11 research outputs found

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype

    Towards a Taxonomy of Inter-network Architectures

    Get PDF
    Over the past decade, research on network architecture design has intensified. However, contributions to the field have mainly been idiosyncratic and architectural descriptions remain idiomatic. This state of affairs has led to the emergence of a large body of network architecture proposals with no clear indication of their compatibility points, their cross similarities, and their differences. Thus, a taxonomy of network architectures that provides a framework for better understanding, organizing, and thinking about the complex architecture design space would be a timely contribution. This paper presents a first step in that direction by attempting a classification based on the architecture\u27s information model. The taxonomy is applied to a special network architecture highlighting its descriptive and classification powers

    Naming and discovery in networks : architecture and economics

    Get PDF
    In less than three decades, the Internet was transformed from a research network available to the academic community into an international communication infrastructure. Despite its tremendous success, there is a growing consensus in the research community that the Internet has architectural limitations that need to be addressed in a effort to design a future Internet. Among the main technical limitations are the lack of mobility support, and the lack of security and trust. The Internet, and particularly TCP/IP, identifies endpoints using a location/routing identifier, the IP address. Coupling the endpoint identifier to the location identifier hinders mobility and poorly identifies the actual endpoint. On the other hand, the lack of security has been attributed to limitations in both the network and the endpoint. Authentication for example is one of the main concerns in the architecture and is hard to implement partly due to lack of identity support. The general problem that this dissertation is concerned with is that of designing a future Internet. Towards this end, we focus on two specific sub-problems. The first problem is the lack of a framework for thinking about architectures and their design implications. It was obvious after surveying the literature that the majority of the architectural work remains idiosyncratic and descriptions of network architectures are mostly idiomatic. This has led to the overloading of architectural terms, and to the emergence of a large body of network architecture proposals with no clear understanding of their cross similarities, compatibility points, their unique properties, and architectural performance and soundness. On the other hand, the second problem concerns the limitations of traditional naming and discovery schemes in terms of service differentiation and economic incentives. One of the recurring themes in the community is the need to separate an entity\u27s identifier from its locator to enhance mobility and security. Separation of identifier and locator is a widely accepted design principle for a future Internet. Separation however requires a process to translate from the identifier to the locator when discovering a network path to some identified entity. We refer to this process as identifier-based discovery, or simply discovery, and we recognize two limitations that are inherent in the design of traditional discovery schemes. The first limitation is the homogeneity of the service where all entities are assumed to have the same discovery performance requirements. The second limitation is the inherent incentive mismatch as it relates to sharing the cost of discovery. This dissertation addresses both subproblems, the architectural framework as well as the naming and discovery limitations

    A service based approach for future internet architectures

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Identity Management and Resource Allocation in the Network Virtualization Environment

    Get PDF
    Due to the existence of multiple stakeholders with conflicting goals and policies, alterations to the existing Internet architecture are now limited to simple incremental updates; deployment of any new, radically different technology is next to impossible. To fend off this ossification, network virtualization has been propounded as a diversifying attribute of the future inter-networking paradigm. In this talk, we provide an overview of the network virtualization environment (NVE) and address two basic problems in this emerging field of networking research. The identity management problem is primarily concerned with ensuring interoperability across heterogeneous identifier spaces for locating and identifying end hosts in different virtual networks. We describe the architectural and the functional components of a novel identity management framework (iMark) that enables end-to-end connectivity across heterogeneous virtual networks in the NVE without revoking their autonomy. The virtual network embedding problem deals with the mapping of virtual nodes and links onto physical network resources. We argue that the separation of the node mapping and the link mapping phases in the existing algorithms considerably reduces the solution space and degrades embedding quality. We propose coordinated node and link mapping to devise two algorithms (D-ViNE and R-ViNE) for the online version of the problem under realistic assumptions and compare their performance with the existing heuristics

    Supporting Device Mobility and State Distribution through Indirection, Topological Isomorphism and Evolutionary Algorithms

    Get PDF
    The Internet of Things will result in the deployment of many billions of wireless embedded systems, creating interactive pervasive environments. These pervasive networks will provide seamless access to sensor actuators, enabling organisations and individuals to control and monitor their environment. The majority of devices attached to the Internet of Things will be static. However, it is anticipated that with the advent of body and vehicular networks, we will see many mobile Internet of Things Devices. During emergency situations, the flow of data across the Internet of Things may be disrupted, giving rise to a requirement for machine-to-machine interaction within the remaining environment. Current approaches to routing on the Internet and wireless sensor networks fail to address the requirements of mobility, isolated operation during failure or deal with the imbalance caused by either initial or failing topologies when applying geographic coordinate-based peer-to-peer storage mechanisms. The use of global and local DHT mechanisms to facilitate improved reachability and data redundancy are explored in this thesis. Resulting in the development of an Architecture to support the global reachability of static and mobile Internet of Things Devices. This is achieved through the development of a global indirection mechanism supporting position relative wireless environments. To support the distribution and preservation of device state within the wireless domain a new geospatial keying mechanism is presented, this enables a device to persist state within an overlay with certain guarantees as to its survival. The guarantees relating to geospatial storage rely on the balanced allocation of distributed information. This thesis details a mechanism to balance the address space utilising evolutionary techniques. Following the generation of an initial balanced topology, we present a protocol that applies Topological Isomorphism to provide the continued balancing and reachability of data following partial network failure. This dissertation details the analysis of the proposed protocols and their evaluation through simulation. The results show that our proposed Architecture operates within the capabilities of the devices that operate in this space. The evaluation of Geospatial Keying within the wireless domain showed that the mechanism presented provides better device state preservation than would be found in the random placement exhibited by the storage of state in overlay DHT schemes. Experiments confirm device storage imbalance when using geographic routing; however, the results provided in this thesis show that the use of genetic algorithms can provide an improved identity assignment through the application of alternating fitness between reachability and ideal key displacement. This topology, as is commonly found in geographical routing, was susceptible to imbalance following device failure. The use of topological isomorphism provided an improvement over existing geographical routing protocols to counteract the reachability and imbalance caused by failure

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Secure mobility at multiple granularity levels over heterogeneous datacom networks

    Get PDF
    The goal of this thesis is to define a set of changes to the TCP/IP stack that allow connections between legacy applications to be sustained in a contemporary heterogeneous datacom environment embodying multiple granularities of mobility. In particular, the thesis presents a number of solutions for flow mobility, local mobility, network mobility, and address family agility that is mobility between different IP versions. The presented mobility solutions are based on the so-called identifier-locator split approach. Due to the split, the mobile and multi-homed hosts that employ the presented solution are able to simultaneously communicate via multiple access networks, even supporting different IP versions and link layer technologies. In addition to the mobility solutions, the thesis also defines a set of weak and strong security mechanisms. They are used to protect the mobility protocols from redirection, Denial-of-Service (DoS), and privacy related attacks. The defined security mechanisms are tightly bound to the presented mobility architecture, providing alternative ways to optimize mobility management signalling. The focus is on minimizing end-to-end signalling latency, optimizing the amount of signalling and optimizing packet forwarding paths. In addition, the architecture provides identity and location privacy for hosts. The presented work defines one specific kind of engineering balance between the security, privacy, and efficient mobility signalling requirements. This thesis indicates that the added security, indirection, backwards compatibility, and inter-operable mobility solutions can overcome several of the current TCP/IP restrictions. The presented mobility architecture also provides a migration path from the existing Internet architecture to a new cryptographic-identifier-based architecture

    Privacidade em redes de próxima geração

    Get PDF
    Doutoramento em Engenharia InformáticaIn the modern society, communications and digital transactions are becoming the norm rather than the exception. As we allow networked computing devices into our every-day actions, we build a digital lifestyle where networks and devices enrich our interactions. However, as we move our information towards a connected digital environment, privacy becomes extremely important as most of our personal information can be found in the network. This is especially relevant as we design and adopt next generation networks that provide ubiquitous access to services and content, increasing the impact and pervasiveness of existing networks. The environments that provide widespread connectivity and services usually rely on network protocols that have few privacy considerations, compromising user privacy. The presented work focuses on the network aspects of privacy, considering how network protocols threaten user privacy, especially on next generation networks scenarios. We target the identifiers that are present in each network protocol and support its designed function. By studying how the network identifiers can compromise user privacy, we explore how these threats can stem from the identifier itself and from relationships established between several protocol identifiers. Following the study focused on identifiers, we show that privacy in the network can be explored along two dimensions: a vertical dimension that establishes privacy relationships across several layers and protocols, reaching the user, and a horizontal dimension that highlights the threats exposed by individual protocols, usually confined to a single layer. With these concepts, we outline an integrated perspective on privacy in the network, embracing both vertical and horizontal interactions of privacy. This approach enables the discussion of several mechanisms to address privacy threats on individual layers, leading to architectural instantiations focused on user privacy. We also show how the different dimensions of privacy can provide insight into the relationships that exist in a layered network stack, providing a potential path towards designing and implementing future privacy-aware network architectures.Na sociedade moderna, as comunicações e transacções digitais estão a tornar-se a regra e não a excepção. À medida que permitimos a intromissão de dispositivos electrónicos de rede no nosso quotidiano, vamos construíndo um estilo de vida digital onde redes e dispositivos enrirquecem as nossas interacções. Contudo, ao caminharmos para um ambiente digital em rede, a nossa privacidade vai-se revestindo de maior importãncia, pois a nossa informação pessoal passa a encontrar-se cada vez mais na rede. Isto torna-se particularmente relevante ao adoptarmos redes de próxima geração, que permitem acesso ubíquo a redes, serviços e conteúdos, aumentando o impacte e pervasividade das redes actuais. Os ambientes onde a conectividade e os serviços se tornam uma constante, assentam em protocolos de rede que normalmente contemplam poucas considerações sobre privacidade, comprometendo desta forma o utlizador. O presente trabalho centra-se nos aspectos de privacidade que dizem respeito à rede devido à forma como os protocolos são utilizados nas diferentes camadas, e que resultando em ameaças à privacidade do utilizador. Abordamos especificamente os identificadores presentes nos protocolos de rede, e que são essenciais à sua função. Neste contexto exploramos a possibilidade destes identificadores comprometerem a privacidade do utilizador através da informação neles contida, bem como das relações que podem ser estabelecidas entre identificadores de diferentes protocolos. Após este estudo centrado nos identificadores, mostramos como a privacidade em redes pode ser explorada ao longo de duas dimensões: uma dimensão que acentua as relações verticais de privacidade, cruzando vários protocolos até chegar ao utilizador, e uma dimensão horizontal que destaca as ameaças causadas por cada protocolo, de forma individual, normalmente limitadas a uma única camada. Através destes conceitos, mostramos uma visão integrada de privacidade em redes, abrangendo tanto as interacçoes de privacidade verticais como as horizontais. Esta visão permite discutir vários mecanismos para mitigar ameaças específicas a cada camada de rede, resultando em instânciações arquitecturais orientadas à privacidade do utilizador. Finalmente, mostramos como as diferentes dimensões de privacidade podem fornecer uma visão diferente sobre as relações estabelecidas na pilha protocolar que assenta em camadas, mostrando um caminho possível para o desenvolvimento de futuras arquitecturas de rede com suporte para privacidade

    Scalability Analysis of the Turfnet Naming and Routing Architecture

    No full text
    ABSTRACT1 TurfNet is a novel internetworking architecture that enables communication among autonomous and heterogeneous network domains. The architecture uses a global identity namespace and does not require global addressing or a shared internetworking protocol. It integrates the new concept of dynamic network composition with other recent architectural concepts, such as decoupling locators from identifiers. This paper examines whether TurfNet’s naming and inter-domain routing architecture can scale to networks of the size of the global Internet. The paper uses existing research into the topology of the Internet’s autonomous system graph and related results that quantify typical traffic patterns to analyze the scalability and performance of the TurfNet architecture on similar internetwork topologies
    corecore