
Modular Verification of JML Contracts Using
Bounded Model Checking

Bernhard Beckert1,2, Michael Kirsten1[0000−0001−9816−1504], Jonas Klamroth2,
and Mattias Ulbrich1

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 FZI Research Center for Information Technology, Karlsruhe, Germany

{beckert, kirsten, ulbrich}@kit.edu, klamroth@fzi.de

Abstract. There are two paradigms for dealing with complex verifi-
cation targets: Modularization using contract-based specifications and
whole-program analysis. In this paper, we present an approach bridg-
ing the gap between the two paradigms, introducing concepts from the
world of contract-based deductive verification into the domain of soft-
ware bounded model checking. We present a transformation that takes
Java programs annotated with contracts written in the Java Modeling
Language and turns them into Java programs that can be read by the
bounded model checker JBMC. A central idea of the translation is to
make use of nondeterministic value assignments to eliminate JML quan-
tifiers. We have implemented our approach and discuss an evaluation,
which shows the advantages of the presented approach.

Keywords: Software verification · Modular design · Design by contract ·
Software bounded model checking

1 Introduction

Over the last decades, the reach and power of formal methods for program ver-
ification has increased considerably. However, at some point, one has to face
the complexities of real-world systems. There are two paradigms for dealing
with complex verification targets. (1) Modularization and (de-)composition us-
ing contract-based specifications: Components – typically methods or functions
– are verified separately, and can then be replaced by their abstract contracts
for verifying the overall system. (2) Whole-program analysis, where the search
space is restricted by over- or under-approximating the set of reachable states.
While modular verification is most often performed using a deductive verifica-
tion engine relying on some form of theorem prover, whole-program verification
applies techniques like predicate abstraction, abstract interpretation or bounded
model checking to reduce the size of the state space.

Here, we focus on bounded model checking where the search space is re-
stricted using bounds on the number of loop iterations and the size of data
structures. While modularization requires user interaction to specify the com-
ponents, software bounded model checking is fully automatic, but comes at the

2 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

cost of potential false negatives that miss program failures beyond the chosen
bounds. In this paper, we present an approach that bridges the gap between the
two paradigms by introducing concepts from the world of contract-based deduc-
tive verification [12,23] into the domain of software bounded model checking [5].
Our method enables a software bounded model checker to verify properties of
components (methods) written in a contract-based specification language. This
allows for modular proofs in a software bounded model checking context. The
proofs can also be hybrid where only some parts are modular in an otherwise
monolithic proof. We envision three main application areas: (1) The reach of
software bounded model checking is extended. While many program parts can
be dealt with using exhaustive search, other parts need to be decomposed in
order to verify them for non-trivial bounds. This may even allow for an in-
crease of the bounds for the non-modular parts to the point where the software
bounded model checker can explore the full search space. (2) Software bounded
model checking can be combined with deductive program verification, where
those components that – even after decomposition – cannot be handled by a
model checker can be verified using a deductive verification tool. (3) Our bridg-
ing approach has the potential of being a valuable tool during the engineering
phase of a deductive proof. Typically, formulating contracts and constructing
a proof in a deductive verification tool requires several iterations of adjusting
either code or specification until a proof is found. A software bounded model
checker that can handle contracts may be used to spot bugs in the specification
and the code before a full deductive verification is started.

While the concepts behind our approach apply to a range of languages and
tools, in the following we target the Java programming language, bringing to-
gether two important players in formal methods for Java: The Java Bounded
Model Checker (JBMC) [10] meets the Java Modeling Language (JML) [19].
We present a transformation that takes Java programs annotated with contracts
written in JML and turns them into Java programs that can be read by JBMC,
i.e., the JML specifications are turned into Java code and annotations in the
form of assume and assert statements understood by JBMC. A central idea of
the translation is to make use of nondeterministic value assignments ‘x = *’3 to
eliminate (part of the) JML ‘forall’ and ‘exists’ quantifiers. Therefore, the result-
ing programs are not executable, but can be handled by JBMC more efficiently.

The rest of this paper starts with a brief introduction to software (bounded)
model checking, deductive verification, as well as the syntax and semantics of
JML in Sect. 2. Then, Sect. 3 shows the main ideas of our approach, and Sect. 4
illustrates our translation from Java with JML into Java with assertions, as-
sumptions and nondeterministic assignments. In Sect. 5, we present a proto-
typical implementation4 and evaluate our approach on multiple case studies in
Sect. 6. We discuss related work in Sect. 7 and conclude in Sect. 8.

3 The notation x = *; (and semantics) are borrowed from nondeterministic assign-
ment in dynamic logic [15]. Boogie, e.g., often refers to this as the havoc statement.

4 The source code is available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

Modular Verification of JML Contracts Using Bounded Model Checking 3

2 Background

Software Bounded Model Checking (SBMC) is a formal program verification
technique that, given a program and a software property to be checked, verifies
fully automatically whether the program satisfies the property [5]. In a nutshell,
that question is translated into a reachability problem w.r.t. the given program.
SBMC symbolically, i.e., without the need for concrete values, executes the pro-
gram and exhaustively checks it for errors that could violate the given property
within some given bounds that restrict the number of loop iterations and recur-
sive method calls. Using these bounds, SBMC limits all runs through the pro-
gram to a bounded length and can thereby unroll the control flow graph of the
program and transform it into static single assignment form [8]. This bounded
program is then translated into a formula in a decidable logic, e.g., an instance
of the SAT problem. The formula is satisfiable if and only if a program run ex-
ists that violates the given software property within the given bounds. Modern
SAT or SMT solvers [2, 13] can be used to check whether such a program run
exists, in which case the SBMC tool constructs the corresponding problematic
input and presents the counterexample to the user. If no such program run is
found, that may be either because the property is actually satisfied, or because
it is invalid only for runs exceeding the given bounds. In some cases, SBMC is
also able to infer statically which bounds are sufficient, in order to come to a
definitive conclusion. SBMC tools also permit to extend the program with non-
deterministic value assignments and assume statements in order to restrict the
values and states that are to be considered. The properties to be checked are
given in the form of assert statements. Hence, SBMC checks whether there are
any runs through the program that satisfy all encountered assume statements
but violate an assert statement.

Deductive Program Verification is based on a logical (program) calculus to con-
struct a proof for a formula expressing that a program satisfies its specifica-
tion [12, 23]. Typically, deductive verification uses invariants and induction to
handle loops. In order to mitigate complexity, most deductive approaches em-
ploy design by contract [21], where functions resp. methods are specified with
formal pre- and postconditions. These additional annotations enable a modular
verification [3], where each method is individually proved to satisfy its contract.
To this end, each method – together with its contract – is translated into a for-
mula, e.g., using some form of weakest precondition computation [11]. Method
calls are replaced by the contract of the called method (instead of the method
body), and loops are replaced by their invariants (instead of loop unwinding).
The resulting formulas are either discharged using automatic theorem provers,
e.g., SMT solvers [2], or shown to the user for interactive proof construction.

The Java Modeling Language (JML) is a specification language for Java pro-
grams that follows the design-by-contract paradigm and enables the user to
annotate Java programs with modular specifications, e.g., method contracts and

4 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

/*@ requires 0 <= x1;
@ ensures \result == x1 * x2;
@ assignable \nothing;
@*/

public int mult(int x1, int x2) {
int res = 0;
/*@ loop_invariant 0 <= i && i <= x1 && res == i * x2;

@ decreases x1 - i;
@ assignable \nothing;
@*/

for (int i = 0; i < x1; ++i) res += x2;
return res;

}

Listing 1. An example of a method specified with JML.

loop invariants [19]. JML annotations are written in Java comments that are ini-
tiated with the character sequence “/*@”. The syntax and semantics for JML ex-
pressions are equivalent to those of Java expressions, which additionally permits
universal and existential quantifiers as well as special keywords, e.g., \old that
enables the postcondition to refer to expressions before executing the method.

Consider, for example, Listing 1, where the method mult multiplies two inte-
gers using repeated addition. The precondition (indicated by requires) requires
that both integers are non-negative; the postcondition (indicated by ensures)
demands that the returned value (indicated by \result) is the product of the
two parameters x1 and x2. Note that, even though this program may produce
an integer overflow, the specification is still correct, as JML and Java have the
same integer semantics. Moreover, the assignable clause restricts the heap lo-
cations which the method may change. The keyword \nothing requires that no
heap location may be changed. In case we allow the method to change existing
heap locations, we would specify a sequence of storage references (either field
accesses o.f, object accesses o.* meaning that all fields of o may be written, or
array access ranges a[i..j] meaning that any index between i and j in array
a may be written). JML also permits to give auxiliary specifications, e.g., loop
invariants to specify the behavior of a loop, that are specified inside the method
body. The loop invariant in Listing 1 specifies that, for each loop execution, the
currently computed result res is equal to the value of the loop variable mul-
tiplied by the second parameter x2. Loop invariants may also be extended by
a decreases clause that specifies an integer expression which must strictly de-
crease in every loop iteration and never become negative. Since infinite strictly
decreasing sequences are not possible within the domain of the natural numbers,
this clause permits to prove termination of the loop. While JML encompasses
many more concepts, we assume in the rest of this paper that method contracts
are desugared, i.e., they adhere to the description from above [1, 19].

Modular Verification of JML Contracts Using Bounded Model Checking 5

There are two deductive verification tools available for JML-annotated Java
code: the KeY tool and OpenJML. The KeY tool supports both automatic and
interactive verification [1]. KeY’s support for user interaction permits deductive
verification w.r.t. expressive specifications. OpenJML is an automatic verifica-
tion tool for verifying JML annotations [9]. The JML proof obligations are first
reduced to SMT formulas which are then discharged by SMT solvers.

The Java Bounded Model Checker (JBMC) is an extension of the C Bounded
Model Checker (CBMC) and performs (software) bounded model checking on
Java bytecode for a bit-accurate verification of Java programs by combining
SAT/SMT solving with a full symbolic state-space exploration [10]. It includes
an exact and verification-friendly model of standard Java library classes. Be-
havioral subtyping is handled by conducting a case distinction over all possible
implementations expanding their respective method bodies. JBMC supports all
control flow mechanisms of Java including exceptions. The tool is fully automatic
and its scalability depends mainly on the complexity of string operations, loops,
recursion and floating-point arithmetic in the analyzed code.

3 The Main Ideas Behind the Approach

At the base of our approach is the assumption that the reach of software bounded
model checking is extended when modularization is added, which comes with
three individual arguments as following. (1) While many program parts can be
dealt with using exhaustive search, other parts need to be decomposed in or-
der to verify them for non-trivial bounds. (2) For devising a formal program
specification, it is often worthwhile to early on either gain trust in its validity
or uncover its incorrectness already for a bounded domain or scope. Exploiting
this small scope hypothesis [16] lets us do effective program verification within a
bounded scope and mitigate the otherwise common state space explosion. How-
ever, prominent examples such as the TimSort algorithm show that the more
labor-intensive deductive program verification within a universal scope is gen-
erally desirable [14]. (3) With the approach taken in this paper, we enable a
powerful combination of both methodologies on a modular level, such that a
verification engineer can avoid wasting time in labor-intensive interactive ver-
ification when guarantees within a bounded scope suffice. The bounded scope
in our case does not only refer to unwindings and recursion inlinings, but also
to data structures. With data always being finite, program verification becomes
a theoretically decidable and in many cases practically manageable problem.
Our approach gives the user a fine-grained control as to which degree or which
parts and how much of the program to verify either within a bounded scope or
deductively. The communication between both verification techniques happens
on specification level via method contracts, loop invariants, or block contracts,
making use of the design-by-contract paradigm (see Sect. 2).

Consider, e.g., the common case where the user develops a method together
with some inner helper method. For the deductive verification scenario, the outer

6 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

method would have a method contract corresponding to its API. However, also
the inner method would need a contract, which is not known yet when it is still
being developed. In this early development stage, the user can rapidly gain con-
fidence in possible contracts for this inner method by employing a modular proof
within a bounded scope, as no user interaction is needed. Once the development
of the method is finished, the user can opt for employing an unbounded modular
proof, after gaining confidence that the proof will succeed. Often, the size of mod-
ules for SBMC can be considerably larger than that for deductive verification
scenarios where every small method is individually specified. We automatically
translate proof obligations induced by modular specification contracts into spe-
cial code constructs that let the SBMC tool restrict the state space to the one
defined by the precondition and insert assertions into the code that are equiva-
lent to the postcondition. This relieves us from manually creating an execution
harness for the whole-program approach that SBMC otherwise takes, which in-
lines method invocations. Similar to the technique of runtime assertion checking
or runtime verification, the necessary abstractions from, e.g., method contracts
are automatically encoded in assertions that are inserted into the program (see
Sect. 7). However, unlike in runtime verification, we insert statements into the
code that are only useful for static verification, namely assume statements and
nondeterministic value assignments. These additional statements enhance the
expressiveness and efficiency for static verification, but alter the execution se-
mantics of the program. Quantifiers that cannot be represented by nondetermin-
ism are translated into loops that iterate over the quantified domain. We evaluate
such expressions in additional statements that implement side computations.

Within our formal translation rules described in Sect. 4, we reflect the dis-
tinction of side computations and computing the value of an expression E by
splitting the translation E into two parts: (a) a command translation JEKcmd

and (b) a value translation JEKval . We make use of nondeterministic assign-
ment when translating quantifiers by using a form of skolemization – instead of
translating into a loop with many assertions. In order to express, e.g., that all
elements of an array a are positive, instead of

for (int i = 0; i < a.length; i++){ assert 0 < a[i]; },

we generate the following more efficient, yet equivalently valid translation:

int i := *; assert !(0 <= i && i < a.length) || 0 < a[i];

The latter encoding makes use of the builtin nondeterministic choice operation of
SBMC to make sure that all possible valuations are covered, whereas the former
translation makes this explicit by iterating over all possible values. For the latter
encoding, the assertion is violated once there exists a value within the bounds
which makes the assertion invalid. The advantage of nondeterministic choice is
that the instantiation task is given to a SAT or SMT solver that is optimized to
cover all cases in a more clever way than by naive explicit enumeration.

Modular Verification of JML Contracts Using Bounded Model Checking 7

4 Translating JML Annotations
Basics. This section describes how a Java program with JML annotations (in
particular method contracts and loop invariants) can be translated into Java
code ready for the analysis with the bounded model checker JBMC. The target
language is Java code without JML annotations as the annotations are replaced
by additional Java statements. The additional Java code includes statements that
are interpreted by the model checker in a particular way: assume statements and
nondeterministic value assignments. While we present them as keyword state-
ments in this paper, they are expressed as special method invocations in the
actual implementation. The meaning of an assertion assert c; is the usual one
of Java: A program run is considered failing if the assertion is reached and the
evaluation of the asserted proposition c evaluates to false. In contrast, if in the
statement assume c; the condition c evaluates to false, then the program run
is not considered failing, but irrelevant. One may think of this as a graceful,
but abrupt termination of the program at this point. The nondeterministic as-
signment x = *; assigns an arbitrary, nondeterministically chosen, not further
constrained value of x’s static type to x. When such an assignment is reached
multiply during a program run, each time a different value may be chosen.

Formally, our translation is defined as a syntactical replacement function
J·K : JML ∪ Java → Java

that takes Java annotated with JML and returns Java constructs without JML
(but with assumptions and nondeterministic assignments). The translation is
recursively applied as a rewriting rule to the program in a top-down fashion. In
the following subsections, we present the most noteworthy rewriting rules that
define J·K, but refrain from providing a complete list due to space limitations.
We focus on a subset of Java and JML, where
– method calls only appear standalone in the form lhs = o.m(a1,a2,. . .),
– break and continue statements do not occur, and
– try-catch statements do not occur.

This is not a fundamental restriction; additional rules for handling these features
can easily be added. Our implementation, in fact, supports already a consider-
ably larger subset of Java and JML than shown in this paper (see Sect. 5).

4.1 Translating Method Contracts
As design by contract targets individual methods (and not the whole program)
for a method-modular program analysis, we start with a translation pattern
in (1) that covers blocks of pre- and postconditions for method contracts. This
easily extends to classes by applying the translation to all methods in a class.

u

www
v

/*@ requires R;
@ ensures E;
@*/

{ B }

}

���
~

= { Jassume RK; JBK; Jassert EK; } (1)

8 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

The translation of the precondition R is assumed before the block and the trans-
lation of the postcondition E is asserted after its execution. The translation’s
goal is that any program that satisfies the block contract on the left does not fail
any assert in the program on the right and vice versa. This encoding schema is
also the basis for the translation schema for methods with contracts. However,
it is important that the control flow in B does not bypass the assertion at the
end of the block (e.g., by throwing an exception).

u

wwwwwwwww
v

/*@ requires R;
@ ensures E;
@ assignable M;
@*/

T m(P) throws S {
B

}

}

���������
~

=

T m(P) throws S {
J assume R K;

T result;
saveOld(E, B);
try { JBK }
catch (ReturnExc e) {}

J assert E K;
return result;

}

(2)

The specified method m is translated into a method with the same signature,
embedding the pre- and postcondition as assumption and assertion, respectively.
Moreover, we need additional statements and declarations. New variables are
initialized in saveOld(E, B) to enable the translation of \old that refers to values
at method entry. We add the variable result for the return value of the method.
Together with the exception ReturnExc, this encodes return statements. The
correctness of the translation is captured by the following claim:

Correctness of Translation. A JML-annotated Java method m sat-
isfies its JML contract if and only if the translation of m does not fail5
any of its assertions for any initial state, argument values, nondetermin-
istically chosen values and bound on the number of loop iterations.

This claim has been shown for a simple while language, but remains to be
proven for the full semantics of Java and JML [17]. Most Java statements s
in a method body B are translated by the identity (JsK = s), i.e., are left un-
changed. The translation differs only for modularity-related aspects, e.g., modu-
lar handling of loops, assignable clauses, and abstractions of method calls using
contracts, which are covered in Sect. 4.4 and 4.5.

For methods, we furthermore need to translate assert, assume and return
statements. The former two occur directly in the method’s translation, and the
latter one is required for a control flow that contains the explicit cast of an excep-
tion. In order to evaluate conditions in assertions and assumptions, we need to
know their “polarity”, which depends on whether they occur within an assump-
tion or an assertion, and changes within negated expressions. As an example,
the translation of quantifiers requires to distinguish their polarity. For expres-
sions, there are several different translation functions for the contexts in which
5 Failure means that an exception is thrown when evaluating the assertion.

Modular Verification of JML Contracts Using Bounded Model Checking 9

the expression occurs. Depending on the polarity of the expression (i.e., whether
it occurs negated or not and whether it is assumed or asserted), we translate
expressions differently (indicated by the assert or assume subscript). Moreover,
some expressions require that code is executed before their evaluation. There is,
hence, for both modes another translation function that gives the code to eval-
uate the expression (it is denoted by the superscript cmd while the superscript
val indicates the code for the expression itself). This distinction enables a more
efficient treatment of quantifiers as shown in Sect. 4.3.

Jassert AK = {JAKcmd
assert ; assert JAKval

assert ;}

Jassume AK = {JAKcmd
assume ; assume JAKval

assume ;}
Jreturn EK =

{
result = E; throw new ReturnException();

}
4.2 Translating JML Expressions

The expression language in JML extends the side-effect-free expressions in Java.
In most cases, the translation operator is simply propagated to all sub-expressions.
For literals and local variables, the translation is the identity. We hence give rules
for the majority of all binary operations ◦, such as + or ==:

JA ◦BKval = JAKval ◦ JBKval JA ◦BKcmd = JAKcmd ; JBKcmd

JxKval = x JxKcmd = {}

The translation of unary operators, field and array accesses, etc., follows the
same principle. Special attention must be given to the case of binary Boolean
connectives that have a short-circuit semantics in Java, i.e., the second operand
is only evaluated if the result is not determined by the value of the first one.
This applies to Java operators such as “&&” and “||”, but also to the implication
“==>” in JML (see Sect. 4.6). The rules are the same both for assert and assume:

JA && BKval = JAKval && JBKval JA || BKval = JAKval || JBKval

JA ==> BKval = J!AKval || JBKval

JA && BKcmd = JAKcmd ; if(JAKval){ JBKcmd }

JA || BKcmd = JAKcmd ; if(J!AKval){ JBKcmd }

JA ==> BKcmd = JAKcmd ; if(JAKval){ JBKcmd }

An additional twist occurs with operators that modify polarity, most notably
negation. In that case, assert gets switched to assume and vice versa:

J!AKval
assert = ! JAKval

assume J!AKcmd
assert = JAKcmd

assume

J!AKval
assume = ! JAKval

assert J!AKcmd
assume = JAKcmd

assert

The ternary conditional operator (C ? T : E) is special, since the condition
C occurs both positive (as a guard for T in case C is true) and negative (as a

10 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

guard for E in case C is false). Furthermore, we introduce another mode demonic
which makes sure that the optimizations proposed in Sect. 4.3 are not applied
(there are also the dual rules to the following ones for assert):

JC ? T : EKval
assume = JCKval

demonic ? JT Kval
assume : JEKval

assert

JC ? T : EKcmd
assume =

JCKcmd
assume ; if(JCKval

assume){ JT Kcmd
assume } else { JEKcmd

assume }

Apart from pure Java, also JML-specific constructs, e.g., implications as
shown in the beginning of this subsection, may occur within specifications. We
support the \old(E) construct which can be used to refer to the value of an
expression E in the state at the beginning of the current method invocation.
This semantics is achieved by storing the prestate value of all expressions used
as arguments for this operator in fresh variables before executing the method (as
done for saveOld in (2)). The keyword \result can be used in postconditions
to refer to the result of the method invocation. We translate it into the new
variable result during the translation of the method body in (2).

J\resultKval = result J\resultKcmd = {}

J\old(E)Kval = oldVar(E) J\old(E)Kcmd
x = JEKcmd

x

The symbol x is used as a placeholder for either assume or assert mode.
Moreover, we require special treatment when \old(E) occurs within a quantified
expression if it contains the quantified variable.

4.3 Translating Quantifiers

JML also supports universally and existentially quantified expressions, and al-
though JML permits to quantify over objects and unbounded ranges, the fol-
lowing rules only cover bounded integer ranges, where for an integer variable i
bounded by L and H, and the quantified expression E, expressions are as follows:

(\forall int i; L <= i && i < H; E)
(\exists int i; L <= i && i < H; E)

In JBMC’s semantics, assert statements can be seen as implicitly univer-
sally quantified and assume statements as implicitly existentially quantified (see
Sect. 2). Hence, we translate the JML clause

ensures (\forall int i; 0 <= i && i < 10; 0 <= a[i]);

by assigning a nondeterministic value to i and eliminating the quantifier:

int i = *; assert !(0 <= i && i < 10) || 0 <= a[i];

Note that this also works for unbounded quantifiers. By the duality of the
quantifiers, an equivalent translation exists for the assumption of existentially

Modular Verification of JML Contracts Using Bounded Model Checking 11

quantified expressions. We denote such quantifiers that may be translated in this
way as “angelic” quantifiers, since they are the “easy” case regarding translation.

J(\forall int i; L <= i && i < H; E)Kcmd
assert = int i=*; JEKcmd

assert

J(\forall int i; L <= i && i < H; E)Kval
assert =

J(L <= i && i < H) ==> EKval
assert

J(\exists int i; L <= i && i < H; E)Kcmd
assume = int i=*; JEKcmd

assume

J(\exists int i; L <= i && i < H; E)Kval
assume =

J(L <= i && i < H) && EKval
assume

The integer expressions for the bounds L and H of the index variable i are
not subject to the translation J·Kcmd and must not contain quantifiers. Special
care must be given to quantifiers that cannot be translated by implicit semantics,
i.e., universal quantifiers within assume and existential quantifier within assert.
We call these quantifiers “demonic quantifiers”, as these are more problematic
and we need an explicit loop within our translation:6

u

www
v

(\exists int i;
L <= i && i < H;
E)

}

���
~

cmd

assert

=

b = false;
for (int i = L; i < H; ++i) {
JEKcmd

assert
b = (b || JEKval

assert)
}

u

www
v

(\forall int i;
L <= i && i < H;
E)

}

���
~

cmd

assume

=

b = true;
for (int i = L; i < H; ++i) {

JEKcmd
assume

b = (b && JEKval
assume)

}

J(\exists int i; L <= i && i < H; E)Kval
assert = b

J(\forall int i; L <= i && i < H; E)Kval
assume = b

In this translation, b is a fresh Boolean variable that does not occur in the
program, and is assumed to be declared at the beginning of the program. The
translations of \forall and \exists differ in the initialization value of b and
6 Using the demonic translation also for angelic quantifiers would be sound, yet less
efficient. Hence, we use it in the demonic mode of the ternary operator.

12 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

the Boolean operation in the loop body. The requirement of bounded integer
ranges is crucial (the loop must terminate). Although this translation may be
more intuitive, it is significantly less efficient for verification and hence only used
when necessary. Note that the quantified range must not only be bounded, but
must also be of the expected form. Consider, e.g., the set of even integers smaller
than 10. This set is clearly bounded, but it does not fit the expected form, as
there is an additional constraint in the guard. This can, however, always be fixed
by moving the additional constraint to the inner expression within the quantifier.

4.4 Translating Frame Conditions

So far, we only considered the translation of pre- and postconditions. In JML,
however, method contracts also contain frame conditions, which are specified
within assignable clauses (see Sect. 2). The basic idea is to add an assertion
for each assignment that fails if and only if the assignment violates the frame
condition (for the sake of simplicity, we only consider assignments, but our ap-
proach also applies to other state-changing operations). Note that these rules
only cover assignments to arrays and object fields, as assignments to local vari-
ables are always permitted. If ‘assignable a1, a2, . . ., an’ is the assignable
clause for the enclosing method, the translation rules for an assignment to a
left-hand side of the form O.f , where O is of type OT , as well as a left-hand
side of the form A[I], where A is of array type AT[], are as follows:

JO.f=E;K =

OT nO = O;
assert mc(nO.f,\old(a1)) || . . . ||

mc(nO.f,\old(an));
nO.f = E;

JA[I]=E;K =

AT[] nA = A;
assert mc(nA[I],\old(a1)) || . . . ||

mc(nA[I],\old(an)));
nA[I] = E;

The predicate mc(l, a) determines whether an assignment to location l (a

field access o.f or an array access a[i]) is justified by a storage reference a in
the assignable clauses. This predicate is defined as follows, where for all other
combinations not explicitly mentioned, mc is false:

mc(o.f, p.g) ⇔ false mc(o.f, p.f) ⇔ o==p mc(o.f, p.∗) ⇔ o==p

mc(a[i], b[l..h]) ⇔ (a == b && l <= i && i < h)

The above translation is sound, but produces false positives for newly created
objects. Consider, e.g., a method annotated by ‘assignable \nothing;’ that
starts by creating a new object, then stores this object in a local variable, and

Modular Verification of JML Contracts Using Bounded Model Checking 13

finally assigns a new value to one of the object’s fields. Our translation would lead
to a frame-condition violation being reported as there is no storage reference in
the assignable clause that justifies this assignment. In order to fix this problem,
we introduce a predicate that we call newObj, which we assume for each new
object. We are then able to adapt our assertions by requiring that an assignment
is permitted by the assignable clause (as before) or the newObj predicate is true
for the left-hand side of the assignment.

4.5 Translating Method Invocations

So far, we have seen how to translate JML expressions and use that to translate
method contracts. However, in order to achieve a truly modular approach, we
need to replace parts of Java code by their contracts, namely method calls. In
this section, we moreover show how loops can be replaced by loop invariants, as
the general idea for both method calls and loops is very similar: First, the precon-
dition (or the invariant) is asserted, then the parts of the state that are modi-
fiable by the method call (or the loop) according to the JML assignable clause
are anonymized, and finally the post condition is assumed. The same translation
technique can be applied for block contracts and statement contracts (not shown
here). The standard treatment for method calls in JBMC is to inline the method
body. We can exploit this behavior, as we replace the original definition of the
method by a “symbolic” definition, which contains the method contract instead
of the method body. Once the symbolic method body gets inlined, it takes care
of all necessary assertions and assumptions. The transformation of the method
definition is contained in the following rule:

u

wwwwwwwwww
v

/*@ requires R;
@ ensures E;
@ assignable A;
@*/

T m(P) throws S {
B

}

}

����������
~

=

T mContract(P) throws S {
J assert R K;
T result;
saveOld(E, B);
havoc(A);
J assume E K;
return result;

}

The “normal” translation of a method contract, as shown in the beginning

of this section, is used to prove that a method satisfies its contract, while the
above translation uses the contract and assumes its correctness. Both transla-
tions use the method saveOld to store values of variables which may be referred
from thereon via the keyword \old. We introduce a variable for the return value
before the postcondition is assumed, since the postcondition may contain re-
strictions to the returned value. Moreover, we introduce the translation method
havoc(A), which anonymizes the values of all location sets of the assignable
clause A. “Havocing” for primitive types is equivalent to assigning a nondeter-
ministic value of that type. We must also assume and enable that, if A contains

14 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

locations of object type, then havoc(A) may nondeterministically generate new
objects, which may be used in the assignments and cannot be easily reduced to
a nondeterministic assignment for JBMC (see Sect. 5). Remember that, as to
provide a compact representation for our rules, we do not permit method calls
to occur as sub-expressions but only in assignments to local variables. Thus,
the translation rule for method calls extends the rule for Java statements (see
Sect. 4.1) and is as follows:

Jvar=m(P);K = var=mContract(JP K);

Therein, the assignment to the local variable var is optional. The same as for
method calls can be applied to loops. Verifying loops is inherently challenging, in
particular if no bound on the number of loop iterations is known beforehand. For
this matter, we can use loop invariants, which can be understood as the contract
for a loop, as a loop invariant must be guaranteed and can be assumed for the
whole loop execution. A loop invariant acts both as a pre- and a postcondition
for the loop, as it must hold before and after each loop iteration.

u

wwwwww
v

/*@ loop_invariant I;
@ assignable A;
@ decreases D;
@*/

while (C) { B }

}

������
~

=

int oldD = D;
J assert I K;

havoc(A);
J assume I K;
if (C) {

JBK;
J assert I K;
assert D < oldD && 0 <= D ;
assume false;

}

On the right side of the above rule (a similar rule is defined for for-loops), we

(1) assert the invariant, then (2) we “havoc” the assignable set of the loop that
replaces all loop iterations that may already have occurred, then (3) assume
the invariant, (4) execute the loop body once, and finally, (5) assert the
invariant again. Steps (1) to (3) make use of the invariant to replace multiple
loop iterations, while steps (3) to (5) prove the inductive invariant. Proving the
invariant for a single loop execution suffices to establish its validity. Additionally,
we prove that the loop terminates by asserting that the decreases clause does
indeed decrease and is still greater than zero.

Finally, we append the statement “assume false;” to the loop body, as we
chose an arbitrary loop iteration, but all assertions after the loop must only
hold in case the loop is fully executed. Essentially, as long as the loop body is
executed, we prevent the model checker from reporting any assertion violations,
since this is not a valid program run.

Modular Verification of JML Contracts Using Bounded Model Checking 15

4.6 Ensuring Correct Behavior for Boolean Operators

As seen in Sect. 4.2, binary Boolean connectives that have a short-circuit se-
mantics in Java need special consideration during the translation. According to
JML’s semantics, if an exception is raised during the evaluation of an expres-
sion, then the whole clause is considered to have failed, i.e., the program does not
satisfy that clause [7]. Thus, no method can satisfy the ill-defined specification
‘ensures 1/0 == 0;’. However, the definition uses the short-circuit semantics of
Java operators, so that every method satisfies ‘ensures true || (1/0 == 0);’
In most cases, our translation easily leads to the right behavior of the resulting
code. For example, ‘ensures 1/0 == 0;’ becomes ‘assert 1/0 == 0;’, which
brings the invalid postcondition directly to the Java code in form of an assertion
whose evaluation throws an exception.

However, we need to be careful when translating short-circuit behavior in
combination with “demonic” quantifiers. Consider, for example, the following
postcondition:

ensures (true || (\exists int i; 0 <= i && i < 1; 1/i == 0));

Due to the short-circuit semantics of ||, and since the first operand is true, we
never evaluate the second operand, and the whole expression evaluates to true,
which is trivially satisfied by any method. If the special behavior of || were not
considered, our translation would produce the following (wrong) result:

b = false;
for (int i = 0; i < 1; ++i) { b = (b || 1/i == 0); } // WRONG
assert true || b;

However, this translation is wrong, since the for-loop throws an exception
when i equals 0 in the first iteration, which would falsely indicate a failure.
Hence, in order to deal with such behavior, our translation adheres to the rules
presented in Sect. 4.2, and the code JBKcmd for the second operand B of a
disjunction is only evaluated if the first operand A evaluates to false. Conse-
quently, our translation produces the following code with the desired behavior,
where the loop is not executed and no exception is thrown:

if (!true) {
b = false;
for (int i = 0; i < 1; ++i) { b = (b || 1/i == 0); }

}
assert true || b;

16 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

5 Implementation

We provide a prototypical implementation of our approach in form of the com-
mand-line application JJBMC.7 It translates a Java source file annotated with
JML specifications into a Java file to be read by JBMC. The implementation
makes use of the OpenJML back end (see Sect. 2) to parse and manipulate the
given Java/JML. The user can choose to either verify only a single method or all
methods in the given Java file. Furthermore, they can pass any JBMC options
for a customized behavior, e.g., concerning various bounds for objects, arrays,
or object structures, as well as the handling of exceptions, the employed SAT or
SMT solver, or the output format. If JBMC is able to find a counterexample for
the given specification and program, the counterexample is parsed and provided
as a program trace, i.e., the sequence of program states up to the violated asser-
tion (with concrete instantiations for the nondeterministic values). The output
is optimized from the original JBMC output such that the user may (relatively)
easily understand and analyze the semantics. We provide additional options for
the user to choose whether auxiliary specifications (contracts of called methods
and loop invariants) or inlining shall be used. Even though ignoring contracts
seems to contradict our modular approach, it is sometimes useful to try verifica-
tion that way first, so that unnecessary modularization may be avoided. Inlining
also allows the user to flexibly distinguish between errors in the top-level speci-
fication and individual auxiliary specifications. Note that our implementation is
still prototypical and does currently not support full JML and Java. However,
we provide a clear user feedback whenever unsupported features are used, in
order to maintain the soundness of our approach. For full (sequential) Java, ev-
erything except for catching exceptions, break and continues statements, and
inheritance is supported. For JML, we currently support preconditions, postcon-
ditions, loop invariants, frame conditions (limited to fields and array ranges) for
contracts and loops, assertions, assumptions, \old (with similar restrictions as
for frame conditions), and universal and existential quantifiers.

Given that both SBMC and runtime assertion checking do not involve the
full abstraction from JML contracts, tasks that require to distinguish different
heap states or specify object anonymization are new and challenging for JBMC’s
semantics. Consider, e.g., the keyword \old that “remembers” a variable’s value
before method execution. Java lacks support for deep copies of objects, which
hinders the implementation of such a concept. Furthermore, JBMC’s semantics
of nondeterministic value assignments for objects is not sufficient to implement
anonymization of heap locations: JBMC interprets a nondeterministic object as
a new object with nondeterministic values assigned to its fields. JML, however,
demands that this “anonymous” object may or may not be new, and its fields may
or may not point to existing or new objects. For implementing such semantics,
we would need an explicit model of all objects within the Java program, such
that we can do a nondeterministic selection among all those objects.

7 The source code is available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

Modular Verification of JML Contracts Using Bounded Model Checking 17

/*@ requires a != null && a.length <= 5;
@ ensures \result <= a.length * 32;
@ assignable \nothing;
@*/

int naiveHammingWeight(int[] a) {
int result = 0;
/*@ loop_invariant result <= i * 32;

@ loop_invariant 0 <= i && i <= a.length;
@ assignable result;
@*/

for (int i = 0; i < a.length; i++) {
int x = a[i];
while (x != 0) { result += x&1; x = x >>> 1; }

}
return result;

}

Listing 2. Calculation of the hamming weight for an array.

6 Evaluation

We evaluated our translation and its implementation on a selection of JML-
annotated Java examples8 that are shipped with the KeY tool [1], which illus-
trate a variety of JML’s and KeY’s features. The goal of our evaluation was to
demonstrate correctness and feasibility of our approach, i.e., that JML anno-
tations are translated into programs which are correctly read and verified by
JBMC. Using a bound of 5 on the number of loop iterations and array sizes, all
verification tasks were successfully performed by JBMC within a few seconds.
Besides simple examples, our evaluation included algorithms that perform array
manipulations, e.g., sorting algorithms, and algorithms with bit-operations.

Let us first consider the program given in Listing 2, which calculates the
hamming weight of an integer array by iterating over all array elements and
adding together their respective hamming weights. Each hamming weight is –
very inefficiently – calculated by iterating over every bit and checking whether it
is zero or not. The program contains two loops, but a loop invariant is only pro-
vided for the outer one. This is what an engineer may do in practice, as the inner
loop is guaranteed to run at most 32 times (for each bit of the integer value) and
is thus a prime suspect for loop unrolling, since it does not necessarily require
a loop invariant. In contrast, the outer loop iterates over array elements, where
the number of iterations is unknown. Using our translation, JBMC verifies this
program for our default upper bound with an array size of 5. Note that, for very
large arrays, the postcondition is actually not satisfied, as a.length * 32 may
overflow. The fact that this is not discovered by JBMC is due to the inherently
bounded nature of bounded model checking and does not mean that our transla-
8 All case studies are available at https://github.com/JonasKlamroth/JJBMC.

https://github.com/JonasKlamroth/JJBMC

18 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

tion is incorrect. In addition to this inefficient hamming weight calculation, we
also implemented and verified a more efficient version that uses a sequence of
bit operations without the need for an inner loop.

Let us further consider bubble sort9, which performs array manipulations.
The JML contract demands that the result array is sorted, i.e., each entry is
less than or equal to the consecutive entry. The program contains two nested
loops that iterate over the array and move the greatest remaining element to
the end of the unsorted part of the array. Element swaps are carried out by a
method swap(int[] a, int i, int j) which swaps a[i] and a[j] and is im-
plemented as an in-place xor-operation. For this example, we evaluated different
levels of modularity. In the first step, we verified the (translation of the) top-level
specification of bubble sort with JBMC by unrolling the loops and inlining the
swap method, i.e., a (non-modular) whole-program verification. In the next step,
we used the contract of the swap method instead of its implementation and then,
in the final step, we also used two loop invariants. This demonstrates that our
approach may support finding both the right specification and implementation
without the need of having everything ready from the beginning.

7 Related Work

Pnueli and Shahar present a verification system that combines both deductive
verification and bounded model checking, where they verify finite-state systems
w.r.t. constraints in linear temporal logic (LTL) [22]. Moreover, Shankar exam-
ines the interrelations between the two paradigms by exploring various examples
for their combination, and illustrates the advantages [24]. The synergy of such a
combination is also discussed by Beckert et al. on the verification of C programs,
who focus, however, on combining two tools rather than doing program transfor-
mation [3]. Lourenço et al. present a minimal model as a combined theoretical
basis for the two paradigms [4]. Similar to our work, they capture both con-
crete loop unrollings and abstract loop invariants. Whereas their model works
on a simple while language, we target the Java programming language that
comes with a richer semantics. Furthermore, the field of runtime verification
also translates program specifications into assertions that are checked at runtime.
Burdy et al. present a tool that translates JML annotations into runtime asser-
tion checks for Java programs [6]. They encounter similar challenges as we do,
e.g., interpreting well-definedness of specifications and translating quantifiers.
Their translation covers the quantification over iterable collections and other
forms of quantifiers such as \sum. While Burdy et al. focus on runtime checks,
we use the translation as input for static verification, and instead of translat-
ing into pure Java, our output is extended by assertions and assumptions. The
underlying idea, however, namely that “JML accommodates both runtime asser-
tion checking and formal verification” is the same [20]. Chalin et al. discuss this
approach for the strong-validity semantics of JML [7]. Similar work has been
conducted by Kosmatov et al. for C programs and ACSL specifications [18].
9 We do not print the code, as we used the well-known standard implementation.

Modular Verification of JML Contracts Using Bounded Model Checking 19

8 Conclusion and Future Work

We presented a translation of JML-annotated Java code into Java programs
that can be read by the software bounded model checker JBMC, which enables
JBMC to check JML annotations at an early stage when developing the specifi-
cation. This extends JBMC’s reach such that it may use method contracts and
loop invariants additionally to (mere) method body inlining or unwinding loops.
Finally, we presented a prototypical implementation which we evaluated on first
case studies that can be read and verified by JBMC.

As future work, we plan to extend our approach to support further features of
Java and JML, e.g., full exception handling and abrupt termination within loops.
We also plan to extend our translation to fully capture JML’s semantics of heap
anonymization or “havocing”, as we are currently restricted by JMBC’s default
semantics of nondeterminism that excludes previously created objects. Moreover,
we plan to evaluate and improve both the performance and the usability of
our implementation, e.g., the readability of reported counterexamples. Finally,
we performed first experiments for the verification of stability properties for
floating-point operations such as addition, which we plan to extend.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice, LNCS,
vol. 10001. Springer (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barrett, C.W., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-
8_11

3. Beckert, B., Bormer, T., Merz, F., Sinz, C.: Integration of bounded model checking
and deductive verification. In: International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS 2011). LNCS, vol. 7421, pp. 86–104. Springer
(2012). https://doi.org/10.1007/978-3-642-31762-0_7

4. Belo Lourenço, C., Frade, M.J., Sousa Pinto, J.: A generalized program verification
workflow based on loop elimination and SA form. In: 7th International Workshop
on Formal Methods in Software Engineering (FormaliSE 2019). pp. 75–84. IEEE /
ACM (2019). https://doi.org/10.1109/FormaliSE.2019.00017

5. Biere, A., Kröning, D.: SAT-based model checking. In: Handbook of Model Check-
ing, pp. 277–303. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_10

6. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T.,
Leino, K.R.M., Poll, E.: An overview of JML tools and applications. Interna-
tional Journal on Software Tools for Technology Transfer 7(3), 212–232 (2005).
https://doi.org/10.1007/s10009-004-0167-4

7. Chalin, P., Rioux, F.: JML runtime assertion checking: Improved error report-
ing and efficiency using strong validity. In: 15th International Symposium on
Formal Methods (FM 2008). LNCS, vol. 5014, pp. 246–261. Springer (2008).
https://doi.org/10.1007/978-3-540-68237-0_18

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog
programs using bounded model checking. In: 40th Design Automation Conference
(DAC 2003). pp. 368–371. ACM (2003). https://doi.org/10.1145/775832.775928

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-31762-0_7
https://doi.org/10.1109/FormaliSE.2019.00017
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1145/775832.775928

20 B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich

9. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Third Interna-
tional Symposium on NASA Formal Methods (NFM 2011). LNCS, vol. 6617, pp.
472–479. Springer (2011). https://doi.org/10.1007/978-3-642-20398-5_35

10. Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M.: JBMC: A
bounded model checking tool for verifying Java bytecode. In: 30th International
Conference on Computer Aided Verification (CAV 2018). LNCS, vol. 10981, pp.
183–190. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_10

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM 18(8), 453–457 (1975).
https://doi.org/10.1145/360933.360975

12. Filliâtre, J.: Deductive software verification. International Journal
on Software Tools for Technology Transfer 13(5), 397–403 (2011).
https://doi.org/10.1007/s10009-011-0211-0

13. Gomes, C.P., Kautz, H.A., Sabharwal, A., Selman, B.: Satisfiability solvers. In:
Handbook of Knowledge Representation, FAI, vol. 3, pp. 89–134. Elsevier (2008).
https://doi.org/10.1016/S1574-6526(07)03002-7

14. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In:
27th International Conference on Computer Aided Verification (CAV 2015). LNCS,
vol. 9206, pp. 273–289. Springer (2015). https://doi.org/10.1007/978-3-319-21690-
4_16

15. Harel, D.: Dynamic logic. In: Handbook of Philosophical Logic, vol. 165, pp. 497–
604. Springer (1984). https://doi.org/10.1007/978-94-009-6259-0_10

16. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis (ISSTA 2000). pp. 14–25. ACM
(2000). https://doi.org/10.1145/347324.383378

17. Klamroth, J.: Modular Verification of JML Contracts Using Bounded Model
Checking. Master’s thesis, Karlsruhe Institute of Technology (KIT) (2019).
https://doi.org/10.5445/IR/1000122228

18. Kosmatov, N., Signoles, J.: Runtime assertion checking and its combinations with
static and dynamic analyses - tutorial synopsis. In: 8th International Conference
on Tests and Proofs (TAP 2014). LNCS, vol. 8570, pp. 165–168. Springer (2014).
https://doi.org/10.1007/978-3-319-09099-3_13

19. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes
31(3), 1–38 (2006). https://doi.org/10.1145/1127878.1127884

20. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the
design of JML accommodates both runtime assertion checking and for-
mal verification. Science of Computer Programming 55(1-3) (2005).
https://doi.org/10.1016/j.scico.2004.05.015

21. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

22. Pnueli, A., Shahar, E.: A platform for combining deductive with algo-
rithmic verification. In: 8th International Conference on Computer Aided
Verification (CAV 1996). LNCS, vol. 1102, pp. 184–195. Springer (1996).
https://doi.org/10.1007/3-540-61474-5_68

23. Shankar, N.: Automated deduction for verification. ACM Computing Surveys
41(4), 20:1–20:56 (2009). https://doi.org/10.1145/1592434.1592437

24. Shankar, N.: Combining model checking and deduction. In: Handbook of Model
Checking, pp. 651–684. LNCS, Springer (2018). https://doi.org/10.1007/978-3-
319-10575-8_20

https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-94-009-6259-0_10
https://doi.org/10.1145/347324.383378
https://doi.org/10.5445/IR/1000122228
https://doi.org/10.1007/978-3-319-09099-3_13
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1016/j.scico.2004.05.015
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/3-540-61474-5_68
https://doi.org/10.1145/1592434.1592437
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20

	Modular Verification of JML Contracts Using Bounded Model Checking

