test Data Generation (ATDG) is one of the main challenges for re-
searchers working on software testing towards the possibility of achieving 100%
automated testing [Ber07|. By automating the tedious and error prone activity of
selecting a set of test inputs to achieve some predefined test goal, ATDG has the
potential to reduce dramatically the cost of software quality assurance that consti-
tutes large part of the cost of software development. This in turn would ultimately
lead to an increased reliability of software systems.

ATDG was studied extensively in the past decades because of its academic in-
terest and strong industrial importance. Starting from the seminal work of the
seventies [Bur67; BEL75; DN84|, a rich variety of techniques and approaches have
been proposed by the Software Engineering researchers community [McM04; PV09;
FWAO09b]. This chapter describes the state of the art in ATDG with a particular
focus on structural testing criteria, it discusses the main challenges that still need
to be addressed.

Section 2.1 describes a common classification schema used in several ATDG
literature surveys. The schema offers three orthogonal dimensions each of them
composed of three classes. The nine classes correspond to nine different properties
of ATDG approaches:

1. Design approach: Structural, Functional, Non Functional

5

6 2.1 Classification of Test Data Generation Approaches

2. Automation approach: Random, Goal Oriented, Path Oriented
3. Implementation technique: Dynamic, Static, Hybrid

Section 2.2 presents an alternative classification schema that focuses on the
background techniques employed by the different ATDG approaches. It appears in
fact clear from the literature review that most of the proposed approaches build on
top of few fundamental techniques:

1. Symbolic Execution

2. Model based Testing

3. Random testing and Adaptive Random Testing
4. Search-based Testing

Section 2.3 overviews the State of the Research in ATDG organizing the different
approaches based on their background techniques which are defined in Section 2.2.
Each of the discussed approaches are further classified according to the schema
defined in Section 2.1. Despite not being exhaustive, the literature review aims to
highlight the open challenges in ATDG thus motivating the approach proposed in
this thesis.

Section 2.4 discusses the problem of identifying infeasible code elements, an
active research area that is contiguous to test case generation. The complementarity
between the two problems is a well known concept from the theory of software
analysis but the existing approaches for the solution of either of them, seldom benefit
from such insight. The section discusses the preeminent approaches to Automated
Reachability Analysis and their relation with ATDG.

2.1 Classification of Test Data Generation Approaches

In this section I present a classification schema for ATDG techniques that is com-
monly found in literature and allows us to easily compare and link different ap-
proaches based on their properties. The schema identifies three orthogonal dimen-
sions and three classes for each of them. As ATDG uses software analysis techniques
to automate the task of generating test data, two of the three dimensions proposed
can be tracked back to well known classifications of test design approaches and
software analysis techniques.

2.1.1 Structural, Functional and Non Functional test Design

A first dimension for ATDG classification is derived directly from the test design
approaches that should be automated. Such classification can be applied to any test
generation technique, manual or automatic [PY07].

7 2.1 Classification of Test Data Generation Approaches

Structural testing defines test adequacy criteria based on the code of the soft-
ware under test. Coverage rates are defined as the fraction of code elements of a
certain type (for example statements) that are executed by a test suite. Structural
coverage gives an objective measure of the test thoroughness and highlights the code
that should be targeted by further test effort. The direct correlation between high
structural coverage (i.e. between 90% and 100%) and the fault detection power of
a test suite is acknowledged by practitioners and was measured in several empirical

studies [FW93; HFGO94|.

The largest part of the approaches presented in this chapter targets Structural
Testing as it is certainly the most popular candidate to automation and the one
targeted by the approach presented in this thesis.

Functional testing verifies that a software system behaves as it is intended. A
specification is a formal or informal description of such behavior and can be used to
derive test cases. Automation can be achieved to the extent to which a specification
can be analyzed automatically.

Non-functional properties are qualities that describe how a system works, in op-
position to functional qualities that concern what the system does. Non-functional
testing is used to verify qualities of software like reliability, security, performance
and usability.

2.1.2 Dynamic and Static Implementation Techniques

A second classification dimension for ATDG is inherited from program analysis
terminology where Dynamic and Static approaches are distinguished based on the
fact that they do require or do not require actual program execution, respectively.

A Dynamic ATDG approach observes the execution of the program under test
and uses the gathered information to inform the reasoning that lies behind the Test
Input Generation. On the contrary a Static ATDG approach analyses the program
code in its textual form and deduces the expected program behavior from it.

As it is well know from program analysis theory, dynamic approaches are precise
but incomplete. If dynamic analysis detects a failure then the failure is real but on
the other hand an observed correct behavior gives little information about other
possible behaviors. On the contrary static approaches are generally complete but
imprecise. If static analysis detects a failure, it might be a false alarm due to
the analysis inherent imprecision, on the other hand static analysis can certify the
absence of certain classes of failure.

Hybrid ATDG approaches augment static analysis with dynamic information
thus mitigating the imprecision of the results. Many researchers advocate hybrid
approaches as a means to mitigate the complementary limitations of static and
dynamic ones [YBS06]

8 2.2 Background Techniques for Automated Test Data Generation (ATDG)

2.1.3 Random, Path Oriented and Goal Oriented Automation

The third dimension is specific to ATDG and was proposed and formalized by
Edvardsson in 1999 and widely adopted subsequently [Kor90; Edv99|. It divides
ATDG methods in three classes based on the automation approach they employ:

Random approaches are conceptually simple and very flexible. As a matter of
fact, every data type is ultimately a bit stream and it is therefore always possible to
generate a random input for a program by generating a random bit stream. A large
number of random test cases can be generated quickly and executed in parallel but
as the program input space is normally huge, random testing is rarely exhaustive.
In particular random testing does not perform well in testing for corner cases or
detecting semantically small faults that are faults with a small probability of being
executed. Random testing is often used as a benchmark to compare other ATDG
techniques against and performs sometimes surprisingly well especially in terms of
cost-effectiveness [DN84].

Path oriented approaches analyze the code of the program under test and select
a specific execution path in the program Control Flow Graph (CFG) that should
be covered by the test execution. If the testing goal is to achieve a certain level of
structural coverage, path oriented approaches would need 1) to recognize all the path
leading to a certain coverage target 2) select one path out of the many 3) generate
the appropriate test input. The path selection strategy highly influence the overall
effectiveness of the approach in particular as paths found by static analysis might
be infeasible, that is, they may not correspond to any program computation.

The Goal oriented approach refers strictly to a specific dynamic ATDG tech-
nique proposed by Korel in 1992 and is a precursor of modern global search-based
approaches [Kor92|. Korel proposes a technique that avoids the need for selecting
a specific program path that should be executed but instead proposes to generate
inputs based on an objective function that can be computed statically from a pro-
gram CFG. By extension every ATDG technique that aims at a global goal instead
of trying to cover specific program paths is classified in this category.

2.2 Background Techniques for Automated Test Data
Generation (ATDG)

A different classification schema for ATDG techniques is based on the background
employed technique. Such classification is particularly useful in describing the state
of the research ATDG as the different classes also represent four adjacent but distinct
sub communities of Software Testing researchers [ABCT13]. This section briefly
describes each of the four technique.

9 2.2 Background Techniques for Automated Test Data Generation (ATDG)

2.2.1 Symbolic Execution

Symbolic Execution generates symbolic constraints that characterize program path
as functions of the program inputs. This is achieved by simulating a program
execution along a certain path and assigning appropriate symbolic values to variable
instead than concrete ones. Automated theorem provers can be used to generate
program inputs satisfying such constraints, and therefore executing the selected
path.

Symbolic Execution (SE) has been studied since the Seventies [BEL75; Kin76;
Cla76] but both fundamental and technological aspects limited its practical ap-
plication: In particular, exhaustive SE requires the enumeration of the paths of
a program, this is rarely possible for large software systems. Moreover, proving
mathematical theorems is a creative activity that is particularly hard to automate.
Nonetheless SE is still a productive area of research thanks to the advances in both
directions obtained in the last decades [PV09].

As SE is one of the building blocks of the ATDG technique presented in this
Thesis, a detailed description of it is given in Section 3.2 of Chapter 3.

2.2.2 Model Based Testing

Model Based Testing uses formalized program requirements (models) to generate
test cases. Software engineers have proposed a large variety of models for software
that can represent both the intended behavior of a system and the structural as-
pects of its implementation. Model Based ATDG techniques use models of software
systems to define test adequacy criteria.

Model Based approaches proved to be particularly suitable for Functional Test-
ing. In this case the model (usually a finite state model) encodes aspects of the
specification of the system under test. Normally a certain degree of manual model-
ing effort is needed but recent advances in the automatic generation of behavioral
models from program execution traces, open the way to fully automatic model based
ATDG approaches.

Model Checking is a formal verification approach that can provide counterexam-
ples witnessing the violation of desired properties. Counterexamples can be inter-
preted as test cases, and model checking can be used to generate inputs satisfying
certain testing criteria defining appropriate temporal properties.

2.2.3 Random Testing and Adaptive Random Testing

Random Testing produces test suites sampling the input space of a program ran-
domly. Randomized approaches are common in testing hardware devices and applied
to software since the seventies. The prospect of a ATDG that is completely unbiased
and permits certain statistical guarantees has to confront with the enormous size of
program input state space, combined with the non linear nature of software. It is

10 2.3 State of the Research in Automated Test Data Generation (ATDG)

in fact very unlikely to be able to detect software failures that happen rarely using
naive random testing. For this reason in recent research Random Testing is nor-
mally complemented with dynamic and static analysis techniques that can inform
the test case generation and orient the random search in “promising” areas of the
input space.

2.2.4 Search-based Testing

Search-based Testing employs advanced Optimization Algorithms to automate the
search for test data that maximizes a certain goal therefore sharing many of the
fundamental limitations of random testing. Evolutionary testing is one of the most
studied search-based approaches, inspired by biological evolution, it generates new
test cases mutating and combining existing ones, a higher chance to influence new
test inputs is given to the fittest tests based on a pre-determined fitness function.
Possible fitness functions include measures of structural, functional, as well as non
functional properties of software.

2.3 State of the Research in Automated Test Data Gen-
eration (ATDG)

ATDG is vast and specialized research field and typically surveys focus on specific
sub fields [McMO04; ATF09; PV09; FWAQ09b|. This section overviews the ATDG
literature according to the four different classes identified in Section 2.2 that cor-
respond to four different background techniques: SE, Model Based, Random and
Search-based Testing.

We identified a second classification schema referring to the discussion in Sec-
tion 2.1. The classification schema identifies three dimensions and three classes
for each dimension producing a total of 27 combinations. While we believe that a
coarse classification like the one described in Section 2.2 is better suited for a liter-
ature survey, we find that the second schema can be useful in comparing competing
approaches and highlighting trends and open research areas.

Table 2.1 shows the ATDG techniques discussed in the rest of the chapter where
approaches with similar properties are aggregated independently from their technical
background and according to the schema from Section 2.1. In the table, columns
map different Design Approaches while rows correspond to the Automation Ap-
proaches. Each of the nine table cell is further divided vertically according to the
used implementation technique.

We marked in gray the empty cells in the table that in our opinion cannot be
populated because of intrinsic incompatibility of the features, it is for example the
case for the combination of random and static technique. The remaining empty cells
could be in principle populated but we did not find any approach in our literature

11 2.3 State of the Research in Automated Test Data Generation (ATDG)
Design Approach
Structural Functional Non Functional
Dyn Stat Hyb Dyn Stat Hyb Dyn Stat Hyb
Random ||[cpamoi) [GKSO05] |[WRF*11] [GFX12] [HHZ12]
[CLMO5] MSo7] |[NZK12]
[WJIMJOS]
[CLOMOS]
[FZ11]
Path Or. [CSE96] [PMB108] |[[SMAO5] [MS07] [BJSS09] [XGMOS]
[Bal03] [CS05] [BJS09]
[Balo4] [SPPVO035] [ZED11]
[BOCLKRO4] [YBS06]
= [BCHt04] [MS07]
3 [VPKO4] [GLMO8]
IS [TdHO8] [BS08]
é“ [CDEOS] [XTdHS09]
o [PDEPO0S] [EGL09]
;% [McM10] [BNR*10]
‘5 [SP10] [sIP+13]
3 [LGR11]
k= [BUZC11]
< [JMNS12]
[LSWL13]
Goal Or.||[Kor90] [LHMOS] |[TCM9s] [TCMOYS8]
[Kor92] [1X08] [BPS03] [KZHHO5]
[FK96] [BBDP11] |[WB04] [TSWWO06]
[MMS01] [AH11] |[BWoS] [DPCE+07]
[Ton04] [HIL11] |[vLwt13] [BCO7]
[MHBTO6] [BHE*11]
[GFZ12]
[KPDT13]
[VMGF13]

Table 2.1. Classification of the State of the Research according to the dimensions defined
in section 2.1: Design approach, Automation approach, Implementation technique

12 2.3 State of the Research in Automated Test Data Generation (ATDG)

survey. Our analysis suggests that such areas of the spectrum of technical solutions
to ATDG could be worthwhile investigating in the future.

In the rest of the section, we present our survey on ATDG approaches based
on their main background analysis technique. While the overview of the literature
presented is broad, it cannot be considered complete, moreover some of the work
analyzed escape the proposed classification by overlapping different categories. The
discussion is focused on the approaches more closely related to the one presented in
the thesis namely hybrid symbolic approaches.

2.3.1 Symbolic Execution

SE is a well known program analysis technique that executes programs using sym-
bolic values for variables instead of concrete ones. SE was first proposed in the
seventies as a way to generate test cases but its practical application to industrial
programs was always limited by scalability issues. Section 3.2 introduces SE since
it is one of the fundamental background technique used in the ATDG approach
presented in this paper.

The challenge of making SE scalable, fostered a large amount of scientific work.
In the past decades, researchers proposed a number of algorithmic improvements to
SE being able to analyze increasingly complex software. At the same time the in-
creased availability of cheap computing power and progresses in the field of decision
procedures make people believe that automated SE will be practical soon. This ren-
ovated interest in SE is witnessed by the emergence os many SE tools for the most
common programming languages like C and Java [VPK04; APV07; CDE0S; BDP13].

Three main issues that limit SE effectiveness for test case generation are Path
explosion, Fxpressiveness and Infeasibility:

Path explosion:
Path explosion occurs as SE analyzes each and every execution path in a program.
As the number of paths grows exponentially with the number of conditions in the
program it is generally infeasible to enumerate all of them. Moreover executing
Loops symbolically may never terminate as the number of Symbolic states to be
analyzed might be unbounded.

Expressiveness:
While executing a program, SE builds predicates in certain logical theory to main-
tain a symbolic state of the execution. The FEzpressiveness of the logical theory
employed is limited by the availability of an efficient automatic prover for it. For
this reason only elementary programming language constructs are completely sup-
ported by most SE tools.

Infeasibility:
ATDG approaches based on symbolic execution need to select feasible paths leading

13 2.3 State of the Research in Automated Test Data Generation (ATDG)

to code elements to be covered to be able to generate the corresponding test inputs.
Static analysis of the control flow graph is perhaps the oldest, and best known,
approach to identify such paths but it can only provide over-approximated feasibility
information. SE may need to analyze many infeasible paths, be able discard them,
without making progresses towards the selected coverage criterion.

In this section we discuss the main approaches explored by researchers to improve
scalability of ATDG based on SE:

Dynamic Symbolic Execution

Dynamic Symbolic Execution (DSE) attempts to mitigate scalability issues by using
dynamic information from concrete executions to guide SE. DART and CUTE select
a random input for the program and execute it, SE is first directed along that same
path that is proved feasible and then explores systematically alternative program
paths in depth-first order [GKS05; SMAO05|. The systematic search is obtained by
fuzzing the path constraints collected on the concrete execution path. The new
path predicates characterize test cases that both reach not-yet-covered branches
and discover new paths. DSE can also replace symbolic values with concrete ones
every time the theorem prover cannot deal with them thus partially overcoming SE
expressiveness limitations at the expense of some precision |[TdHO08|. Such approach
is known as Concolic Testing and is described in more details in Section 3.2.4.

Concolic testing is not the only DSE incarnation: Pasareanu et al. tackle the
state explosion problem combining exhaustive SE on code at the unit level with
the concrete execution of system level tests [PMBT08]. Majumdar and Sen propose
hybrid concolic testing that alternates random and concolic testing [MS07]; Ran-
dom testing guarantees an extensive exploration of the program state space while
concolic testing performs an exhaustive local search. Chipounov et al. introduce
relaxed execution consistency models that allow to alternate symbolic and concrete
execution reducing the number of explored paths and operating directly on bina-
ries. The framework allows to choose a performance/accuracy trade-off suitable for
a given analysis [CKC11].

DSE allows to restrict the symbolic reasoning to the part of the code that is
relevant for the properties that need to be verified. Xu et al. proposed Splat, opting
for a mostly dynamic approach that searches for memory violations using symbolic
variables only to represent buffer length thus obtaining a very lightweight analy-
sis [XGMOS|.

One important advantages of DSE approaches is the ability to deal with dy-
namically generated code where static analysis is generally inapplicable. Emmi et
al. tested programs that interact with databases [EMS07|. Thanks to a solver for
string constraints they were able to generate tests for dynamically generated SQL
queries. Artzi et al. proposed Apollo, a tool for testing dynamically-generated Web
pages combining concrete and symbolic execution of PHP code [AKDT08|.

14 2.3 State of the Research in Automated Test Data Generation (ATDG)

Search Space Prioritization
Both static and dynamic SE techniques suffer from the path explosion problem as
they may diverge trying to explore an infinite number of paths that traverse only a
small subset of program elements. For this reason, several studies investigated SE
effectiveness when coupled with different path exploration strategies. Such strategies
use heuristics to prioritize the analysis towards paths that are more promising.

Burnim and Sen defined heuristics that guide SE to achieve higher structural
coverage. The authors propose to measure the distance of an execution from un-
covered branches based on the program control flow graph and negate the nearest
condition to continue the exploration. A simpler approach obtains similar perfor-
mance by selecting the condition to negate using a random sampling of visited part
of the symbolic execution tree [BS08|. Xie et al. introduced an heuristic for path
selection that tries to minimize the distance between the selected paths and the
code elements that are not yet covered taking into account also the state of the ex-
ecution [XTdHS09|. Su et al. propose a predictive path search strategy that drives
the path exploration towards code parts more dense in coverage goals [SJPT13].

Papadakis and Malevris proposed a path selection strategy to reduce the effect
of infeasible paths while targeting branch coverage [PM10]. Their strategy builds
on the empirical observation that the path feasibility likelihood is correlated to the
size of the path constraints. The approach prioritizes short execution paths as a
proxy for paths with simpler constraints.

Li et al. identify less explored paths measuring the length-n subpath program
spectra to approximate full path information. Length-n spectra generalize branch
coverage to by profiling the execution of loop-free program paths with length n. The
corresponding SE strategy proceeds by selecting paths in the direction that, up to
that moment, exercised the smallest number of length-n subpaths [LSWL13].

Other approaches prioritize the state space exploration with the goal of max-
imizing program failures. Csallner et al. proposed Check 'n’ Crash, a tool that
generates test cases by trying to verify possible faults detected by means of static
analysis. DSD-Crasher adds a preliminary step that performs dynamic invariant
detection to build preconditions that can be used to reduce the number of exe-
cutions analyzed [CS05; CSX08|. Cadar et al. proposed EXE a tool that drives
symbolic execution towards possible failures and detects if the current path con-
straints allow any value that causes a failure, and generate the revealing test case
automatically [CGPT06].

Related approaches use SE to check symbolic runtime error conditions along
concretely executed paths. Predictive Testing and ZESTI implement this idea and
can in therefore detect failures that might occur during the execution of any test
following the same program path as the observed one [JSS07; PDM12].

Marinescu et al. target the analysis of software patches that are often source
of failures in evolving software [PDM13]. They developed KATCH, a SE tool that

15 2.3 State of the Research in Automated Test Data Generation (ATDG)

implements path selection heuristics that quickly drive the symbolic execution to
the new code by using a combination of static and dynamic technique. KATCH
prioritizes paths that better satisfy the software patches preconditions using as
heuristic branch distance, weakest precondition and dataflow analysis.

Parallelization
As multi-core processors and distributed systems are getting more and more com-
mon, researchers are investigating parallelizing strategies that could accelerate the
exploration of the symbolic space. The path explosion problem is caused by SE
exploring each execution path independently, on the other side this independence
makes SE algorithms parallelizable.

Staats and Pésareanu apply a Static Partitioning technique to symbolic execu-
tion trees inspired by model checking parallelization approaches. Static Partitioning
computes statically the preconditions that characterize distinct subtrees of the SE
tree, such subtrees can be analyzed independently and in parallel [SP10]. Authors
report time speedups up to 90x using 128 workers.

Starting from the observation that static balancing cannot predict precisely the
actual workload of the worker nodes, Bucur et al. proposed Dynamic Distributed
Exploration (DDE) [BUZC11]. DDE is implemented in the tool Cloud9 and con-
sists of a set of worker nodes performing SE independently. The worker nodes are
coordinated by a load balancer whose goal is to dynamically partition the execution
tree when the processing resources are underutilized.

Specialized Static Analyses
A different line of research explores the possibility of reducing the cost of SE by
introducing ad hoc static analysis steps.

Anand et al. propose type-dependence analysis, a technique that identifies stat-
ically the program variables that can contain symbolic values. Type-dependence
reduces the instrumentation needed to perform SE and supports users in identify-
ing program parts that cannot be treated(e.g., third-party libraries) [AOHO07].

Babic et al. execute binary programs symbolically and drive executions towards
potential vulnerabilities. After executing a first set of test cases and observing
dynamically the jump instructions in the code, a static analysis phase detects po-
tentially vulnerable paths by augmenting the observed control flow with statically
computed jumps [BMMS11]. The vulnerabilities are verified by producing the ap-
propriate test case.

Program abstraction
Program abstraction is a family of program analysis techniques that can also be
effective in mitigating some of the SE issues. The abstraction approaches that
showed to be useful in symbolic execution are very diverse and targeted to different
problems.

Lazy initialization was proposed by Visser et al. for symbolically executing meth-

16 2.3 State of the Research in Automated Test Data Generation (ATDG)

ods that take complex data structure as inputs [VPK04]. When a method for a
complex data structure is executed for the first time, SE creates the corresponding
symbolic structure but leaves it uninitialized. Subsequently, when an uninitialized
field is accessed, the executor creates the corresponding symbolic values considering
all the possible alias conditions systematically. The executor considers nondeter-
ministically the three cases where: 1) the field is initialized to null, 2) the field
references a fresh object with uninitialized fields, 3) the field references a previously
created object. The approach was shown to drastically improve the performance of
SE in several application scenarios.

State matching is a technique that allows to check if a state that is visited during
SE is subsumed by another symbolic state. This information is useful as it can
prevent SE from reanalyzing the same states over and over again. As the number of
symbolic states may be infinite, state matching quickly becomes impractical. Anand
et al. proposed Abstract Subsumption, a technique that enables state matching by
exploiting specific program abstractions in particular for lists and arrays [APV06|.

Jaffar et al. propose to use interpolating theorem provers to mitigate the path-
explosion problem [JMN13]. Automatic interpolation can provide abstract precondi-
tions for the execution of program paths that may reduce the cost of state matching
in SE. The authors show empirically that using interpolation they can achieve higher
path coverage using less resources, they note however that the approach might be
not cost-effective for branch coverage.

Compositionality
Another recent approach to improve scalability of SE is to reason about program
modules separately, deriving function summaries that can be then reused compo-
sitionally. Such approach is mutuated from interprocedural analysis design tech-
niques.

Godefroid et al. proposes to use summaries in the context of concolic test-
ing [God07]. Summaries consist of predicates that act as pre and post conditions
of a function and predicate on input and output variables, respectively. If the pre-
condition of a function encountered in symbolic execution is verified by the entry
symbolic state, the function effect on the state can be summarized by the postcon-
dition. As functions might be called over and over again in a program, reusable
summaries can greatly reduce the number of analyzed paths. SMASH builds sum-
maries on demand and distinguishes between may and must summaries that encode
respectively over-approximated and under-approximated abstractions [GNRT10]

Solver Optimization
Invoking a decision procedure to solve constraints generated with SE is usually the
most time consuming step of symbolic test case generation. Despite the continuous
improvements in the performance of Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) solvers, automated theorem proving is still a largely unsolved prob-

17 2.3 State of the Research in Automated Test Data Generation (ATDG)

lem. In the last years though, it appeared clear that for some specific application
scenarios automated theorem proving can be of practical use.

Researchers in ATDG normally use theorem provers as black box tools and take
advantage of the improvements in the field by simply replacing old provers for new
ones in their tools. In the context of SE it was noticed that it is usually impossible
to select a prover that works best in all situations. Being largely based on heuristics
and implementing different solving approaches, different tools perform better then
others for specific types of constraints. Results from the annual competition for
SMT solvers SMT-COMP show that none of the participants is competitive in all
categories [BDM™13].

For this reason the most advanced symbolic test generation tools run several the-
orem provers in parallel and make use of the results that are computed faster. Saswat
et al. introduced multi-solver support in the SE extension of Java Path Finder and
Palikareva and Cadar implemented multi-solver support in KLEE [APV07; PC13|.
In their papers they observe that different solvers react differently to changes in the
timeout settings and the constraint caching policies implemented in the SE engine.
The idea of running solvers competitively in parallel is justified by the fact that their
relative performance proved to be unpredictable and by the growing availability of
multicore systems that can be used for this purpose.

Erete and Orso propose that symbolic execution and constraint solving tech-
niques should be better integrated, they suggest that the performance of constraint
solvers during symbolic execution can be optimized using domain and contextual in-
formation [EO11]. In their paper they evaluate a novel optimization strategy called
DomainReduce that eliminates potentially irrelevant constraints based on dynamic
execution information on program dependencies. Their extensive empirical evalua-
tion considers DomainReduce and other two classical strategies, namely Incremental
Solving and Constraint Subsumption, providing evidence of the effectiveness of con-
straint optimization strategies.

2.3.2 Model Based Testing

Model Based Testing (MBT) uses models of software to derive test cases. The area
is vast and diverse and is rooted in the tradition of formal methods for verifica-
tion. While traditional formal methods aim to prove that a program adheres to its
specification expressed as a formal model, MBT gives up on completeness and uses
models to select test cases, especially focusing on functional testing [ABCT13].
The most popular software models for MBT are graph based, in particular Finite
State Machines (FSM) and Labelled Transition Systems (LTS). In such cases test
selection works by defining an adequacy criteria on the paths represented in the
model, it does not directly generate test inputs but abstract tests that need to be
instantiated. Nguyen et al. enrich MBT models with input domain specifications to
enable test input generation [NMT12|. Combinatorial algorithms are used to reduce

18 2.3 State of the Research in Automated Test Data Generation (ATDG)

the number of generated test cases while maintaining effectiveness high.

Other MBT approaches make use of Software Model Checking, a technique
that attempts to prove properties of a program by exhaustively checking its state
space [JM09|. Structural coverage criteria can be expressed as temporal logic for-
mulas and model checking algorithms can produce counterexamples that compose
the desired test suite [CSE96; BCHT04; FWAQ09b|. Scaling model checking to large
software is an open challenge and a major limitation for its direct application to
testing [FWAO09a|. Model checking in fact must deal with state space explosion, and
may diverge while trying to cover infeasible elements.

2.3.3 Random Testing and Adaptive Random Testing

Random testing generates test data by sampling randomly the input space of a
program. Random testing is conceptually simple and very flexible: As a matter of
fact, every data type is ultimately a bit stream and it is therefore always possible
to generate a random input for a program by generating a random bit stream. For
its wide applicability, random testing is one of the most popular testing technique,
alone and in combination with other approaches, proving itself effective also in areas
like functional programming that are rarely considered by other approaches [CHO00|.
Moreover random testing is one of the few technique that allow a theoretical analysis
of fault detection by controlling the statistical properties of the selected sampling
technique.

Random testing can easily produce large and diverse test suites, but it is rarely
able to obtain high structural coverage. This depends on the fact that the se-
mantic size of a code element, that is the probability of executing it, can be very
small [OP97]. Similarly, when the relative size of the input sub-domain for which a
failure is observed is small (small semantic size) random testing shows low failure
detection power.

Empirical studies showed however that failure-causing inputs tend to form con-
tiguous regions in the input space [CCMY96|. This suggested the idea that if the
already executed test cases do not show any fault, new test cases should be searched
far from the previous ones. To exploit this fact, Chen et al. propose an enhance-
ment to random testing called Adaptive Random Testing (ART) that maximizes the
distance between test inputs based on a certain metric of the state space [CLMO5].

Following this line of research Wu et al. proposed Antirandom Testing that select
test inputs whose total distance from all previous tests is maximum [WJMJO0S|.
Different distance metrics can be designed and each of them defines a different ART
algorithm. Of particular interest is ARTOO, an approach proposed by Ciupa et
al. that defines a metric for the input space of Object Oriented software taking
into account object values (be it primitive or reference), their dynamic types and
attribute values [CLOMOS].

Despite recent criticism to its practical effectiveness, it is generally recognized

19 2.3 State of the Research in Automated Test Data Generation (ATDG)

that ART outperforms random testing when considering their F-measure: that is
the expected number of test cases required to detect the first failure [AB11].

2.3.4 Search-based Software Testing

Search Based Software Testing (SBST) uses search-based optimization algorithms
to automatically generate test data. Considering the input domain of the program
under test as the search space, SBST can find input vectors that satisfy a given
test goal. Test goals must be formulated as a numerical “fitness function” that is
used to guide the search towards promising areas of the search space. Being largely
a stochastic approach, SBST shares in principle the same limitations with random
testing in exercising semantically small faults. SBST is superior to random testing
when the search objective can be approximated and the optimal solution is not
necessarily needed.

SBST is a wide research area that is only partially related with the work pre-
sented in this thesis, it is rather a complementary approach to ATDG [McMO04].
For this reason in this section we will overview the functioning of the most popular
approaches to SBST and present only a selection of the recent work on the topic.

The first requirement to cast the problem of test generation as a search one is
to define a suitable encoding of test cases. Test input vectors are normally used
for this purpose, the search landscape in the space of program inputs however is
discontinuous and highly non linear while most search techniques work better with
smooth landscapes. A different encodings is usually used for the case of unit testing
of Object Oriented software, in this case chromosomes are represented by linear
sequences of method calls [Ton04].

As we already anticipated, defining an appropriate fitness function for the desired
test goal is a fundamental aspect of every SBST technique. Due to the generality
of the approach, researchers demonstrated different types of test goals using SBST.
Moreover SBST allows to balance different test goals thanks to the possibility to
define multi-objective fitness functions: the size of the test suite, the readability of
the generated tests and their generality are examples of secondary objectives [FZ11].

A substantial part of the SBST research effort has targeted Structural Coverage.
Wegener et al. targeted branch coverage considering every branch as a separate goal.
For every program branch and test input, the fitness function describes how close
the input was to executing that specific branch and is composed of two parts: the
approach level and the branch distance [WBS01|. The approach level considers the
path of the executed test and measures how many of the control dependencies of
the target branch were not executed. The branch distance is the minimum distance
to the target branch that the test execution path reached in its execution, measured
on the program CFG. The two terms are added together after normalization to

20 2.3 State of the Research in Automated Test Data Generation (ATDG)

produce the final fitness function:
approach(branch, input) + distance(branch, input) (2.1)

Search-based techniques can be directed to alternative test goals by defining
appropriate fitness functions: researchers have proposed ah hoc solutions for muta-
tion testing |FZ12|, data-flow coverage [VMGF13|, functional testing of self-parking
systems [WBO04|, non functional testing [ATF09], Object Oriented testing [Ton04],
regression testing [WSKRO06|, integration testing [CAaVP11], system testing of
Graphical User Interfaces (GUIs) [GFZ12], and web testing [AH11].

The second main element that characterizes a SBST approach is the choice of
the search algorithm. SBST has been approached using different metaheuristic opti-
mization algorithms: general stochastic strategies that are not problem specific and
are often nature-inspired. The variety of approaches includes local algorithms that
improve a single individual solution and global algorithms that evolve populations
of solutions. Hill Climbing, Simulated Annealing, Genetic Algorithms, Ant Colony
Optimization and Particle Swarm Optimization are just some of the many meta-
heuristic optimization algorithms, in the remaining of this section we will discuss
the approaches that had larger application in ATDG.

Local Search:
Hill Climbing is a simple local search algorithm that tries to improve one initial
solution by visiting the search space neighborhood. Korel proposed to improve a
test input by considering the input variables one by one and raising or lowering
their numerical value until the maximum fitness is reached [Kor90|. Such approach
suffers from the presence of local maxima, solutions that despite being better then
the neighboring ones are not globally optimal.

Global Search:
Simulated annealing is a global search algorithm that takes the name from a strength-
ening metallurgic treatment. Compared to hill climbing, simulated annealing avoids
being trapped in local optima defining a more relaxed neighborhood relation. At
every iteration the algorithm has a certain probability to switch from the old solu-
tion to a new one that depends on the fitness of the two solutions and on a global
“temperature” value that decreases over time. The probability of discarding the
current solution is higher when the new solution has a better fitness, still the abil-
ity of traversing areas of suboptimal solutions make simulated annealing able to
escape local optima. Tracey et al. used simulated annealing to generate test cases
for both functional and non-functional properties, as well as for testing exception

conditions showing that metaheuristic testing can be a cost effective approach for
ATDG problems [TCMO98|.

Genetic Algorithms:
Genetic algorithms are loosely inspired by evolutionary biology and obtained a lot of

21 2.3 State of the Research in Automated Test Data Generation (ATDG)

attention in the last decade. “Evolutionary” testing is a popular approach to test case
generation in which genetic algorithms are used to evolve a population of test cases
into a test suite maximizing given goals. Genetic algorithms are designed so that
every individual in a population explores a part of the search space independently
of the others, the best performing individuals have higher chances to influence the
evolution of the population as a whole.

The initial population is typically created via RANDOM SEEDING and after that
five steps are executed iteratively: FITNESS EVALUATION, SELECTION, CROSSOVER,
MUTATION and REINSERTION. Optionally other stages can be introduced inspired
by higher level mechanisms that can be observed in nature such as speciation, com-
petition and magration.

RANDOM SEEDING:

The genetic constitution of the initial population can strongly influence evolutionary
testing efficiency. Typical sources of genetic material include random values, con-
stants extracted from source code (e.g., numbers and string) and hand crafted test
inputs. MacMinn et al. use Web searches to improve coverage of Java classes that
require string inputs [MSS12]. Alshahwan and Harman use dynamic analysis to seed
string inputs for dynamic web applications [AH11|. Fraser and Arcuri evaluated dif-
ferent seeding strategies empirically for testing Java classes using SBST approaches
and concluded that the more domain specific information can be included in the
initial population, the better the results [FA12].

FITNESS EVALUATION:

At every iteration of the the evolutionary algorithms, each individual in the popu-
lation is evaluated and is assigned a fitness value. The fitness value measures on a
continuous scale the distance between the individual and the search solution. Fitness
evaluation efficiency is crucial to scale evolutionary algorithms to large populations.

SELECTION:

Normally selection favors “fitter” individuals that exhibit a higher fitness value but
weaker individuals are also preserved to avoid lost in feature diversity. A common
selection strategy assigns a selection probability that is proportional to the individ-
ual fitness value. Kifetew et al. propose to favor the diversity in the population by
adding to the population individuals that express orthogonal features [KPD*13].

CROSSOVER:

The next stage of a genetic algorithm is crossover: individuals are removed paired
randomly and their genes (e.g. input variables values) are recombined into “off-
springs”. Offsprings have equal probability to receive their genes from either parent.

MUTATION:

The mutation phase operates then a mutation to the offspring genes with a low
probability. This step is needed to introduce features in the population that were
not present in previous generations. A common mutation operator is the flip of a
bit in the input sequence.

22 2.3 State of the Research in Automated Test Data Generation (ATDG)

REINSERTION:
A reinsertion strategy decides which part of the old population should be replaced
by the new one. An elitist strategy might replace 10% of the old population with
the offspring that rank best.
SPECIATION:
Speciation and migration influence the crossover stage by limiting the freedom in
which couples can be formed. In this case only individuals with a certain degree
of similarity can be part of a crossover. MacMinn et al. propose to use different
species to investigate the different paths towards a test coverage target [MHBTO06].
COMPETITION:
Competitive approaches contemplate the presence of subpopulations that compete
to supply a larger fraction of individuals to the global population. In this case the
probability of influencing the population evolution is not dependent exclusively on
the fitness of the single individuals but also on their group of belonging.
Evolutionary algorithms perform these steps iteratively until all the given time
budget is consumed.

2.3.5 Hybrid Symbolic and Search-based Testing

Symbolic and Search-base testing are certainly the two most popular fully-automatic
test generation approaches. The two techniques are largely complementary and
their performance differs greatly for different types of software and testing goals.
The most relevant complementaries between the two approaches derives from the
fact that SBST is black box while DSE is white box.

Black box approaches do not need program code for their analysis and are there-
fore robust in presence of instructions for which symbolic reasoning is challenging.
The definition and the evaluation of a fitness functions for instance do not need spe-
cial care when dealing with non linear expressions or with native code. White box
approaches on the contrary can generate more precise and focused tests as they have
access to the program code and their precision is only limited by their background
constraint solvers. It is therefore expected that the two families of techniques could
be combined together fruitfully, producing better results then the ones obtained
when used separately.

The hybrid approaches proposed in literature vary in the degree of integration
they provide. A first line of research uses DSE in alternation with SBST to support
specific programming languages aspects. Inkumsah et al. use SBST to produce
method sequences for testing Object Oriented (OO) software and DSE for generating
their parameter values [IX08|. Lakhotia et al. use DSE in a search-based approach
to reason about pointers and data structures [LHMOS|.

Other approaches use DSE as a component in some of the steps that constitute
a meta heuristic search algorithms. Baars et al. propose to use DSE in the fitness

23 2.4 State of the Research in Reachability Analysis

evaluation step of a SBST approach targeting branch coverage [BHH'11]. Malburg
and Fraser propose to use DSE as an extra mutation operator for SBST [MF11].

Galeotti et al. address the problem of coordinating the alternation between SBST
and DSE by proposing an heuristic approach |[GFA13|. Their evolutionary testing
algorithms switches temporarily to SE every time the mutation operator applied to
primitive values in the test sequence influences the fitness value. Their experiments
show an increase in code coverage of up to 63% (11% on average).

Harman et al. proposed a technique to generate test suites that target strong
mutation testing. Their approach generates test inputs reaching mutated instruc-
tions using DSE and then trying to reveal the mutation using SBST [HJL11|. The
intuition behind this approach is that while reaching a mutation is in essence a
coverage problem, revealing a failure can be addressed as an optimization prob-
lem. Their schema uses SBST to generate a test case that maximizes the distance
between the execution path in the mutated code and in the original one.

A radically different line of research uses meta heuristic search algorithms to
find in the space of the execution paths the ones that are most promising for DSE
exploration. Xie et al. use a state-dependent fitness function to guide the symbolic
path exploration towards paths that are less distant from the test targets [XTdHS09].

2.4 State of the Research in Reachability Analysis

The approaches presented in this chapter so far focus on ATDG without consid-
ering the dual problem of detecting infeasible code elements. With Abstraction
Refinement and Coarsening (ARC) we advocate the need to tackle the two prob-
lems together as the inability to recognize that a relevant number of uncovered code
elements are in reality infeasible undermines the effectiveness of structural coverage
testing criteria. Moreover from the efficiency point of view it can be observed that,
in presence of infeasible code, the testing effort might be wasted in the impossible
task of finding a test suite achieving 100% coverage, without obtaining any increase
in confidence about the quality of the software under test.

Saturation based criteria, that focus on the speed at which coverage increases
during test execution, can be used to predict the effort needed to discover new cov-
erage elements and terminate the testing effort when cost-effectiveness becomes too
low [SDE09]. While saturation rates do not relate to the quality of the produced
test suite, detecting infeasible elements of the coverage domain would influence di-
rectly the computed coverage rates. The rest of the chapter discusses some software
analysis techniques developed in the context of property checking and dead code
elimination that can be applied to exclude elements from structural testing require-
ments.

Many interesting properties of programs can be expressed as reachability prob-
lems, that is the problem of deciding if a code element can be executed under any

24 2.4 State of the Research in Reachability Analysis

program input or not. Safety properties, facts that should never be true in any exe-
cution of the program, belong to this category. Even if it is known that the problem
is not decidable in general, a large body of research on reachability analysis and
detection of infeasible paths has been carried out in the past with applications to
code optimization, safety assurance, and testing.

Proving the infeasibility of a code element is the dual problem of finding a test
case (counterexample) that executes it. The positive solution of one of the two
problems implies the impossibility of solving the other. For this reason the ability
to identify and remove infeasible code would greatly facilitate test case generation
as it would prevent the hopeless search for covering test cases. In this section we
review the main approaches for reachability analysis an in particular its applications
to testing.

Optimizing compilers detect dead code using data flow analysis, a static tech-
nique that over approximates the set of possible values for variables at all program
locations [Hec77]. State of the art dead code elimination algorithms exploit Static
Single Assignment code representation for higher efficiency [CFR191]. Data flow
analysis however is not path sensitive and can sometimes propagate data flow facts
across infeasible paths producing imprecise results.

Symbolic Execution can overcome data flow limitations as it is able to determine
paths feasibility. The increased precision is however paid in terms of efficiency: as
already discussed, symbolic analysis suffers from the path explosion problem and
often does not terminate. Combinations of the two approaches can be used to obtain
simultaneous symbolic analysis of sets of program paths for example by generalizing
results obtained on one path to a possibly infinite number of paths equivalent from
the data flow point of view [DBG10].

Software model checking can be naturally applied to feasibility analysis. Tra-
ditional explicit state and symbolic model checking can scale to millions of states,
but for general purpose software, with an unbounded state space, this is still not
enough [BMDH90].

Counterexample Guided Abstraction Refinement (CEGAR) approaches to model
checking contrast the state explosion by building a finite abstraction of the pro-
gram behaviors on which they check the desired properties. Due to the abstraction
however, a violation detected in the model might be spurious in the context of
the real program. The identification of spurious counterexamples (property viola-
tions) triggers a refinement step that adds information to the model thus excluding
some infeasible behaviors. This process is performed in a loop that might diverge
but is guaranteed to progress [HJMS02|. Incremental software model checking ap-
proaches based on satisfiability checking tools proved to be very effective and par-
allelizable [Brall; CG12|.

Gulvani et al. propose to use symbolic test case generation to provide counterex-
amples for the abstraction refinement steps [GHKT06; BNRT10|. When SE detects

25 2.4 State of the Research in Reachability Analysis

an infeasible path, abstraction refinement is performed in the form of predicate ab-
straction: a predicate on the state variable of the program is introduced in the model
to exclude the infeasible path from the abstraction. Beyer et al. propose to refine
not one infeasibility at a time, but thanks to the identification of paths invariants,
i.e. conditions valid on a set of infeasible paths, to remove a large number (possibly
infinite) of spurious paths [BHMRO7].

While the approaches described so far aim for maximum precision, imprecise
approaches try to detect a large portion of infeasible code using shallow syntactic
analysis. Such approaches might lead to false positives meaning that some feasible
paths can be wrongly classified as infeasible. Ngo and Tan use pattern matching
to detects infeasible paths [NT07; NT08|. They identified a small number of code
patterns that are responsible for the infeasibility of large part of the paths including
identical /complement-decision and mutually-exclusive-decision. The approach con-
sists of detecting such code patterns using textual pattern matching. The authors
report experiments on a small set of medium sized Java programs where they obtain
a precision of 96% and a recall of 100%.

26

2.4 State of the Research in Reachability Analysis

Chapter 3

Foundations

Abstraction Refinement and Coarsening (ARC) is an approach for
Automated Test Data Generation that combines several static and dy-
namic software analysis techniques. The foundations of ARC lay in a
small number of well known software analysis approaches. This chapter
provides a short introduction to Weakest Precondition calculus, Symbolic
Execution, Abstraction Refinement and Constraint Solving, with the pur-
pose of supporting the understanding of the remaining of the Thesis.

This thesis proposes an approach to Automated Test Data Generation (ATDG)
called Abstraction Refinement and Coarsening (ARC) that combines state of re-
search and novel static and dynamic software analysis techniques. Before discussing
the components of our approach and describing their interaction (Chapter 4), we
introduce the fundamental software analysis approaches they are built upon.
Section 3.1 describes deductive verification and in particular Dijkstra’s Weakest
Precondition (WP) Calculus. Section 3.2 describes Symbolic Execution (SE) and
reports about its applications to the ATDG problem. Section 3.3 describes Ab-
straction Refinement, an approach that makes Model Checking techniques scale to
Software Verification problems. Section 3.4 describes constraint solving, a technique
that automatically generates values that satisfy given logical constraints. Constraint
solving enables the automation of a large class of software analysis techniques.

3.1 Weakest Precondition Calculus

This section introduces Deductive Verification, the axiomatic approach to software
verification by E. W. Dijkstra. We complement the original WP formalization with
recent improvements and extensions that allow its application to modern program-
ming languages and increase its performances.

27

28 3.1 Weakest Precondition Calculus

3.1.1 Deductive Verification

Deductive Verification attempts to verify formal properties of programs, it requires
the program to be specified in predicative logic form, and aims to prove deductively
that the program implementation implies the specification. Deductive verification
achieves the goal by employing a logical calculus that defines the semantics of a pro-
gramming language and provides rules to reason about the behavior of programs.
Application of Deductive Verification are static proof of the absence of runtime
errors, program comprehension, software optimization, code generation and debug-
ging.

The origin of Deductive Verification can be traced back to the late sixties and
in particular to the work of Robert W. Floyd and Tony Hoare [Flo67; Hoa69|.
Floyd and Hoare started a line of research that aims to use mathematical logic as a
foundation for computer programming with the goal of providing a sound technique
to design algorithms and prove the correctness of their implementation.

As Hoare himself noted in a recent retrospective, the impact of Deductive Veri-
fication was hard to foresee [Hoa09|. In particular while Deductive Verification was
intended as an alternative to Software Testing, Testing become the preeminent tech-
nique for assessing software reliability. Hoare observes that the recent progresses
of automated verification tools and the growing interest in software security might
be the key to wider industrial application of Deductive Verification. As the world
economy relies more and more on Software Systems, the higher economic impact of
software bugs may justify the application of more expensive verification approaches
in some application domains.

3.1.2 Reasoning about Programs

To reason about the correctness of an imperative program it is useful to consider it
together with its specification as a triple:

{P}c{Q} (3.1)

Expression 3.1 is called a “Hoare Triple” and includes a proposition P called
precondition, a proposition () called postcondition and a command c. Deductive
Verification provides rules to build Hoare triples that are correct, that means that
assuming the precondition P the command ¢ produces a program state where the
postcondition @ is valid.

Deductive Verification promotes the view of a program as a predicate trans-
former. Predicates can be used to characterize program states and imperative pro-
gram are functions that map program states to program states. Deductive Verifi-
cation provides semantics for imperative programming languages by specifying how
each command of the language affects program states.

29 3.1 Weakest Precondition Calculus

Two levels of correctness are generally considered for a Hoare triple: total and
partial correctness. Total correctness prescribes that if command ¢ is executed in
a state in which proposition P holds, then it terminates in a state in which @
holds. Partial correctness states that if command c is executed in a state in which
proposition P holds, then it terminates in a state in which proposition @ holds
unless it aborts or does not terminate. In a nutshell total correctness implies partial
correctness but requires the termination of command c.

Deductive Verification approaches might support forward or backward reasoning.
A forward approach defines how the postcondition) can be computed as a function
of a command ¢ and the precondition P. Conversely a backward approach allows to
compute a precondition P that guarantees that () is a postcondition of the execution
of command c¢. Hoare Calculus is an example of forward Deductive Verification, in
the following of this section we introduce Dijkstra’s Weakest Precondition which is
the main backward verification approach.

3.1.3 Dijkstra’'s Weakest Precondition

Edsger W. Dijkstra introduced the Weakest Precondition Calculus as a general-
ization of Hoare Calculus to reasons about total correctness of imperative pro-
grams |Dij75; Dij97]. The Weakest Precondition function wp(c, Q) takes a com-
mand ¢ and a postcondition () and gives a precondition for ¢ that guarantees the
postcondition @, thus satisfying the Hoare triple 3.2.

{wp(c, @)} ¢ {Q} (3.2)

Moreover the precondition wp(c, @) is the weakest of all the prepositions P satisfying
the triple {P} ¢ {@}. This property implies that to prove a preposition {P} ¢ {Q}
we can instead compute the wp(c, Q) and prove the implication P = wp(c, Q).

WPs are defined recursively based on the abstract syntax of statements. Dijkstra
developed the language of Guarded Commands, a small language for writing abstract
nondeterministic programs. The wp function for guarded commands is defined
recursively and follows the syntactic structure of the language constructs: For each
language construct ¢, Dijkstra gives an equation that defines the wp(c, Q) function
in terms of the postcondition parameter).

Dijkstra’s WP constitutes an axiomatic semantics for the language of guarded
commands, and gives a calculus for Hoare logic that allows to build valid deduc-
tions about program properties. Unlike other approaches, the goal of WP is to
help programmers develop correct software by construction instead of merely define
unambiguously a programming language. As the title of the book “A Discipline of
Programming” suggests, Dijkstra aims to create an effective programming method-
ology by reducing the problem of verifying programs to the problem of proving
theorems.

30 3.1 Weakest Precondition Calculus

3.1.4 The WP Functions

In the following we introduce the wp function for an imperative language like C
following Dijkstra definitions. In this work we focus on deterministic programs
and therefore we do not consider the nondeterministic features of the Guarded
Commands language.

Empty Statement:

wp(skip, Q) = Q (3.3)

The empty statement has no effect on the program state. @ itself is therefore
the precondition that guarantees the execution to terminate in a state where the
postcondition @ is valid.

Assignment:

wp(z:=t,Q) = Q[t/x] (3.4)

The assignment statement modifies the state of the program replacing the variable
value on the left hand side of the statement with the value on the right hand side.
Similarly the WP function operates on the postcondition @) by replacing all the
occurrences of variable ¢t with the value z.

For a concrete example consider the postcondition @ = a > 10 and the command
that increments variable a by 1. To assure that after the increment variable a is
bigger then 10 is enough to guarantee that before the execution, variable a is bigger
then 9:

wp(a:= a+1l,a>10)=a+1>10=a>9

Sequence of Statements:

wp(sl;s2,Q) = wp(sl, wp(s2,Q)) (3.5)

The second instruction in a sequence operates on the state as it was modified by
the first instruction. Similarly the WP function of a sequence of commands is the
composition of the WP functions of the commands in the sequence.

Consider the postcondition) : a > 10 and the sequence of two commands a =
a X a;a = a+ 1. To assure that after the increment variable a is bigger then 10 is
enough to guarantee that the before the execution variable a is bigger then 9 which
can be guaranteed by the precondition that a x a > 9.

wp(a:= axa;a:= a+1,a >10) =

=wp(a:= a X a,wp(a:= a+1,a > 10)) =

=wp(a:= a X a,a>9) =

31 3.1 Weakest Precondition Calculus

=a’>9
Conditional:

wp(if b then cl else 2,Q) = (bAwp(cl,Q)) V (—bAwp(c2,Q)) (3.6)

In executing a conditional statement, command cl in the then part of the instruction
is executed only if the condition b evaluates to true, if b is false command ¢2 is
executed instead. Similarly the WP function for a conditional is reduced to the WP
of ¢l if b is valid and to the WP of ¢2 otherwise. Consider the postcondition @ : a >

10 and the code to compute the absolute value of variable a: if a < 0 then a:=—a.
The WP function distinguishes the two cases in which the condition a < 0 is valid
or not valid and reduces to the disjunction of the WPs of the two commands a:=—a

and skip respectively.
wp(if a <0 then a:=—a else skip,a > 10) =

=(a<0Awp(a:=—a,a>10)V (a > 0 A wp(skip,a > 10)) =
=(a<0A—-a>10)V(a>0Aa>10)

Loop:
wp(while b do ¢,Q) =3k :k>0A P(k) (3.7)
Where P(k) is defined inductively:
P0)=-bAQ (3.8)
P(k+1) =bAwp(c, P(k))

As Dijkstra’s calculus aims for total correctness, termination must be enforced.
Formula 3.7 states that there must exists a finite number of iterations of the loop
that ensure termination in a state satisfying postcondition (). In Formula 3.8 it is
possible to recognize the intuitive semantics of a loop: at every iteration the body
¢ of the loop is executed on the state resulting from the execution of the previous
iteration. After the last iteration the loop condition b is not valid anymore and the
postcondition () must be satisfied.

A classic example that illustrates the WP computation for a loop is to prove that
the sum of the first n natural odd numbers is equal to n?. Consider the precondition
n > 0 postcondition @ : s = n? and the code

i:=0; 5:=0; (3.9)
while i # n do (3.10)
Q=i+ 1; (3.11)
s:=5+4 21 — 1; (3.12)

32 3.1 Weakest Precondition Calculus

In this particular case, a closed form for P(k) can be found using formula 3.8
for a small number of iteration and then generalizing:

P :(i#n)A(G+1=n)A(s+2(i+1)—1=n?
(i#n)A(i=n—1)A(s=n*—2n+1)
(i=n—-1)As=(n—1)>
P2):(iZn)A({i+1=n—1)A(s+20G+1)—1=(n—1)%)
(i=n-2)A(s=(n—-2)%

Pk):(i=n—Fk)A(s=(n—k)?) (3.13)
The precondition of the loop is therefore obtained from formula 3.7:
Fk:E>0Ni=n—kAs=(n—k)? (3.14)

Continuing backward in the code, we can now compute the W P of the instructions
in Line 3.9 given the postcondition 3.14 and finally prove that:

n>0 = Fk:k>0A0=n—kA0=(n—k)? (3.15)

Choosing k = n the implication is verified and therefore the property for the whole
program.

The existential WP function for loops in 3.7, although intuitive, is seldom useful
for the effective derivation of proofs of programs. Closed forms for the P(k) are not
always possible and therefore alternative proof strategies are needed. The Funda-
mental Invariant Theorem for Loops |Dij97| allows the proof to abstract from the
exact number of times that a loop body is executed:

I Nwp(while b do ¢,True) = wp(while b do ¢,I A —b) (3.16)

where [is called the Invariant of the loop. I holds at the beginning of the loop and
is preserved by the loop body ¢ and is therefore valid at every iteration of the loop:
I = wp(c,I)

In theorem 3.16 the final postcondition I A —b is the one that holds after the last
iteration of the loop, when the condition b is not valid anymore. The antecedent
of the implication states that I holds initially and that the loop terminates, in fact
termination is required by the conjunct wp(while b do ¢,True). Theorem 3.16
states that an invariant I that is strong enough to verify the property IN—-b — @

33 3.1 Weakest Precondition Calculus

implies the wp(while b do ¢, Q) and can therefore be used in proofs of properties
as a stronger replacement of the actual WP.

Loop invariants cannot in general be identified algorithmically and constitute the
main challenge in automating the WP calculus. Software developers are required to
manually annotate loops with appropriate invariants to support machine checked
program verification. Researchers proposed heuristic solutions to the problem of in-
ferring loop invariants automatically from the target postconditions [SGF09; FM10].

3.1.5 Weakest Precondition for Industrial Programming Languages

The guarded commands language proposed by Edsger W. Dijkstra is an abstract pro-
gramming language that focuses on simplicity. Industrial programming languages
support higher level program constructs like procedures and classes, and need to
be interpreted efficiently by digital computers. Building a WP Calculus for such
languages poses major challenges, both technical and conceptual. In this section
we will discuss extensions to the Dijkstra’s WP that are commonly employed to
analyze industrial programs in tools like Frama-C [CKK'12], ESC/Java2 [FLL"02]
and KeY [BHS07].

Procedures:

The Guarded Commands language does not support procedures. Dijkstra justified
his design decision pointing out the complexity arising from supporting recursion:
“the semantics of a repetitive construct can be defined in terms of a recurrence
relation between predicates, whereas the semantic definition of a general recursion
requires a recurrence relation between predicate transformers. This shows quite
clearly why I regard general recursion as an order of magnitude more complicated
than just repetition” [Dij97].

Refinement Calculus addresses the problem by introducing Specification State-
ments. The simple specification statement [P, Q)] comprises two predicates over the
program variables and means “assuming an initial state satisfying P, establish a
final state satisfying Q" [Mor88|. Specification statements treat procedures as black
boxes in the WP and enable compositional reasoning.

Refinement Calculus advocates a top-down approach to program verification.
In fact every specification statement can be used as an assumption in proofs even
before being verified with respect to its own implementation. This strategy is known
as Stepwise Verification, an iterative approach where abstract formal specifications
are gradually refined to concrete executable code.

Machine Arithmetics:
Dijkstra’s WP calculus is independent from the theory in which the predicates
involved in the verification are defined. It can be shown that WP is a relatively
complete calculus, meaning that its completeness depends on the completeness of
the underlying theory [Coo78|. Under such assumptions every valid specification

34 3.1 Weakest Precondition Calculus

can be derived applying the wp function.

A practical implementation of WP calculus however needs to find a compromise
between accurate modeling of machine arithmetics and completeness. Moreover
automating the verification process requires the availability of suitable and efficient
decision procedures. Several models of arithmetics have been proposed for machine
integral and floating point arithmetics the most common being the Natural, the Real
and the Bitvector models.

The Natural model uses the infinite mathematical integers, which are well sup-
ported by state of the art automated provers. Such solution does not take into
account bit-level machine operations as well as integer overflow. While overflow can
be modeled using the modulo operator on natural integers, such strategy reduces
significantly the efficiency of automated solvers.

The Real model can be used to approximate floating-point operations. The dis-
tance between the semantics of mathematical real numbers and IEEE floating point
numbers is however considerable. Higher precision can be obtained by considering
the different rounding modes prescribed by the standard but at the cost of reduced
performance [DM10)].

The Bitvector model mirrors directly the binary representation of data as used
in physical machines. This solution represents the most precise modeling of machine
arithmetics, especially because automated solvers for bitvector arithmetics support
all the machine operators, including non linear ones. Bitvector models are preferred
for the verification of code where non linear arithmetics plays an important role as
it is the case for example in cryptographic libraries.

Heap Memory:

Another common feature of industrial programming languages is the ability to allo-
cate memory dynamically on the memory heap and access it directly using pointers.
The memory heap might be accessed through dynamically computed addresses and
pointer variables might alias each other, that is refer to the same memory loca-
tion using different names. Reasoning about the heap requires the definition of an
abstract memory model and a suitable logic for it.

The simplest model commonly used in axiomatic reasoning approaches considers
the whole memory heap as a single array of contiguous memory locations. The
heap is therefore modeled as a function mem that takes one argument, the memory
address a, and returns the value v stored at that memory location.

v = mem/(a) (3.17)

The logical theory of equality with uninterpreted functions matches such model and
is supported by many automated provers (see Section 3.4.2).

However, such model, which is characterized by the congruence axiom (see Equa-
tion 3.20), can only represent immutable memory states. Imperative programming
languages instead have the ability to change the program state. Two (interpreted)

35 3.1 Weakest Precondition Calculus

functions, select and store, can be used to model the familiar imperative memory
access semantics:

select : takes an array mem and a memory address a and returns a value v.

store : takes an array mem, a memory address a and a value v and returns a new
array mem’ that is equal to mem at every location except for location a where
the stored value is v.

John McCarty formalized the axiomatic semantics for arrays introducing the
following axiom that defines the functions select and store [McC93]:

select(store(mem, a,v),da’) < if a = a' then v else select(mem,a’) (3.18)

Informally one could say that the function store “masks” the original value in the
array with the new value, modeling in this way the modified array.

Equality between arrays can be expressed via the extensionality axiom which is
borrowed from the Zermelo-Fraenkel set theory:

Va(select(mem, a) = select(mem/, a)) = mem = mem’ (3.19)

Informally it states that if two arrays store the same value at every location, then
they are equal.

Combinatory Array Logic (CAL) is an extension to the classic array theory de-
veloped by Moura et al. that tries to balance expressivity and efficiency [dMB09].
CAL adds constant-value arrays and maps to McCarty’s theory and supports a
restricted form of extensionality. An efficient decision procedure for CAL is im-
plemented in the Z3 constraint solver by reduction to the theory of uninterpreted
functions.

The Global array memory model makes no assumptions on the structure of data
stored in the heap. This can lead to reduced performance in program verification as
any symbolic memory address can be alias of any other. Static may-alias analysis
can be used to overapproximate the set of alias conditions that hold at every program
point. Beckman et al. observe that may-alias analysis are rarely precise enough to
produce satisfactory results and use instead dynamic alias information to compute
path-oriented weakest precondition [BNR110].

The Disjoint Regions memory model represents memory as a collection of arrays
corresponding to the memory region allocated in the program. Regions have a
distinct base address, a fixed size and do not overlap. Pointers are defined as offsets
with respect to the region they point to. This approach can rule out infeasible aliases
between different memory regions resulting in improved performance [CMTS09].

A different approach that enables reasoning about dynamically allocated arrays
and pointer arithmetic is Separation Logic (SL). Instead of using traditional first

36 3.1 Weakest Precondition Calculus

order logic to reason about theories suitable for the description of memory, SL ex-
tends Hoare Logic to include specific commands and logic operators for allocating,
accessing and modifying memory [Rey02]. The goal is to have a logic that fos-
ters local reasoning by writing predicates that refer only to the portion of memory
accessed by the program and not to the entire system state.

The language used for SL predicates correspond better to the way program-
mers reason about data structures. It has been observed in fact that despite the
unquestionable expressivity of first order logic, graph based representation of data
structures is more intuitive, concise and effective [BRC*12]. SL predicates about
heap memory are easily expressible in graphical form and they proved to be effective
especially in proving inductive properties on linked data structures.

Object Orientation:

Object Oriented (OO) languages allow programmers to reason at a higher abstrac-
tion level then procedural ones, promoting modular software development. While
some of the fundamental features of OO languages like encapsulation and inheri-
tance can be naturally casted to a rely/guarantee framework compatible with WP
based approaches, dynamic features like dynamic dispatching and reflection pose a
major challenge to deductive verification. For this reason OO verification is usually
limited to abstract data types with inheritance, an abstract construction that only
models the static features of OO languages for example by restricting inheritance
in presence of pointers and references.

The specification for an abstract data type can be given in terms of the func-
tional specification of the operations (or methods) that the type supports. The
specification of a method is sometimes called its contract, as it both describes the
method behavior and the conditions that should hold in the caller when the method
is executed. Different types of conditions have been proposed in the context of
the Design by Contract (DbC) design methodology including method preconditions,
postconditions, writes clauses and class invariants [Mey92].

A condition on the caller of a method is called a method precondition, it is a
predicate that should hold on the method entry. A condition on the method itself
is called a postcondition, a predicate that should hold just before the execution
control exits the method. Method contracts can also include writes clauses that
specify which parts of the program state might be modified by the method execution.
Moreover it is often useful to specify type invariants, predicates valid in any of the
visible states of the abstract data type, thus whose validity is preserved by the
execution of all methods.

The DbC methodology uses a specification language that includes all of the
elements listed in the previous section and poses three semantic restrictions on how
contracts can interact with inheritance:

e Preconditions cannot be strengthened in a subtype.

37 3.1 Weakest Precondition Calculus

e Postconditions cannot be weakened in a subtype.
e Invariants of the supertype must be preserved in a subtype.

These restrictions are equivalent to the design principle known as the Liskov’s sub-
stitution principle that defines the same behavioral requirements for subtyping in a
concise and abstract form:

“Let ¢(x) be a property provable about objects x of type T'. Then ¢(y)
should be true for objects y of type S where S is a subtype of T.” [LW94]

Although DbC is a design methodology, the availability of contracts can be
exploited for quality assurance tasks including testing and deductive verification.
Execution environments for languages that support DbC can use contracts to test
the validity of the specified conditions at runtime, and in this way detect devia-
tion of the system behavior from the specified one. The most well known deductive
verification systems for OO languages like Frama-C, ESC/Java2 and KeY, use spec-
ification languages inspired from DbC and a form of Refinement Calculus to reason
about inheritance [CKK*12; FLLT02; BHS07].

Reasoning about inheritance remains an open challenge for automated approaches
to OO deductive verification. In particular most techniques pose strong limitations
to the possibility of a subtype to restrict the behavior of its base type. This allows
the reuse of a large part of properties that have been proved for supertypes in the
verification of their subtypes. Allowing a derived type to restrict the behaviour of
its supertype requires in fact that every inherited method is verified from scratch.
In the context of inheritance-rich code that is typical of the application domains
that mostly benefit from OO design, both the enforcement of strong subtyping re-
strictions and the repeated verification of common properties is infeasible.

Parkinson and Bierman proposed Separation Logic (SL) as a means to support
the verification of OO inheritance with minimal reverification [PB08]. This approach
requires the developers to make an extra specification effort: static specifications
are needed to verify method implementations and direct method calls, and dynamic
specifications for calls that are dynamically dispatched. The relationship between
static and dynamic specification also needs to be stated explicitly. The dynamic
specification is however the only part involved in the dynamic subtyping verification
thus reducing the overhead of supporting all forms of inheritance.

jStar is a tool for automatic verification of OO Java programs that combines
SL with symbolic execution. The specification requirements are reduced thanks to
abstract interpretation techniques able to annotate automatically loops with non-
trivial invariants. jStar was used to verify the implementation of four popular OO
design patterns (subject/observer, visitor, factory, and pooling) that escape tradi-
tional verification approaches [DPOS].

38 3.2 Symbolic Execution

Concurrency:
While Dijkstra WP calculus can be used to verify sequential algorithms, its exten-
sion to concurrency poses major challenges. In fact despite WP based semantics for
concurrent language constructs have been proposed, automated deductive verifica-
tion of concurrent programs remains impractical [SZ92|.

The predominant approach to deal with concurrency is based on temporal logics
but it is limited to finite state verification. Temporal logics introduce time modalities
into the specification language so that time constraints can be expressed. Efficient
model checking algorithms have been discovered for certain classes of temporal logic.

Concurrent SL aims to bridge the gap between sequential and concurrent ver-
ification, its goal is to enable the verification of global properties of concurrent
programs by reasoning locally. In particular Concurrent SL can reason about the dy-
namic transfer of ownership of shared mutable data among execution threads [Bro07].

3.2 Symbolic Execution

Symbolic Execution (SE) is static program analysis technique that finds application
in software testing, in particular for test input generation [PY07]. SE explores
the program paths and computes the conditions for their execution. The test case
executing a certain path can be obtained by finding concrete values satisfying the
corresponding conditions.

Similarly to Hoare calculus presented in Section 3.1.2, SE uses the predicate
transformers semantics of programs and applies deductive forward reasoning to an-
alyze their behavior. Unlike the verification approaches presented in the first part of
this chapter, SE is path-oriented as it analyzes program paths individually. As pro-
grams paths are typically infinite, SE is an incomplete analysis and only considers
a subset of the possible program behaviors. This explains why SE finds applica-
tions mainly in testing while Hoare Calculus and WP are better suited for proving
program properties.

The main feature that distinguish SE over Hoare calculus is the fact that SE is a
fully automated analysis. The requirement of full automation prevents many of the
techniques discussed for WP to be fruitfully applied in the SE context, in particular
it is the case for loop invariants and SL, whose automation is still an open research
problem.

The idea of generating test cases using SE dates back to late 70’s with the seminal
works of Boyer et al., King and Clarke [BEL75; Kin76; Cla76]. An account for the
recent progress in SE for test case generation is given in Section 2.3.1. This section
introduces the SE analysis technique and its dynamic extension named Concolic
Ezecution with emphasis on their application to testing.

39 3.2 Symbolic Execution

3.2.1 The Symbolic Execution Analysis

SE executes programs using symbolic values as inputs. The values of the variables,
and more in general the program state, are represented using symbolic expressions on
those inputs symbolic values. At every moment during the execution, the (symbolic)
state of the program being executed includes the program counter pointing to the
next instruction, the symbolic values of the variables and the Path Condition (PC).
The PC is a predicate on the symbolic input values, that represents the condition
that the input has to satisfy for the execution to follow the associated path.

When SE encounters a conditional instruction, the branch condition is evaluated
in the symbolic state and conjuncted to the PC. If the updated PC is satisfiable,
the obtained input values constitute a test input driving the execution through
that program path. If the PC is not satisfiable, the corresponding program path is
infeasible and its exploration is therefore stopped.

The space of all the possible symbolic executions can be represented in a tree:
the symbolic execution tree. In such tree nodes represent symbolic program states
and arcs represent program statements. SE analysis can explore the symbolic ex-
ecution tree according to different strategies, depth-first and breadth-first being
common choices. The detection of an infeasible path makes the exploration strat-
egy backtrack and continue along a new direction.

x X,y Y
PC: true
T L
x X,y Y X,y Y
int x, y: POXY PC:X<=Y
1: if (x> y) { EXEY Y
28 x=x 4y PCIX>Y
3: y=X-7Y; 3
4: X=X -Y; Cx: X+Y,y: X
5: if (x -y > 0) 3,P,C,5i(,>,Y,,,,I
6: assert(false); U 2T
} :x:Y,y:X ;
5 (PC:X>Y 5
xY,y: X : xY,y: X
' PC: X>Y & Y-X>0: PC: X>Y & Y-X<=0
. FALSE!:

Figure 3.1. Code that swaps two integers when the first is greater then the second, and
the corresponding symbolic execution tree, where transitions are labeled with program
control points. Image from Kurshid et al. [KPV03].

In the following we illustrate the SE analysis technique on a simple example by

40 3.2 Symbolic Execution

Kurshid et al. [KPVO03|. Figure 3.1 shows the code that swaps the values of two
variables and y when the initial value of x is greater then the initial value of
y. The right side of the figure reports the corresponding symbolic execution tree
produced by the analysis.

The analysis starts with an empty symbolic state. Variables x and y are the
inputs of the program and therefore they are assigned free symbolic variables: X
and Y respectively. The PC is initialized to true as every execution path traverses
the program entry point. The program counter is initialized to 1, the first instruction
that needs to be executed.

SE encounters first the conditional instruction at line 1. The execution follows
nondeterministically each of the two branches of the code, creating two different
paths characterized by disjoint PCs. When following the else branch, SE evaluates
the condition ! (x > y) in the current symbolic state obtaining X <=Y, it updates
the PC accordingly and backtracks as there is no other instruction to be executed
on that path. The execution proceeds with the then branch of the conditional
instruction. SE updates the PC with the symbolic evaluation of the condition x >
y that is X > Y. The program counter is changed to 2, the next instruction along
the current path.

Instructions 2, 3 and 4 are assignments that modify the symbolic execution state.
The right-hand side of the assignment is first evaluated to a symbolic expression in
the current symbolic state, the symbolic value of the variable on the left-hand side is
then replaced with the computed expression. This behavior matches the semantics
of assignments as defined using the WP calculus and expressed by the Equation 3.4.

The execution of statement 5 determines a second branching in the symbolic
execution tree. Along the then branch, the condition x - y > 0 is evaluated to
Y-X>0 and conjuncted to the current PC producing the predicate X>Y & Y-X>O.
As this path condition is contradictory, the analysis can conclude that the path
1—-2—3—4—5—6 is infeasible and backtrack to analyze the else branch. Along
the else branch, the condition ! (x - y > 0) is evaluated to Y-X<=0 and conjuncted
to the current PC producing the predicate X>Y & Y-X<=0. SE has now reached the
end of the program and all branches have been explored, the analysis is therefore
concluded.

The SE analysis we performed, explored three distinct paths in the program,
each of them characterized by a different PC. Generating a test case exercising each
of these paths amounts to solve the corresponding PCs if possible. The PC of path
(1) is X<=Y which is satisfied for example by the values X = 1,Y = 2. The PC
of path (1,2,3,4,5,6) is contradictory and is therefore infeasible. The PC of path
(1,2,3,4,5) is X>Y & Y-X<=0, and is satisfied by X =2,Y = 1.

41 3.2 Symbolic Execution

3.2.2 The Path Explosion Problem

The program in Figure 3.1 can only be executed along three different paths. More-
over each of the execution can be analyzed symbolically without any approximation
that would sacrifice completeness. However in general, enumerating all the paths in
a program is unrealistic as the number of paths grows exponentially with the num-
ber of conditional instructions. Moreover in the presence of loops or recursion, the
length of a single path may become unbounded and therefore its symbolic analysis
might never terminate. These problems are known as the path explosion problem
and the path divergence problem, respectively, and represent the main limitation to
the industrial applicability of SE, together with the decidability of the underlaying
language semantic model (see Section 3.1.5).

At this point it is important to consider that when the goal of the analysis is
testing, the theoretical incompleteness of the approach might not be a problem.
Given a test acceptance criterion, for instance a structural coverage criterion, it
might be possible to perform a SE analysis powerful enough to satisfy the criterion.
In this perspective researchers developed several strategies for exploring the SE tree,
with the goal of optimizing specific testing goals.

Search heuristics aim to guide the exploration of SE trees prioritizing paths that
are likely to achieve the search objectives fast. Such heuristics are often based on the
Control Flow Graph (CFQG) of a program and take advantage from the higher level of
abstraction of such models to approximate the likelihood of a path to cover a target
test element via graph algorithms like shortest path or path spectra [BS08; PM10;
LSWL13|. Other heuristics are based on the dynamic analysis of test executions and
determine a state-based fitness function for a candidate symbolic path [XTdHS09].
Heuristics are hard to evaluate and compare, and it is always possible to find specific
cases for which they do not perform well. The work presented in this PhD thesis
can be seen as a search strategy for symbolic executions trees, in particular ARC
proposes a goal-oriented bidirectional search strategy that aims to overcome the
problem of existence of cases for which a particular heuristic does not perform well.

Beside incompleteness, another aspect that clearly sets apart SE for testing from
deductive verification techniques is the focus on automation. While WP sacrifices
complete automation for completeness, for example by requiring manual annotations
to the code and integrating interactively with theorem provers, SE techniques aims
to be fully automatic and are therefore based on fully automated theorem provers
like the Satisfiability Modulo Theories (SMT) solvers (see Section 3.4). The focus on
automation has implications especially in the treatment of loops: as automatic loop
invariants are seldom available SE analysis unrolls loops to sequences of conditionals
and apply heuristic techniques to avoid non termination.

In a recent empirical study, Xiao et al. observed that the most common strate-
gies to deal with the path explosion and path divergence caused by loops is to bound
the number of loop iterations and use heuristics to guide the search to uncovered

42 3.2 Symbolic Execution

branches and away from infinite paths [XLXT13]. They considered the problem of
generating test cases for branch coverage and concluded the following: (1) Loops
that are executed a fixed number of times and loops that are input dependent but
do not compromise the coverage of subsequent branches can be easily handled by
bounded iteration and search guiding heuristics. (2) These two techniques can ad-
dress loop problems caused by about 65% of the remaining loops (input dependent
and affecting the coverage of subsequent branches). The study identifies directions
to improve the treatment of loops in SE including novel heuristics and loop sum-
marization.

3.2.3 Complex Constraints

The program in Figure 3.1 only uses integers and linear arithmetic. As we already
observed in Section 3.1.5, industrial software makes use of programming language
features that are not easily modeled in ways that allows for efficient deductive
reasoning. SE might as well produce path conditions with complex constraints
that are not manageable by automatic constraint solvers.

It may not always be possible to solve path constraints as the problem of solving
the general class of constraints is undecidable. Moreover, it is possible that the
computed path constraints become too complex (e.g., constraints involving non-
linear operations such as multiplication and division and mathematical functions
such as sin and log), and thus, cannot be solved using available constraint solvers.
The inability to solve path constraints reduces the number of distinct feasible paths
that a symbolic execution system can discover

In SE, the analysis of complex constraints can be simplified by dynamic software
analysis techniques. As a matter of fact, unlike the other deductive verification ap-
proaches, SE is path-based and can therefore be coupled naturally with concrete
executions. This idea is exploited in the class of approaches called Dynamic Sym-
bolic Execution (DSE). The most popular DSE technique is concolic execution, it
synthesizes in the name its main components: concrete and symbolic execution.
Section 3.2.4 introduces concolic testing and shows how it helps overcome some of
the limitations of static symbolic analysis.

3.2.4 Concolic Testing

Concolic Testing has been proposed as a fully automated testing technique based
on dynamic SE [GKS05; SMAO05]. It uses dynamic information extracted from test
executions to assist the symbolic analysis of code, thus overcoming some of the
imprecision inherent to static analysis. Concolic Execution is fully automatic and
does not requires manual intervention for identifying test interfaces or designing test
drivers.

43 3.2 Symbolic Execution

Concolic Testing generates concrete test inputs randomly and executes the cor-
responding tests both concretely and symbolically. Concolic execution analyzes the
path conditions collected by SE and produces new program inputs that direct sys-
tematically the execution along alternative program path. The process is repeated
until all the execution paths are covered or the allotted time budget is consumed.

Concolic testing can use concrete values of program variables to simplify the
symbolic constraints that are too complex for the underlying SE engine. In fact,
automated solvers cannot deal effectively with non linear conditions or floating point
numbers and symbolic analysis cannot make sense of binary code. Using concrete
values for variables that cannot be evaluated symbolically introduces imprecision in
the analysis but in practice the approximation is often good enough to guarantee
the progress of SE. This capability enables the analysis of programs that are out of
reach for traditional SE techniques.

The following steps are a streamlined, high-level description of the concolic test-
ing algorithm. The algorithm is executed iteratively until all execution paths are
covered or a timeout is reached:

1. execute a test case Concolically, i.e., both concretely and symbolically, col-
lecting the symbolic path constraints at every branching condition.

2. negate one constraint in the path condition formula to obtain a new path
condition. The new condition characterizes all the executions following the
same path up to the selected branch and diverging at that point.

3. generate a new test input by solving the new path condition using an auto-
mated theorem prover

4. execute the new test case concolically checking that the execution indeed fol-
lows the alternative path at the desired branch

5. Repeat the process until all execution paths are covered

Concolic execution is an incomplete but sound analysis. A first source of incom-
pleteness is substituting symbolic values with concrete ones: this simplification is
unsound and the generated path conditions might therefore not guarantee the cov-
erage of the desired path. Interestingly such event can be detected while executing
the newly generated test and reported to the users. The second and more obvious
reason why concolic testing might not terminate is the fact that programs might
have a very large number of execution paths and executing all of them might be
impractical.

Concolic testing might succeed in revealing a failure in cases where static analysis
or symbolic execution based on the same theorem prover might fail. We use the
code in Figure 3.2 to illustrate the behavior of concolic testing in when dealing
with nonlinear constraints in comparison with static analysis and traditional SE.

44 3.2 Symbolic Execution

1 nonlin(int x, int y){
2 if (xxx*x > 0){

3 if (x>0 && y==10)
4 abort();

5 } else {

6 if (x>0 && y==20)
7 abort () ;

8
9

}

Figure 3.2. A function that uses non linear conditions (from [GKSO05])

The execution of the abort() instruction at line 4 is indeed reachable and would
make the execution fail, on the contrary the one at line 7 is infeasible. The failing
instructions however are dominated by the non linear condition at line 2.

Given an automated theorem prover that cannot reason about non-linear arith-
metic, a static analysis tool, for instance an abstraction refinement tool, would not
be able to detect the infeasibility of the condition at line 6 and would therefore
conservatively report a false alarm about the reachability of the failing instruction
at line 7. A static SE testing tool instead would try to generate an input value that
satisfies the condition at line 2, but, since the condition is non linear, the solver
would not be able to produce a correct assignment for the input variables, and
would therefore terminate without producing a test case executing the failing line 4.

Concolic execution starts producing a random test input. Let us assume that
the generated input satisfies the condition (z > 0 Ay # 10), which has almost 50%
probability, for example the test input x = 1,y = 0 that leads to the execution of
lines 1, 2, 3 and 9. The concolic execution computes the path condition (z*x *z >
OAxz > 0Ay # 10) up to the branching condition at line 3. It then computes a
new path condition (z*x*x >0Az > 0Ay = 10) by negating the last constraint.
Since the condition contains a non linear expression, the concolic executor replaces
the symbolic value of variable x with its concrete value 1, and passes the remaining
symbolic constraint (y = 10) to the theorem prover. The prover produces the test
input x = 1,y = 10 that executes the abort() instruction at line 4 revealing the
fault.

Let us consider what would happen if the initial random test case assigns a value
less or equal 0 to . The values x = 0,y = 0 would drive the execution through lines
1,2, 6 and 9. The linearized path condition would be (y # 20), the theorem prover
would solve the negated condition (y = 20) producing the test input x = 0,y = 20
where the value for x is obtained dynamically. The execution of the test would
again follow the same path through lines 1, 2, 6 and 9, thus failing producing a
test case for the abort() instruction on line 7, this behavior is compatible with

45 3.3 Abstraction Refinement

the expectations, since concolic execution is a sound analysis technique that only
executes feasible paths.

This example in the previous section shows that concolic execution might be
incomplete when path conditions are simplified using dynamic data. A second type
of incompleteness stems from the fact that the number of paths in a programs might
be enormous and an exhaustive search might therefore result impractical. An active
are of research in concolic testing tries to address this limitation with strategies
that prioritize execution paths of particular interest. We have surveyed the main
prioritization strategies that can be used in concolic testing in Section 2.3.1.

The development of DSE analysis tools follows two alternative implementation
strategies, either instrumentation or interpretation. Instrumentation is the standard
technique to perform dynamic analysis on compiled languages and works as follows:
A program is first statically analyzed to discover the code locations of interest.
At these locations the instrumentation process inserts calls to the instrumentation
functions that encode the desired dynamic analysis and are provided as an external
library. Afterwards the program is compiled normally and linked to the instrumen-
tation library. Performing the dynamic software analysis task amounts simply to
executing the instrumented program.

Concolic execution requires a major instrumentation as every part of the execu-
tion needs to be replicated by its symbolic counterpart. The instrumented program
is therefore significantly bigger and slower then the original. Nonetheless as the in-
strumented program is compiled to a binary and executed natively, the instrumented
SE can benefit from state of the art compiler optimizations.

The alternative strategy is more suitable for interpreted higher level program-
ming languages. An ad hoc implementation of the interpreter performs the concolic
execution on the unmodified code taking advantage of the infrastructure provided
by the original interpreter. This strategy has been exploited to build concolic in-
terpreters that run at the level of virtual machine monitors (hypervisors). This
solution enables the analysis of binary code.

3.3 Abstraction Refinement

Abstraction promises to scale the application of model checking techniques to soft-
ware systems. Model checking is an exhaustive property verification technique for
finite-state systems that had enormous success in the context of verification of hard-
ware properties. The main idea behind abstraction is to simplify an infinite state
system in to a finite abstraction so that model checking can be applied. An abstrac-
tion is sound if every provable property is also valid in the corresponding infinite
system, it is complete if every property of the system is provable on the abstraction.
A large body of research in software model cheeking is devoted to the identification
of methods to build sound abstractions automatically.

46 3.3 Abstraction Refinement

program

N\

1.) Compute
Abstraction

2.) Check
Abstraction
3.) Check
Feasibility

[feasible]

[no error]

4.) Refine
Predicates

report counterexample

Figure 3.3. The CEGAR iterative verification loop.

The most well known approach to software model checking is Counterexam-
ple Guided Abstraction Refinement (CEGAR) [CGJT03]. CEGAR is an iterative
process that starting from a coarse abstraction of a software system is able to au-
tomatically improve its precision using refinement steps. Spurious counterexamples
are property violations found in the abstract model that are not present in the
original system. The analysis of counterexamples is used to generate a refinement
of the abstraction that is more detailed then the previous one and in particular
excludes the known counterexample. This process is executed iteratively until no
spurious counterexamples are found in the abstraction proving the property valid
for the original system.

Figure 3.3 represents the CEGAR, verification loop which is composed by four
main steps:

1) A sound abstraction is computed starting from the original program.

2) The desired property is checked on the abstraction, if no errors are detected
the property holds for the abstraction and for the original program.

3) If instead a property violation is found, the algorithm checks its feasibility in
the original system. If the error is real then the counterexample is reported
to the user.

4) If otherwise the violation is a false positive, the abstraction is refined in a way
that preserves safety and excludes the spurious behavior.

In the case of sound abstractions, CEGAR is a sound analysis as it never detects
a false error and never produces a false property proof. CEGAR is complete for finite
state programs as the refinement guarantees the analysis progress by increasing

47 3.3 Abstraction Refinement

monotonically the abstraction precision. The analysis however might not terminate
in case of infinite systems as the abstraction might produce an infinite number of
spurious counterexamples.

ARC uses a CEGAR style property checking approach to detect infeasible el-
ements of the coverage domain and exclude them from the coverage rate compu-
tation. Our infeasibility detection algorithm is based on Synergy [GHK106], a
CEGAR algorithm for checking safety properties. Synergy builds a conservative
abstract transition model of the program under analysis and checks every abstract
path that reaches the error statements using SE. A property violation is confirmed
when SE generates a test case that executes the faulty statement and discarded
if SE shows that the path is infeasible. In this last case Synergy refines the cur-
rent abstract model using a pattern oriented approach and a WP-based refinement
predicate generation technique.

(a) (b)

Figure 3.4. The pattern oriented refinment approach in Synergy.

Figure 3.4 shows the pattern based transformation of an abstract model into
a refined one. Error states are marked with a dot and the abstract path under
analysis is composed by thick transitions. The model refinements are triggered by
the impossibility to generate a concrete test case that follows a specific path.

In our example, the SE-based feasibility checking has confirmed that the path
to the faulty state highlighted in Figure 3.4 (a) is infeasible (UNSAT). Synergy
updates the model by splitting in two the abstract state that comes before the last
transition in the path. One of the two substates is annotated with a predicate !ref
that characterizes the part of the state that is guaranteed not to lead to the error
state. The transition to the error state can therefore be safely removed. The second
substate is annotated with the complementary predicate !ref.

To guarantee that the resulting refined model (b) is sound, Synergy builds the
refinement predicate !'ref by negating the WP predicate of the error state along
the last transition in the path. SE was not able to direct the execution to the error

48 3.4 Constraint Solving

state, and the computed WP characterizes all the states that could lead to the
error state. The substate annotated with the predicate !ref is therefore necessarily
disjunct from the part of the abstract state that was explored by SE.

The refinement step reduces the reachability of the error state to the reachability
of the substate annotated with the predicate ref. Such substate represents by
construction only concrete states that were not included in the SE exploration.
Subsequent iterations will push refinements back to the entry node of the model
where a node split would disconnect the error state from the rest of the model
proving it unreachable.

Synergy is an abstract intra procedural analysis and does not consider program-
ming language feature that allocate memory dynamically, like pointers and memory
heap. Computing precise refinement predicates in the general case would require
an alias analysis that is path sensitive, thus strongly limiting the scalability of the
approach. The pattern based refinement approach can nonetheless be successfully
extended to cases where computing an exact WP predicate is not practical.

Beckman et al. developed the Dash algorithm to deal with pointers using dy-
namic alias conditions in the refinement predicates in a way that preserves the
soundness of the produced abstraction [BNRT10]. Dash generates refinement pred-
icates that are weaker then the exact WP but are consistent with the observed dy-
namic behavior. This is obtained by restricting the WP predicate to the observed
alias conditions.

The dashed transition in Figure 3.4 (b) accounts for this last case. As the refine-
ment predicate ref is weaker then the exact WP predicate, it cannot be guaranteed
that a concrete execution satisfying ref will hit the error state. On the other side
ref is strong enough to guarantee that an execution satisfying the complementary
predicate !ref cannot hit the error state.

3.4 Constraint Solving

Constraint solving problems require to find a state for a set of variables that satisfy
given constraints. In its general form constraint solving includes undecidable prob-
lems but researchers have successfully identified several decidable instances of the
problem. Constraint Satisfaction Problems (CSP)s for example are NP-complete
but only consider variables over finite domain.

In the last few decades the boolean satisfiability problem (SAT) and the Satisfi-
ability Modulo Theories problem (SMT), two specific forms of CSPs, have received
a lot of attention. Despite the fact that NP-complete problems are generally con-
sidered intractable, researchers have developed efficient approaches that can solve
large SAT and SMT instances arising from concrete industrial problems. Software
engineers could take advantage of the impressive progress in the field and pro-
posed solutions based on SAT and SMT solvers that tackle problems in the fields

49 3.4 Constraint Solving

of software design, analysis and verification as well as security, bioinformatics and
more [DMB11].

3.4.1 Satisfiability

Propositional boolean satisfiability (SAT) is the problem of deciding if there exists
an assignment that satisfies a given boolean formula. Satisfiability Modulo Theories
(SMT) problems consider logical formulas expressed in classical first-order logic with
equality.

SMT generalizes SAT by replacing boolean variables with predicates from a va-
riety of underlying theories. This can be obtained by combining SAT with theory-
specific solvers (T-solvers) that only need to handle conjunctions of predicates. The
Nelson-Oppen method is the preeminent approach to obtain SMT solvers that com-
bine different T-Solvers [NO79|.

As SAT is a decidable albeit NP-complete problem, the decidability of a SMT
problem only depends on its underlying theories. Researchers have carefully identi-
fied several decidable theories and constantly improved the corresponding T-solvers.
Non decidable theories have been studies as well producing solvers that sacrifice
completeness but can nonetheless be useful, in particular for the treatment of quan-
tifiers.

3.4.2 SMT Theories

In this section we describe the SMT theories that gained top popularity in software
engineering, thanks to their ability to express industrially relevant problems in a
natural form. Assuming the point of view of a user of an SMT tool, we exemplify
for each theory the class of problems that it can express and the most common
domains of application.

Equality with Uninterpreted functions:
This is the simplest theory supported by SMT solvers, as the name suggests, it
abstracts from the semantics of the modeled functions assuming that the validity of
a formula is independent of the actual function behavior. The congruence aziom is
generally enforced to guarantee functional consistency:

a=d = f(a) = f(d) (3.20)

It states that instances of the same function return the same value if given equal
arguments.

Despite the extreme simplicity of this theory many properties can indeed be
proved independently of the behavior of the specific functions involved. Predicates
like the following for example, are easily recognized as unsatisfiable.

ao(f(b)+ f(c))=d A bo(f(a)+ f(c)#d AN a=0b (3.21)

50 3.4 Constraint Solving

As we discussed in Section 3.1.5, uninterpreted functions lay at the base of the
axiomatic formalization of arrays and dynamic memory access. In the hardware
domain they can be used to model blocks that transform or evaluate data and
analogously, for software components for which an implementation is not available
with the assumption of absence of side effects.

Finite bit vectors with arbitrary size:

This theory considers fixed sized vectors of bits which can in turn represent any fixed
width data types (int, short, long, etc.). Unsigned integers and two’s complement
arithmetic can be also encoded using bit vectors. All the traditional arithmetic
operations can be used, including non linear ones like division and bit-wise logical
operations (and, or, shift, extract etc.). This enables in turn the encoding of floating
point arithmetics.

The remarkable expressivity ofthe bit vector theory comes at the price of in-
creased complexity. On one side the size of the data types commonly used in
industrial software makes expressions grow very big. On the other side the high
granularity of bitwise operations produces many conditional clauses that challenge
the underlaying SAT solvers. For this reason the bit vectors theory is mainly used
when the ability to reason precisely about non linear arithmetics is critical, like in
the verification of device drivers or cryptographic functions.

Linear artihmetics:
Linear arithmetics solvers can reason about boolean combination of linear con-
straints of the following form:

a121 + asx2 + ... + apx, X b, withx € {<, >, <, >} (3.22)

where the a;s, the ;s and b are in the domain Z of integer numbers or Q of rational
ones.

Linear solvers are the most popular in software verification and automated test
generation. They constitute a sweet spot in the trade-off between precision and
efficiency as they match the abstraction level typical of application programming.
This type of software in fact often ignores the low level details of machine arithmetics
like two’s complement representation, overflow or rounding.

Specialized solvers exists for the sub-theory of difference logic that includes pred-
icates of the following form:

x—yxk (3.23)

Difference logic has industrial application for problems like the optimization of job
schedules and timing verification in electronic circuits.

Strings:
Kiezun et al. have recently proposed Hampi, a solver for string constraints over fixed-
size string variables [KGGT09|. String constraints often appear in web applications

51 3.4 Constraint Solving

and database driven software, often expressed in the form of regular expressions.
Hampi translates regular language definitions to bit vector constraints that are
then solved using off-the-shelf SMT solvers. If all the constraints are satisfiable, the
output of the SMT solver is finally reinterpreted as a string.

Inductive data types:
Inductive data types (IDT) are defined using constructors, selectors and testers. A
classical example is the inductive definition of a list of integers [Bar00|:

e Constructors: cons : (int, list) — list, null : list
e Selectors: car : list — int, cdr : list — list
o Testers: is_cons, is_null

SMT solvers for the first order theory of an inductive data type associates func-
tion symbols with constructors and selectors, and predicate symbols with testers.
The following is an example predicate for the list data type.

V@ list.(x = nullV 3y : int, z : list.x = cons(y, z)) (3.24)

While in the general case the satisfiability problem of IDTs predicates is NP-
complete, there exist polynomial T-solvers for IDTs with a single constructor [Opp80;

PW13].

52

3.4 Constraint Solving

Chapter 4

Abstraction Refinement and
Coarsening

This chapter presents Abstraction Refinement and Coarsening (ARC),
the main contribution of this thesis. ARC is a program analysis tech-
nique for automatically generating test suites that approzimate full struc-
tural coverage. ARC aims to produce test suites that execute all feasi-
ble code elements while detecting the infeasible parts of programs. The
technique promotes the synergies between static and dynamic program
analysis for test case generation and infeasibility detection. Such syn-
ergy is made possible by a novel representation of the program state space
called Generalized Control Flow Graph (GCFG) and is made applicable
to industrial size programs by Coarsening, an algorithm that controls the
redundancy level in the GCFG.

This chapter presents Abstraction Refinement and Coarsening (ARC), a program
analysis technique that automatically generates test suites that approximate full
structural coverage. ARC combines static and dynamic analysis techniques for test
case generation and feasibility analysis. By generating new test cases and at the
same time detecting infeasible elements, ARC is able to compute a precise code
coverage rate that excludes infeasible elements from the coverage count.

ARC is designed with the goal of combining program analysis techniques for test
input generation and infeasibility detection in a novel framework that enables the
exploitation of their complementarity. The core element of ARC is the Generalized
Control Flow Graph (GCFG) model that enables the interaction of different analysis
techniques by providing an unified representation of their intermediate results. The
efficiency of ARC is largely affected by the complexity of the GCFG model. Coars-
ening s a novel goal-oriented algorithm for optimizing abstraction complexity with
respect to the desired structural coverage objective.

53

54 4.1 Obtaining High Structural Coverage

Section 4.1 introduces the guiding principle in the design of ARC that is to ex-
ploit the possible synergies between complementary analysis techniques at different
levels of abstraction. Section 4.2 describes the ARC iterative process that combines
test generation and reachability analysis in a unitary framework. Section 4.3 de-
scribes the GCFG model that is at the core of ARC and enables the interaction
between its different components. Section 4.4 introduces the important concept of
GCFG frontier that guides the ARC analysis towards the achievement of the desired
structural coverage objectives. Section 4.5 describes the test generation component
of ARC. Section 4.6 describes the infeasibility detection component of ARC. This
component enables the implementation of a bidirectional search strategy making
ARC a goal-oriented test generation approach. Section 4.7 introduces coarsening,
the algorithm that allow the scalability of ARC.

4.1 Obtaining High Structural Coverage

In the past decades several empirical studies have shown that test suites approximat-
ing full structural coverage can guarantee high levels of confidence in the quality of
software systems (see Section 1). Obtaining full structural coverage however requires
that every code element of the type specified by the selected criteria is analyzed and
either covered with a test or proven infeasible. In the following we discuss on how the
two alternative results, traditionally addressed with specialized techniques, can be
synergetically merged using the ARC unitary test generation approach. The guiding
principle in the development of ARC is in fact the identification and exploitation
of increasingly tighter levels of integration between test generation techniques and
infeasibility detection techniques, ranging from the problem definition level to the
analysis design and implementation level.

4.1.1 Ordering Coverage Targets

A first level of synergy that can be exploited concerns the ordering of the analysis
of different code elements in a coverage domain: as code elements are rarely inde-
pendent, it is likely that the analysis targeting a certain code element impacts some
other ones. For example, a test case selected to cover a specific branch will cover
other branches in its execution trajectory (i.e., collateral coverage), thus making
their further analysis unnecessary. Similarly the proof of infeasibility for a code
element that dominates other elements can be trivially extended to them.

The effect of ordering coverage targets in test generation techniques can be dra-
matic. As the cost of Automated Test Data Generation (ATDG) targeting specific
code elements is not predictable, it can happen that the testing effort is misspent
on a small number of hard to reach targets despite the availability of many easily
reachable ones. Fraser at al. proposed and compared different ordering strategies in

55 4.1 Obtaining High Structural Coverage

the context of ATDG via model checking [FGW09|. The results highlight the rele-
vance of the problem and show that heuristic solutions do not perform consistently
better then random ordering approaches.

ARC is carefully designed so that no particular coverage ordering is enforced by
construction. This goal is achieved by guaranteeing that the GCFG conservatively
overapproximates all the possible program paths that might reach a coverage target.
Section 4.4 describes how the identification of a frontier on the GCFG directs the
analysis nondeterministically towards all the coverage targets.

4.1.2 Static and Dynamic Analysis

A second level of synergy in ARC is achieved by exploiting the complementarity of
conservative static program analysis with incomplete but sound dynamic analysis.
ARC solves the problem of achieving high code coverage rates, by combining static
reachability analysis with dynamic test case generation. On one side, when a code
element is recognized as infeasible, it is safe to conclude that test generation ac-
tivities that target that same element will never produce a covering test case and
should therefore be dropped. On the other side, when a code element is covered by
a test case, its infeasibility can be excluded immediately.

Coverage Domain

Infeasible

Reachability

Testing 5
Analysis

Covered

Figure 4.1. Testing and Reachability Analysis benefit each other when applied to the
same program elements (the coverage domain)

Figure 4.1 represents testing as a process that takes elements from the unex-
plored part of the coverage domain and classify them as covered using test case
generation techniques. Similarly reachability analysis detects infeasible elements.
Each of the two analyses has the potential to reduce the unexplored part of the
coverage domain and therefore benefit the complementary analysis as well.

56 4.1 Obtaining High Structural Coverage

4.1.3 Analysis-specific Synergies in ARC

The design of ARC draws on the intuition that even deeper synergies between com-
plementary software analyses can be identified and exploited to improve their com-
bined performance. In particular 1) test generation can be directed by the partial
or inconclusive results about the reachability of code elements and 2) reachability
analysis can assume the feasibility of the program (sub-)paths traversed by tests
without further computation. Similarly to the situation depicted in Figure 4.1, this
deep synergy can be exploited only if the combined techniques share and contribute
to the same model of the coverage domain. The GCFG model is the ARC compo-
nent that is responsible for the deep integration of static reachability analysis with
dynamic test data generation (see Section 4.3).

ARC combines a test generation analysis technique based on Dynamic Sym-
bolic Execution (DSE) with a reachability analysis technique based on Abstraction
Refinement and Weakest Precondition (WP) calculus (see Chapter 3). The basic
techniques that are combined into the ARC test generation approach have been
selected based on two basic criteria: their expected effectiveness for the specific
problem of obtaining very high code coverage and their potential for integration.

As discussed in Chapter 2, symbolic approaches to ATDG have better chances
to cover corner cases and code elements that map to small regions of the program
input space with respect to random or search-based testing approaches. This aspect
is expected to become more and more important as the coverage rate grows towards
approximating 100% and therefore leaving behind an increasingly small uncovered
input space.

Abstraction Refinement and Deductive Verification are the premier technique
for analyzing reachability properties of infinite state software systems. While ab-
stract interpretation and data flow analyses can efficiently detect dead code, they
usually favor scalability at the cost of precision by focusing on abstract domains
with high granularity. Deductive verification approaches seems to be better suited
for detecting the infeasibility of specific code elements thanks to their ability to rea-
son at the level of program paths. ARC uses traditional dead code elimination as it
can be obtained through a state of the art optimizing compiler as a preprocessing
step.

Symbolic testing and abstraction refinement based on WP allow for a high degree
of integration. In ARC the test cases generated symbolically serve as reachability
counterexamples that can be readily used for refinement (see Section 3.3). Moreover
dynamic information can be used to produce abstraction refinement predicates that
are path-specific, this opportunity is exploited in ARC by following the schema
proposed by Beckman et al. to compute alias aware WP predicates [BNR'10].

On the other hand abstraction refinement produces reachability conditions for
code elements as intermediate results of the analysis. Such conditions constraint
the reachability of code elements of different granularity from program paths to

57 4.2 The ARC lterative Analysis

sub-paths. In ARC symbolic testing takes advantage of reachability conditions,
expressed as predicates on the program state space, to avoid directing the analysis
effort towards infeasible directions.

4.2 The ARC Ilterative Analysis

The ARC analysis for ATDG is an iterative process designed to maximize the in-
teraction opportunities of its components. As already discussed, the first step to
fruitfully combine dynamic symbolic testing with abstraction refinement-based fea-
sibility checking is to have them share seamlessly the results of their analysis. In
particular it is useful making even partial and incomplete results immediately avail-
able. To this purpose we based ARC on a novel state-transition model called GCFG
(see Section 4.3).

The GCFG represents the structural coverage targets of the program and all
the possible program executions that can exercise them. While the test generation
progresses, the GCFG model is updated accordingly by removing covered elements
from the set of targets and excluding infeasible sub-paths from further analysis.
ARC updates the model using abstraction refinement to produce annotations that
direct further test generation efforts.

The GCFG elements for which we have either dynamic or static analysis results
constitute the coverage frontier (see Section 4.4). Focusing the test generation effort
on the frontier elements increases chances to produce concrete executions exercising
coverage criterion targets that have not been covered yet. The frontier is in fact
composed of reachable elements that can potentially lead to the coverage targets.

To scale to large programs, ARC must control the size of the GCFG that could
grow unbounded when the abstraction refinement component of the analysis become
predominant. To this purpose we introduced Coarsening, a novel algorithm that
operates on the abstract model of the program under test and optimizes it based
on the chosen coverage criteria (see Section 4.7). Coarsening prunes information
irrelevant for the analysis from the GCFG, while guaranteeing that at any given
moment during the analysis, the GCFG contains the information relevant to the
reachability of the remaining coverage targets.

The interaction scheme used in ARC guarantees progress to the test generation
and prevents the reachability analysis to waste resources analyzing program sub-
paths that are part of known test cases. ARC does not employ any explicit path
exploration strategy for symbolic execution, the order in which paths get analyzed is
goal oriented and implicitly derived from the selected coverage criteria. By avoiding
premature decisions on the path exploration strategy to employ, ARC preserves as
much nondeterminism as possible in the analysis, and such nondeterminism can
be potentially exploited for parallelization. The extra memory requirements that
derive from the need of storing the complete coverage frontier in the GCFG model

58 4.2 The ARC lterative Analysis

is reduced with coarsening.

1: ARC(program, criterion=BRANCHES, tests=NULL, infeasible=NULL)
2 model = generalizedCFG(program, criterion)

3 do model.updateFrontier(tests, infeasible)

4: tests += generateTests (model.frontier)

5 infeasible += findInfeasible(model.frontier)
6 while model.frontier !'= NULL

Figure 4.2. Pseudocode for the ARC execution loop.

Figure 4.2 shows the ARC iterative process in pseudo-code: Line 1 shows the
signature of ARC: it takes as input a program to test and a coverage criterion
(branch coverage by default), optionally ARC can be used to extend an existing test
suite and can be initialized with a set of infeasible elements. The algorithm starts
by creating the GCFG model for the program under test with respect to the desired
coverage criterion (line 2). Lines 3 to 6 are executed iteratively: Line 3 identifies the
coverage frontier on the model by dynamically tracing test executions and excluding
infeasible paths from the count. Line 4 tries to augment the current test suite so
that the coverage frontier would be expanded towards the target elements. Line
5 detects infeasible paths that traverse the coverage frontier. Line 6 checks if the
entire coverage domain is already classified as either covered or unreachable and
otherwise jumps back to line 3 to continue the process.

Generalized CFG

Frontier Infeasible
Dynamic Symbolic - .
Test Generation Abstraction
(DSTG) Refinement
Covered
000

Figure 4.3. The iterative analysis performed by ARC and its main components.

Figure 4.3 illustrates the interaction between symbolic tests generation and ab-
straction refinement in ARC. The Coverage Domain Frontier (blue in Figure 4.3) is
the region of the GCFG that contains the elements on which the interaction occurs.
The coverage domain frontier is the interface between code elements that are already

59 4.3 The GCFG

covered by existing tests and elements that are not yet covered and could lead pro-
gram executions towards coverage targets. At every iteration, ARC selects elements
from the Coverage Domain Frontier, analyses them and updates the model with the
analysis results. Section 4.4 defines the coverage domain frontier and describes how
it can be identified in an interprocedural GCFG.

ARC extends an existing test suite to cover new code element using a form
of DSE directed by the GCFG. To maximize the chances to find new test cases,
ARC analyses the elements on the coverage domain frontier. This guarantees that
the newly generated test case makes the analysis progress towards increasing the
desired coverage criteria. When symbolic testing finds new test cases, it augments
the frontier with the newly discovered transitions that might be exploited to direct
new executions to the target elements. Section 4.5 describes the process that
generates new test inputs to exercise specific coverage targets.

ARC detects infeasible code elements using abstraction refinement, a static
model analysis algorithm that refines the GCFG by propagating feasibility con-
ditions of the coverage frontier elements toward the program entry point. Even if
abstraction refinement might be unable to conclusively prove the infeasibility of a
frontier element, the partial feasibility conditions are reported in the GCFG model.
Such model annotations can be used by the Symbolic Execution (SE) component to
steer new executions towards the coverage targets via different paths. Section 4.6
describes how ARC detects infeasible elements and produces model annotations.

The ARC iterative process is guaranteed to progress as both symbolic tests case
generation and abstraction refinement reduce monotonically the state space to be
analyzed. However as the state space of programs is typically unbounded, it is pos-
sible that the size of GCFGs grows indefinitely. Abstraction coarsening is a dynamic
model checking algorithm that is responsible for minimizing the GCFG with respect
to the existing test suite and the remaining coverage targets. Coarsening removes
redundancy from the model, that is, every element that is not potentially leading
to a coverage target prescribed by the selected coverage criterion. Coarsening is the
key to scalability of the ARC approach and is discussed in Section 4.7.

4.3 The GCFG

The GCFG is an abstract state-transition model of program executions. It repre-
sents regions of the program state space (abstract states) as nodes and program
execution paths as edges in the graph. It plays a central role in ARC as it enables
the interactions between its static and dynamic components. ARC keeps track of
new test case executions marking the covered abstract regions of the GCFG and
annotating them with information dynamically extracted from test executions. Dur-
ing the progress of the ARC analysis, the GCFG model evolves as abstract program
states can be either refined to smaller ones or merged together. Abstract states are

60 4.3 The GCFG

characterized by predicates on the program state space.

The GCFG represents the state space of the program in an abstract and complete
model. Each node in the graph represents an abstract state that is a subset of the
program state space. Each edge in the graph represents all the possible program
executions that can lead from the abstract state represented by the source node to
the abstract state represented by the destination node.

The GCFG model is unsound as it can model infeasible program states (states
that cannot be reached by any program executions) and spurious transitions (paths
that cannot be followed by any program execution). The model is complete as all the
execution traces of a program can be mapped to a path in the graph that connects
the abstract states corresponding to the visited concrete program states. The model
can be refined when new information about the program behavior is acquired using
annotations.

The GCFG is refined by splitting nodes and transitions. Refined nodes are an-
notated with predicates over the program state space that characterize the abstract
program states. A model can be refined to lower its abstraction level by excluding
infeasible program states and infeasible execution paths from the representation.

We restrict the valid GCFG annotations to the ones that are conservative in pre-
serving the completeness of the model. Moreover we require that GCFG refinement
predicates can be evaluated in the concrete state of reaching test cases. This implies
for instance that a valid refinement predicate can only refer to program variables
that are in the scope of every test case that can reach the refined node.

As the above description suggests, it is possible to build an infinite number of
GCFGs for a given program under test. Models can represent the program state
space at different abstraction levels, but they all abstract the same concrete model.

The traditional Control Flow Graph (CFG) is a simple GCFG in which each
abstract state represents a branch of the program or, to define it in terms of the
program execution state, each abstract state represents all the concrete state with
the same program counter. Since our ATDG analysis targets branch coverage, we
initialize the GCFG with the CFG. For this reason, the program counters are left
implicit, and the abstract states of the initial model are annotated with the predicate
true.

Figure 4.4 shows two of the GCFGs of the simple function coprime. The func-
tion computes the Greatest Common Divisor between the parameters a and b using
Euclid’s algorithm (lines 2-8) and returns true if they are coprime (i.e., their only
common divisor is 1) or false otherwise. The models represent the program anno-
tated with the execution trace of the test case with input {a = 6,b = 3}.

In the figure, green nodes represent abstract states that are covered by the
execution of a test case, black solid arrows represent covered transitions, and dashed
arrows represent transitions that are not covered by any of the test cases. Red
transitions are the transitions that belong to the frontier. They are not covered by

61 4.3 The GCFG

test: a=6, b=3 test: a=6, b=3

1: bool coprime(a,b){ 2. ENTER | o]

2: temp=0; -+

3 e

4: while(b!=0) {

5: temp = b;

6: b = a%b;

7: a = temp;

8: }

9:

10: if (a==1){

11: return true;

12: } 11: a==1 11: a==1
13: return false; . : N
14: } + ‘x

.
(a) (b) (c)

Figure 4.4. code for function coprime (a), the initial GCFG (b) and a refined GCFG
model (c).

the test cases executed so far and lead to uncovered abstract states (see Section 4.4).

While the initial model (Figure 4.4 b) is isomorphic to the CFG of the function,
the refined model (Figure 4.4 ¢) is enriched with extra states, transitions and state
predicates. Both GCFGs overapproximate the behavior of function coprime. The
completeness of the refined model (Figure 4.4 ¢) is guaranteed by the fact that every
refined node is paired with a companion node that represents the states with the
complementary predicate. As the complementary predicate is never used directly
in the test generation algorithm, it is never explicitly computed or stored in the
model.

ARC uses the GCFG to direct test generation towards uncovered code elements.
While the test generation component of ARC tries to extend existing test cases
beyond the coverage frontier, the static analysis component annotates the GCFG
with the reachability conditions that need to be satisfied by test cases that aim
at the remaining coverage targets. The GCFG model represented in Figure 4.4 ¢
includes the following information: to be able to reach line 11, a test case needs to
reach line 10 from line 2 in a state where the value of variable a is 1 or alternatively
reach line 5 with b equal to 1 from within the loop. Such conditions are not met by
any of the current test cases. The test generation can try to extend the test cases
reaching line 2 using the condition a == 1 or the test cases reaching line 5 using

62 4.3 The GCFG

the condition b == 1.

4.3.1 The Interprocedural GCFG Model

Classically there are two main approaches to generalize an intra-procedural pro-
gram analysis to the interprocedural case [PS81]. The first strategy is called the
functional approach, it works by combining context insensitive function summaries
in a bottom-up fashion. Summaries are the result of intra-procedural analyses that
can be combined compositionally thus contributing to the analysis of higher level
functions. This strategy is popular for overapproximated static analysis techniques
but suffers from the complexity of functional compositions, for example in case of
recursive functions and does not allow to trade off precision for performance to
reduce complexity.

The second strategy is called the call string approach and is context sensitive as it
regards context information as part of the analysis domain. Call strings are used to
represent possible calling contexts and the program analysis needs to deal with them
as part of the program state. This second approach is the one we chose for ARC as
it is more suitable for a sound but incomplete analysis like ours. Moreover in ARC,
context information is easily accessible as both test generation and infeasibility
detection analyses are path-oriented.

To properly deal with procedures, interprocedural GCFGs use special nodes to
represent the program states at the entry and exit points of a procedure as well as
call and return points. This representation is commonly used for interprocedural
CFG and gives a complete flow representation, but at the cost of introducing a
further level of imprecision [RHS95|. It is in fact possible in such model to follow
paths where the correct pairing between procedure invocation and termination is
not preserved.

Consider for example the program sketched in Figure 4.5. The path traversing
lines 8 -+ 11 -1 — 3 — 6 — 14 — 15, which can be traversed in the model, does
not match any concrete program execution. In every realizable program execution
in fact, each time the execution reaches function £ () from line 11 it will continue
to line 12 and every time £ () is called from line 13 it will return to line 14. Paths
in the GCFG that respect the call»return sequence of the modeled program are
called Realizable Paths.

Non realizable paths can be excluded from the model using suitable model re-
finements. For this purpose refinement predicates can include calling context con-
straints. Only executions that match the prescribed calling context constraints are
mapped to the corresponding abstract state.

63 4.4 The Coverage Domain Frontier

1: £0O{ function main function f
2: if (...)

3: 1: ENTER
4: else ’7

7 [11: caLL | | 13:caLL |
8: main(){ l /‘\'—\\ \ /
9: c. ™~

10: if (... | 12: RETURN| | 14 RETURN|
11: £0;

12: else \ /

v

15: }

(a) (b)
Figure 4.5. Interprocedural Generalized Control Flow Graph model: an example.

4.4 The Coverage Domain Frontier

The coverage domain frontier is the subset of the transitions on a GCFG that
connect covered to uncovered abstract states and lead to coverage targets that are
not covered yet. The frontier contains abstract transitions that are reached but not
traversed by test cases. Extending a test suite coverage over the frontier results in
augmenting its structural coverage.

ARC builds on the observation that the coverage domain frontier is the location
of a GCFG where the interplay between DSE and abstraction refinement can be
exploited more successfully. In fact, on the frontier transitions, both dynamic in-
formation from test case executions and static reachability conditions with respect
to the coverage targets are available. This information allows extending the path
conditions of test cases reaching the frontier with the predicates characterizing the
target nodes past the frontier to generate targeted test cases (see Section 4.5). When
the attempt to generate a test case traversing the frontier fails because the new path
condition is unsatisfiable, ARC can improve the precision of the reachability condi-
tions of coverage targets using abstraction refinement and taking advantage of the
available dynamic information (see Section 4.6).

The function updateFrontier(tests, infeasible) in Figure 4.2 is responsible
for tracking the execution traces on GCFG models and removing transitions that
are proven infeasible. To this goal each transition that is touched by the model

64 4.4 The Coverage Domain Frontier

update is analyzed and added to the coverage frontier if it satisfies the following
three criteria:

e The source node of the transition models a covered abstract state.
e The destination node models a non covered abstract state.

e A coverage target is reachable starting from the transition destination node.

4.4.1 Realizable Coverage Frontier

When considering interprocedural GCFGs the definition of coverage frontier needs
to be adapted taking into account the overapproximation of the interprocedural
models. In fact DSE and abstraction refinement can only analyze transitions that
correspond to exactly one branch in an execution trace. Interprocedural GCFGs
instead include spurious transitions and abstract transitions that map to larger
code fragments. For instance, transitions between call and return nodes are purely
abstract compound transitions as they model the whole body of a function and
therefore cannot be part of the coverage frontier. Similarly, transitions between
source nodes covered only in some specific calling context and incompatible targets
cannot be included in the coverage frontier.

More precisely the coverage frontier of an interprocedural GCFG is composed
only of transitions that belong to realizable execution paths. A realizable path
is a path that exhibits a matching sequence of call and return nodes in its call
string [RHS95|. Let us consider again the path 8 -+ 11 -1 —+3 -6 — 14 — 151in
Figure 4.5, this path is non realizable as the call string {11, 14} does not constitute
a valid sequence of call and return nodes. Instead, the path 8 - 13 -1 — 3 —
6 — 14 — 15 is realizable as nodes 13 and 14 are a valid call-return sequence.

Deciding if a transition is part of the realizable coverage frontier amounts to
checking if the path followed by the test case reaching the transition is compatible
with the abstract state after the transition. The compatibility can be checked
comparing the call string of the test execution up to the frontier with the call string
of the abstract state in the frontier destination.

Consider Figure 4.6 that represents a refinement of the GCFG graph in Fig-
ure 4.5 where nodes 14 and 15 have been refined with predicates pl4 and plb
respectively. Solid black arrows represent the transitions traversed by a test case
following the path 8 - 13 - 1 —+ 3 — 6 — 14 — 15. The five red transitions
represent the coverage frontier computed using the intraprocedural definition while
the three red solid transitions are the realizable subset.

It is easy to see that the red dashed transition 13-14 is not part of the realizable
coverage frontier as it crosses an abstract call-return edge. The analysis of transition
6-12 is more complex and requires that we take into account the call string of the test
case reaching node 6. We denote a call string with the list of call nodes traversed by

65 4.4 The Coverage Domain Frontier

function main function
8: ENTER |true

R o
|11:CALL| |13:CALL h’ue| 3:mle

[12:RETURN] | 14: RETURN [ipld 6: EXIT frue

V—
v

i o
15: EXIT [ipl5 j

—_

: ENTER |true

Figure 4.6. Interprocedural Coverage Frontier.

the test execution that are not balanced by a corresponding return node. The test
represented in the figure reaches node 6 with calling context {13} and is therefore
non compatible with the return node 12. Transition 6-12 is therefore not part of
the realizable coverage frontier.

As we discussed in Section 4.3.1, refined abstract states can be annotated with
predicates that restrict the set of valid calling contexts. In ARC, refinement pred-
icates are computed as WP of the code along the path between a refinement and
its target coverage goal (see Section 4.6), this guarantees that the call strings used
to annotate abstract states are always realizable by construction. As both the test
case calling context and the refinement context are well formed, their compatibility
can be checked syntactically: the refinement context needs to be a postfir of the
test calling context.

Two call strings do not need to be equal to be compatible because while the
call string for a test case always starts from the outermost calling function main,
the target abstract state might refer to a coverage target of an inner function. This
case is exemplified in Figure 4.6 by the frontier transition 1-5 where the call string
for the test case reaching node 1 is {13} and the call string of the abstract state
in node 5 is empty. Transition 1-5 belongs to the realizable coverage frontier as it
satisfies the postfix compatibility criterion.

66 4.5 Test Case Generation

4.5 Test Case Generation

ARC uses DSE to generate new test cases with the goal of exercising the targets
of the selected coverage criterion. Unlike other DSE approaches that explore the
program symbolic state space in a predetermined order (for example depth first),
ARC is driven by the coverage frontier as it contains the symbolic transitions that
can be traversed to diverge from existing test suites toward uncovered targets. In
this section we describe the test generation algorithm used in ARC.

At every iteration, ARC selects one of the transitions in the coverage frontier.
As the GCFG is annotated with the execution traces of the current test suites, ARC
can identify the inputs of the test cases that reach the selected frontier transition.
ARC uses the refinement predicate that is stored in the abstract state reached by
the frontier transition to direct the test executions toward the coverage targets.

ARC generates a new test case that extends existing test cases and satisfies the
frontier refinement predicate in three steps:

1. Execute the tests concolically up to the frontier, extract the path condition
and the symbolic state.

2. Evaluate the refinement predicate in the symbolic states reached by the test
executions obtaining a predicate expressed in terms of the program inputs.

3. Append the symbolic refinement predicate to the test path conditions obtain-
ing an input condition for a new test case.

The new input condition produced in this way characterizes all the program in-
puts whose execution follows the same path as the original test up to the frontier,
and then traverse the coverage frontier transition. The analysis continues as in
a traditional DSE approach by using a constraint solver to check if the modified
path condition is satisfiable. If the condition is satisfied the program is executed
with the new input and its trace is recorded in the GCFG. The new test execu-
tion is expected to cover the frontier transition, but, as we already discussed, the
concretization step performed during DSE may cause some imprecision (see Sec-
tion 3.2.4). The execution of a new test case produces a new coverage frontier in
the GCFG and possibly increases the overall coverage score. If on the contrary the
path condition is not satisfiable, ARC triggers the infeasibility analysis step based
on Abstraction Refinement that will eventually detect infeasible coverage elements
(see Section 4.6).

In traditional DSE approaches, the execution of test cases is directed towards
new paths producing a symbolic execution tree that gets progressively closer to the
coverage targets. In the case of structural coverage criteria or test suite augmenta-
tion, the number of coverage targets is small with respect to the number of feasible
paths. In this case DSE might spends most of the computing resources exploring

67 4.5 Test Case Generation

paths that are not relevant to the testing goals. ARC test generation instead is
informed by the refinement predicates about promising exploration directions, and
is therefore able to look deeper in the symbolic execution tree towards the coverage
targets.

Let us consider as an example the coprime function and the corresponding
GCFG in Figure 4.4 c. If ARC selects transition 5 — 5 from the coverage frontier,
it finds out that the only test case reaching the frontier is the test case with input
{a=6,b=3}. Executing the input up to the frontier, ARC produces the path con-
dition B! = 0 and the symbolic state {temp = B,b = A mod B,a = B}, where
A and B are the symbolic values for variable a and b, respectively. ARC evaluates
the refinement predicate for node 5 (b!=0 && b==1) obtaining the symbolic value
A mod B == 1 and the complete path condition for the new test ({B # 0 A A
mod B = 1}) that is satisfiable for example by the input {a=1,b=2} that reaches
100% branch coverage.

The modulo operator is non linear but is nonetheless supported by state of the
art constraint solvers. Let us assume for a moment that our constraint solver does
not support modulo arithmetic. In this case, the concolic execution would concretize
the modulo operations and produce the symbolic state {temp = B,b = 0,a = B}.
The complete path condition for the new test would be {B # 0 A0 = 1} that is not
satisfiable, and this would activate the abstraction refinement component of ARC.

4.5.1 Coverage Frontier Selection.

The example in the previous section shows that the selection of the element of the
coverage frontier can be critical. For instance, selecting transition 2 — 10 instead of
5 — 5 easily produces the test case {a=1,b=0} using either a linear or a non linear
constraint solver, reaching 100% branch coverage. However, there is no evidence
that a particular frontier or target selection order performs significantly better in
practice than random selection [FGWO09).

ARC selects a new element of the frontier with a goal oriented approach that
can reduce the number of paths that need to be explored symbolically. In fact, the
coverage frontier contains only those transitions that may increase the coverage rate
of the test suite. By maintaining the complete list of such transitions and selecting
randomly, ARC avoids the pitfalls of search strategies, like depth first and heuristic
search strategies (see Section 6.1). The goal oriented search strategy implemented
in ARC can be framed in the schema of bidirectional search algorithms.

Traversing frontier transitions that correspond to loop back edges produces new
test cases that generate longer traces by looping a higher number of times. Experi-
mental evidence shows that shorter paths are less likely to be infeasible [PM10], for
this reason a common search strategy in symbolic execution is to select only paths
up to a fixed length, and therefore up to a small number of loop iterations. ARC
does not avoid longer paths completely but selects forward transitions with higher

68 4.6 Abstraction Refinement

probability then back edges, this results in giving higher priority to the generation
of short test cases.

Another type of frontier transitions that are selected with a lower priority are the
ones that lead to abstract states with non linear refinement predicates or, more in
general, refinement predicates that are not accepted unmodified by the underlying
constraint solver.

4.5.2 Tracing Executions on the GCFG Model.

ARC test cases are reexecuted every time their symbolic state is required for a new
test generation step. In principle, it would be possible to store in the GCFG the
symbolic state and the path condition of each of the executed test cases to avoid
multiple executions. However to be useful, these data should be available for each
branching decisions in the execution path, leading to an enormous number of stored
symbolic state which is roughly the product of the number of test cases and their
average path condition length. Clearly this approach is not feasible in practice as
the model size would quickly become intractable.

Nonetheless, ARC stores some information about the test execution states every
time a test trace traverses a node in the GCFG. The first piece of information is
the number of code blocks, corresponding to the number of branching conditions
that have been traversed by the test up to that execution point. This information
is used to stop the reexecution of a test when it encounters the frontier transition.
For example, when the frontier transition is in a loop, the transition source node
may be traversed several times, many of which would not reach the frontier. The
number of traversed code blocks is used to assure that the desired frontier transition
is effectively reached. The second dynamic information stored in the model is the
test execution calling context. This information is used for checking if a certain
transition belongs to the coverage frontier of an interprocedural GCFG as described
in Section 4.4.1.

4.6 Abstraction Refinement

ARC includes an abstraction refinement mechanism that aims to both detect in-
feasible parts of the coverage domain and direct test case generation towards cov-
erage targets. The algorithm is based on pattern based refinement, a Counterex-
ample Guided Abstraction Refinement (CEGAR) approach that uses WP predi-
cates [GHK™T06]. It is triggered every time a test generation attempt fails as the
theorem prover detects that the targeted program path is infeasible.

Abstraction refinement can progressively exclude infeasible paths from the GCFG
model so that the next test generation attempts is driven towards new program
paths. Paths can be removed from the GCFG model by splitting abstract states in

69 4.6 Abstraction Refinement

two parts and annotating them with suitable predicates (see Section 3.3). This pro-
cess is conservative as it only removes infeasible paths from the model. It guarantees
to progress to the global ATDG analysis by reducing monotonically the amount of
paths represented in the GCFG.

Consider again as an example the program coprime and the GCFG models in
Figure 4.4. As we observed while simulating the test generation steps on model
(c) the refinement predicates a==1 in node 10 and b==1 in node 5 are exactly the
predicates that direct SE to the uncovered branch 11. Abstraction refinement can
generate automatically these refinements predicate computing the WP for the state
true along the program subpath 5 — 10 — 11.

The code along the considered subpath includes three assignments and two con-
ditions, the first (b==0) is the negation of the loop condition that must be valid for
the execution to continue past the loop, the second (a==1) guards the execution of
branch 11. The WP along the selected path is therefore computed as:

wp(temp=b; b=ajb; a=temp; if(b==0); if(a==1),true) (4.1)
Rule 3.5 is first applied to the sequence of statements:
wp(temp=b, wp(b=akb, wp(a=temp, wp(if (b==0), wp(if (a==1),true))))) (4.2)
Rule 3.6 is then applied twice to the conditional instructions:
wp(temp=b, wp(b=a%b, wp(a=temp, wp(if (b==0),a = 1)))) (4.3)

wp(temp=b, wp(b=a%b, wp(a=temp,a = 1 A b= 0))) (4.4)

Rule 3.4 computes the WP for the three assignment instructions:

wp(temp=b, wp(b=a%b, temp = 1 A b= 0)) (4.5)
wp(temp=b, temp = 1 A a mod b = 0) (4.6)
b=1Aamodb=0 (4.7)

Finally a well known property of the modulo operations is applied. In fact when
b =1 any variable a satisfies the predicate a mod b = 0, we can therefore omit this
part of the constraint.

b=1 (4.8)

This concludes the refinement predicate computation that produces the GCFG in
Figure 4.4 c.

In Section 4.5 we considered the case in which the constraint solver at our
disposal is not able to handle nonlinearities like the modulo operator. In that case
as we have shown, the attempt to cross the frontier 5—5 in program coprime ¢ would

70 4.6 Abstraction Refinement

lead to a further refinement on the model. This time the refinement predicate is
computed by the WP function

wp(temp=b; b=alkb; a=temp; if(b!=0),b=1) (4.9)

The refinement predicate is computed analogously to the previous case and produces
the following constraint:
amodb=1 (4.10)

As the constraint contains the same non linear expression that caused the need for
a further refinement, the frontier transitions leading to the corresponding abstract
state will be selected with a low probability. Full branch coverage is finally obtained
when ARC selects the frontier transition 2—10 for analysis (see Section 4.5.1).

In an Interprocedural GCFG, abstraction refinement produces both a refinement
predicate as well as a refinements context that excludes from the model refinement
frontier transitions along unrealizable paths. In Figure 4.6 for example, the re-
finement of the transitions 6—14 would produce a refinement context for node 6
denoted by the call string {13}. This refinement context specifies that only test
cases reaching node 6 with a calling context compatible with the call string {13}
might be extended towards the return node 14. The compatibility is checked syn-
tactically by verifying that the refinement context call string is a postfix of the test
context.

4.6.1 Detecting Infeasible Elements

In the following we illustrate with two examples how abstraction refinement achieves
the two goals of detecting infeasible elements and directing test generation toward
coverage targets. In both examples ARC is able to achieve 100% branch coverage.
Section 6.1 shows how traditional SE approaches as well as heuristic-based concolic
approaches cannot achieve full branch coverage on such programs.

As a first example we apply ARC to the analysis of the function scan in Fig-
ure 4.7 that contains an infeasible branch. The function scan calls the function
do_something on each element of its input array array, starting from the element
at position start. The function do_something checks that the position of the item
is valid, being included in the interval [0, size — 1], and then prints the value of the
array element at position item.

This example mimics a common schema employed for defensive programming.
A function precondition is checked dynamically at the function entry point to verify
the caller compliance. In our case the function scan always passes a valid index
as parameter to the function do_something and therefore the validity check inside
do_something can never fail. The branch at line 9 is therefore infeasible.

We show in Figure 4.8 the GCFG of the function scan at two stages of the ARC
analysis. The models are simplified for clarity and compactness, in particular return

~
=

4.6 Abstraction Refinement

void scan(int* array, int size, int start){
while(start >= 0 && start < size){
do_something(array, size, start);
start = start + 1;
}
}
void do_something(int *array, int size, int item){
if(item < 0 || item >= size){
printf("infeasible");
exit(-1);

© 00 N O O WN -

=
= O

}
printf ("Item: %d", array[item]);
}

=
w N

Figure 4.7. code for the function scan.

test0: array=T], size=0, start=0 test0: array=[], size=0, start=0
testl: array=[0], size=1, start=0 testl: array=[0], size=1, start=0

1: ENTER 1: ENTER
h | N

‘ 12: I(item < 0 Il item >= size) @ ‘ ‘ 9: item <0 Il item >= size ‘ 12: \(item < 0 Il item >= size) ‘ ‘ 9: item < 0 Il item >= size
/ v / v

6: EXIT 10: exit(-1) 10: exit(-1)

(a) (b)

Figure 4.8. Execution of Abstraction Refinement and Coarsening (ARC) on scan, the
initial GCFG (a) and a refined GCFG model (b)

points are not unified and function calls are not modeled as they do not impact the
analysis in this case.

Figure 4.8 a models the initial GCFG after the execution of two test cases:
test0={array=||, size=0, start=0} and test!={array=|0|, size=1, start=0}. The
execution of the test test0 follows the path 1—6, the execution of test0 follows
the path 1-+3—12—6. The two inputs can be easily found with traditional SE by
considering the two branches produced by the condition at line 2.

Analyzing the model in Figure 4.8 a, ARC identifies the coverage frontier that
is constituted by the transition 3—9 that is reached by the test case testl. As
the condition for the path 1—+3—9 is infeasible, the test generation component of

72 4.6 Abstraction Refinement

ARC triggers a model refinement that produces the GCFG in Figure 4.8 b. The
refinement predicate start < 0 || start >= size is computed as the WP along
the transition 3—9 of the condition at line 9, replacing the formal parameter item
with the actual parameter start.

As the predicate refining branch 3 contradicts the branch condition, ARC can
immediately discard the corresponding node as infeasible (red in Figure 4.8 b).
Removing the infeasible node makes branch 9 unreachable from the program entry
point. ARC now concludes that no input can drive the program execution through
branch 9 and therefore branch coverage cannot be further improved.

The precision of the refinement predicate computed using the WP calculus allows
ARC to detect infeasible code reasoning locally. In our example ARC did not need
to enumerate all the abstract execution paths reaching the infeasible elements, which
would be impossible in the presence of loops. Traditional SE approaches as well as
heuristic based concolic execution never terminate on this example, their analysis
diverges trying to reach branch 9 through paths that include an increasing number
of loop executions (see Section 6.1).

4.6.2 Directing Test Generation Precisely

1 #define VALVE_NOT_WORKING(v) v ==

2 #define TOLERANCE 3

3 int valves(int valves[], unsigned int size) {
4 int count = 0, index = size;

5 while(index >= 0){
6 if (VALVE_NOT_WORKING (valves[index]))
7 count++;
8 index--;
9 }
10 if(count > TOLERANCE)
11 printf("alarm\n");

12 return count;
13 }

Figure 4.9. Code for the function valves

In our experiments, we noticed that classic and heuristic SE search strategies
can hardly cover branches that are executed only under a specific combination of
several decisions along a path. Let us consider for instance the program valves that
scans an array of integer values, tracks the count of all values equals to zero, and
signals an alarm if the count is above a given threshold (Figure 4.9). The branch at
line 11 is never covered using either depth-first or heuristic path selection strategies

73 4.6 Abstraction Refinement

for concolic execution (see Section 6.1). This is because line 11 is executed only
when the condition at line 6 holds true for several iterations of the loop. Executing
the paths on which the condition at line 6 holds true for several but not enough
iterations fails in covering the target branch and gives no indication on how to
effectively approach the target.

As we observed experimentally ARC quickly generates refinement predicates
that require progressively higher values of the variable count and propagates them
inside the loop. The resulting coverage frontiers direct SE towards paths that satisfy
the branch condition at line 6 for many iterations of the loop. In fact ARC is a
target oriented approach, the combination of symbolic test case generation with
abstraction refinement implements a bidirectional search in the symbolic execution
tree of the program.

Bidirectional search is a search technique whose theoretical time complexity
compares favorably to depth-first and breadth-first search. The idea of bidirectional
search is to search forward from the initial state and backward from the goal state
simultaneously. The goal state is reached when the two explorations meet.

For search trees with branching factor b in both directions, bidirectional search
will find a solution at depth d in O(b%?) steps. Breadth-first search will require
O(bd) steps while depth-first approaches might never terminate in case of infinite
trees. These theoretical considerations suggest that bidirectional search could im-
prove SE efficiency, but an efficient implementation is not always possible.

A first problem in implementing a bidirectional search algorithm is to define
precisely what it means to search backwards from the goal in terms of a specific
search space. In general, searching backwards means successively generating prede-
cessors starting with the goal node, but, depending on the problem, calculating a
node predecessor can be difficult in particular if the goal states are defined implic-
itly. In ARC we exploited the insight that SE and WP calculus compute effectively
the same predicate transformer functions but operate in opposite directions on the
code (see Section 3.1.2). Applying ARC to structural coverage targets allows us to
define a bidirectional search strategy on the symbolic execution tree of a program
having as targets an explicit list of symbolic program states.

A second problem is to identify an efficient way to check if each newly visited
node appears in the search tree in the other search direction. In ARC this problem
is approached with symbolic test case generation: if the path condition composed
by combining the constraints collected in the forward and in the backward search is
satisfiable then the symbolic states reached from the two opposite directions have
an intersection that characterizes the solution. The refinement frontier makes the
check more efficient as it greatly reduces the amount of satisfiability queries that
need to be solved. In fact node pair that do not belong to the coverage frontier do
not need any further analysis.

Bidirectional search requires that the state space explored by one of the two

74 4.7 The GCFG Coarsening

searches is kept in memory. This is crucial for detecting when the two searches meet
and recognizing the finding of a solution. In ARC the refined GCFG maintains the
global state of the backward search, the refined abstract states encode the extent to
which the reachability of coverage targets has been explored. The symbolic states of
the test during their execution, is instead recreated at every iteration by replaying
their SE.

The space complexity for bidirectional search is O(bd/ 2) which lays in between
the space complexity of depth-first search (linear) and the complexity of breadth-
first search (O(b%)). The use of bidirectional search provides a good balance in
the tradeoff between space and time efficiency. In the next section we discuss how
ARC can scale to industrial size software using coarsening, a novel algorithm that
minimizes the memory footprint of GCFG models.

4.7 The GCFG Coarsening

ARC uses abstraction refinement on GCFG models to reduce progressively the por-
tion of the program state space that may be explored to augment the structural
coverage. In traditional refinement algorithms, the size of the produced refinements
grows monotonically until the desired property can be eventually proved. In ARC
the reachability of all the coverage targets is analyzed simultaneously, this may
produce large GCFGs and complex refinement predicates spanning distinct cover-
age targets, ultimately limiting the scalability of the approach to larger software
systems.

During the ARC test generation process, coverage targets are progressively clas-
sified as either covered or infeasible. We observed that such partial results render
parts of the refined GCFG redundant as it contains predicates that are irrelevant for
the goal of increasing structural coverage. To minimize redundancy in the GCFGs
and therefore reduce the space complexity of ARC, we developed coarsening, a
novel algorithm that guarantees that each refined node in a GCFG is relevant for
the analysis of the remaining coverage targets.

Coarsening is applied at every iteration of the ARC loop and undoes redundant
model refinements. It can reduce both the number of nodes and transitions in the
GCFGs model and the complexity of the refinement predicates that need to be
checked by the theorem prover. Coarsening is one of the key contributions of our
approach to ATDG and allows the application of ARC to industrial size programs.

Figure 4.10 shows the size of the GCFG during the analysis of the program tcas,
a component of an aircraft traffic control and collision avoidance system available
from the Software-artifact Infrastructure Repository (SIR) Repository [DERO5|.
ARC obtains 100% branch coverage for tcas, producing a test suite composed of
23 test cases in 735 iterations. The generated test suite covers 87 branches, the
remaining 5 branches are correctly detected as infeasible (see Section 6.2).

75 4.7 The GCFG Coarsening

900 T T T T T T T

800 -

700 +

600

500 +

GCFG nodes

400 -

300

Frontier Analysis + Refinement+Coarsening

200

100 | | | | | | |
0 100 200 300 400 500 600 700 800

ARC lterations

Figure 4.10. Comparison of the number of nodes in the GCFG during the analysis of
the program tcas when coarsening is enabeld (blue), and disabled (red).

The red line in the plot shows the size of the GCFG using abstraction refinement
without coarsening. Pattern based abstraction refinement creates a new node in
the model at every iteration that does not produce a new test case, resulting in
a monotonic a linear growth of the GCFG size. The blue line shows the size of
the GCFG when coarsening is activated. Only the nodes that are relevant to the
remaining coverage targets are represented in the GCFG model, it can be noticed
for instance that when no more targets are left to be covered (iteration 735) the
model size goes back to that of the original unrefined GCFG.

To enable coarsening, we need to slightly modify the abstraction refinement al-
gorithm implemented in ARC. Every refinement node that gets added to the GCFG
is mapped via a relation split_for to the target node for which the refinement was
created. Considering the model in Figure 4.4 b for example, the split_for would
include the pairs of nodes {6:b==1 — 10:a==1} and {10:a==1 — 11:true}.

When the execution of a new test case covers a node in the GCFG, the coarsening
algorithm undoes all the refinements generated towards the analysis of that specific
node. Coarsening then proceeds recursively along the structure defined by the
split_for map to undo the complete chain of refinements leading to the newly
covered node. In the model in Figure 4.4 b for example, the execution of the test
case with input {a=1; b=0} would cover the node 11:true, provoking the coarsening
of both the refinement node 10:a==1 and 5:b==1.

Similarly, if an abstract state is detected as infeasible, coarsening ascends recur-
sively the chain of refinements in the split_for map and undoes all the redundant

76 4.7 The GCFG Coarsening

ones. In this case however, all the GCFG nodes that are reachable from the detected
infeasible state are checked as well. A coarsening procedure is started for each of
the infeasible nodes.

Chapter 5

Prototype Implementation

The Abstraction Refinement and Coarsening (ARC) algorithm has
been implemented in a prototype tool called ARC-B (ARC for Branch
coverage testing). ARC-B generates test cases for C programs with the
goal of evaluating the effectiveness of the ARC approach in obtaining full
branch coverage for non-trivial software. This chapter discusses the de-
sign and implementation decisions involved in the construction of ARC-

B.

This chapter introduces ARC-B, a prototype tool that has been employed to validate
empirically the effectiveness of the Abstraction Refinement and Coarsening (ARC)
approach (see Chapter 6). ARC-B is a robust and efficient Automated Test Data
Generation (ATDG) tool for C programs that targets full branch coverage; this result
was achieved also thanks to the extensive reuses of several third party, open source
components. ARC-B is built on top of CREST!, an automatic test generation tool
based on concolic execution. CREST in turn relies on CIL? for the instrumentation
and the static analysis of C code, and on the YICES? SMT solver. ARC-B extends
the CREST functionalities by including four extra static and dynamic analysis com-
ponents that concur to the implementation of the ARC algorithm: the GCFG model,
the ARC frontier analysis, the GDB based coverage tracer and ARC refinement.
Section 5.1 describes the ARC-B tool from a user viewpoint describing in partic-
ular how the source code of a program under test can be prepared for the analysis.
Section 5.2 overviews the high level workflow that governs the ARC-B analysis.
The subsequent sections focus on the four analysis components that are specific to
the ARC-B approach, describing in detail the most relevant aspects of their design
and implementation. Section 5.3 describes the implementation of the Generalized

Thttps://github.com /jburnim /crest,/
Zhttps://github.com /kerneis/cil/
Shttp://yices.csl.sri.com/

7

78 5.1 Using ARC-B

CREST instrumenter
1 random input I

(analysis bootstrap) 0 instruments

M
9.1 satisfying input \|/ NZ
CREST test driver 2 runs Program under test
ARC coverage tracer 3 check predicates GDB
. . 6 selects/runs available j\ 7 generates
ARC frontier analysis test case up to frontier branch

4 annotates
traversals CREST solver (Z3) ——8 solves last branch

Symbolic trace

ARC refinement

5 selects target :l\
9.2 branch unsatisfiable

—\| 10 refines
s GCFG model

Figure 5.1. The logical modules and workflow of ARC-B.

Control Flow Graph (GCFG) model and the data structures that it provides to
the other components. Section 5.4 describes how the ARC frontier analysis imple-
ments efficient data structures to identify and analyze the frontier transitions in the
GCFG model. Section 5.5 describes how ARC-B uses a GDB based coverage tracer
to dynamically analyze test case executions. Section 5.6 describes the implementa-
tion of the Weakest Precondition (WP) based ARC refinement and the coarsening
algorithms.

5.1 Using ARC-B

The ARC-B prototype tool operates on programs written in the C programming
language. ARC-B requires as input the source code of the program under analysis
in a single .c file. This requirement is inherited from the CREST tool that we used as
a base for ARC-B. The CREST distribution package includes a tool that mitigates
this limitation by merging all the code mentioned in a Makefile into a single .c file.

To test a program with ARC-B, users need to write a test driver in the form of a
main function. The driver instructs ARC-B about which program variables should
be considered as the input of the program under test. An unconstrained symbolic
value will be assigned to these variables by the ARC-B Symbolic Execution (SE)
engine. The test driver typically creates a number of symbolic values using the
ARC-B library functions, and invokes the functions under test using the symbolic
values as parameters.

79 5.2 ARC-B Workflow

int main() {
int x;
ARC_B_int(x, "X");
ARC_B_assume(x >= 0);
return foo(x);

SN -

Figure 5.2. A simple test driver for ARC-B.

Figure 5.2 shows a simple driver for testing the function foo that accepts an
integer value as input. Line 1 declares an integer variable x and line 2 assigns a
symbolic value X of the appropriate type to it. Line 4 finally, calls the function foo
using x as parameter.

The macro ARC_B_assume is used to introduce preconditions in the test drivers.
Preconditions can be used to reduce the symbolic state space analyzed by ARC-B
and can therefore have a big impact on the analysis performance. Line 3 in figure
5.2 shows how to use ARC_B_assume to limit the input space of function foo to a
smaller range. ARC-B will automatically discard in this case all negative values for
x. ARC_B_assume accepts any valid C condition as parameter.

ARC-B is a command line tool. When invoked, it instruments and compiles the
program under test, linking it with functions that perform side by side concrete and
symbolic execution and enable program execution monitoring. ARC-B repeatedly
runs the program, building new tests cases at every step and detecting unreachable
branches. Finally, when the analysis is completed or a given time budget is reaches,
ARC-B estimates and reports the branch coverage achieved by the generated test
suite, excluding unreachable branches from the total target count.

5.2 ARC-B Workflow

Figure 5.1 shows the logical modules of ARC-B and how they modify the original
workflow of CREST. White rectangles represent the CREST components that are
reused in ARC-B, while gray rectangles represent the new modules of ARC-B. The
arrows, numbered from 0 to 10, model the execution steps that form an iteration
of the ARC analysis loop, as well as the data dependencies between the ARC-B
components.

ARC-B execution starts by instrumenting the program under test, manually
annotated with symbolic input identifiers, using the CREST instrumenter (step 0
in Figure 5.1). The instrumentation code, which is generated using a customized
version of the CIL library, implements a stack-based symbolic interpreter that runs
alongside the normal program execution. The symbolic interpreter updates the sym-

80 5.3 The GCFG Model

bolic execution state of the program under test and computes the path conditions.

The CREST test driver executes the instrumented program using an initial test
suite if available, or using a randomly generated input otherwise (steps 1 and 2).
ARC-B runs the test cases through the GDB* debugger, which allows the inspection
of the program dynamic execution state. The extracted execution information is
used by the ARC coverage tracer to dynamically check the validity of the abstraction
refinement predicates and annotate the GCFG with test execution traces (steps 3
and 4).

In step 5, the ARC-B search engine selects an abstract frontier transition that
has the potential to drive the execution towards uncovered elements. To find a new
test that traverses the frontier, in step 6 ARC-B identifies the test cases that reach
the frontier but do not traverse it. The compatible test cases are replayed up to
the frontier, to generate the required path conditions (step 7). The CREST solver
generates an input file for the Z3 solver that combines the path conditions with the
eventual frontier predicate, and checks its feasibility (step 8).

Finally, if the solver succeeds in finding a test input that drives the program
execution across the coverage frontier towards the target elements (step 9.1), the
iterative process is restarted from step 2. If traversing the coverage frontier is
instead infeasible (step 9.2), the ARC refinement component updates the GCFG
model using WP based abstraction refinement (step 10), and the ARC-B analysis
continues from step 5.

The ARC-B analysis iterates until all the coverage targets are classified as cov-
ered or infeasible by gradually removing infeasible program paths from the GCFG
model. However, due to approximations in generating the path conditions and in
the refinement predicates, the analysis does not always terminate but is stopped
when reaching a predetermined time budget.

The Object Oriented design of CREST supports the implementation of custom
strategies to explore the symbolic execution trees of the programs under test. This
is obtained by extending the class Search and implementing the method Run which
drives the SE analysis. Appendix A contains a streamlined version of the methods
Run and traverseFrontier implemented in ARC-B. The method Run implements
the workflow we just described and calls traverseFrontier to attempt to traverse
a frontier and, when impossible, obtain an appropriate refinement predicate.

5.3 The GCFG Model

The GCFG model is at the core of the ARC technique as it represents the inter-
face among the different components of the analysis and enables their interaction.
In ARC-B we took special care in selecting appropriate data structures that sup-

“http:/ /www.sourceware.org/gdb/

81 5.3 The GCFG Model

port efficient GCFG access and update methods. This section describes the most
important design choices.

The ARC-B implementation of the GCFG is based on the boost : : graph® library.
boost: :graph uses generic programming to obtain the highest grade of flexibility
and extensibility without scarifying efficiency, in the style of the Standard Template
Library (STL) [Aus98|. To support bidirectional searches in the GCFG, ARC-B
represents the graph as an adjacency list with bidirectional edge access (access to
both out-edges and in-edges of a node).

Property maps are the boost: : graph mechanism that allows linking the abstract
mathematical nature of graphs to concrete domain problems that can be expressed
in terms of graph theoretical concepts. They can be used to attach generic properties
to the vertices and edges of a graph. The abstract states of a GCFG are represented
in ARC-B as boost: : graph vertices. Several property maps are required to encode
their properties:

e vertex2branch: links graph vertices to the branches of the program under
test.

e vertex2inputs: links graph vertices to the set of test cases that reach the
corresponding program branch.

e vertex2predicate: links graph vertices to the refinement predicate that de-
notes the abstract state it represents.

e split_for: links graph vertices that represent GCFG refinements to the graph
vertices that are the target of those refinements.

e is_target: contains the vertices that map to coverage targets that are not
covered yet.

e is_refinement: contains the vertices introduced in the model by abstraction
refinement.

e is_call, is_return, is_enter, is_exit: contain the vertices that do not
model actual program branches, but map to procedure call, return, enter or
exit points, respectively.

GCFG abstract transitions are represented in ARC-B as boost: :graph edges
and are characterized using the following property maps:

e is_frontier: links edges to coverage frontier transitions.

e is_back_edge: links edges to loop back edges.

Shttp:/ /www.boost.org/doc/libs/release/libs/graph/

82 5.4 ARC Frontier Analysis

In ARC-B, we encode predicates denoting abstract program states as strings in

the SMT-LIB 2.0 format [BST10]. The predicates extracted from the C code of the
test subjects are converted to the Satisfiability Modulo Theories (SMT) format in
a preprocessing phase that uses a custom parser based on flex® and bison”.
ARC-B extends the original CREST solver to support the Z3 SMT engine. 73
accepts the SMT-LIB input format as well, reducing to a minimum the need of
format conversions. In fact thanks to the common representation between the GCFG
and the SMT solver, predicates generated with abstraction refinement are used

directly to extend the path conditions obtained using symbolic execution.

(define-fun c_div ((x Int) (y Int)) Int

(ite (>= x 0)(div x y) (div (- x) (- ¥))))
(define-fun c_mod ((x Int) (y Int)) Int

(ite (>= x 0) (mod x y) (- (mod x y))))

Figure 5.3. Semantics of the C arithmetic operators / and %.

There exist some minor discrepancies between the arithmetic operators seman-
tics in C and in Z3. We cite as an example the C operators / and % that, when
the numerator operand is negative, behave differently than as prescribed by their
standard mathematical semantics. In such cases it is useful to define appropriate
helper functions in Z3 and specify their desired semantics. Figure 5.3 shows how
ARC-B expresses the C semantics of the operators / and % in the Z3 language.

5.4 ARC Frontier Analysis

Each time an abstract transition is added to the GCFG model by a refinement
step, and each time a new test case is executed, ARC-B needs to update the set of
transitions that constitute the coverage frontier.

Figure 5.4 shows the code that implements the function is_frontier that is
used to decide if an abstract transition belongs to the coverage frontier and that
updates the frontier set accordingly. The code in lines 1 to 3, simply navigates
the abstract transition modeled through the edge e in both forward and backward
directions to find the vertices fst_v and snd_v that insist on it. Lines 4 and 5
encode the criteria that define an interprocedural coverage frontier. Finally lines 6
and 7 check that the frontier is interprocedurally realizable (see Section 4.4):

e Line 4: checks that the abstract state before the frontier transition is covered
by a test case.

Shttp://flex.sourceforge.net/
"https://www.gnu.org/software /bison/

83 5.4 ARC Frontier Analysis

1 bool is_frontier(edge_descriptor e){

2 auto fst_v=source(e,graph);

3 auto snd_v=target(e,graph);

4 if (vertex2inputs[fst_v].empty() &&

5 (is_target[snd_v] || is_refinement(snd_v)) &&
6 !(is_call([fst_v] && is_return[snd_v]) &&
7 context_matches(fst_v, snd_v)){

8 frontiers.insert(e);

9 return true;

10 }

11 frontiers.erase(e);

12 return false;

13 }

Figure 5.4. Function is_frontier checks if a GCFG transition e is part of the coverage
frontier.

e Line 5: checks that the abstract state after the frontier transition maps to a
target branch or to a refinement that leads to a target branch.

e Line 6: excludes transitions that map to the whole body of a function (call-
return transitions).

e Line 7: excludes unrealizable transitions that are transitions where the con-
text of test cases reaching node fst_v and the context of the refinement node
snd_v do not satisfy the postfix compatibility criterion.

Each of these four conditions must hold for the transition e to be added to the
coverage frontier set frontiers (line 8), otherwise the transition is removed from
the coverage frontier set (line 11).

While the first three conditions can be checked locally on the model, and require
only the retrieval of values from the graph property maps, checking the condition
at line 7 efficiently is harder. To achieve this goal we developed an efficient way
to retrieve the set of test cases reaching the vertex fst_v with a context that is
compatible with the one in the refinement node snd_v.

The code in Figure 5.5 defines the map vertex2inputs (line 4), the data struc-
ture that allows us to retrieve both the test cases based on the branches they traverse
and their calling context. The key feature of the data structure implementation is
the use of reverse lexicographic ordering as comparison function (line 3). The next
paragraphs explain with an example how the reverse lexicographic ordering is re-
lated to the problem of verifying the postfix compatibility criterion for call strings.

84 5.4 ARC Frontier Analysis

//the type definition for a test input
1 typedef std::vector<value_t> input_t;
//the type definition for a calling context
2 typedef vector<vertex_descriptor> context_t;
//the type definition for a map that stores test inputs,
//indexed by calling context, sorted in reverse lexicographic order
3 typedef multimap<context_t,
const pair<const input_t, int>,
reverse_lexicographical_compare> inputs_map;
//a map that stores test input traces, indexed by covered branch
4 unordered_map<vertex_descriptor, inputs_map> vertex2inputs;

Figure 5.5. The vertex2inputs data structure supports the efficient retrieval of test
inputs for frontier analysis.

Consider the problem of finding in a container all the call strings that are com-
patible with the refinement context {2, 3, 4} according to the postfix compatibility
criterion, and suppose that the container includes the following call strings: {5, 1,
2, 3, 4}, {3, 4, 3, 4}, {5, 1, 3, 4}, and {3, 2, 3, 4}. We can visualize the reverse
lexicographic ordering by first reversing all the call strings and using the familiar
lexicographic ordering;:

1. {4, 3,1, 5}
2. {4,3,2,1, 5}

3. {4,3,2 3}

W

. {4,3, 4,3}

We can immediately notice that the call strings at position 2 and 3 that are com-
patible with the refinement context {2, 3, 4} appear in a continuous sequence. If
we reverse our refinement context we obtain the string {4, 3, 2}. In the sorted
container, the sequence of the compatible test inputs is delimited on one side by
the refinement context itself, and on the other by the smallest context that is not
compatible with the refinement context: {4, 3, 3}.

The relation that we just discovered between the refinement context and the test
contexts when sorted in reverse lexicographic order is illustrated in the following
representation:

1. {4,3, 1,5}

2. {4, 3, 2}

85 5.4 ARC Frontier Analysis

w

° {47 37 27 17 5}

W

. {4, 3,2, 3}

ot

. {4, 3, 3}

(=}

. {4,3, 4,3}

The call strings at position 2 and 5 encode the refinement context and the smallest
non-compatible context, respectively. As expected, they limit the sequence of the
compatible test contexts, the ones that satisfy the postfix compatibility criterion.

//finds all the tests reaching the vertex fst_v
//with context compatible with ctx
//returns a range of test inputs as a pair of iterators
5 pair<inputs_map::iterator, inputs_map::iterator>
get_compatible_tests(const context_t& ctx,
const vertex_descriptor& fst_v){
//find the first test case with context compatible with ctx
6 auto itlow=vertex2inputs[fst_v].lower_bound(ctx);
//construct the smallest incompatible context
7 ctx[0]=ctx[0]++;
//find first test case with incompatible context

8 auto itup=vertex2inputs[fst_v].lower_bound(ctx);
9 return make_pair(itlow, itup);
10 }

Figure 5.6. Function that searches for test cases that are compatible with a given
coverage target.

The function get_compatible_tests in Figure 5.6 returns a pair of iterators.
They delimit the sequence of test inputs in the data structure vertex2inputs that
cover the abstract state fst_v and are compatible with the refinement context ctx.
The function implements the algorithm based on the reverse lexicographic ordering
that we just exemplified.

Thanks to the expressivity of the C++ STL library, the implementation of the
algorithm is very compact: Line 6 uses the method std: :multimap: :lower_bound
to retrieve the iterator to the first element in the container that is not smaller
then ctx in reverse lexicographic order. Line 7 generates a new context that is
the smallest among the ones that are not compatible with ctx, and it is obtained
by incrementing by one the first element of the call string. Line 8 uses again the
method std::multimap: :lower_bound to retrieve the iterator to the first element
in the container that is not smaller then the smallest non-compatible context. The

86 5.5 Dynamic Analysis in ARC: GDB

two iterators delimit the sequence of the test inputs that are compatible with the
context ctx; they are returned as a pair in line 9.

It is important to notice that the ordering of elements in a std: :multimap needs
to satisfy the conditions of a strict weak ordering relation: irreflexivity, antisymme-
try, transitivity and transitivity of equivalence®. Lexicographic ordering satisfies all
these conditions being a total ordering relation.

5.5 Dynamic Analysis in ARC: GDB

ARC-B implements the dynamic analysis components of ARC using the GDB de-
bugger to monitor and modify the state of running programs. GDB can be controlled
programmatically using the GDB/MI interface, a text based interface that encodes
GDB outputs in a machine friendly format. ARC-B interacts with the GDB/MI
shell using Pstreams?, a multi platform C+ + interface to POSIX pipes.

GDB is used in ARC-B to extract both symbolic and concrete data from a pro-
gram execution. This is possible because the programs under test are instrumented
to execute concretely and symbolically at the same time. The symbolic state is
therefore part of the concrete execution state of the program and can be accessed
analogously.

5.5.1 ARC Coverage Tracer

The main role of dynamic analysis in ARC-B is to trace test executions on GCFG
models. This is achieved by evaluating the refinement predicates that are stored
in the model, at every branch encountered during executions. A test case covers
an abstract state of the GCFG model when the corresponding refinement predicate
evaluates to true in the test execution state.

As we already mentioned, refinement predicates are stored in the GCFG models
as strings in the SMT-LIB 2.0 format. SMT-LIB is a functional language that uses a
prefix notation for arithmetic and logical formula. To evaluate refinement predicates
in GDB, we implemented an interpreter that translates SMT-LIB predicates to C
statements.

The SMT-LIB interpreter for GDB evaluates SMT predicates in three stages.
The first stage is external to the program under test and converts the prefix notation
of SMT-LIB to valid C expressions before they are passed to the GDB/MI shell. The
uninterpreted functions select and store, that are used in SMT-LIB to represent
memory access via memory location references, are converted to calls to similarly
named C functions.

Shttps://www.sgi.com/tech/stl/Strict WeakOrdering.html
9http://pstreams.sourceforge.net/

87 5.6 ARC Refinement

Consider as an example the following SMT predicate
(> (select (store mem id 5) id) b) (5.1)

It compares the value stored at memory location mem[id] with the value of
variable b after storing the value 5 at that same location. This predicate would be
translated to the following valid C expression.

(select(store(mem, id, 5), id) > b) (5.2)

Supposing that GDB is able to evaluate correctly the functions select and
store, one could think of evaluating directly the valid C string that was produced
in the previous step. The variable names that appear in the predicate, however,
might not be visible in the current state of the running test case. This is because
the variables in the refinement predicate might originate in a different stack frame
and have reached the current abstract state via a refinement chain that traversed
some interprocedural transitions.

The second stage of the dynamic predicate evaluation might therefore need to
retrieve the dynamic values of variables from deeper stack frames. This is obtained
using the GDB/MI command -stack-select-frame that changes the active stack
frame. ARC-B finds the correct variable values by testing the availability of their
names in the current stack frame and switching to increasingly deeper frames in
case they cannot be found. The postfix compatibility criterion guarantees that
every variable that is mentioned in a refinement predicate is accessible in the stack
of a compatible test execution state.

At this point on the predicate evaluation, every symbolic variable in the predicate
has been replaced by its concrete value. Let us suppose that the base address of the
vector mem is 135025216, the value of the offset id is 1 and the value of variable b
is 0. The example predicate we are considering would be evaluated to the following
expression:

(select(store(135025216, 1, 5), 1) > 0) (5.3)

The third and last stage of the dynamic predicate evaluation deals with the
dynamic evaluation of the memory access functions select and store. An imple-
mentation of the two functions is available in the program under test as part of
the instrumentation. As the implementation matches the semantics that select
and store have in the SMT language, the expression can be interpreted directly
by GDB to true as 5 is greater than 0. The C code that implements the purely
functional interpretation of select and store is available in Appendix A.2.

5.6 ARC Refinement

The implementation of the GCFG model refinement in ARC-B matches closely
the description in section 4.6. The function split_region(frontier, predicate)

88 5.6 ARC Refinement

is responsible for adding new nodes to the model and reconnecting their in- and
out-edges so that only the path that is detected as infeasible gets removed from
the model (see Figure 3.3). The function is also responsible for populating the
split_for map that links the newly create abstract state with the coverage target
that caused the model refinement, thus enabling the coarsening step (see Section
4.7). When a new test is generated or a branch is proved infeasible, the function
coarsening recursively traverses the split_for map undoing all the redundant
refinements, that is the ones that do not refer to undecided coverage targets.

In this section we describe how the refinement predicates used as parameters for
the function split_region are generated. As we described in the previous chapters,
the refinement predicates in ARC are computed using the WP calculus along the
coverage frontier that is being analyzed. While the traditional WP predicates can be
computed statically by analyzing the program code, the computation of alias-aware
refinement predicates combines instead static and dynamic information [BNR*10].
In particular the refinement step needs to access the program state of the test case
that is executed up to the frontier, with the goal of checking aliasing.

ARC-B computes the alias-aware refinement predicate in two steps. The first
step is performed statically during the initialization of the analysis and consists of
collecting the list of all the assignments that are performed by the program between
every pair of consecutive branches, i.e. inside every linear code sequence. In fact
given a predicate P, computing its WP along a GCFG edge e amounts to replacing
the variables in P with the value they are assigned to along the edge e.

1: foreach(auto ass=assignments(bl, b2)){
2: foreach(auto pred_var=pred.vars){
3: if(gdb.is_alias(pred_var, ass.left)){
//replace if alias of the assignment lhs
4: pred.replaceVar(pred_var, ass.right);
//build the alias-aware refinement predicate
Predicate alias_pred=Predicate: :parseSMT (pred_var);
alias_pred.equal(ass.left);
alias_pred.negate();
pred.disjunct(alias_pred);

0 N o O,

Figure 5.7. Computation of alias-aware, WP-based refinement predicates.

The actual variable replacement however is delayed to the dynamic test execu-
tion phase. Only when a tests get re-executed in ARC-B to recreate the symbolic
states that determines the path infeasibility, is in fact possible to compute the

89 5.6 ARC Refinement

alias conditions between the assigned variables and the predicate variables that are
needed for generating the refinement predicates.

Figure 5.7 shows a simplified version of the code fragment that computes the
refinement predicates used in ARC-B. The variable pred contains the predicate to
be refined and the function assignments(bl, b2) returns the list of assignments
performed between the branches bl and b2. Lines 1 and 2 create a loop that
allows us to consider one by one all the possible combinations of predicate variables
and assignments. Therefore, lines 3-8 get executed for every variable pred_var in
predicate pred and every assignment ass performed between the branches bl and
b2.

To compute the traditional WP refinement predicate, we would replace in the
predicate pred every occurrence of the assignment left-hand side variable with the
assignment right-hand side predicate. In ARC-B we want to replace not only the
occurrences of the assignment left-had side but also all its aliases. The function
gdb.is_alias at line 3, operates in a given concrete state represented by the ob-
ject gdb and checks dynamically if pred_var and ass.left are alias by checking
if they are stored in the same memory location. Only in this case the variable
pred_var is replaced in the predicate pred (Line 4). Lines 5-8 finally correct the
refinement predicate to guarantee the refinement soundness: the modified predicate
pred combined using a disjunction with the negation of the observed alias condition.

Consider as an example the assignment a=b and the predicate (c>0). Let us
suppose that, on the frontier state, variables a and c¢ are alias. The alias-aware
refinement predicate would be computed as (b>0 || &a!=&b). This abstract state
will be a future target of the ARC-B analysis and will be eventually covered by an
execution that either produces the same alias condition that we already observed
on the frontier but verifies the predicate b>0, or by an execution that generates a
different alias condition altogether.

90

5.6 ARC Refinement

Chapter 6

Evaluation

We evaluated the Abstraction Refinement and Coarsening (ARC) ap-
proach by applying the ARC-B prototype tool on a number of synthetic
and industrial programs. This chapter describes the experimental setting
and discussed the evidence we collected. We first show that the ARC
goal oriented search strategy can indeed detect infeasible code and cover
more code elements then depth first and heuristic based symbolic execu-
tion. Then we compare the coverage scores of ARC-B with competing
techniques when applied on industrial programs. Finally we report about
an independent study that evaluated ARC on a software component of a
safety-critical control system, detecting several previously unknown fail-
ures.

Our main research hypothesis is that “ An analysis technique that is based on scalable
program abstractions and that exploits the synergies between symbolic test genera-
tion and reachability analysis can generate test suites with high code coverage for
industrially relevant software systems”.

In Chapter 1 we motivated the goal of obtaining high code coverage in the
light of several classical and recent empirical studies and meta analyses that agree
in correlating coverage scores that approximate 100% with high quality assurance
levels. Chapter 4 describes our approach, Abstraction Refinement and Coarsening
(ARC), that combines a test case generation approach based on Symbolic Execution
(SE) with abstraction refinement based infeasibility detection.

To validate our research hypothesis we applied the ARC-B prototype tool de-
scribed in Chapter 5 on several test subjects to estimate its ability of both generating
test suites that cover feasible branches and identifying infeasible ones. In this chap-
ter we report empirical data from two sets of experiments designed to answer the
following research questions:

91

92 6.1 Effectiveness of the ARC Search Heuristics

Q1 Can the symbolic approach to test input generation be combined with reach-
ability analysis techniques to produce test suites with high coverage?

Q2 Can such a hybrid framework scale to industrially relevant software by ex-
ploiting efficient program abstractions?

Q3 Isthe ARC approach able to expose previously unknown failures in industrially
relevant software?

To address question Q1, we discuss in section 6.1 the results obtained while
experimenting with artificial programs, built as variants of the codes of Figures 4.7
and 4.9 that we have discussed in Chapter 4. The goal of these initial experiments
is to evaluate the ability of the ARC approach to solve problems that cannot be
addressed well by symbolic and concolic tools, and to evaluate the performance of
ARC-B for increasingly complex instances of these problems.

Section 6.2 presents experiments with industrial programs that contains feasible
and infeasible branches. Throughout the experiments, we also compare the coverage
rates obtained using ARC-B with the ones obtained using a representative set of
concolic, symbolic and random testing tools. Part of the presented evaluation was
published in [BBDP11]|. New and larger test subjects have been added to demon-
strate the recently developed support for procedures and dynamic memory access,
as well as the improved scalability performance.

Section 6.3 reports our experience of applying ARC-B to industrial software
with the goal of exposing software failures and addressing the research question Q3.
The ARC-B prototype tool was applied to four incremental versions of a real-time
software component that have been provided as case study by industrial partners
in the context of the European FP7 project PINCETTE. The test suite produced
with ARC-B exposed six unknown and subtle failures in the system, indicating that
the ARC approach can be useful in improving the quality of software in realistic
industrial settings [BDR14].

6.1 Effectiveness of the ARC Search Heuristics

Table 6.1 reports the results obtained analyzing increasingly complex instances of
the functions that we used in Chapter 4 to illustrate the ability of the ARC approach
to detect infeasible code elements and direct test generation precisely towards uncov-
ered ones. The subject of our experiments are labeled scan(i) and valves_rep(i),
they refer to generated programs that are composed of a sequence of i replicas of
programs scan (Figure 4.7) and valves (Figures 4.9), respectively. The programs
named valves_nest(i) are similar to valves_rep(i) with the difference that the
code replicas are not appended one to the other but are instead nested within the

93 6.1 Effectiveness of the ARC Search Heuristics

ARC-B CREST-dfs || CREST-cfg || KLEE
subject br it ‘ tc ‘ cbr ‘ ibr ‘ cov || cbr ‘ cov cbr ‘ cov cbr ‘ cov
scanl 8 11 3 6 2 1100%|| 6 75% 6 75% 6 |75%
scan?2 16 23 5 112 | 4 |100% | 9 56% 12 75% 8 |50%
scand 40 59 11 | 30 | 10 [100% || 18 45% 30 75% 14 |35%
scanl0 80 119 | 21 | 60 | 20 |100% || 33 41% 60 75% 24 | 30%
scan20 160 || 239 | 41 | 120 | 40 |100% || 63 39% 120 75% 44 128%
scan50 400|| 599 |101 | 300 | 100 |100% || 153 38% 300 75% 104 | 26%
scan100 800 || 1203 |200 | 600 | 200 | 100% || 303 37% 600 75% 204 | 26%
valvesl 6 29 4 1 6 | 0 |100%|| 5 83% 5 83% 5 |83%
valves rep2 12 65 7112 0 [100%| 7 58% 10 83% 8 [67%
valves _reph 30 || 161 | 16 | 30 | 0 |[100% || 13 43% 25 83% 17 |57%
valves repl0 60 316 | 31|60 | 0 [100% || 23 38% 50 83% 32 |53%
valves rep20 |120(633 | 61 [120| O |100% || 43 36% 100 83% 62 | 52%
valves rep50 |300 || 1594 |151{300| 0 |100% || 103 34% 250 83% 152 | 51%
valves repl100 | 600 || 10000 | 300 {599 | 0 | 99% || 203 34% 500 83% 302 | 50%
valves nest2 12 59 7112 0 |100%| 5 42% 5 42% 5 |42%
valves _nestb 30| 149 |16 |30 | 0 [100%|| 5 17% 5 17% 5 |17%
valves nest10 | 60 || 299 |31 | 60 | O |100% || 5 8% 5 8% 5 | 8%
valves_nest20 [120 599 | 61 |120| 0 |100%|| 5 4% 5 4% 5 | 4%
valves_nest50 |300 || 1499 [151|300 | O |100%|| 5 2% 5 2% 5 | 2%
valves_nest100 | 600 || 10000 [217|431 | O | 71% || 5 1% 5 1% 5 | 1%

br: number of branches computed statically
it: number of iterations of ARC-B
tc: number of generated test cases
cbr: number of covered branches
ibr: number of identified infeasible branches
cov: coverage [as percentage], i.e.,
cbr / (br - ibr) , in the case of ARC-B
measured using the GNU gcov utility, in the case of CREST-dfs, CREST-cfg and KLEE

Table 6.1. Results of ARC-B, CREST-dfs, CREST-cfg and KLEE on variants of the
programs scanl and valvesi

body of the last if, that is, within the hard-to-cover branch. Column br of Ta-
ble 6.1 reports the number of branches in each subject program, computed using
static analysis.

We generated test cases for the subject programs with ARC-B, KLEE and
CREST. KLEE implements the traditional approach based on static, depth-first
symbolic execution [CDEOS8|, while CREST exploits concolic execution and can be
further configured to use either depth-first search (CREST-dfs) or control-flow graph
guided heuristic path exploration (CREST-cfg) [BS08|. We ran the tools to generate
test cases for each subject program with the goal of maximizing branch coverage,
starting from a single input test case.

For each tool run, we report the number of covered branches (column cbr) and
the branch coverage score (column cov). For ARC-B we also report the number of

94 6.2 Approximating Full Coverage on Industrial Programs

iterations performed (column it), the number of test cases produced (column tc)
and the number of branches identified as infeasible (column ibr). In the case of
CREST and KLEE, the number of generated test cases is equal to the number of
iterations.

Since all the tools call the SMT solver once per iteration, the number of iterations
gives a clear indication of the complexity of the analysis. We fixed a budget of
10,000 iterations for all the runs. ARC-B generates test cases that cover all feasible
branches in all the experiments except for valves_rep100 and valves_nest100
where it does not terminate but achieves a coverage of 99% and 71%, respectively.
CREST and KLEE never terminate when applied to the subject programs as their
depth-first search strategy diverges for programs that contain loops.

The table shows that ARC-B steadily achieves very high branch coverage while
the other tools cannot achieve the same coverage, and their results vary largely
among the set of considered programs. ARC-B identifies all infeasible branches of
programs scan(i), and covers all the difficult branches of both valves_rep(i) and
valves_nest (i) up to 50 code replicas. It covers all but one branch of valves_rep100
and about 30% of the branches of valves_nest100.

The performance of CREST-dfs and KLEE reduces progressively for programs
with an increasingly higher number of loops. CREST-cfg has stable performance
on the programs scan(i), where it covers all feasible branches, and on programs
valves_rep(i), where it only misses one feasible branch per code replica. It shows
very poor performance for the programs valves_nest(i), where most code is em-
bedded into the hard-to-cover branches. All the tools show their worst performance
for the program valves_nest100, where ARC-B scores about 71% branch coverage,
while both CREST-dfs, CREST-cfg and KLEE do not go beyond 1% coverage.

This experiment answers positively the research question Q1, supporting the
case for combining test generation and iterative refinement of abstract program
models to achieve higher coverage. The target oriented approach implemented in
ARC-B maintains the focus on the uncovered branches and can precisely identify
and isolate infeasible branches. The ARC approach outperforms CREST-dfs and
KLEE that instead engage themselves in the depth-first exploration of infinitely
many program paths, it also outperforms CREST-cfg whose search heuristic based
on the overapproximated program CFG, is deceived by the presence of infeasible
branches.

6.2 Approximating Full Coverage on Industrial Programs

Table 6.2 lists 16 subject programs that we used in our experiments. The first 12
programs have been selected for a preliminary evaluation of the ARC approach. In
fact despite their non-trivial branching structures, they are of limited size and make
limited use of procedures [BBDP10]. This allows us to verify the ability of ARC-B

95 6.2 Approximating Full Coverage on Industrial Programs

ARC-B

subject loc br tc ‘ cbr ‘ ibr H covy it1 ‘ COoVa ito
linsearch 23 8 3 8 0 100% 3 100% 3
binsearch 39 12 4 12 0 100% 6 100% 6
tcas 180 92 23 87 5 95% 151 100% 735
week(154 58 15 53 3 91% 50 96% 50
week1 154 58 16 53 3 91% 65 96% 65
week2 154 56 17 52 4 93% 70 100% 121
week3 154 56 16 52 4 93% 50 100% 108
week4 154 58 16 43 13 74% 55 96% 125
weekb 154 58 16 53 3 91% 85 96% 90
week6 154 56 18 52 4 93% 90 100% 128
week7 154 56 18 52 4 93% 110 100% 139
week 154 84 27 81 3 96% 135 100% 135
cdaudio 2171 534 259 | 417 113 79% 20965 | 99% 76 800
diskperf 1104 194 59 166 14 86% 600 92% 13200
floppy 1144 | 234 75 206 14 8% 317 94% 14700
kbfiltr 618 68 32 57 6 84% 129 92% 981

TOTAL [] 6665 | 1696 [[612 [1456 | 195 || 86% 22881 [97% 107386
loc: number of lines of code
br: number of branches computed statically (after
unrolling decisions with multiple conditions in
equivalent cascade of single condition decisions)
tc: number of generated test cases
cbr: number of covered branches
ibr: number of identified infeasible branches
covi: branch coverage measured using the GNU gcov utility [as percentage]
it1: number of iterations to achieve cbr
cova: cbr / (br - ibr) [as percentage]
ito: number of iterations to achieve both cbr and ibr

Table 6.2. Results of ARC-B execution on 16 industrial subject programs.

to achieve high branch coverage rates and at the same time to inspect manually
the identified infeasible branches. Being able to manually inspect the identified
infeasible branches helped us mitigating one of the major treats to the validity of
our evaluation campaign, the possible incorrectness of the tool implementation.
The programs linsearch and binsearch implement the linear and binary search
of an integer value in an array, respectively (the code is reported in Appendix B.1).
The Program tcas implements a component of an aircraft traffic control and colli-
sion avoidance system, as available from the Software-artifact Infrastructure Reposi-
tory (SIR) [DERO5]. The programs week0. .7 and week_ use the function calc_week
from the MySQL database management system in different specialized ways (the
code is reported in Appendix B.2). Function calc_week takes two parameters,
1_time (a date) and week_behavior, and returns the corresponding week of the year
(an integer value between 0 and 53). The parameter week_behavior is interpreted

96 6.2 Approximating Full Coverage on Industrial Programs

as a sequence of bits that indicate the day when the week starts (either Sunday or
Monday), the baseline to count weeks (either 0 or 1), and the reference standard
for the date representation (ISO standard 8601:1988 or not). In the context of a
specific application, calc_week is typically used by passing a fixed constant value of
week_behavior to all calls. This may cause some of the branches of week_behavior
to be infeasible within a specific application. The programs week0. .7 pass the val-
ues 0 to 7 as week_behavior to the function calc_week, while the program week_
uses a symbolic value.

The last four subjects in the table correspond to four device drivers for the
Windows NT kernel: cdaudio, diskperf, floppy and kbfiltr. These programs
have a very complex control flow that is reflected in a very large number of paths.
In a recent work evaluating an interpolant-based Automated Test Data Genera-
tion (ATDG) tool based on CREST, Jaffar et al. used this same programs as a
benchmark [JMN13]. This allows us to compare the ARC-B results with the state-
of-the-research in symbolic test case generation despite the lack of access to the
tools.

For each of the subject programs, column loc reports the size expressed in lines
of code as counted by the GNU utility wec, and column br reports the number of
branches as counted by ARC-B. ARC-B counts the branches in a program statically,
right after the CIL pre-compilation that unrolls decisions with multiple conditions as
a cascade of single condition decisions, and eliminates dead code based on constant
propagation. We can observe that this fact determines slightly different counts of
static branches across the different specializations of the program calc_week.

We launched ARC-B on all the subject programs starting from an initially empty
test suite. Table 6.2 reports the number of test cases that ARC-B generated for each
program (column t¢c), the number of covered branches (column cbr), the number of
branches that ARC-B identified as infeasible (column ibr). Column cov; shows
the branch coverage rated computed using the GNU gcov utility that ignores the
ARC ability of detecting infeasible branches. Column covy rescales the coverage
score by removing infeasible branches from the coverage domain using the formula
cbr/(br — ibr). Columns it; and ity report how many iterations were required to
reach the cov; and covy scores respectively.

In this experiments, ARC-B has generated a total of 612 test cases that cover
1.456 out of 1.696 branches, and identified 195 infeasible branches, failing only on
45 branches that ARC-B could neither cover nor identify as infeasible. The total
branch coverage adjusted with respect to the branches identified as infeasible is over
97%. Each run completed within 60 minutes on a common laptop.

ARC-B produced test suites of manageable size that cover most feasible branches
(100% in many cases and 92% in the worst cases). The table shows clearly that the
value of the branch coverage that ARC-B computes after identifying and eliminating
infeasible elements (column covs) is more accurate than the value that ARC-B

97 6.2 Approximating Full Coverage on Industrial Programs

computes referring to the statically identified branches (column covy), although
computing the former value requires more iterations (column ¢¢;) than computing
the latter value (column ity) in most cases. This can be observed for all programs
that contain infeasible elements. The improvement reaches 22% for week4 where
the coverage grows from 74% to 96%. On average the improvement is around 10%.

To evaluate the effectiveness of ARC-B we compared the coverage results we
obtained with the ones produced by CREST using three different strategies: plain
random testing (Rand), depth-first concolic execution (CREST-dfs) and an heuristic
strategy that aims to maximize branch coverage (CREST-cfg) [BS08|.

Branch coverage (%)
subject | Rand | CREST-dfs | CREST-cfg| KLEE | ARC-B (cov;) | ARC-B (covy)
linsearch | 100% 37% 100% 62% 100% 100%
binsearch | 100% 83% 100% 75% 100% 100%
tcas 4% 93% 93% 93% 95% 100%
weekO0 79% 79% 79% 91% 91% 96%
week1 79% 79% 79% 91% 91% 96%
week2 80% 82% 82% 93% 93% 100%
week3 80% 82% 82% 93% 93% 100%
week4 53% 53% 53% 74% 74% 96%
weekb 76% 76% 76% 91% 91% 96%
week6 79% 7% 79% 93% 93% 100%
week7 80% 80% 80% 93% 93% 100%
week 67% 67% 67% 96% 96% 100%
cdaudio 2% 78% 7% 79% 79% 99%
diskperf 3% 75% 85% 76% 86% 92%
floppy 2% 86% 86% 87% 88% 94%
kbfiltr 38% 84% 84% 85% 84% 92%

Table 6.3. Comparison of branch coverage scores of ARC-B and CREST

Table 6.3 compares the branch coverage obtained with Rand, CREST-dfs, CREST-
cfg and KLEE on the 16 subject programs of Table 6.2 with the values obtained
with ARC-B. To make the results comparable, we ran all tools on exactly the same
code, after the logical operators in the program conditionals were removed via the
code transformation done by CIL. We terminated the executions after 60 minutes
for each program.

We can observe that in no case CREST or KLEE generate test suites that
cover more branches than the ones from ARC-B. In three cases (tcas, diskperf
and floppy) ARC-B covers more branches then the alternative approaches proving
that the bidirectional search it implements can precisely direct symbolic execution
towards uncovered targets (covi). Most importantly we can observe that ARC-B
is the only approach that systematically reaches branch coverage scores exceeding
90% (covs). As we discussed in chapter 1, test suites with coverage values in this
range have been shown to possess a high failure detection ability. These results

98 6.2 Approximating Full Coverage on Industrial Programs

allow us to answer positively to our research question Q2: the ARC approach can
be useful in generating test suites that approximate full branch coverage for software
of industrial relevance.

6.2.1 Threats to Validity

The main threat to the internal validity of our experiments is the potential incorrect-
ness of the analysis computed by ARC-B on the subject programs. We contrasted
this threat in several ways. As we already discussed the first strategy was to analyze
programs of increasing size and complexity.

For the synthetically generated programs and the 12 smaller industrial ones,
we manually produced the correct branch reachability data. This allowed us to
systematically test (and fix) the ARC-B prototype obtaining a robust core imple-
mentation. The extension of the core system toward supporting more advanced
program constructs like heap memory access and procedures was done using a test
first approach.

The correctness of the analysis of larger software has been confirmed indirectly
by checking the ARC-B results using third-party testing tools: On one side, we
used the GNU gcov tool to re-run the generated test suites and confirm that all the
branches marked as covered by ARC-B are indeed traversed by the corresponding
test cases. On the other side we crosschecked that none of the branches covered
by other test generation tools was identified as infeasible by ARC-B. Moreover we
confirmed manually the infeasibility of a sample of the branches from the device
driver test subjects.

One of the key contributions of KLEE is its ability to close a program by mocking
the behavior of UNIX system calls. This allowed KLEE for example to generate test
cases for coreutils, the set of GNU utility programs. ARC-B does not currently
include such a support. Despite the ability of ARC-B to handle a certain level of
imprecision both in the SE and Weakest Precondition (WP) analysis components,
this might constitute a major limitation to the successful application of the ARC-B
prototype tool to system software.

Considering now the external validity of our evaluation, we need to discuss two
aspects: the industrial applicability of the ARC approach and the comparison of its
effectiveness with the state of the art. We strongly believe that the ability of ARC to
inexpensively obtain a very high branch coverage score for the four NT device drivers
does prove its usefulness in industrial settings. The actual benefit of the approach
however, can be evaluated only by performing studies that consider automated
testing as a component of a more general development process, and evaluate its
impact on the quality and the cost of the final product and its maintenance. Such
goal is outside the scope of this dissertation.

Our evaluation focused on the comparison of the effectiveness of ARC with
respect to other symbolic testing techniques. The publicly available versions of

99 6.3 Failure Detection in Safety-Critical Software

CREST and KLEE however, do not include many of the algorithmic improvement
proposed in the literature in the recent years. The decision to use as a case study the
four NT device drivers mitigates the impact of this limitation in the experimentation.
From the analysis of the data presented in the paper [JMN13|, we can conclude that
ARC-B would obtain a higher branch coverage on the same experimental subjects.
The authors in fact report that they observed that their approach can achieves the
same branch coverage as vanilla CREST despite the higher path coverage. This
allows us to assert that the performance of ARC-B in terms of branch coverage
exceeds the previous state-of-the-research.

6.3 Failure Detection in Safety-Critical Software

This section provides a description of the experiments we conducted with the goal
of evaluating the failure detection capabilities of ARC-B and thus answering the
research question Q3. To this goal we set up an experiment that compares ARC-B
against a sample of industrial software systems, with characteristics that are chal-
lenging SE based ATDG tools, including nonlinear and floating point arithmetics.
The test subjects have been provided as case study by industrial partners in the
context of the European FP7 project PINCETTE and include four incremental ver-
sions of a real-time software component that controls a robot responsible for the
maintenance of the ITER nuclear fusion plant.

6.3.1 The Experiment Setup

In the following we describe the experiment subject programs and provide the core
domain knowledge needed to understand the results of our testing activity.

ITER is part of a series of experimental reactors that are meant to investigate
the feasibility of using nuclear fusion as a practical source of energy. Due to very
specialized requirements, the maintenance operations of the ITER reactor requires
developing and testing several new technologies related to software, mechanics, elec-
tric and control engineering. Many of these technologies are under investigation at
the Divertor Test Platform (DTP2) at VI'T Technical Research Centre of Finland.
DTP2 embeds a real-time and safety critical control system for remotely operated
tools and manipulation devices to handle the reactor components for maintenance.

The control system is implemented using the C, LabVIEW and IEC 61131 pro-
gramming languages. The software component chosen for this study is part of the
motion trajectory control system of the manipulation devices and is implemented
in C. It provides an interface between the operator and the manipulator. The oper-
ator inputs the target position of the manipulator, along with the maximum veloc-
ity, initial velocity, maximum acceleration and maximum deceleration, as physical
constraints on the generated trajectory. As a result, the software plans the move-

100 6.3 Failure Detection in Safety-Critical Software

ment of the manipulator, interpolating a trajectory between two given points in
n-dimensional space, where n is the number of physical joints in the manipulator.

The output results are in the form of smooth motions, so that the manipulator
joints accelerate, move and decelerate within the physical bounds until the target
position is reached. This avoids excessive mechanical stress on the structure of the
manipulator, ensuring its integrity and safety. It also keeps the desired output forces
of the joints actuators in check. The correctness of such software plays a key role
in the reliability of the control system of the ITER maintenance equipment.

A further requirement posed on the produced trajectories is that all the joints
should start and finish their motion at the same time. The software ensures that
all joints finish their motion at the same time by slowing down acceleration and ve-
locities for certain joints. The component is designed to be compiled as a Dynamic
Link Library (DLL) to work with Matlab or LabVIEW.

Our experiment considers four incremental versions of the subject software com-
posed of 6 functions each. The subjects code size ranges between 250 and 1,000
lines of code and between 36 and 74 branches.

I) Baseline version
The baseline version is the main working implementation of the software, and can
be compiled to run in the LabVIEW real-time environment. This version was used
to test the motion characteristics of a hydraulic manipulator.

I1) Platform change version
The second version considered in the study is a platform change of the baseline
version that provides the same functionality, but is designed to compile as a DLL to
work in the Matlab Simulink environment. It was implemented to plan and simulate
the motions in a virtual environment before executing them on the real manipulator,
aiming to enhance the safety of operations.

I1) Fixed version
The third version considered in the study is a bug fix of the second one. In fact,
the second version contains a particular bug causing the manipulator to violate the
maximum velocity and acceleration limits. This bug remained in the software for
several years before being detected and fixed in this version.

IV) Rewrite version
The fourth version considered in the study is a recently proposed alternative im-
plementation that has not been tested in a real environment yet. It was developed
from scratch to rectify some unwanted behaviors in the previous implementations.
The experiment subject software takes as input only floating point variables. The
ARC-B test generator however, does not allow floating point variables as program
inputs and therefore could not be used out of the box. The research for workarounds

101 6.3 Failure Detection in Safety-Critical Software

that could overcome the ARC-B inability to handle floating point inputs natively
lead to the decision to simulate floating point arithmetics using suitably interpreted
integer values.

This was achieved by linking the subject programs with a library that provides
a simulation of the floating point IEEE 754 semantics over integer-typed values. In
our experiments we used the SoftFloat library!. This solutions comes at the cost of
increasing substantially the complexity of the subject programs which is quantifiable
in a factor-10 increase in the number of branches.

Another major obstacle in the experiments was the absence of assertions in the
subject programs. Interviews with the developers confirmed that writing assertions
is uncommon in their software process.

None of the generated test cases resulted in runtime exceptions or program crash
even though deeper analysis of the test results revealed that runtime problems were
actually happening, such as floating point underflows and divisions by zero. The
standard semantics of floating point operations in fact, prescribes that these special
cases should be treated by returning special values, such as, NaN (not a number) or
Inf (infinity). Analyzing the test suite runs, we found out that special values were
being silently propagated by the subject programs.

For this reason we had to rely on manual oracles for evaluating the ability of the
generated test suite to expose failures. This was achieved with the help of domain
experts that confirmed our evaluations of the outputs of the subject programs when
executed against the generated test inputs.

Having to rely on manual oracles, the ability to generate test suites of man-
ageable size is of crucial importance. ARC-B is a goal oriented approach and for
this reason it produces test suites that are generally smaller than the ones from
traditional path-oriented SE tools. We could further reduce the test suite size by
instructing the test generator to consider only the test cases that increase branch
coverage.

6.3.2 Results

We ran the test generator against the subject programs up to saturation that we
defined as experiencing no coverage increase for an arbitrary budget of 10,000 test
generation attempts, obtaining 35 distinct test cases. We computed the coverage
indicators with the GNU gcov utility and collected the test execution outputs. We
manually inspected the test outcomes by looking into the plotted trajectories of
the manipulator joints generated by the subject programs with the support of VI'T
experts for the analysis of the plots.

This entailed searching the 35 test outputs for unexpected 0, NalN or Inf values,
and visually inspecting the generated plots for unexpected or inconsistent shapes

"http://www. jhauser.us/arithmetic/SoftFloat.html

102

6.3 Failure Detection in Safety-Critical Software

across the subject programs. All test suites and problem reports from our testing
activity have been submitted to developers at VI'T to collect their feedback on the
relevance of the test cases generated and the correctness of our observations.

We tabulated the failure data and clustered it obtaining 7 distinct failures sum-

marized in Table 6.4. The table includes the known failure F4 produced by the test
subject 1) Platform change, as well as six other significant and previously unknown

problems.

FailureID Description

SW Version

F1

Floating point imprecision with small input values: in
the presence of very small input values the program
computes bad output values, e.g., unexpected 0.0 or
Inf values

I) Baseline

F2

No robustness with all zero accelerations: if both the
values of the maximum acceleration and maximum de-
celeration are set to zero, the program computes bad
output values, e.g., unexpected 0.0 or Inf values

I) Baseline

F3

No robustness with negative accelerations: if either the
value of the maximum acceleration or maximum decel-
eration is a negative number, the program computes
bad output values, e.g., unexpected 0.0 or Inf values

I) Baseline

F4

Wrong peak velocity in presence of quiet joints: if there
are quiet joints (same origin and destination positions),
the program will issue movements at up to double or
triple the maximum velocity

II) Platform
change

F5

Quiet joints that move: if there are quiet joints other
then the first one, the program will cause them to move

II) Platform
change

F6

Slowness due to single instant peak velocity: the pro-
gram issues a smooth progressive increase in acceler-
ation up to peak velocity and a smooth progressive
deceleration from then on; This results in (unwanted)
slower movements than when applying the maximum
acceleration and deceleration at once

IV) Rewrite

F7

Unaccounted maximum deceleration: the program
refers to the value of maximum acceleration to compute
both acceleration and deceleration movements, possi-
bly exceeding the physical limits of the device when
the maximum deceleration is lower than the maximum
acceleration

IV) Rewrite

Table 6.4. Failures detected by automatically generated test cases

The test suites generated for the test subject I) Baseline, that is, the reference

103 6.3 Failure Detection in Safety-Critical Software

LabVIEW version of the component under test, exposed failures F1, F2 and F3.
The program fails when handling very small input values (failure F1), and particu-
lar combinations of the input parameters including zeros (failure F2) and negative
values (failure F3) as the maximum acceleration/deceleration of the joints. The
three failures manifest themselves as unexpected 0 and Inf values in the output.

Debugging revealed that failure F1 is due to floating point underflows in a multi-
plication, while failures F2 and F3 are caused by divisions by zero. We learned from
the VT'T experts that currently the program is never used with negative inputs.
Such problems call for strengthening the input preconditions.

10

Baseline version......
Platform change (buggy) - .-
8L
E
c 6
kel
.“(%'
o
o
E 4
o
S
2r -
Og==="0% 5 25

15
Time (s)

Figure 6.1. Movement of joint 2 when executing a test case

9 Baseline version....
[Platform change (buggy) - .-
sl Expected —

Joint Position (m)
(9]

75
Time (s)
Figure 6.2. Movement of joint 3 when executing a test case

The test suites generated for the test subject I1) Platform change, exposed the
failures F4 and F5. Figure 6.1 plots data from a test case in which the input values
for the origin and destination positions of joint 1 are equal. In this case, Joint 1
is expected to be a quiet joint, a joint that does not move. The plot shows the

104 6.3 Failure Detection in Safety-Critical Software

movements of joint 2 as issued by the subject I) Baseline and II) Platform change
respectively. It can be checked visually how the test subject II issues a higher
velocity than the Baseline due to failure F4.

At the code level the fault consists of a sequence of assignments that may double
or triple the value of maximum velocity in the presence of quiet joints. The equality
constraints that trigger the execution of these assignments are the typical case in
which directed testing based on Dynamic Symbolic Execution (DSE) outperforms
random testing; while the equality constraints are easy to solve, the probability of
randomly generating equal values is infinitesimal.

The same test suite uncovered another unknown failure in the programs due to
a division by zero that produces a NaN value in the trajectory data of quiet joints
(failure F5). The NaN value interferes with the conditional control structures so
that the program fails to update the position of the joint according to the prescribed
trajectory. The observed outcome is that a supposedly quiet joint does instead move,
replicating the movement of the joint that precedes it in the manipulator. Figure 6.2
illustrates this behavior with reference to a test case in which joint 3 is specified as
a quiet joint. This bug has been confirmed and classified as very severe by VI'T
experts.

o
®

Baseline version
Replace version ...

o
3

o
2
T

o
5

Joint Velocity (m/s)
o o
w =

I
N}
T

o

o

7 3 7] I—T

o
ok
w

5
Time (s)
Figure 6.3. Velocity of joint 2 when executing a test case

Running the test suites generated for the test subject IV) Rewrite, that is, the
recently proposed re-implementation of the functionality of the baseline version, we
observed failures F6 and F7. While overall the test cases highlighted the expected
change of behavior of version IV) Rewrite with respect to the baseline program,
i.e. smoother accelerations of the movements, they also revealed two new problems.
First, the subject IV) Rewrite computes accelerations that produce an instantaneous
peak velocity followed by joint movements that are slower then necessary (failure
F6). Second, the test subject does not take into account the maximum decelera-
tion input value when it is different from the maximum acceleration value (failure

105 6.3 Failure Detection in Safety-Critical Software

F7). This may entail important practical issues with the physical limitations of the
manipulator. These problems can easily be spotted in Figure 6.3.

If we analyze the code coverage of the generated test suites we obtain the follow-
ing results: ARC-B produced 20 test cases for the test subject 1) Baseline that cover
86% of the branches. The test suite for subject II) Platform change augmented the
test suite of the baseline with 12 additional test cases, resulting in a branch cov-
erage of 88%. For the subject III) Fized, the test generator did not produce any
additional test case over the test suite of the previous version, the branch coverage
reaches 83%. Finally ARC-B produced 3 additional test cases for the subject IV)
Rewrite over the test suite of the baseline, obtaining a branch coverage of 86%.

The branch coverage rates we obtained on the four test subjects is consistently
higher then 80%. While such a coverage rate is certainly high, it does not reach a
level that strongly correlates with high failure detection abilities (see 1). We believe
that the impossibility of reaching coverage levels approximating 100% is due to the
difficulty of detecting infeasible elements in this type of software with the current
version of ARC-B. In fact, the large amount of nonlinear arithmetic operations in
the code limited the precision of the refinement predicates in the ARC-B Generalized
Control Flow Graph (GCFG) models.

Ultimately we believe that the results we obtained by applying ARC-B to this
set of test subjects, namely a test suite that exposed 7 relevant failures and covered
of more then 80% of the branches, allow us to answer positively to the research
question Q3: the ARC approach is able to expose previously unknown failures in
industrially relevant software.

6.3.3 Threats to Validity

In this section we discuss the most important factors that may affect the internal
and external validity of our study, and outline the strategies we used to mitigate
their impact.

In the experiments, we selected test cases that produce increments of branch
coverage up to saturation. Different selection or halting criteria might have induced
different test cases and then different results. In this case the bias we introduced
is pessimistic, we might in fact have halted the generation process too soon, or
dropped test cases that would expose further failures without increasing branch
coverage. We can, therefore, assume that this threat has low impact on the results.

Handling floating point calculations using the SoftFloat simulation library, leads
to analyzing a transformation of the original subject programs, with an increase of
the total number of branches up to a factor of 10. This may threaten the compara-
bility of the results with respect to the coverage of the original code. We addressed
this issue by using the transformed code only to generate the test suites, while we
collected the failures and the coverage data on the original programs, thus producing
precise results.

106 6.3 Failure Detection in Safety-Critical Software

The features of the selected experimental subjects are representative of several
other real-time control systems that are being developed at the VT'T research centre,
but we are aware that the results cannot be directly generalized. More specifically, it
is debatable whether the results obtained generalize across software of different size,
written in different programming languages and for different application domains.

Chapter 7

Conclusions

This thesis addresses the problem of automatically generating test cases that achieve
very high structural coverage.

As several empirical studies have showed in the past, the fault detection power
of test suites grows more and more quickly for higher coverage rates, becoming
very high only for test suites approximating 100%. High coverage test suites are
nonetheless very rare in practice because of the cost connected with their generation
and maintenance. Moreover the presence of infeasible coverage elements might
undermine the informativeness of coverage scores, in particular for fine grained
coverage criteria.

To this goal we designed the Abstraction Refinement and Coarsening (ARC)
analysis technique combining in a fully automatic approach Dynamic Symbolic Ex-
ecution (DSE) based test data generation with Weakest Precondition (WP) based
reachability analysis. ARC fosters the synergy between the different analysis compo-
nents using a program abstraction called Generalized Control Flow Graph (GCFG)
that allows sharing partial reachability results. The scalability of the ARC approach
is greatly improved by the coarsening algorithm. Coarsening traces the coverage
targets back to the model refinements that have been generated to analyze their
reachability. This information allows to maintain the GCFG size under control by
undoing the refinements that are not needed anymore, the ones that can be only
traced back to covered or infeasible code elements.

We implemented the ARC analysis technique in the ARC-B prototype tool that
targets branch coverage of C programs. The experiment we conducted showed that
ARC-B can generate high-coverage test suites and scale to industrially relevant
software. Furthermore the test suites generated with ARC-B have exposed several
previously unknown failures in a safety-critical industrial software system.

107

108 7.1 Contributions

7.1 Contributions

The main contribution of this thesis is to provide an approach for Automated Test
Data Generation (ATDG) that can achieve high-coverage structural testing for in-
dustrially relevant software, combining dynamic and static analyses to direct test
case generation towards code elements that are not covered yet and at the same
time detect the infeasible ones. The analysis interplay is supported by a scalable
program abstraction that represents partial reachability results. In particular the
thesis makes the following specific contributions:

e Proposing a framework for high-coverage structural testing lever-
aging the interplay of different program analysis techniques. ARC
combines a test case generation approach with reachability analysis, aiming to
exploit the possible interplays between the two. The interaction between the
different components of ARC boils down to the sharing of reachability analysis
information. This is possible thanks to a scalable program abstraction that
coordinates the analyses interplay.

¢ Evaluating existing techniques to tackle the problem of testing code
while at the same time identifying its infeasible portion. ARC com-
bines a specific set of program analysis techniques that are particularly suitable
for combination. This is due to the fact that they can benefit each other from
sharing even partial reachability information. In particular ARC combines
DSE based test case generation with WP based abstraction refinement.

e Designing a scalable abstraction management technique able to sup-
port both test generation and reachability analysis. In ARC the dif-
ferent analysis components are coordinated via the GCFG model, a program
abstraction that encode the progress of both the dynamic and the static pro-
gram state space exploration. The GCFG size is controlled by coarsening, an
algorithm that minimizes the model redundancy and improves significantly its
scalability.

e Evaluating empirically the effectiveness of the proposed approach.
The ARC approach was implemented in a prototype tool named ARC-B that
targets branch coverage. ARC-B has been used to generate test suites that
achieve high coverage on several test subjects. The experiments validate the
effectiveness of the ARC approach in generating test suites approximating
100% coverage. Moreover ARC-B was able to expose several failures in a
software component of an industrial safety-critical system.

109 7.2 Future Directions

7.2 Future Directions

The work presented in this thesis opens several research problems. ARC constitutes
a first step in the direction of generating high coverage test suites by combining test
case generation with reachability analysis. Many alternative solutions can be imag-
ined on the same line and should be investigated and validated. More specifically,
we believe that the ARC algorithm could benefit from the following developments:

e Parallelization. At every single moment in the ARC analysis, a large subset
of the transitions in the GCFG model is independently analyzable. They
constitute the coverage domain frontier. We believe that this feature leads
naturally to a parallel implementation of the ARC algorithm that could boost
greatly the analysis performance. Key to the parallel version of ARC would
be the parallel implementation of the GCFG model.

e New frontier selection strategies. In our definition and implementation
of the frontier selection strategy that decides which of the frontier transitions
should be analyzed next, we took special care in allowing the maximum level
of nondeterminism. ARC implements a bidirectional search in the symbolic
execution tree of the program under analysis but the specific forward and
backward search strategies are not prescribed. Different selection strategies
would produce different instances of the ARC analysis that might exhibit
specific strengths.

e New refinement predicate generation algorithms. In ARC we use an
alias-aware, WP-based, abstraction refinement algorithm. It would be in-
teresting to study alternative options like the Craig interpolants or forms of
dynamically informed WP calculus.

e Further empirical validation. The ARC-B tool was successfully used on
several industrial case studies but nonetheless it still has the typical limita-
tions of a research prototype. Further empirical studies would not only allow
to better evaluate the ARC industrial applicability and scalability but would
also allow to identify the critical areas that need improvement. In the analysis
of our experiments with the VI'T software for example we highlighted limi-
tations with respect to nonlinear and floating point arithmetics that could be
investigated further. The extension of this study to other industrial domains
would allow to further generalize the current results.

110 7.2 Future Directions

Appendices

111

Appendix A

The ARC-B Prototype Code

In this Appendix we include some of the most significant code fragments that im-
plement the ARC-B prototype tool.

A.1 The ARC-B lterative Loop.

1 void ARC_B_Search::Run() {
//Execution of the initial test suite

2 LaunchProgram(tests) ;
//Iterate until the targets are over
3 for(; !'target_branches.empty(); ++num_iters){

//select a frontier transition (a pair of vertices)

4 pair<int, int> frontier=selectFrontier();
//extract the refinemnt context

6 context_t ref_ctx=vertex2context[frontier.second];
//find compatible test cases

7 auto test=get_compatible_tests(ref_ctx, frontier.first);
//try to traverse the frontier

8 pair<bool, Predicate> success=traverseFrontier(test.input,

frontier, test.steps);

//refine if unsuccessful

9 if (Ysuccess.first) {

10 refineModel (frontier, success.second);
11 }

12 }

13 }

Figure A.1. Function Run that implements the main iterative loop of ARC-B.

113

114 A.2 Functional Style Memory Access.

//returns true and an empty predicate if the frontier is traversed
//returns false and an appropriate refinment predicate otherwise
1 pair<bool, Predicate> traverseFrontier(input_t input,
frontier_t frontier, size_t steps){
//instantiate GDB and replay the program up to the frontier

2 GDB gdb(program_, input);
3 gdb.ReplayProgram(steps) ;
//create SMT file and solve
4 auto solution=Solve(makeSMT(frontier, gdb));

// Run with new input or compute refinement predicate.

5 if (solution.found){

6 TrackTestOnModel (solution. input) ;

7 return make_pair(true, Predicate());

8 } else {

9 ref_predicate=WP(frontier.first, frontier.second, gdb);
10 return make_pair(false, solution.ref_predicate);

11 }

12 }

Figure A.2. Function traverseFrontier that implements the coverage frontier analysis
of ARC-B.

A.2 Functional Style Memory Access.

//Functions for accessing arrays in a functional style
struct _arraysS;
typedef __CREST_VALUE(xArrayGet) (size_t type_size,

struct _arrayS* CREST_ADDR) ;

struct _arrayS {
__CREST_ADDR modifiedItem;
__CREST_VALUE value;
__CREST_ADDR array;
struct _arrayS* aWrapper;
ArrayGet getter;

};

#define get(type_size, _arrayS, i) (_arrayS->getter) (type_size,
_arrayS, i)

void _arrayS_free(struct _arrayS* a);

__CREST_VALUE _arrayS_get4Identity(struct _arrayS* a, __CREST_ADDR i);

__CREST_VALUE _arrayS_get4Store(struct _arrayS* a CREST_ADDR 1i);

y ——

115 A.2 Functional Style Memory Access.

struct _arrayS* _identity(__CREST_ADDR a);

#define identity() _identity((__CREST_ADDR)O)

struct _arrayS* _store(struct _arrayS* a, __CREST_ADDR i,
__CREST_VALUE val);

#define store(a, i, val) _store(a, (__CREST_ADDR)i,

(__CREST_VALUE)val)
__CREST_VALUE _select(size_t type_size, struct _arrayS* a,
__CREST_ADDR 1i);
#define select(type_size, a, i) _select(type_size, a,
(__CREST_ADDR) 1)

//implementation

void _arrayS_free(struct _arrayS* a){
if (a->aWrapper) _arrayS_free(a->aWrapper);
free(a);

__CREST_VALUE _arrayS_get4Identity(size_t type_size,
struct _arrayS* a, __CREST_ADDR k){
return getValFromAddr(a->array, k, type_size);

__CREST_VALUE _arrayS_get4Store(size_t type_size,

struct _arrayS* a CREST_ADDR k){

f Jp—

return k == a->modifiedItem? a->value :
get (type_size, a->aWrapper, k);

struct _arrayS* _identity(__CREST_ADDR a){
struct _arrayS* arr=(struct _arrayS*)malloc(sizeof (struct _arrayS));
arr->aWrapper=0;
arr->array=a;
arr->getter=_arrayS_get4Identity;
return arr;

struct _arrayS* _store(struct _arrayS* a, __CREST_ADDR i,
__CREST_VALUE val){
struct _arrayS* arr=(struct _arrayS*)malloc(sizeof (struct _arrayS));
arr->modifiedItem=i;
arr->value=val;

arr->aWrapper=a;

116 A.2 Functional Style Memory Access.

arr->getter=_arrayS_get4Store;
return arr;

__CREST_VALUE _select(size_t type_size, struct _arrayS* a,
__CREST_ADDR 1i){
__CREST_VALUE ret=get(type_size, a, i);
_arrayS_free(a);
return ret;

Appendix B

Experiments

B.1 The Linear and Binary Search Functions

int linsearch(void) {

int n;

ARC_B_Int(n);

int v;

ARC_B_Int(v);

int aln];

for(int i=0; i<n; i++){
ARC_B_Int(alil);
int var=ali];
fprintf (stderr,"val %d\n",var);

//search
if (v==0)
return O;

for (int i=0; i<nm; i++){
int var=al[il;
if (ali] == v)

return i;
}

return n;

int binsearch(void) {
//INPUTS
int key; ARC_B_Int(key);
int dictSize; ARC_B_Int(dictSize);

117

118 B.1 The Linear and Binary Search Functions

int dictKeys[dictSize];
printf ("key=%d\n" ,key) ;
printf ("dictSize=%d\n",dictSize);

for(int i=0; i<dictSize; i++){
ARC_B_Int(dictKeys[i]);
printf ("dictKeys[%d]l=/d\n",i,dictKeys[i]);
//enforce precondition (ordering)
if(i!=0 && dictKeys[il<dictKeys[i-1]1){
printf ("non sorted\n");

return 1;
}
}
int low=0;
int high = dictSize - 1;
int mid;

while (high >=low) {

mid = (high + low) / 2;

if (key > dictKeys[mid]) {
// dictKeys[mid] too small; look higher
low=mid+1;

} else if (key < dictKeys[mid]) {
// dictKeys[mid] too large; look lower
high=mid-1;

} else {//67
printf("key %d found\n", dictKeys[mid]);

return dictKeys[mid];

}
}
printf ("%d not found\n", key);
return O;

119 B.2 Week Number Computation Function from MySQL

B.2 Week Number Computation Function from MySQL

/* Flags for calc_week() function. x*/
#define WEEK_MONDAY_FIRST 1
#define WEEK_YEAR 2
#define WEEK_FIRST_WEEKDAY 4

typedef struct
TIME{uint year; uint month; uint day;} TIME;

/* Calc days since year O (from 1615) */
long calc_daynr(uint year, uint month, uint day);

/* Calc weekday from daynr: O for mon, 1 for tue... */
int calc_weekday(long daynr,
bool sunday_first_day_of_week);

/* Calc days in a year. works with 0 <= year <= 99 */
uint calc_days_in_year(uint year);

/* Meaning of the bits in week_behaviour:
WEEK_MONDAY_FIRST (0): set ==> Mon, else Sun
WEEK_YEAR (1): set ==> Week in range 1-53, else 0-53
WEEK_FIRST_WEEKDAY (2): not set ==> IS0 8601:1988

*/

uint calc_week(TIME *1_time,

uint week_behaviour, uint *year){

uint days;
ulong daynr =

calc_daynr(1l_time->year, l_time->month, 1_time->day);
ulong first_daynr = calc_daynr(l_time->year, 1, 1);
bool monday_first =

week_behaviour & WEEK_MONDAY_FIRST;
bool week_year = week_behaviour & WEEK_YEAR;
bool first_weekday =

week_behaviour & WEEK_FIRST_WEEKDAY;

uint weekday=calc_weekday(first_daynr, !monday_first);
*year=1_time->year;

if (1_time->month == 1 && 1l_time->day <= 7-weekday){

120 B.2 Week Number Computation Function from MySQL

if (lweek_year && (first_weekday && weekday != 0 ||
'first_weekday && weekday >= 4))
return O;
week_year= 1;
(*year) --;
first_daynr-= (days=calc_days_in_year (*year));
weekday= (weekday + 53%7- days) % 7;

if ((first_weekday && weekday != 0) ||

(1first_weekday && weekday >= 4))
days= daynr - (first_daynr+ (7-weekday));
else days= daynr - (first_daynr - weekday);

if (week_year && days >= 52%7){
weekday= (weekday + calc_days_in_year(*year)) % 7;
if (!first_weekday && weekday < 4 ||
first_weekday && weekday == 0){
(*year) ++;
return 1;
}
}

return days/7+1;

Bibliography

[AB11]

[ABCT13|

[AH11]

[AKDT08]

[AOH07|

[APV06]

Andrea Arcuri and Lionel Briand. Adaptive random testing: An illu-
sion of effectiveness? In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA 11, pages 265-275,
New York, NY, USA, 2011. ACM.

Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Har-
rold, and Phil Mcminn. An orchestrated survey of methodologies for
automated software test case generation. Journal of Systems and Soft-
ware, 86(8):1978-2001, August 2013.

Nadia Alshahwan and Mark Harman. Automated web application test-
ing using search based software engineering. In Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 11, pages 3-12, Washington, DC, USA, 2011. IEEE
Computer Society.

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit
Paradkar, and Michael D. Ernst. Finding bugs in dynamic web applica-
tions. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis, ISSTA ’08, pages 261-272, New York, NY, USA,
2008. ACM.

Saswat Anand, Alessandro Orso, and Mary Jean Harrold. Type-
dependence analysis and program transformation for symbolic execu-
tion. In Proceedings of the 13th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’07,
pages 117-133, Berlin, Heidelberg, 2007. Springer-Verlag.

Saswat Anand, Corina S. Pasdreanu, and Willem Visser. Symbolic
execution with abstract subsumption checking. In Proceedings of the
18th International Conference on Model Checking Software, SPIN’06,
pages 163-181, Berlin, Heidelberg, 2006. Springer-Verlag.

121

122

Bibliography

[APV07]

[ATF09)

[Aus98|

[Bal03]

[Balo4]

[Bar00]

[BBDP10]

[BBDP11]

[BCO7]

[BCHT04]

Saswat Anand, Corina S. Pasareanu, and Willem Visser. Jpf-Se: A
symbolic execution extension to Java pathfinder. In International Con-
ference on Tools and Algorithms for Construction and Analysis of Sys-
tems (TACAS 2007), pages 134-138, Braga, Portugal, March 2007.

Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review
of search-based testing for non-functional system properties. Journal
of Information and Software Technology, 51(6):957-976, June 2009.

Matthew H. Austern. Generic Programming and the STL: Using and
Ezxtending the C++ Standard Template Library. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1998.

Thomas Ball. Abstraction-guided test generation: A case study. Tech-
nical Report MSR-TR-2003-86, Microsoft Research, November 2003.

Thomas Ball. A theory of predicate-complete test coverage and gener-
ation. In Proceedings of the Third International Symposium on Formal
Methods for Components and Objects (FMCO 2004), volume 3657 of
Lecture Notes in Computer Science, pages 1-22. Springer Berlin / Hei-
delberg, November 2004.

Clark Barrett. Theory solvers in SMT. http://www.stanford.edu/
class/cs357/lectures/lec9_h.pdf, 2000. Accessed: 03 March 2014.

Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzeé.
Structural coverage of feasible code. In Proceedings of the Fifth Inter-
national Workshop on Automation of Software Test (AST 2010), AST
"10, pages 59-66, New York, NY, USA, 2010. ACM.

Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzeé.
Enhancing structural software coverage by incrementally computing
branch executability. Software Quality Journal, 19(4):725-751, 2011.

Renée C. Bryce and Charles J. Colbourn. One-test-at-a-time heuristic
search for interaction test suites. In Proceedings of the 9th Annual
Conference on Genetic and FEvolutionary Computation, GECCO 07,
pages 1082-1089, New York, NY, USA, 2007. ACM.

Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar. Generating tests from counterexamples. In Pro-

ceedings of the 26th International Conference on Software Engineering
(ICSE ’04), pages 326-335. IEEE Computer Society, 2004.

123

Bibliography

[BCLKRO04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.

[BDM*13]

[BDP13]

[BDR*14]

[BEL75]

[Ber07]

[BHH*11]

[BHMRO7]

[BHS07]

SLAM and static driver verifier: Technology transfer of formal methods
inside Microsoft. In Proceedings of the 4th International Conference on
Integrated Formal Methods (IFM 2004), pages 1-20. Springer, 2004.

Clark Barrett, Morgan Deters, Leonardo Moura, Albert Oliveras, and
Aaron Stump. 6 years of SMT-COMP. Journal of Automated Reason-
ing, 50(3):243-277, March 2013.

Pietro Braione, Giovanni Denaro, and Mauro Pezzé. Enhancing sym-
bolic execution with built-in term rewriting and constrained lazy ini-
tialization. In Proceedings of the 2018 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 411-421, New York,
NY, USA, 2013. ACM.

Pietro Braione, Giovanni Denaro, Oliviero Riganelli, Mauro Baluda,
and Muhammad Ali. Static/dynamic test case generation for ssoftware
upgrades via ARC-B and DeltaTest. In Hana Chockler, Daniel Kroen-
ing, Leonardo Mariani, and Natasha Sharygina, editors, Validation of
Evolving Software. To Appear, chapter 12, pages 163-210. Springer,
2014.

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT - a for-
mal system for testing and debugging programs by symbolic execution.
ACM SIGPLAN Notices, 10:234-245, April 1975.

Antonia Bertolino. Software testing research: Achievements, chal-
lenges, dreams. In Future of Software Engineering, FOSE 07, pages
85-103, Washington, DC, USA, 2007. IEEE Computer Society.

Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil
McMinn, Paolo Tonella, and Tanja Vos. Symbolic search-based testing.
In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages 53-62, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-
balchenko. Path invariants. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementa-
tion (PLDI 2007), PLDI '07, pages 300-309, New York, NY, USA,
2007. ACM.

Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt, editors. Veri-
fication of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007.

124

Bibliography

[BJS09]

[BJSS09)

[BMDH90]

[BMMS11]

[BNR*10]

[BPS03]

[Brall]

[BRCT12]

[Bro07]

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated
test generation for worst-case complexity. In Proceedings of the 31st In-
ternational Conference on Software Engineering, ICSE 09, pages 463—
473, Washington, DC, USA, 2009. IEEE Computer Society.

Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen.
Looper: Lightweight detection of infinite loops at runtime. In Proceed-
ings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 161-169, Washington, DC, USA,
2009. IEEE Computer Society.

Jerry R. Burch, Kenneth L. McMillan, David L. Dill, and LJ Hwang.
Symbolic model checking: 10 20 states and beyond. Logic in Computer
Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium
on e, pages 428-439, 1990.

Domagoj Babié¢, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. Statically-directed dynamic automated test generation. In Pro-
ceedings of the 2011 International Symposium on Software Testing and
Analysis, ISSTA 11, pages 12-22, New York, NY, USA, 2011. ACM.

Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J.
Simmons, Sai Deep Tetali, and Aditya V. Thakur. Proofs from tests.
IEEFE Transactions on Software Engineering, 36(4):495-508, July 2010.

André Baresel, Hartmut Pohlheim, and Sadegh Sadeghipour. Struc-
tural and functional sequence test of dynamic and state-based soft-
ware with evolutionary algorithms. In Proceedings of the 2003 inter-
national conference on Genetic and evolutionary computation: Par-
tll, GECCO’03, pages 2428-2441, Berlin, Heidelberg, 2003. Springer-
Verlag.

Aaron R. Bradley. Sat-based model checking without unrolling. In
Proceedings of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAT’11, pages 70-87, Berlin,
Heidelberg, 2011. Springer-Verlag.

Jason Belt, Robby, Patrice Chalin, John Hatcliff, and Xianghua Deng.
Efficient symbolic execution of value-based data structures for critical
systems. In Proceedings of the 4th International Conference on NASA
Formal Methods, NFM’12, pages 295-309, Berlin, Heidelberg, 2012.
Springer-Verlag.

Stephen Brookes. A semantics for concurrent separation logic. Theo-
retical Computer Science, 375(1-3):227-270, April 2007.

125

Bibliography

[BSO08]

[BST10]

[Bur67]

[BUZC11]

[BWOS]

[CAaVP1]]

[CCMY96)

[CDE0S]

[CFR*91]

[CG12]

Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test
generation. In Proceedings of the 23rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2008), pages 443—
446, 2008.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB stan-
dard: Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), 2010.

W.H. Burkhardt. Generating test programs from syntax. Computing,
2(1):53-73, 1967.

Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Par-
allel symbolic execution for automated real-world software testing. In
Proceedings of EuroSys 2011. ACM, 2011.

Oliver Biihler and Joachim Wegener. Evolutionary functional testing.
Comput. Oper. Res., 35(10):3144-3160, October 2008.

Thelma Elita Colanzi, Wesley Klewerton Guez Assungao, Silvia Regina
Vergilio, and Aurora Pozo. Integration test of classes and aspects with a
multi-evolutionary and coupling-based approach. In Proceedings of the
Third International Conference on Search Based Software Engineering,
SSBSE’11, pages 188-203, Berlin, Heidelberg, 2011. Springer-Verlag.

F.T. Chan, T.Y. Chen, [.LK. Mak, and Y.T. Yu. Proportional sampling
strategy: Guidelines for software testing practitioners. Information and
Software Technology, 38(12):775 — 782, 1996.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests for complex sys-
tems programs. In Proceedings of the 8th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 2008), 2008.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451-490, October 1991.

Alessandro Cimatti and Alberto Griggio. Software model checking via
IC3. In P. Madhusudan and SanjitA. Seshia, editors, Computer Aided
Verification, volume 7358 of Lecture Notes in Computer Science, pages
277-293. Springer Berlin Heidelberg, 2012.

126

Bibliography

[CGIT03]

[CGP06]

[CHOO]

[CKC11]

[CKK*12]

[Cla76]

[CLMO5]

[CLOMOS]

[CMTS09)

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM, 50(5):752-794, 2003.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security (CCS ’06), pages 322-335, New York, NY, USA, 2006.
ACM.

Koen Claessen and John Hughes. Quickcheck: A lightweight tool
for random testing of haskell programs. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’00, pages 268-279, New York, NY, USA, 2000. ACM.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E:
A platform for in-vivo multi-path analysis of software systems. In Pro-
ceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2011),
pages 265-278. ACM, 2011.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C: A software analysis
perspective. In Proceedings of the 10th International Conference on
Software Engineering and Formal Methods, SEFM’12, pages 233-247,
Berlin, Heidelberg, 2012. Springer-Verlag.

Lori A. Clarke. A system to generate test data and symbolically execute
programs. [EEE Transactions on Software Engineering, 2(3):215-222,
May 1976.

Tsong Yueh Chen, Hing Leung, and Keith Mak. Adaptive random
testing. In Michael Maher, editor, Advances in Computer Science -
ASIAN 2004. Higher-Level Decision Making, volume 3321 of Lecture
Notes in Computer Science, pages 3156-3157. Springer Berlin / Hei-
delberg, 2005.

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Ar-
too: Adaptive random testing for object-oriented software. In Pro-
ceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 71-80, New York, NY, USA, 2008. ACM.

Ernie Cohen, MichatMoskal, Stephan Tobies, and Wolfram Schulte. A
precise yet efficient memory model for C. Electronic Notes in Theoret-
ical Computer Science, 254:85-103, October 2009.

127

Bibliography

[CooT§|

[CS05)

[CSE96]

[CSX08]

[DBG10]

[DERO5]

[Dij75]

[Dijo7]

[DM10]

[AMBO09|

[DMB11]

Stephan Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7(1):70-90, 1978.

Christoph Csallner and Yannis Smaragdakis. Check’N’Crash: Com-
bining static checking and testing. In Proceedings of the 27th Interna-
tional Conference on Software Engineering (ICSE 2005), pages 422—
431, 2005.

John Callahan, Francis Schneider, and Steve Easterbrook. Automated
software testing using model-checking. In Proceedings of the 1996 SPIN
Workshop (SPIN 1996). Also WVU Technical Report NASA-IVV-96-
022., 1996.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher:
A hybrid analysis tool for bug finding. ACM Transactions on Software
Engineering and Methodology (TOSEM), 17(2):1-37, April 2008.

Mickaél Delahaye, Bernard Botella, and Arnaud Gotlieb. Explanation-
based generalization of infeasible path. In Proceedings of the 2010 Third
International Conference on Software Testing, Verification and Valida-
tion, ICST ’10, pages 215-224, Washington, DC, USA, 2010. IEEE
Computer Society.

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering: An Inter-
national Journal, 10(4):405-435, 2005.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453-457, August 1975.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 1997.

Marc Daumas and Guillaume Melquiond. Certification of bounds on
expressions involving rounded operators. ACM Transactions on Math-
ematical Software, 37(1):2:1-2:20, January 2010.

Leonardo de Moura and Nikolaj Bjgrner. Generalized, efficient array
decision procedures. In Proceedings of 9th International Conference
on Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18
November 2009, Austin, Texas, USA, pages 45-52. IEEE, 2009.

Leonardo De Moura and Nikolaj Bjgrner. Satisfiability modulo the-
ories: Introduction and applications. Commun. ACM, 54(9):69-77,
September 2011.

128

Bibliography

[DN84]

[DPOS]

[DPCE+07]

[Edvo9]

[EGLO9)

[EMS07]

[EO11]

[FA12]

[FGW09)

Joe W. Duran and S.C. Ntafos. An evaluation of random testing.
Software Engineering, IEEE Transactions on, SE-10(4):438-444, 1984.

Dino Distefano and Matthew J. Parkinson. Jstar: Towards practical
verification for Java. In Proceedings of the 28rd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems Languages and Ap-
plications, OOPSLA ’08, pages 213-226, New York, NY, USA, 2008.
ACM.

Massimiliano Di Penta, Gerardo Canfora, Gianpiero Esposito,
Valentina Mazza, and Marcello Bruno. Search-based testing of ser-
vice level agreements. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’07, pages 1090-1097,
New York, NY, USA, 2007. ACM.

Jon Edvardsson. A survey on automatic test data generation. In Pro-
ceedings of the Second Conference on Computer Science and Engineer-
ing, pages 21-28, 1999.

Bassem Elkarablieh, Patrice Godefroid, and Michael Y. Levin. Precise
pointer reasoning for dynamic test generation. In ISSTA ’09: Proceed-

ings of the eighteenth international symposium on Software testing and
analysis, pages 129-140, New York, NY, USA, 2009. ACM.

Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test
input generation for database applications. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, ISSTA 07,
pages 151-162, New York, NY, USA, 2007. ACM.

Ikpeme Erete and Alessandro Orso. Optimizing constraint solving to
better support symbolic execution. In Proceedings of the 2011 IEEFE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 11, pages 310-315, Washington, DC,
USA, 2011. IEEE Computer Society.

Gordon Fraser and Andrea Arcuri. The seed is strong: Seeding strate-
gies in search-based software testing. In Software Testing, Verification
and Validation (ICST), 2012 IEEFE Fifth International Conference on,
pages 121-130, 2012.

Gordon Fraser, Angelo Gargantini, and Franz Wotawa. On the order
of test goals in specification-based testing. The Journal of Logic and
Algebraic Programming, 78(6):472 — 490, 20009.

129

Bibliography

[F198]

[FK96]

[FLL*02]

[Flo67]

[FM10]

[FSM+13)

[FW93]

[FWA09a]

[FWAO9D]

[FZ11]

Phyllis G. Frankl and Oleg Iakounenko. Further empirical studies of
test effectiveness. In Proceedings of the 6th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, SIGSOFT
'98 /FSE-6, pages 153-162, New York, NY, USA, 1998. ACM.

Roger Ferguson and Bogdan Korel. The chaining approach for software
test data generation. ACM Transactions on Software Engineering and
Methodology, 5:63-86, January 1996.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI '02, pages 234-245, New
York, NY, USA, 2002. ACM.

Robert W. Floyd. Assigning meanings to programs. Mathematical
Aspects of Computer Science, 19:19-32, 1967.

Carlo A. Furia and Bertrand Meyer. Inferring loop invariants using
postconditions. In Andreas Blass, Nachum Dershowitz, and Wolfgang
Reisig, editors, Fields of Logic and Computation: Essays Dedicated to
Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of
Lecture Notes in Computer Science, pages 277-300. Springer, August
2010.

Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does automated white-box test generation really help soft-
ware testers? In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages 291-301, New York,
NY, USA, 2013. ACM.

Phyllis G. Frankl and Elaine J. Weyuker. A formal analysis of the fault-
detecting ability of testing methods. IEEE Transactions on Software
Engineering, 19(3):202-213, 1993.

Gordon Fraser, Franz Wotawa, and Paul Ammann. Issues in using
model checkers for test case generation. J. Syst. Softw., 82(9):1403—
1418, September 2009.

Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with
model checkers: A survey. Software Testing, Verification and Reliabil-
ity, 19(3):215-261, September 2009.

Gordon Fraser and Andreas Zeller. Generating parameterized unit
tests. In Proceedings of the 2011 International Symposium on Soft-

130

Bibliography

[FZ12]

[GDGMO1]

|GFA13]

[GFX12]

|GFZ12

|GGZ+13]

|[GHK*06]

|GKS05]

ware Testing and Analysis, ISSTA 11, pages 364-374, New York, NY,
USA, 2011. ACM.

Gordon Fraser and Andreas Zeller. Mutation-driven generation of
unit tests and oracles. IFEFE Transactions on Software Engineering,
38(2):278-292, March 2012.

S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre. A new way
of automating statistical testing methods. In Proceedings of the 16th
IEEE International Conference on Automated Software Engineering,
ASE 01, pages 5—, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving
search-based test suite generation with dynamic symbolic execution.
In IEEE International Symposium on Software Reliability Engineering,
2013.

Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding per-
formance problems with feedback-directed learning software testing.
In Proceedings of the 2012 International Conference on Software Engi-
neering, ICSE 2012, pages 156-166, Piscataway, NJ, USA, 2012. IEEE
Press.

Florian Gross, Gordon Fraser, and Andreas Zeller. Search-based system
testing: High coverage, no false alarms. In Proceedings of the 2012 In-
ternational Symposium on Software Testing and Analysis, ISSTA 2012,
pages 67-77, New York, NY, USA, 2012. ACM.

Milos Gligoric, Alex Groce, Chaogiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Comparing non-adequate test
suites using coverage criteria. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA 2013, pages 302—
313, New York, NY, USA, 2013. ACM.

Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan,
Aditya V. Nori, and Sriram K. Rajamani. Synergy: A new algorithm
for property checking. In Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, SIGSOFT

'06/FSE-14, pages 117-127, New York, NY, USA, 2006. ACM.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed
automated random testing. In Proceedings of the ACM SIGPLAN

131

Bibliography

[GLMO8|

[GNRT10]

[God07]

[HecT7]

[HFGOY4]

[HHS5|

[HHZ12|

[HIL11]

[HIMS02]

2005 Conference on Programming Language Design and Implementa-
tion (PLDI 2005), PLDI ’05, pages 213-223, New York, NY, USA,
2005. ACM.

Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated
whitebox fuzz testing. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS 2008), pages 151-166,
2008.

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep
Tetali. Compositional may-must program analysis: Unleashing the
power of alternation. SIGPLAN Not., 45(1):43-56, 2010.

Patrice Godefroid. Compositional dynamic test generation. In Pro-
ceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 07, pages 47-54, New
York, NY, USA, 2007. ACM.

Matthew S. Hecht. Flow Analysis of Computer Programs. FElsevier
Science Inc., New York, NY, USA, 1977.

Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand.
Experiments of the effectiveness of dataflow-and controlflow-based test
adequacy criteria. In ICSE ’94: Proceedings of the 16th international
conference on Software engineering, pages 191-200, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

David Hedley and Michael A. Hennell. The causes and effects of in-
feasible paths in computer programs. In Proceedings of the 8th inter-

national conference on Software engineering, ICSE "85, pages 259-266,
Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In Proceedings of the 21st USENIX conference on Secu-
rity symposium, Security’12, pages 38-38, Piscataway, NJ, USA, 2012.
USENIX Association.

Mark Harman, Yue Jia, and William B. Langdon. Strong higher order
mutation-based test data generation. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering, ESEC/FSE ’11, pages 212-222, New
York, NY, USA, 2011. ACM.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. In Proceedings of the 29th ACM SIGPLAN-

132

Bibliography

[Hoa69|

[Hoa09]

[TH14]

[1X08]

[IM09)]

[JMN13]

[TMNS12]

175507]

[KGGT09]

SIGACT symposium on Principles of programming languages, POPL
'02, pages 5870, New York, NY, USA, 2002. ACM.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mununications of ACM, 12(10):576-580, October 1969.

C.A.R. Hoare. Viewpoint: Retrospective: An axiomatic basis for com-
puter programming. Commun. ACM, 52(10):30-32, October 2009.

Laura Inozemtseva and Reid Holmes. Coverage is not strongly corre-
lated with test suite effectiveness. In Proceedings of the International
Conference on Software Engineering, 2014.

K. Inkumsah and Tao Xie. Improving structural testing of object-
oriented programs via integrating evolutionary testing and symbolic
execution. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE *08, pages 297—
306, Washington, DC, USA, 2008. IEEE Computer Society.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Computing Surveys (CSUR), 41(4):21:1-21:54, 2009.

Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. Boosting
concolic testing via interpolation. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 48-58, New York, NY, USA, 2013. ACM.

Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E.
Santosa. Tracer: A symbolic execution tool for verification. In Pro-
ceedings of the 24th international conference on Computer Aided Ver-
ification, CAV’12, pages 758-766, Berlin, Heidelberg, 2012. Springer-
Verlag.

Pallavi Joshi, Koushik Sen, and Mark Shlimovich. Predictive test-
ing: Amplifying the effectiveness of software testing. In Proceedings of
the the 6th Joint Meeting of the FEuropean Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE 07, pages 561-564, New York, NY,
USA, 2007. ACM.

Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and
Michael D. Ernst. Hampi: A solver for string constraints. In Proceed-
ings of the Fighteenth International Symposium on Software Testing
and Analysis, ISSTA 09, pages 105-116, New York, NY, USA, 2009.
ACM.

133

Bibliography

[Kin76]

[Kor90]

|[Kor92]

[KPD*13]

[KPV03]

[KZHHO5)

[LGR11]

[LHMOS]

[LSWL13|

[LW94]

James C. King. Symbolic execution and program testing. Communi-
cations of the ACM, 19(7):385-394, July 1976.

Bogdan Korel. Automated software test data generation. Software
Engineering, IEEE Transactions on, 16(8):870-879, 1990.

Bodgan Korel. Dynamic method for software test data generation.
Software Testing, Verification and Reliability, 2(4):203-213, December
1992.

Fitsum M. Kifetew, Annibale Panichella, Andrea De Lucia, Rocco
Oliveto, and Paolo Tonella. Orthogonal exploration of the search space
in evolutionary test case generation. In Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2013,
pages 257267, New York, NY, USA, 2013. ACM.

Sarfraz Khurshid, Corina S. Pasdreanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Proceedings of
the 9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’03, pages 553568, Berlin,
Heidelberg, 2003. Springer-Verlag.

H.G. Kayacik, A.N. Zincir-Heywood, and M. Heywood. Evolving suc-
cessful stack overflow attacks for vulnerability testing. In Computer
Security Applications Conference, 21st Annual, pages 8 pp.—234, 2005.

Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. Klover: A
symbolic execution and automatic test generation tool for c++ pro-
grams. In CAV, pages 609-615, 2011.

Kiran Lakhotia, Mark Harman, and Phil McMinn. Handling dynamic
data structures in search based testing. In Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation, GECCO

'08, pages 1759-1766, New York, NY, USA, 2008. ACM.

You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering sym-
bolic execution to less traveled paths. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages €#38; Applications, OOPSLA ’13, pages 19-32,
New York, NY, USA, 2013. ACM.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(6):1811-1841, November 1994.

134

Bibliography

[McC93]

[McMO4]

[McM10]

[Mey92]

[MF11]

[MHBTO6]

[MMS01]

[Morss]

[MS07]

[MSS12]

John McCarthy. Towards a mathematical science of computation. In
Program Verification, volume 14 of Studies in Cognitive Systems, pages
35-56. Springer Netherlands, 1993.

Phil McMinn. Search-based software test data generation: A sur-
vey: Research articles. Software Testing, Verification and Reliability,
14(2):105-156, June 2004.

Kenneth L. McMillan. Lazy annotation for program testing and ver-
ification. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
Computer Aided Verification, volume 6174 of Lecture Notes in Com-
puter Science, pages 104-118. Springer Berlin / Heidelberg, 2010.

Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40—
51, 1992.

Jan Malburg and Gordon Fraser. Combining search-based and
constraint-based testing. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE
11, pages 436-439, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella. The
species per path approach to searchbased test data generation. In Pro-

ceedings of the 2006 International Symposium on Software Testing and
Analysis, ISSTA 06, pages 1324, New York, NY, USA, 2006. ACM.

Christoph Michael, Gary McGraw, and Michael Schatz. Generating
software test data by evolution. IEEE Transactions on Software Engi-
neering, 27(12):1085-1110, December 2001.

Carroll Morgan. The specification statement. ACM Trans. Program.
Lang. Syst., 10(3):403-419, July 1988.

Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In Pro-
ceedings of the 29th international conference on Software Engineering,
ICSE 07, pages 416426, Washington, DC, USA, 2007. IEEE Com-
puter Society.

P. McMinn, M. Shahbaz, and M. Stevenson. Search-based test input
generation for string data types using the results of web queries. In
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, pages 141-150, 2012.

135

Bibliography

[NMT12]

[NO79]

[NT07]

[NTOS]

[NZK12]

[0P97]

[Opp80]

[PBOS]

[PC13]

[PDEPOS]

Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining
model-based and combinatorial testing for effective test case genera-
tion. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pages 100-110, New York, NY,
USA, 2012. ACM.

Greg Nelson and Derek C. Oppen. Simplification by cooperating de-
cision procedures. ACM Transactions on Programming Languages and

Systems (TOPLAS), 1(2):245-257, October 1979.

Minh Ngoc Ngo and Hee Beng Kuan Tan. Detecting large number of in-
feasible paths through recognizing their patterns. In Proceedings of the
the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software en-
gineering, ESEC-FSE 07, pages 215-224, New York, NY, USA, 2007.
ACM.

Minh Ngoc Ngo and Hee Beng Kuan Tan. Heuristics-based infeasi-
ble path detection for dynamic test data generation. Imformation and
Software Technology, 50(7-8):641-655, 2008.

Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Test input generation
using dynamic programming. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engi-
neering, FSE "12, pages 34:1-34:11, New York, NY, USA, 2012. ACM.

A. Jefferson Offutt and Jie Pan. Automatically detecting equivalent
mutants and infeasible paths. Software Testing, Verification and Reli-
ability, 7(3):165-192, 1997.

Derek C. Oppen. Reasoning about recursively defined data structures.
Journal of the ACM (JACM), 27(3):403-411, July 1980.

Matthew J. Parkinson and Gavin M. Bierman. Separation logic, ab-
straction and inheritance. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 08, pages 75-86, New York, NY, USA, 2008. ACM.

Hristina Palikareva and Cristian Cadar. Multi-solver support in sym-
bolic execution. In Proceedings of the 25th international conference on
Computer Aided Verification, CAV’13, pages 53—68, Berlin, Heidelberg,
2013. Springer-Verlag.

Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S.
Pasareanu. Differential symbolic execution. In Proceedings of the 16th

136

Bibliography

[PDM12]

[PDM13]

[PM10]

[PMB*08]

[PS81]

[PVO09)

[PW13]

[PY07]

[Rey02]

ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, pages 226-237, New York, NY,
USA, 2008. ACM.

Cristian Cadar Paul Dan Marinescu. Make test-zesti: A symbolic exe-
cution solution for improving regression testing. In International Con-
ference on Software Engineering (ICSE 2012), 6 2012.

Cristian Cadar Paul Dan Marinescu. Katch: High-coverage testing
of software patches. In FEuropean Software Engineering Conference /
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pages 235-245, 8 2013.

M. Papadakis and N. Malevris. A symbolic execution tool based on
the elimination of infeasible paths. In Software Engineering Advances
(ICSEA), 2010 Fifth International Conference on, pages 435-440, 2010.

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen
Gundy-Burlet, Michael Lowry, Suzette Person, and Mark Pape. Com-
bining unit-level symbolic execution and system-level concrete execu-
tion for testing nasa software. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ISSTA *08, pages 15-26,
New York, NY, USA, 2008. ACM.

Amir Pnueli and Micha Sharir. Two approaches to interprocedural
data flow analysis. Program flow analysis: theory and applications,
pages 189-234, 1981.

Corina S. Pasdreanu and Willem Visser. A survey of new trends in sym-
bolic execution for software testing and analysis. International Journal
on Software Tools for Technology Transfer, 11(4):339-353, 2009.

Tuan-Hung Pham and Michael W. Whalen. RADA: A tool for rea-
soning about algebraic data types with abstractions. In Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 611-614, New York, NY, USA, 2013. ACM.

Mauro Pezzé and Michal Young. Software Testing and Analysis: Pro-
cess, Principles, and Techniques. John Wiley and Sons, April 2007.

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, LICS ’02, pages 55—74, Washington, DC,
USA, 2002. IEEE Computer Society.

137

Bibliography

[RHSO5]

[SDE09]

[SGF09]

[SIP*13]

[SMAO5]

[SP10]

[SPPVO05)

[SZ92]

[TCMOS]

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL 95, pages 49-61, New York, NY, USA, 1995.
ACM.

Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum.
Saturation-based testing of concurrent programs. In Proceedings of the
the 7th joint meeting of the Furopean software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, ESEC/FSE ’09, pages 53-62, New York, NY, USA, 20009.
ACM.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. VS3: Smt
solvers for program verification. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV 09, pages 702-708,
Berlin, Heidelberg, 2009. Springer-Verlag.

Ting Su, Siyuan Jiang, Geguang Pu, Bin Fang, Jifeng He, Jun Yan,
and Jianjun Zhao. Automated coverage-driven test data generation
using dynamic symbolic execution. Technical report, 2013.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit
testing engine for C. In Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering (ESEC/FSE-13),
pages 263-272, 2005.

Matt Staats and Corina S. Pasareanu. Parallel symbolic execution for
structural test generation. In Proceedings of the 19th International
Symposium on Software Testing and Analysis (ISSTA 2010), pages
183-194. ACM, 2010.

Corina S. Pasareanu, Radek Pelanek, and Willem Visser. Concrete
model checking with abstract matching and refinement. In Proceeding
of the 17th International Conference on Computer Aided Verification
(CAV 2005), number 3576 in LNCS, pages 52—-66. Springer, 2005.

D. Scholefield and H. S. M. Zedan. Weakest precondition semantics for
time and concurrency. Information Processing Letters, 43(6):301-308,
October 1992.

Nigel Tracey, John Clark, and Keith Mander. Automated program flaw
finding using simulated annealing. In Proceedings of the 1998 ACM

138

Bibliography

[TdHO8]

[Ton04]

[TSWWO06|

[VLW+13]

[VMGF13|

[VPKO04]

[WB04]

[WBS01]

[Wey90]

SIGSOFT international symposium on Software testing and analysis,
ISSTA ’98, pages 73-81, New York, NY, USA, 1998. ACM.

Nikolai Tillmann and Jonathan de Halleux. Pex: White box test gen-
eration for .NET. In Proceedings of the 2nd International Conference
on Tests and Proofs, TAP’08, pages 134-153, Berlin, Heidelberg, 2008.
Springer-Verlag.

Paolo Tonella. Evolutionary testing of classes. In Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and
analysis, ISSTA ’04, pages 119-128, New York, NY, USA, 2004. ACM.

M. Tlili, H. Sthamer, S. Wappler, and J. Wegener. Improving evolu-
tionary real-time testing by seeding structural test data. In Evolution-
ary Computation, 2006. CEC 2006. IEEE Congress on, pages 885-891,
2006.

Tanja E. Vos, Felix F. Lindlar, Benjamin Wilmes, Andreas Windisch,
Arthur I. Baars, Peter M. Kruse, Hamilton Gross, and Joachim We-
gener. Evolutionary functional black-box testing in an industrial set-
ting. Software Quality Control, 21(2):259-288, June 2013.

Mattia Vivanti, Andre Mis, Alessandra Gorla, and Gordon Fraser.
Search-based data-flow test generation. In ISSRE’13: Proceedings of
the 24th IEEE International Symposium on Software Reliability Engi-
neering. IEEE Press, November 2013.

Willem Visser, Corina S. Pasdreanu, and Sarfraz Khurshid. Test in-
put generation with java pathfinder. In Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2004), ISSTA ’04, pages 97-107, New York, NY, USA, 2004.
ACM.

Joachim Wegener and Oliver Biihler. Evaluation of different fitness
functions for the evolutionary testing of an autonomous parking system.
In Kalyanmoy Deb, editor, Genetic and Evolutionary Computation —
GECCO 2004, volume 3103 of Lecture Notes in Computer Science,
pages 1400-1412. Springer Berlin Heidelberg, 2004.

Joachim Wegener, Andre Baresel, and Harmen Sthamer. Evolutionary
test environment for automatic structural testing. Information and
Software Technology, 43(14):841 — 854, 2001.

Elaine J. Weyuker. The cost of data flow testing: An empirical study.
IEEFE Trans. Softw. Eng., 16(2):121-128, February 1990.

139

Bibliography

[WIMJOS|

[WMO12]

[WRF*11]

[WSKRO06]

[XGMOS]

[XLXT13]

[XTdHS09)

[YBS06]

[ZED11]

Shen Hui Wu, Sridhar Jandhyala, Yashwant K. Malaiya, and Anura P.
Jayasumana. Antirandom testing: A distance-based approach. VLSI
Design, 2008(2):2:1-2:9, January 2008.

Yi Wei, Bertrand Meyer, and Manuel Oriol. Is branch coverage a good
measure of testing effectiveness? In Bertrand Meyer and Martin Nor-
dio, editors, Empirical Software Engineering and Verification, pages
194-212. Springer-Verlag, Berlin, Heidelberg, 2012.

Yi Wei, Hannes Roth, Carlo A. Furia, Yu Pei, Alexander Horton,
Michael Steindorfer, Martin Nordio, and Bertrand Meyer. Stateful
testing: Finding more errors in code and contracts. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’11, pages 440-443, Washington, DC, USA,
2011. IEEE Computer Society.

Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and
Robert S. Roos. Timeaware test suite prioritization. In Proceedings of

the 2006 International Symposium on Software Testing and Analysis,
ISSTA ’06, pages 1-12, New York, NY, USA, 2006. ACM.

Ru-Gang Xu, Patrice Godefroid, and Rupak Majumdar. Testing for
buffer overflows with length abstraction. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08,
pages 27-38, New York, NY, USA, 2008. ACM.

Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteris-
tic studies of loop problems for structural test generation via symbolic
execution. In Proc. 28th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2013), November 2013.

Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte.
Fitness-guided path exploration in dynamic symbolic execution. In Pro-
ceedings of the 39th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2009), pages 359-368, June-
July 2009.

Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, abstraction,
theorem proving: Better together! In ISSTA ’06: Proceedings of the
2006 international symposium on Software testing and analysis, pages
145-156, New York, NY, USA, 2006. ACM.

Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. Automatic
generation of load tests. In Proceedings of the 2011 26th IEEE/ACM In-

140 Bibliography

ternational Conference on Automated Software Engineering, ASE 11,
pages 43-52, Washington, DC, USA, 2011. IEEE Computer Society.

