
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-9-2010

Naming and discovery in networks : architecture
and economics
Joud Khoury

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Khoury, Joud. "Naming and discovery in networks : architecture and economics." (2010). https://digitalrepository.unm.edu/
ece_etds/136

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/136?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/136?utm_source=digitalrepository.unm.edu%2Fece_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Naming and Discovery in Networks:
Architecture and Economics

by

Joud Said Khoury

B.E., Computer Eng., Lebanese American University, 2003

M.S., Electrical. Eng., University of New Mexico, 2006

DISSERTATION

Submitted in Partial Ful�llment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2009

c©2009, Joud Said Khoury

iii

Dedication

To the memory of my father, Said

To the hard work of my mother, Layla

To my dear nephews, Said, Serge, Serena, and Thomas

To my lovely twin sister, Jacky

and �nally,

To my great brothers, Jack and John

For their endless love and support.

Without ambition one starts nothing. Without work one �nishes noth-

ing. The prize will not be sent to you. You have to win it. The man who

knows how will always have a job. The man who also knows why will

always be his boss.

- RALPH WALDO EMERSON (Essayist, philosopher and poet)

iv

Acknowledgments

This dissertation would not have been possible without the help of God and many
people. First, I would like to thank my advisor and mentor, Chaouki Abdallah, for his
continuous support, and his help and patience throughout this work. His guidance
makes my working and learning experience a very challenging and enjoyable one.
Since I started working with Chaouki, he made me feel that his concern for me goes
far beyond the dissertation. He has helped me in every step I have taken. I am very
grateful.

I would also like to thank my committee, Gregory Heileman, Wennie Shu, and
Kate Krause for their valuable comments and advice. To my colleagues and collab-
orators, Henry Jerez, Jorge Crichigno, Luca de Cicco, and Venkata Pingali, thank
you for your time and thoughts during our research discussions.

I would also like to dedicate this thesis to my mother for her endless love and
support and to my brothers and sister. Thank you Layla, Jack, Johnny, and Jacky.
Speci�cally, to my brother Johnny, I am very grateful.

Finally, I want to convey my gratitude to all my friends who helped me and
supported me. My journey would have been much harder without their continuous
encouragement. To the very special and lovely Vanja Spasic, hvala and to my dear
friend Tannous Franjieh, thank you.

The work presented in this dissertation was partially funded by the National
Science Foundation (NSF) grant CNS-0626380.

v

Naming and Discovery in Networks:
Architecture and Economics

by

Joud Said Khoury

ABSTRACT OF DISSERTATION

Submitted in Partial Ful�llment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2009

Naming and Discovery in Networks:
Architecture and Economics

by

Joud Said Khoury

B.E., Computer Eng., Lebanese American University, 2003

M.S., Electrical. Eng., University of New Mexico, 2006

Doctor of Philosophy, University of New Mexico, 2009

Abstract

In less than three decades, the Internet was transformed from a research network

available to the academic community into an international communication infras-

tructure. Despite its tremendous success, there is a growing consensus in the research

community that the Internet has architectural limitations that need to be addressed

in a e�ort to design a �future Internet�. Among the main technical limitations are

the lack of mobility support, and the lack of security and trust. The Internet, and

particularly TCP/IP, identi�es endpoints using a location/routing identi�er, the IP

address. Coupling the endpoint identi�er to the location identi�er hinders mobility

and poorly identi�es the actual endpoint. On the other hand, the lack of security has

been attributed to limitations in both the network and the endpoint. Authentication

for example is one of the main concerns in the architecture and is hard to implement

partly due to lack of identity support.

vii

The general problem that this dissertation is concerned with is that of designing

a future Internet. Towards this end, we focus on two speci�c sub-problems. The �rst

problem is the lack of a framework for thinking about architectures and their design

implications. It was obvious after surveying the literature that the majority of the

architectural work remains idiosyncratic and descriptions of network architectures

are mostly idiomatic. This has led to the overloading of architectural terms, and to

the emergence of a large body of network architecture proposals with no clear under-

standing of their cross similarities, compatibility points, their unique properties, and

architectural performance and soundness. On the other hand, the second problem

concerns the limitations of traditional naming and discovery schemes in terms of

service di�erentiation and economic incentives. One of the recurring themes in the

community is the need to separate an entity's identi�er from its locator to enhance

mobility and security. Separation of identi�er and locator is a widely accepted design

principle for a future Internet. Separation however requires a process to translate

from the identi�er to the locator when discovering a network path to some identi�ed

entity. We refer to this process as identi�er-based discovery, or simply discovery, and

we recognize two limitations that are inherent in the design of traditional discovery

schemes. The �rst limitation is the homogeneity of the service where all entities are

assumed to have the same discovery performance requirements. The second limita-

tion is the inherent incentive mismatch as it relates to sharing the cost of discovery.

This dissertation addresses both subproblems, the architectural framework as well

as the naming and discovery limitations.

viii

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 8

1.3 Related Work . 12

I Architecture 15

2 A Survey of Novel Network Architectures 16

2.1 Classifying Network Architectures . 17

2.1.1 Classi�cation Approach . 17

2.1.2 Service model perspective . 18

2.2 Technical Reference . 22

ix

Contents

2.2.1 Communication-oriented . 23

2.2.2 Information-oriented . 32

2.2.3 Computation-oriented . 40

2.3 Conclusion . 41

3 The Transient Network Architecture Instance 42

3.1 Introduction . 42

3.2 Transient Netowrk Architecture . 45

3.2.1 Area of In�uence - AoI . 46

3.2.2 Entities and Communication 47

3.2.3 Persistent Identi�cation . 48

3.2.4 Distributed control-plane functionality provisioning using the

Ghost/Shell model . 50

3.3 PINT Framework . 51

3.3.1 Components and networking primitives 53

3.3.2 Implementation Details . 60

3.3.3 Research Impact . 61

3.4 Mesh/Ethernet Deployment . 62

3.5 Discussion, Future Work, and Conclusion 64

4 Towards a Taxonomy of Inter-network Architectures 66

4.1 Introduction . 66

x

Contents

4.2 Taxonomy . 69

4.2.1 Substrate Structure . 69

4.2.2 Information Model . 73

4.2.3 Towards a complete taxonomy 83

4.3 Applying the taxonomy . 85

4.4 Related Work . 88

4.5 Discussion: Value and Limitations . 89

4.6 Conclusion . 90

5 Towards Formalizing Network Architectural Descriptions 91

5.1 Introduction . 91

5.2 Background . 93

5.2.1 Architectural Styles: What and Why? 93

5.2.2 Alloy . 95

5.3 Case Study . 98

5.3.1 FARA Overview . 99

5.3.2 FARA model . 100

5.4 Related Work . 110

5.5 Discussion and Future Work . 112

5.6 Conclusion . 113

xi

Contents

II Naming and Discovery 114

6 Background on Naming and Discovery 115

6.1 Introduction . 115

6.2 De�nitions . 118

6.3 What is Identi�er-based Discovery? 122

6.4 Exploring the Design Space . 124

6.4.1 TCP/IP Internet . 125

6.4.2 Compact Routing . 127

6.5 Conclusion . 132

7 Discovery Service Di�erentiation 134

7.1 Introduction and Motivation . 134

7.2 What is Multi-Level Discovery (MLD)? 136

7.3 A Multi-Level Discovery Scheme . 137

7.3.1 Background: NICR scheme on trees 137

7.3.2 Extending Laing scheme to support MLD 140

7.4 Discussion and Conclusion . 141

8 On the Economics of Identi�er-based Discovery 145

8.1 Introduction . 145

8.2 Background . 147

xii

Contents

8.2.1 Networks and Strategic Behavior 147

8.2.2 Discovery versus Search: Why receiver-based discovery? 157

8.3 A Taxonomy of Discovery Schemes 158

8.4 Incentives and Pricing . 161

8.5 Conclusion . 164

9 Route Distribution Incentives in BGP 165

9.1 Introduction . 165

9.1.1 A Simple Distribution Model 167

9.1.2 Our Results . 169

9.1.3 Related work . 170

9.2 The General Game . 171

9.3 Convergence under HRP . 176

9.4 Equilibria . 178

9.4.1 The Static Multi-Stage Game with �xed schedule 179

9.4.2 Growth of Incentives . 186

9.4.3 A Special Subgame . 188

9.4.4 Competition Rewards . 191

9.4.5 The Repeated Game . 195

9.5 Discussion . 199

xiii

Contents

III Conclusion 203

10 Conclusion 204

10.1 Open Problems . 205

IV Appendices 208

A A Mechanism Design Model 209

A.1 The Discovery Mechanism . 210

References 213

xiv

List of Figures

2.1 Generalized service model view . 19

3.1 Examples of di�erent Areas of In�uence that form TNA 46

3.2 PINT components and primitives in sample test-bed showing a multi-

hop ad-hoc AoI connected virtually to a traditional ethernet AoI.

The PINL layer running on all nodes is able to deliver packets to

persistently identi�ed entities. 53

3.3 PINL layer building blocks . 55

3.4 Click router asks for agent binding from NELO interface. 58

3.5 PI packet format. 59

3.6 Mesh/Ethernet deployment of 3 AoIs (2 mesh and 1 ethernet net-

work). Red circles represent entities. 63

4.1 Interconnection types; A square represents an abstract element (SE

or PE), while an ellipse represents a switching element (SWE). . . . 72

4.2 Abstracting network locations (red circles) and visualizing a locator

space. 73

xv

List of Figures

4.3 Identi�er space is either integrated (1), or disconnected (2). 74

6.1 Sketch of virtual and physical routing in Abraham name-independent

compact routing scheme. 131

8.1 Query Incentive Game: node v has an answer to the query. 150

8.2 Trading Network Game: sellers S to the left (circles) connect to

traders T (squares) who in turn connect to buyers B to the right

(circles). The buyers' values are indicated inside the circles (1 in this

case). Equilibrium bid and ask prices are shown above the links. . . 152

8.3 Representation of some common models for discovery. 159

9.1 Sample network (Not at equilibrium): Solid lines indicate an outcome

tree Td under the advertised rewards. 172

9.2 Line graph: a node's index is the stage at which the node plays; d

advertises at stage 0; K = n. 182

9.3 Ring network with even number of nodes: (i) 2-stage game, (ii) 3-

stage game, and general (iii) K-stage game. 184

9.4 The payo� matrix of players 1 and 2 for the 3-stage game on the ring

of Figure 9.3(ii) when rd = 6. 185

9.5 Plot of gK(x)− x for K = 4, 5, 6, 7. 202

A.1 The discovery mechanism design framework: mechanism M = (O, ξ) 210

xvi

List of Tables

2.1 Matrix view classi�cation of inter-network architectures based on

their explicit service model classes. 21

4.1 A BNF syntax for taxonomical speci�cation of network architectures. 85

5.1 Operators in Alloy. 96

8.1 Identi�er-based discovery schemes. 159

xvii

Chapter 1

Introduction

If you don't make mistakes, you're not working on hard enough prob-

lems. And that's a big mistake.

- FRANK WILCZEK (2004 Nobel prize winner, physics)

In less than three decades, the Internet has morphed from a research network avail-

able to the academic community into an international communication infrastructure.

This unprecedented success and evolution of the Internet has been largely attributed

to a set of architectural design goals and principles in the original DARPA Internet

architecture [1]. As clearly outlined in Clark's seminal paper [2], the goals include

multiplexed utilization of resources, survivability, and openness. Despite its tremen-

dous success, there is a growing consensus in the research community that the Inter-

net has architectural limitations and that those need to be addressed in a e�ort to

design a new generation of the Internet, the �future Internet�. Clean-slate e�orts in

the United States [3, 4], Europe [5], and Japan (e.g., [6]) are underway to redesign

the Internet.

Among the main technical limitations of the Internet are the lack of mobility

1

Chapter 1. Introduction

support, and the lack of security and trust (check [3, 7, 8, 9]). Endpoint 1, or in gen-

eral entity, mobility refers to a dynamic change in the endpoint's attachment point

possibly while a communication session is in progress. The Internet, and particularly

TCP/IP, identi�es endpoints with a tuple {IP address, port number}. The IP address

then serves as the identi�er of both the attachment point (a location in the topology)

and the entity [11]. So far, the IP address has performed well as a location identi�er

since it inherently embeds topological information and thus fosters routing scala-

bility under aggressive aggregation (the scalability of hierarchical routing is broken

however due to continuous de-aggreation of the address space [12], and recent dis-

coveries on the ine�ciency of hierarchical routing over the Internet's topology [13]).

When mobility is introduced however, IP looses any meaning of identity reference

and degenerates into a pure routing identi�er, alternatively locator. Coupling the

endpoint identi�er to the routing identi�er hinders mobility and poorly identi�es the

actual endpoint, which should exist independent of its network location or state. On

the other hand, the lack of security has been attributed to limitations in both the

network and the endpoint. Authentication for example is one of the main concerns

of an architecture and it is hard to implement partly due to lack of identity support.

More clearly, in the prevailing end-to-end model of the Internet [10], endpoints of a

communication channel have no way of authenticating each other. Rather, the chan-

nel itself is generally secured using encryption for example. This leads to spoo�ng,

spam, and many other forms of security breaches. Authentication, accountability,

and trust are attractive design goals that could directly bene�t from a means to iden-

tify entities across all layers of the protocol stack. Finally, other important concerns

within the current architecture include the lack of the means to detect, report, and

correct errors (or in general to manage the network), the di�culty of incorporating

emerging technologies and devices (sensors, vehicles, RFIDs, etc.), and the economic

barriers that prevent coordination among the di�erent stakeholders. In addition to

1Check [10] for more on endpoints in the prevalent end-to-end design of the Internet.

2

Chapter 1. Introduction

its limitations, the Internet is evolving in ways that were not anticipated during its

design. As pointed out by Clark [14], the erosion of trust and the emergence of new

stakeholders in the Internet are challenging the �simple end-to-end� principle which

is the primary contributor to the Internet's success.

1.1 Problem Statement

The general problem that this dissertation is concerned with is that of designing a

future Internet. This problem however is too broad. As Clark puts it [7], �The reason

I stress [clean-slate thinking] is that the Internet is so big, and so successful, that

it seems like a fool's errand to send someone o� to invent a di�erent one. Whether

the end result is a whole new architecture or just an e�ective set of changes to the

existing one may not matter in the end�. The broadness of the scope follows because

both terms �Internet� and �architecture� are too broad. The Internet is a network of

networks. It is di�erent things to di�erent parties whether those are operators, busi-

nesses, enterprises, government, or users. These parties have di�erent and potentially

con�icting goals [14]. The tussle between accountability and privacy/anonymity, and

the net neutrality debate [15] are examples of such con�icting goals. However, any

architectural design must be based on a well-de�ned set of goals. Besides the fact

that it is hard to converge on these goals, the design space is too wide to explore and

too many parameters are involved. While speci�c dimensions of the design space

have been thoroughly examined and understood, such as the TCP/IP protocol [16],

we still do not understand the implications of mixing di�erent design parameters

- as given by the interactions between di�erent protocols, and systems at di�erent

layers of the stack. In fact, after surveying the literature, it became obvious that the

majority of the recent architectural work explores a small set of design parameters

(in the sense that it is either aimed at exploring novel usage models that adhere to

3

Chapter 1. Introduction

a class of applications, or at directly addressing a speci�c limitations of the current

Internet). All this is compounded by the fact that both �Internet� and �architecture�

are hard to model, to measure, and to simulate, not to mention an �architecture for

the future Internet� [17, 18, 19]. The scope of the general problem is thus much

wider than that of this dissertation.

In this sense, this dissertation focuses on two speci�c sub-problems. The �rst is

the lack of a framework for thinking about architectures and their design implications,

while the second is the apparent limitations of traditional naming and discovery

models in terms of service di�erentiation and economic incentives. As it shall become

clear throughout the dissertation, the two subproblems are complementary towards

designing a future Internet. In order to frame the naming and discovery problem, a

better understanding of the architectural design space is needed.

Problem 1: Lack of a framework for thinking about architectures and

their design implications It was obvious after surveying the literature that the

majority of the architectural work remains idiosyncratic and descriptions of network

architectures are mostly idiomatic. There seems to be a growing consensus in the

community about the need for designing a smarter network that is more than just a

transparent �bit-plumbing� medium. While such evolution into a smarter and more

complex Internet is bringing new potentials and service models, the community gen-

erally lacks a uni�ed framework or a taxonomy for thinking about such models and

their design implications. In addition, architectural descriptions are idiomatic in

nature. This was caused by the evolution of a semantically rich terminology that

has been adopted by network architects over time. The terminology, despite being

informal, reveals a lot of architectural information and has so far enabled e�cient

communication between architects. 2 This state of a�airs has however, led to the

2This scenario is very similar to the evolution of software architecture modeling in the
context of software engineering [20].

4

Chapter 1. Introduction

overloading of architectural terms, and to the emergence of a large body of network

architecture proposals with no clear understanding of their cross similarities, compat-

ibility points, their unique properties, and architectural performance and soundness.

Several models for communication systems have been recently proposed, some of

which are focused on particular communication aspects such as binding [21, 22] or

routing [23]. Others [24, 25] are more general, and concern themselves with multiple

communication aspects such as forwarding, naming, addressing. It is important to

note however, that the formal modeling and representation of network architectures

is fundamentally di�erent from that of communication systems. In fact, while the

communication structure is necessary for de�ning and representing a network archi-

tecture, it is not su�cient. In addition to the communication structure, information

and computation structures are building blocks that need to be properly understood

within modern network architectures. Communication systems tend to share the

same set of elements and are generally concerned with switching properties of net-

works and their associated communication and control primitives. On the other

hand, network architectural descriptions are concerned with high-level architectural

abstractions, their interactions, their structural and behavioral properties, and the

constraints and invariants that de�ne each architecture.

Problem 2: Limitations of traditional discovery schemes in terms of ser-

vice di�erentiation and economic incentives We have discussed earlier the

limitations of the original Internet design in terms of supporting mobility and se-

curity. To address these limitations, one of the recurring themes in the community

is the need to separate an entity's identi�er from its locator to enhance mobility

(an entity can move while maintaining the identi�er) and security (trust information

may be associated with the entity at all levels). For example, several incremental

proposals have initially focused on solving the mobility problem by decoupling the

host identity from the attachment point [26, 27, 28, 29]. The common approach is to

5

Chapter 1. Introduction

insert a level of indirection on top of the network layer that manages the abstraction

of host identities. Other architectural approaches to separation have been discussed

(e.g., [13, 30, 31, 32]). More recently, the identi�er-locator separation theme has

been adopted by the clean-slate design community (e.g., [6, 33, 34, 35]). Hence, the

separation of identi�er and locator is a widely accepted design principle for a future

Internet. Separation however requires a process to translate from the identi�er to

the locator when discovering a network path to some identi�ed entity. We refer to

this process as identi�er-based discovery. To eliminate confusion, an identi�er in this

context is a name that identi�es an entity rather than a location on the network.

Identi�er-based discovery, simply referred to as discovery hereafter, is a core network

service aimed at discovering a network path to an identi�ed entity. Discovery is usu-

ally the �rst step in communication, even before a path to the destination entity is

established. Given an identi�er of some entity on the network, discovering a path to

the entity could either utilize mapping/resolution where the identi�er is mapped to

some locator (e.g., [28, 36], and the Domain Name System (DNS)), or it could utilize

routing-on-identi�ers (e.g., [34, 37, 38, 39]). In either case however, an underlying

routing scheme that routes on locators typically exists and is utilized after a path has

been discovered for e�cient communication. We recognize the following limitations

that are inherent to the design of traditional discovery schemes:

• Homogeneity of the service An identi�ed entity (such as a node or service),

wishes to be discoverable by the rest of the network. A discovery mechanism

provides such service to the entities. We de�ne the discovery level to be a

measure of �how discoverable� an entity is by the rest of the network - this

is �how easy� it is for the network to discover the entity not the opposite.

The performance of discovery, or the discovery level, could signi�cantly a�ect

the entity's business model especially in time-sensitive application contexts. If

discovering an entity takes a signi�cant time relative to the entity's download

6

Chapter 1. Introduction

time, the requesting user's experience su�ers. As an example, when no caching

is involved, the DNS resolution latency comprises a signi�cant part of the total

latency to download a webpage (10-30%) [40, 41]. Traditionally, the design

of discovery schemes has assumed that all entities have the same discovery

performance requirements, thus resulting in homogeneous demand. In such a

setting, the discovery schemes deliver a discovery service that is oblivious to

the actual, possibly heterogeneous, discovery requirements - and valuations -

of the di�erent players. In reality however, the CNN site will likely value a

higher discovery level more than a generic residential site. Di�erentiating the

discovery service is thus the �rst goal.

• Incentive mismatch Obviously, there is a cost associated with being discover-

able. This could be the cost of distributing and maintaining information (state)

about the identi�ers to provide a certain discovery level. In the majority of cur-

rent schemes, the discovery demand is insensitive to cost since no cost structure

exists and hence demand �attens out to a homogeneous level. The insensitivity

of demand to cost structures makes the problem more important in environ-

ments where state is maintained at nodes that are not themselves consumers

of the service (hence the cost of state on such nodes needs to be paid for by

someone or else there is no reason/incentive to the node to keep the state). Ac-

counting for and sharing the cost of discovery is an interesting problem whose

absence in current path discovery schemes has led to critical economic and

scalability concerns. As an example, the Internet's Border Gateway Protocol

(BGP) [42] control plane functionality is oblivious to cost. More clearly, a node

(BGP speaker) that advertises a provider-independent pre�x (identi�er) does

not pay for the cost of being discoverable. Such a cost, which may be large

given that the pre�x is maintained at every node in the Default Free Zone

(DFZ) 3, is paid for by the rest of the network. Such incentive mismatch in the

3The DFZ refers to the set of BGP routers in the Internet that do not have any default

7

Chapter 1. Introduction

current BGP workings is further exacerbated by provider-independent address-

ing, multi-homing, and tra�c engineering practices [12]. Notice here that BGP

with its control and forwarding planes represents a discovery scheme on pre-

�xes which are technically �at identi�ers in a largely de-aggregated namespace.

Hence, we conjecture that a discovery scheme should be aware of incentives and

cost necessitating that entities pay for the cost of obtaining the service.

1.2 Contributions

The balance of this dissertation is divided into two parts: part I (chapters 2,3,4,5)

addresses problem 1 and aims at framing the architecture space and investigating

an architectural instance that is designed around persistent identi�cation of all net-

work entities to foster mobility and security. Building on part I, part II (chapters

6,7,8,9) addresses problem 2 by presenting a general model for discovery in large-

scale networks and focusing on two important design goals: service di�erentiation

and economic incentives.

Speci�cally, we present the following contributions in part I:

• Chapter 2 surveys the inter-network architecture space focusing on radical ar-

chitectural designs (relative to the original Internet design). We survey the

proposals based on the implemented service model whether communication-,

information-, or computation-oriented. We show that while the communication

structure is necessary for de�ning and representing a modern network archi-

tecture, it is in general insu�cient. Information and computation structures

are other building blocks that need to be properly understood within modern

route as part of their routing table, i.e., any such router keeps state about every advertised
pre�x/destination.

8

Chapter 1. Introduction

networks. The chapter additionally serves as a technical reference for the rest

of the dissertation.

• After surveying the literature in chapter 2, we elaborate on one point in the

design space. Chapter 3 presents our experiences from the design and imple-

mentation of a clean-slate network architecture, the Transient Network Archi-

tecture (TNA) [33]. TNA is a novel architecture centered around the theme

of persistent identi�cation of all network entities. We introduce the building

blocks of TNA and we present the Persistent Identi�cation and NeTworking

research framework (PINT) and test-bed deployment. PINT exposes to the

research community a modular and extensible set of networking components

and primitives, which enables novel research and experimentation atop a per-

sistent identi�cation and networking framework. The framework is designed

to support the following key concepts: (1) Intrinsic support for unstructured

networks; (2) persistent identi�cation and certi�cation of network entities; (3)

distributed control-plane fucntionality provisioning using mobile agents; and

(4) seamless mobility. We present the implementation of the components and

primitives within PINT, and we discuss our experiences with the framework

based on a �rst deployment on wireless mesh and traditional ethernet networks.

• Chapter 4 builds on the previous two chapters to present a taxonomy of inter-

network architectures. The taxonomy provides a framework for better un-

derstanding, organizing, and thinking about the complex architecture design

space. Our taxonomy de�nes a network architecture as a dichotomy between

the physical substrate structure, and the information model. On one hand, the

substrate structure characterizes the network's topology, the functional units,

and their interconnection structure. On the other hand, the information model,

which operates on top of the substrate structure, characterizes the underlying

addressing structure, the data entities and the functionality attached to them,

9

Chapter 1. Introduction

and the relative control structure. To the best of our knowledge, this is the

�rst general, information-centric taxonomy in the literature.

• Chapter 5 investigates the viability of formal architectural modeling. We

present a design methodology for formally describing and reasoning about net-

work architectures and architectural styles. The methodology is demonstrated

by detailing a formal model for the FARA [30] family of network architectures.

The chapter provides a framework for network architects to formally group

various architectures into a set of styles based on their common structural and

behavioral characteristics, enabling researchers to better represent, analyze,

reason about, and infer their important properties.

Building on part I, part II proceeds to address the limitations of traditional

discovery schemes as speci�ed in problem 2. We present the following contributions:

• Given the confusion that is generally associated with the terms name, address,

identi�er, locator, and discovery, chapter 6 re-de�nes these terms to set the

stage for further investigation of naming and discovery problems in later chap-

ters. We revisit the original de�nitions of name and address, rede�ne those

within a general model elaborate on the confusion that arises among the di�er-

ent terms, and we introduce the discovery problem. Additionally, the chapter

discusses the compact routing problem [43, 44, 45], and the concept of stretch,

which is relevant to the discussion in chapter 7.

• In terms of service di�erentiation, chapter 7 introduces the multi-level discov-

ery (MLD) framework which is concerned with the design of discovery schemes

that can provide di�erent service levels to di�erent sets of entities. We pro-

vide a proof-of-concept MLD architecture in the context of Name Independent

Compact Routing (NICR) [43, 44]. To the best of our knowledge, this is the

10

Chapter 1. Introduction

�rst work to introduce discovery service di�erentiation and to demonstrate its

feasibility.

• Finally, in terms of economic incentives, chapter 8 motivates the problem while

chapter 9 presents an incentive model for a general discovery scheme. Specif-

ically, in chapter 8 we present a broad treatment of the main economic issues

that arise in the context of identi�er-based discovery on large scale networks.

Providing a discovery service while accounting for the cost and making sure

that the incentives of the players are aligned is the general theme of the chap-

ter. We motivate the subject, present a taxonomy of discovery schemes and

proposals based on their business model, and pose several questions that are

becoming increasingly important as we proceed to design the inter-network of

the future. This sets the stage for chapter 9 which presents an incentive model

for route distribution in the context of path vector routing protocols (mainly

BGP). We model BGP route distribution and computation using a game in

which a BGP speaker advertises its pre�x to its direct neighbors promising

them a reward for further distributing the route deeper into the network, the

neighbors do the same thing with their neighbors, and so on. The result of this

cascaded route distribution is an advertised pre�x and hence reachability of

the BGP speaker. We �rst study the convergence of BGP protocol dynamics

to a unique outcome tree in the de�ned game. We then proceed to study the

existence of equilibria in the full information game considering competition

dynamics. To the best of our knowledge, this is the �rst work that presents a

taxonomy of discovery models and analytically studies the emerging incentive

mismatch problem.

11

Chapter 1. Introduction

1.3 Related Work

This section reviews broadly related work. We cite more speci�c related work within

each chapter separately.

First, in terms of network architectural proposals, these are surveyed in chapter 2.

We survey a wide array of proposals that are either independent contributions to

the �eld or are part of the future Internet initiative [3]. In terms of modeling inter-

network architecture, there are two broad areas of related work. The �rst is concerned

with network architecture and communication system modeling, while the second

deals with software system modeling. Regarding network architecture modeling, the

Internet architecture has been extensively studied over the past decade. Since Clark's

seminal paper [2] which highlights the connection between the intended goals of the

DARPA Internet and design decisions that govern its current operation, a lot of work

has focused on further understanding the Internet's architecture and design principles

(e.g., [46, 47, 14, 48, 49, 50]). Other related work in this vein includes communication

system modeling or modeling of speci�c network subsystems [24, 21, 22, 25]. Another

class of work relates to software architectural modeling. There has been a lot of focus

on formally modeling software architecture [51, 52] and describing architectures using

Architecture Description Languages (ADL) [53, 54, 55, 56, 57]. Applying concepts

from Object Oriented (OO) programming such as inheritance and composition as

well as veri�cation of structural properties and compatibility checking are concepts

demonstrated in this vein of work. We build on this work and we apply it to network

architecture modeling.

Service di�erentiation on the Internet, referred to as Quality of Service (QoS)

di�erentiation, is associated with di�erentiation in levels of performance as it relates

to timeliness and bandwidth levels. The idea of service di�erentiation has been

applied to a wide variety of services on the Internet to provide end-to-end guarantees

12

Chapter 1. Introduction

on performance. This requires QoS provisioning within the network core (as with

the IntServ [58] and the Di�Serv [59] architectures) as well as in the edges. We refer

the reader to [60] for a taxonomy of Internet QoS di�erentiation. The general idea

though in QoS di�erentiation is to di�erentiate the performance of data delivery.

This is di�erent than the goal we seek in this dissertation. We are concerned with

the di�erentiation of the discovery service where the service level is a measure of how

discoverable an entity is by the rest of the network.

Finally, in terms of modeling complex social and economic interactions and in-

centives of agents, check [61, 62] for an introduction. The work in [61] presents an

interesting overview of several tools that are important in bridging computer science

and economics to better understanding problems that arise in the context of the

Internet. Additionally, [62] presents an interesting overview of several of the prob-

lems and applications arising at the interface between information and networks. To

study economic incentive issues in networks, two main tools are extensively used:

game theory [63] and mechanism design [64, 65]. Game theory is a fundamental

mathematical tool for understanding the strategic interactions among sel�sh agents,

particularly on the Internet over which autonomous agents (e.g. ASes) interact. The

theory provides several solution concepts to help study games that arise in di�erent

situations and that have speci�c requirements and varying underlying assumptions.

For formal de�nitions of the solution concepts and a comprehensive treatment of the

topic, we refer the reader to [63] (and to [65] for an algorithmic treatment and wide

range of tools and applications). The most central and widely applicable solution

concept is the pure strategy Nash equilibrium (PSNE or NE) which could be simply

thought of as a set of strategies of the players that forms a stable solution to the

game. A more stringent solution concept is the dominant strategy solution. Unlike

the pure strategy solution, a dominant strategy yields a player the highest payo�

independent of the strategies of the rest of the players. Dominant strategies are

very attractive solutions when they exist, and when they don't exist game designers

13

Chapter 1. Introduction

might try to design for them. The mechanism design framework [66] provides this

solution allowing the mechanism �designer� to achieve a dominant strategy solution

(in addition to other design goals). An important extension to mechanism design

framework, Algorithmic Mechanism Design (AMD) [64], deals with the computation

complexity of the solution and Distributed AMD [67] further considers the �network

complexity� in distributed settings. The AMD framework has been applied to wide

variety of networking problems to provide incentives for agents to act truthfully. A

small sampling of the work that utilizes game theory and AMD includes inter-domain

routing [68, 69, 70, 71], routing in ad-hoc networks [72], multicast cost-sharing mech-

anisms [73, 74], network formation games [75], peer-to-peer search [76, 77, 78], etc.

The work by Bauer et. al [79] assesses the assumptions made by the traditional

mechanism design model and its limitations when applied to networking problems,

particularly the homogeneous utility functions and the single-shot execution. While

it provides tractable solutions, AMD tends on rely on a centralized �designer� and

does not model both supply and demand. In this sense, we shall utilize game theo-

retic tools to study an incentive issue that arises in the context of discovery.

14

Part I

Architecture

15

Chapter 2

A Survey of Novel Network

Architectures

Internet architectures may be broadly categorized into either incremental or radical

e�orts. Incremental architectures, such as [80, 81, 82], generally aim at addressing

particular limitations of the current Internet architecture through patching, while

radical architectures, such as those supported by the FIND [3] initiative, tend to

adopt a clean-slate approach to designing a �better� Internet, without being neces-

sarily restricted by the current Internet model.

This chapter serves two main purposes: 1) to survey the literature and highlight

commonalities across the spectrum of solutions, and 2) to present a reference for the

rest of the dissertation. We start in section 2.1 by classifying architectures based

on the service model they are intended to support. In section 2.2, we proceed to

overview several clean-slate architectural instances that we shall refer to throughout

the rest of the dissertation.

16

Chapter 2. A Survey of Novel Network Architectures

2.1 Classifying Network Architectures

Before discussing our classi�cation approach, we recall some general de�nitions. A

computer network is an inter-connection of computers over which information 1 �ows.

The network architecture is the conceptual design and the fundamental operation

structure of a computer network. Based on these de�nitions, one may clearly rec-

ognize the obvious de�ning structures of a computer network: computers and inter-

connections, communication, and information structures.

2.1.1 Classi�cation Approach

How do we approach the classi�cation problem given the complexity of the design

space? In other words, what should the de�ning element(s) of our classi�cation model

be? We start by recognizing that every design is intended to support a set of goals,

which generally encapsulate the pressing needs/requirements of users 2. Generally

speaking, the design process then involves converging on a set of de�ning structures,

and proceeding to optimize those. The outcome is an architectural design that is

comprised of the following abstraction levels: 1) the outer-architecture represents

what the network user can see. This is analogous to the network service interface

or Instruction Set Architecture (ISA) which de�nes the addressing modes, the data

object semantics, and the available operations; and 2) the inner-architecture repre-

sents the internal operation structure of the network including the low level substrate

structure and the functional aspects to support the outer-architecture.

We believe that both abstraction levels provide useful and complementary insights

regarding the architectural landscape. Hence, to help answer our question of what the

1Information, content, and data are used interchangeably within this chapter, unless
otherwise speci�ed, to represent data abstractions recognized by the network.

2Within the discussion, a user is the general term used to abstract any entity that
utilizes the network services.

17

Chapter 2. A Survey of Novel Network Architectures

de�ning element(s) of the taxonomy should be, we found it useful to classify some of

the existing literature based on their supported service model (or the types of services

the network provides to its users). This view has helped us in understanding the

underlying goals behind an architectural design, and has additionally highlighted the

information model as the main de�ning element of our taxonomy which we present

in chapter 4. The high-level classi�cation, which we refer to as the service-model

perspective, is brie�y discussed next.

2.1.2 Service model perspective

Classifying architectures from this perspective is motivated by several factors. First,

the service model approach implicitly accounts for the needs of the users relative

to a network, which is the ultimate goal of any network design. For example, the

Internet's simple �best-e�ort delivery� service model came about to satisfy a set

of goals, as explained in [2], primarily allowing multiplexed utilization of resources

(which led to packet switching, domain, gateways), survivability (which led to end-to-

end state), etc. Second, most network architectures tend to be naturally categorized

and described relative to their service models. For example, we �nd in the literature

the �data-oriented� network architecture [34], the �delay-tolerant� architecture [83],

the �di�erentiated services (di�Serv)� architecture [59], and so on. Finally, such a

classi�cation could enable future reasoning about - and evaluation of - the degree to

which a particular architecture satis�es the service requirements of the users. One

such evaluation methodology based on utility was proposed in [46] 3.

The generalized service-model perspective is depicted in Figure 2.1. The commu-

nication, information, and computation 4 models represent the building blocks that

3In [46], Shenker de�nes utility as the degree to which a network service model matches
the needs of the network users, i.e., how good an architecture is, is measured by the hap-
piness of its users.

4We abuse terminology referring to the terms computation and programmability inter-

18

Chapter 2. A Survey of Novel Network Architectures

Communication Model

Information Model

Computation Model

S

e
c
u
r
i
t
y

S

e
r
v
i
c
e
s

M

a
n
a
g
e
m

e
n
t

S
e
r
v
i
c
e
s

Figure 2.1: Generalized service model view

collectively de�ne, together with the security and management services, the general

service model of any network architecture. By building blocks we mean that every ar-

chitecture must provide these three models, whether explicitly or implicitly 5. On the

other hand, security and management services are not building blocks (since one can

easily come up with architectures that do not provide any security or management

services), and they operate across the communication, information and computation

models.

• Communication model : This service model represents the communication and

control services o�ered by the network. For instance, delivery services whether

�best-e�ort", QoS-aware ([59]), aware of disruption ([83]), and/or geographic

location ([84]) all belong to this model. Communication paradigms whether

connection-oriented (e.g., ATM) or connectionless (e.g., SMDS, X.25) are clas-

si�ed under this model as well.

• Information model : This model deals with the information services that the

network provides to its users. The networking community currently recognizes

the need for network built-in information services (naming, searching, secu-

rity, and analysis services) to support a multitude of applications and their

changeably hereafter.
5For example, the Internet provides an information model implicitly (the datagram and

information transparency) but not explicitly.

19

Chapter 2. A Survey of Novel Network Architectures

requirements (archiving, distribution, etc.) [85].

• Computation or Programmability model : This model represents the level of

programmability support within the network. The programmability services

might potentially span all the other service models, allowing for example the

programmability of the communication model and/or the information model

etc. Programmable networks [86, 87], for example, provide an explicit compu-

tation model.

The security and management services provided by the network are generally, but

not necessarily, o�ered in-band with the rest of the service models. For example,

secure communication services include secure end-to-end tunneling and transport

(IPSec or SSL), secure identity (HIP [28]) etc. In general, the approach to security

and management in traditional newtorks has been incremental, and not accounted

for by design.

In fact, it is possible (and maybe convenient) to fully classify the literature based

on the service model view depicted in Figure 2.1 if each of the constituent service

models is further divided into its de�ning elements. However, and as we are mainly in-

terested in the inner-architecture, the major focus of this section is to illustrate some

of the prominent architectural work that represents critical points of the aforemen-

tioned service spectrum. Additionally, we believe that the independent contributions

to the �eld are converging, and this section aims to highlight such phenomenon by

means of a survey.

20

Chapter 2. A Survey of Novel Network Architectures

Year C
o
m
m

I
n
fo

C
o
m
p

Description

In
d
ep

en
d
en
t
P
ro
p
o
sa
ls Internet [2] 1970s x providing best-e�ort delivery of datagrams among

globally identi�ed endpoints
Active Nets [87] late 90's x x provide a framework for dynamic creation and

deployment of network services at runtime
TRIAD [88] 2000-1 x x exposing a �content-layer� that provides transparent

access and distribution of named content
Plutarch [89] 2003 x provide a communication model that inherently

allows inter-operation of semantically disparate
domains without mandating uniformity across them

FARA [30] 2003 x provide an abstract network model that builds on
the Internet's �best e�ort� service model adding
clean separation of endpoint names from network
addresses

TurfNet [90] 2004 x similar to Plutarch service model, but with global
naming

DONA [34] 2007 x x providing data-access (locating and retrieving data)
independent of location as well as providing data
distribution from multiple locations

F
IN

D
[3
]

Postcards [91] 2006 x x providing reliable delivery (push/pull) of content
(large data units or �les) to mobile/stationary
endpoints using in-network storage/caching

USwarm [92] 2006 x x providing multipoint-to-point bulk data
transfer/distribution among hosts
(endpoints+intermediaries) with in-network
storage/caching

ITDS [93] 2006 x x x providing information transfer in response to user
(endpoint) speci�ed service expressions through
in-network processing/data handling

WiKI [94] 2006 x x x providing a network query interface to users for
expressing intent and implementing operations
through a declarative framework for managing
in-network information and state (router and host
state, and data streams)

TNA [95] 2006 x x provides a transient network substrate that enables
identi�cation and communication among entities
based on global, and persistent
(location-independent) identi�ers

PostModern [96] 2006 x x providing a tussle-resistant communication service,
delivery of functional datagrams, that equips
providers with usage control over their networks
through policy enforcement, and users with
policy-aware control over their tra�c forwarding

Table 2.1: Matrix view classi�cation of inter-network architectures based on their
explicit service model classes.

Table 2.1 presents, in matrix form, such a survey of the literature, limited to

general inter-network architectures. Hence, we do not consider overlays, scoped ar-

chitectural work (such as naming, or routing architectures) and we do not provide

an exhaustive list of inter-network technologies which is not the goal of this sec-

21

Chapter 2. A Survey of Novel Network Architectures

tion 6. The work is divided into two parts. The �rst part overviews some of the

independent contributions to the �eld, while the second part is solely concerned with

the FIND [3] work illustrating the community's view of what the future Internet

should look like. More details about the each of the architectures of Table 2.1 are

provided in section 2.2. Note that Table 2.1 marks the service models only as those

are made explicit in the architectural description, and consequently it does not

contradict our previous claim of the communication, information, and computation

models being building blocks. Several insights may be gathered by observing the ma-

trix. First, there seems to be a growing consensus about the need for expanding the

network's service model beyond the communication space, especially as researchers

start thinking of designing a future Internet. Additionally, and most importantly,

one can clearly notice the emphasis on information services, which is intuitive given

the prevailing information-centric usage models with the current Internet.

The next section further elaborates on the service models of each of the architec-

tures of Table 2.1.

2.2 Technical Reference

The section is intended as a technical reference for the rest of the dissertation. We

elaborate on the architectures of Table 2.1 as we refer to them frequently throughout

the dissertation. Chapter 3 elaborates on a particular architecture, the Transient

Network Architecture (TNA).

6The majority of inter-network technologies (ATM, X.25, XNS, DECnet etc.) would be
classi�ed in our matrix as communication-oriented. We only reference those technologies
when they directly serve the goals of our taxonomy. For a comprehensive list of the inter-
network technologies, we refer the reader to [97].

22

Chapter 2. A Survey of Novel Network Architectures

2.2.1 Communication-oriented

DARPA Internet

The design principles of the DARPA Internet [1] are clearly outlined in Clark's semi-

nal paper [2]. The paper highlights the connection between the intended goals of the

DARPA Internet and design decisions that govern its current operation. The pri-

mary goal of the Internet was to allow multiplexed utilization of its resources, which

in�uenced by the networks (ARPANET) and technologies (packet switching) at that

time, led to the adoption of the current Internet structure: domain, packet switching,

and gateways as packet switched connecting networks. The other simple goals of the

Internet have led to: 1) the survivability requirement resulted in maintaining �ow

state at end nodes while keeping the core stateless with respect to ongoing �ows, 2)

the requirement for alternative transport services in terms of latency and reliability

has led to the TCP/IP split and the introduction of UDP, 3) the need to support

various networks resulted in making a minimum set of assumptions regarding the

underlying function provided by the network which is �the network can deliver a

packet or datagram�.

The Internet service model can be simply stated as providing best-e�ort delivery

of datagrams among globally identi�ed endpoints.

Communication design space

• Topology : The topological boundaries within the Internet are referred to a Au-

tonomous Systems (AS) or domains. The domain is an authoritative boundary

that maintains local communication policies. Domains are composed hierarchi-

cally through customer-provider or peering relationships with a distinguished

core set of domains (Tier1).

• Addressing : The Internet employs a global hierarchical addressing architecture.

23

Chapter 2. A Survey of Novel Network Architectures

The address space is composed hierarchically to match the topology, rendering

the network address a topological forwarding directive. The address space is

�nite.

• Naming: Naming is an out-of-band service that is not part of the core network

services, i.e., the network does not recognize a �name�. Hence, the Internet

model does not constrain the naming architecture design space. Whether a cen-

tralized, global, hierarchical naming architecture (DNS style), or a distributed,

�at naming architecture (e.g., OpenDHT) ends up being deployed is irrelevant

to the Internet architecture as long as their exists a mechanism to translate a

name to an address.

• Routing and Forwarding: The Border Gateway Protocol (BGP) [42] is the de-

facto standard for inter-domain routing on the Internet. BGP is a policy-based

path vector protocol which empowers domains with control over route selection

and propagation. Forwarding is thus based on the policies of the domains and

the protocol allows for arbitrary preference functions over routes.

Information design space The only information abstraction recognized by the

Internet architecture is the datagram. More complex information models must be

composed out of the simple datagram. The type of content being delivered over the

Internet's best-e�ort service whether a static �le or an time-sensitive voice stream is

irrelevant to the architecture.

Plutarch

Brie�y, Plutarch [89] proposes a framework for next generation networks that em-

braces heterogeneity within and handles it through contexts and interstitial func-

tions. Contexts are like ASes that implement their internal addressing, naming,

routing, and transport mechanisms. Interstitial functions map between the set of

24

Chapter 2. A Survey of Novel Network Architectures

functionalities of di�erent contexts. Plutarch is a response to the shortcomings of

the current Internet protocol model that uni�es all underlying network types through

a one-size-�ts-all networking and addressing mechanism. This (i.e., IP) has resulted

in a semantic bottleneck that is leading to ossi�cation of architecture where it is

increasingly di�cult to introduce anything but incremental changes. Network Ad-

dress Translators (RFC 1631), and Resilient Overlay Networks [98] are examples of

unclean solutions adopted as a result.

The service model of Plutarch, what users expect from the network, is not addressed

in the paper. However, the aim of the work is to provide a communication model

that inherently allows inter-operation of heterogeneous networks and mechanisms

without mandating uniformity across networks.

Communication design space

• Topology: heterogeneous networks (contexts); boundary: a context is a region

of the network that is homogeneous in some way, �a set of bindings with refer-

ence to which names may be resolved�; Composition: composition of contexts

is not hierarchical, it is either adjacent (border) or containment (nesting); there

is no notion of a global or unique �root context�; di�erent namespaces can exist

per context; no overlap of contexts;

• Naming and Addressing: local naming and addressing within contexts; inter-

context name translation at gateways through �interstitial functions�; Lookup:

route-query to chained-context-descriptor mapping (out-of-band); distributed

route-query search across contexts (may be �ooding);

• Routing: route over the discovered chained-contexts;

• Compatibility with the Internet: Plutarch subsumes the Internet as a context;

25

Chapter 2. A Survey of Novel Network Architectures

TurfNet

The proposal TurfNet [90] is a network architecture for future dynamically compos-

able networks. The architecture is based on the concept of composing autonomous

heterogeneous networks, referred to as turfs, dynamically without sharing a global ad-

dressing mechanism or network protocol. Composition of networks takes two forms:

1) merging or horizontal composition, and 2) hierarchical independant or vertical

composition. Within each AS (turf), independent addressing, routing and resolution

mechanisms (control plane functionality) are available and are local to that turf.

Across the turfnets, no common network protocol and no shared address space is

required. However, a global name space is required to allow communication between

the turfnets.

Communication Design Space Separate naming/addressing

• Topology: hierarchically ASs or turfs; composed horizontally (merging) or ver-

tically (customer-provider/peering);

• Addressing: local address space per turf;

• Naming: Global namespace; Lookup: name to address mapping (in-band, i.e.,

lookup creates forwarding state), recursive lookup creates address and protocol

translation state (soft state) within boundary routers up to root;

• Forwarding/Routing: local forwarding within turf using local addresses; intra-

turf: hosts external to the turf are mapped to turf address space; mapping soft

state maintained by boundary gateways; end-to-end path composed of up-path

to root (created during lookup) and down-path to destination turf (created

through registration); routing = address + protocol translation at boundary

gateways.

26

Chapter 2. A Survey of Novel Network Architectures

FARA

The theme is to separate naming and addressing.

Communication Design Space Even though the FARA proposal does not

belong to the radical architectures category and is more of an abstract model for

architectures, we include it here for the insight it provides into designing architectures

and for its in�uence on several of the architectures discussed. The basic idea in the

FARA [30] architecture is to separate the network address (attachment point) from

the entity's address by a �red line�. The network layer address is referred to as the

Forwarding Directive FD. This is a set of information that if presented to the network

can deliver a packet to that location in the network. For example, in the current

Internet, IP is a forwarding directive that belongs to a global namespace. Presenting

the network with an IP address and a packet is enough for the network to deliver

the packet to the destination. In M-FARA instantiation, and unlike the traditional

Internet, no global address space is assumed, i.e., no IP addresses. However, there is a

set of local address spaces referred to as �addressing realms�. Topological information

is represented in terms of these private realms that a packet will traverse in transit

towards its destination. The FD here is thus a set of sub-FDs specifying the realms

on the path. So, in the case that the source entity and the destination entity belong

to the same realm, the destination FD has NO topological information. When the

source and destination belong to di�erent realms, the destination FD must specify

the topology which can be very complex if the private realm addressing is �at. M-

FARA's addressing introduces a 2 level hierarchy with a designated globally known

�core�. Thus the destination FD in this case will consist of (FDup, FDdown) pair

of FDs specifying how to reach the core from the source and then how to reach the

destination from the core. This design supports mobility across realm boundaries.

27

Chapter 2. A Survey of Novel Network Architectures

NIRA

NIRA [99] is a novel Inter-domain routing architecture that equips users with the

ability to choose domain-level routes. The user control over the sequence of providers

(ISPs) that packets take introduces competition among the backbone ISPs, thus driv-

ing innovation and lowering service cost. NIRA's support for user choice introduces

several problems including practical provider compensation, route discovery and rep-

resentation, and security, which are addressed in the paper.

The service model of NIRA [99] may be stated as providing an Internet-style com-

munication service that inherently supports user-selected domain level routes.

Communication design space NIRA reuses many of the Internet's design deci-

sions:

• Topology: strictly hierarchical ASs (domains) with distinguished core (customer-

provider and peering relations); concept of domain hierarchy from edge user to

core referred to as up-graph;

• Addressing: globally unique, hierarchical address space (IPv6 reused); address

encapsulates topological location and provider hierarchy; (scheme: provider

rooted hierarchical addressing)

• Routing: valley-free; unicast: 2-segment route (uphill+downhill), one from

source to core (uphill) and one from core to destination (downhill); downhill

discovered through name service; proactive detection of route failures; BGP-

like inter-domain routing within the core, and path vector inter-domain routing

over provider hierarchy;

• Naming: naming system required to map endpoint names to downhill route

segment; name system design not mandated (may be DHT or DNS style for

example).

28

Chapter 2. A Survey of Novel Network Architectures

ROFL

Routing On Flat Labels (ROFL [37]) is a radical architecture that addresses the

challenge of how to scalably route on �at labels with no location identi�ers. Con-

trast to the previous proposals, ROFL eliminates location identi�cation (Forwarding

directive) and solely depends on persistent identi�ers to route inter and intra-domain

tra�c. The advantages of such approach in addition to mobility and multihoming

are fate sharing (no control path since no need to contact resolution infrastructure),

simple address allocation, better capture of identities at network layer, and indepen-

dence from any external resolution systems.

The service model of ROFL [37] may be stated as providing an Internet-style com-

munication service that utilizes state independent �at labels for network identi�cation

and routing.

Communication design space ROFL eliminates the address dependence on loca-

tion, hence the network address itself becomes the name.

• Topology: hierarchical ASs; AS up-graph required (domain's provider hierar-

chy);

• Addressing/Naming: Namespace: �at namespace, circular space similar to

Chord [100]; Name semantics: unique persistent and global identi�ers, seman-

tic free as in [31], self certifying (HIP [28] public key hash); Naming system:

global DHT formation and maintenance as nodes join and leave;

• Routing/Forwarding: compact routing; no name/address resolution since rout-

ing on �at DHT; ID translated into source route during forwarding and route

follows successor pointers; DHT formed over routers and static hosts.

29

Chapter 2. A Survey of Novel Network Architectures

Postmodern Internet

The postmodern Internet architecture [96] is a reaction to the rigidity of the current

Internet's network layer with respect to di�erent and possibly con�icting policies of

stakeholders. The architecture aims to provide a minimalist network layer that an-

ticipates tussle 7 and accommodates for it through �exibility in introducing policies.

Some example policies include inter-domain routing policies, packet �ltering policies,

policies of who can specify forwarding and who has access to what, service policies,

etc..

The service model of the architecture can be stated as providing a tussle-resistant

communication service, delivery of functional datagrams, that equips providers with

usage control over their networks through policy enforcement, and users with policy-

aware control over their tra�c forwarding.

Communication/Computation design space

• Topology: hierarchical virtual realms (trust boundaries);

• Packets and forwarding: functional datagrams (smart packets containing func-

tional blocks - how, what, where, knobs and dials); user-control over forwarding

paths/directives (FDs) when aligned with provider policies; (mechanisms: Res-

olution from �destination specs� to LinkIDs to reach destination)

• Addressing and Routing: both decoupled from forwarding and not restricted

(not part of network layer), i.e., no global addressing mechanism required;

(mechanism: use globally unique Link IDs instead to determine paths; inter-

realm LinkID routing information dissemination)

• Transparency: in-network packet processing and rewrites of functional blocks.

7Users need to control how their tra�c is delivered, while providers try to control their
network usage.

30

Chapter 2. A Survey of Novel Network Architectures

Information/Security design space functional packets recognized by network;

network entities (hosts and realms) have trusted identities generated by decentralized

PKI infra; signed packets; Accountability and path signatures;

Geometric Stack

The proposal by Gruteser [84] calls for making geographic/spatial location informa-

tion an inherent service of the network, for the latter to better address the needs of

dense wireless/mobile access networks (geographic routing/addressing/tracking/dis-

semination). A novel stack is proposed to provide communication through physical

space rather than network space (topology) enabling a multitude of applications that

utilize geo-routing, geo-casting, and localization.

The service model of [84] may be stated as providing a distributed location service

and a spacial routing primitive for location-centric communication.

Communication design space: packet-switched; location information available

over some coordinate systems with translation among them;

• Topology: hierarchical topology; high-speed wired backbone with wireless edge

networks; nodes associated with home areas;

• Addressing: address is geographic identi�er (unicast: host ID + last position;

geocast: set of coordinates of a zone);

• Forwarding and Routing: linear geometric routing (along 1-D paths called

trajectories); source node speci�ed path equation and network decides on for-

warding through next-hop local forwarding by intermediate nodes (not source

routing but path speci�cation);

• Naming: host identi�er (e.g., MAC derivative); Lookup: distributed service to

resolve identi�er to location (DHT based), location based service.

31

Chapter 2. A Survey of Novel Network Architectures

2.2.2 Information-oriented

The architectures we discuss in this section aim to achieve a similar objective, which

is e�cient network information support (typically in-band), a service that the cur-

rent Internet model fails to provide. While sharing the general goal, the design

decisions (and mechanisms) employed by each remain di�erent, which is what we

try to illuminate next. There is a direct coupling between the information and the

communication models, and the latter is generally intended to provide the necessary

requirements for e�cient data access (time, space, disruption, disaster, etc).

TRIAD

The original Internet architecture provided transport mechanisms that are trans-

parent to the applications or services employing them [2]. As the Internet usage

models become more content-oriented (Web tra�c, multimedia, or p2p tra�c), more

intelligence is overlaid on top of the traditional Internet design to provide faster

and more reliable content access as is the case with Content Distribution Networks

(CDN). TRIAD [88] is a novel architecture that treats content as �rst-class shifting

the communication paradigm from host-centric to content-centric communication.

The proposal exposes the limitations of current content distribution models, whether

scalability, latency, or architectural openness and consistency. TRIAD addresses the

content problem by making explicit a content layer that can e�ciently route towards

content. The content layer spans the core of the network by extending traditional

IP routers to support name-based routing.

TRIAD's service model can be stated as exposing a �content-layer� that provides

transparent access and distribution of named content.

Information design space

32

Chapter 2. A Survey of Novel Network Architectures

• Type of information: datagrams/packets, services, and content

• Naming: semantics: URL names compatible with DNS, URL split into domain

name of content server and �le name, service names are persistent whereas

content names (service name + �le name) is not; namespace: global hierarchical

namespace; naming system: distributed naming infrastructure with no single

point of failure;

• Routing: name-based routing: inter-domain content routers (CRs) route based

on names towards content servers (caches for closest replicas, transformers);

routing is a distributed in-band search operation; single-source multicast sup-

port

• Tussle: Content routers (CRs) are provided as ISP infrastructure (similar to

BGP routers now) and are thus controlled by the domain's authority, hence

ISP control over directory service. This stands in contrast to the current Inter-

net where ISPs have no control over DNS. Additionally, coupling naming and

routing at the domain level can potentially lead to more tussle.

Communication design space host-to-content; Delivery of content depends on

the communication model (TRIAD reuses HTTP/TCP/IP transport). TRIAD does

not mandate the Internet model though.

• Addressing and routing: Addressing is global hierarchical (IPv4 reused). Ad-

dress is only a forwarding directive used for transient routing/forwarding of

information and not for lookup;

• Naming and routing: There is an explicit separation between name and ad-

dress/forwarding directive. All network entities (hosts) are identi�ed by names

(DNS). Name is end-to-end identi�er, information model handles routing based

on names.

33

Chapter 2. A Survey of Novel Network Architectures

• Transport: in-band lookup and connection setup/transport (using DRP as an

alternative to TCP), hence symmetric search and delivery paths (lookup is as

available as delivery);

• Mobility: Indirection based host mobility, Name based routing abstracts topo-

logical location, but since endpoints (hosts) do not advertise their names (for

scalability), endpoint acquires new name in visiting domain and inserts a redi-

rection in its home domain.

• Compatibility with Internet: highly compatible with Internet infrastructure,

requires extensions at directory level.

We can clearly see the signi�cant overlap between TRIAD's information and com-

munication models. The latter is designed to inherently support the former.

DONA

The Data Oriented Network Architecture [34] is a clean-slate redesign of the naming

and resolution mechanisms on the Internet. Similar to TRIAD [88], DONA is a

reaction to the evolution of the Internet usage models. Initially, the Internet was

designed to enable host-to-host communication (FTP, telnet where source explicitly

speci�es address/locator of destination) over a transparent forwarding engine. This

model has signi�cantly changed since into a data-centric model where users access

content and services independent of the location of content, services and of the users.

DONA proposes replacing DNS names with �at, self-certifying names and replacing

the name resolution mechanisms with a name-based anycast primitive that lives

over IP. The main design requirements for DONA are persistence, availability and

authenticity. The architecture itself is a synthesis of ideas from HIP [28], TRIAD [88],

and SFS [101].

34

Chapter 2. A Survey of Novel Network Architectures

DONA's service model can be stated as providing data-access (locating and re-

trieving data) independent of location as well as providing data distribution from mul-

tiple locations. The design decisions of DONA are very similar to those of TRIAD,

except for the naming architecture. We simply point the di�erences.

Information design space

• Naming: Semantics: persistent, self-certifying, �at name (HIP [28]);

• Tussle: ISP control over user's activity (content lookup and registration ac-

tivity); ISP physical control over Resolution Handlers (which are similar to

content routers in TRIAD);

• Security: Authentication and integrity of information (mechanism: PKey cryp-

tography).

Postcards from the Edge

The proposal �Postcards from the Edge� by Yates et. al. is a clean-slate cache-and-

forward architecture for a future internet [91]. The architecture is a response to the

revolution in access technologies, primarily wireless and mobility, that overwhelm

the Internet's basic design assumptions. Given the continuously increasing capacity

and decreasing cost of in-network storage, the authors propose an architecture that

provides uniform reliable transport of large �les across heterogeneous access networks

and in the face of intermittent connectivity.

The service model can be stated as providing reliable delivery (push/pull) of content

(large data units or �les) to mobile/stationary endpoints using in-network storage/-

caching.

Information design space

• Type of info: large data units (�les);

35

Chapter 2. A Survey of Novel Network Architectures

• Naming of content: Sematics: globally unique (UFID.FQDN) names for �les;

name service: out-of-band service (i.e., lookup and transport are not coupled),

hierarchical name resolution system (DNS-style); Lookup: distributed name-

to-cache(s) mapping

• Routing/search: no routing based on names; out-of-band search/lookup to

name service (i.e., lookup name then contact host similar to Internet); Ren-

dezvous push/pull through post o�ce nodes (every node knows PO current PO

nodes where former can pick its content).

Communication design space: host-to-host; builds on top of Internet best-e�ort

IP service for addressing and routing of control tra�c. IP is not essential to the

design though.

• Topology: hierarchical topology formed of high-speed wired backbone con-

nected to edge access networks;

• Naming of endpoints: location aware rendezvous service; Lookup: distributed

name to post-o�ce mapping; Security: endpoint associated with home au-

tonomous system for authentication when mobile;

• Routing: hop-by-hop routing on location information; Supports Type-of-Service

(TOS) to distinguish between transport and caching

• Mobility: artifact of rendezvous

• Compliant with Internet: builds on IP, hence highly compliant.

USwarm

Universal Swarm (USwarm) is a proposal by Venkataramani and Towsley [92] that

applies swarming techniques (such as BitTorrent) to design a universal data transfer

36

Chapter 2. A Survey of Novel Network Architectures

architecture that learns from p2p architectures and eliminates sel�shness of peers

through incentives. The architecture is a response to the data transfer shortcomings

on the current Internet. The whole Internet is modeled as a single swarm that

employs a distributed metadata resolution system to resolve data-to-peers(s) that

can serve the data (analogous to BitTorrent Tracker). An intentional naming system

is employed as well to resolve intentions to metadata. Hence 2 level resolution is

proposed: intention to metadata to provider peers.

The service model of USwarm can be stated as providing multipoint-to-point bulk

data transfer/distribution among hosts (endpoints+intermediaries) with in-network

storage/caching.

Information design space:

• Type: datagrams, data, metadata

• Naming: Bittorrent model - semantics: self-certifying (publisher, hash) tuple,

principal name globally unique and authentic, metadata uniquely speci�es data

and contains name plus block ids; infrastructure out-of-band intentional reso-

lution system IRS (map intent to metadata); distributed p2p lookup/search;

• Routing/search: locality-aware distributed tracking that involves peers and

intermediaries to locate content (i.e., resolve metadata to peers); more control

over routing decisions for ISPs (tra�c engineering) and users;

• Transport: multipoint to point transport of information; incentive-aware;

• Security: authenticity and integrity of data (mechanism: crypto).

Communication design space: Internet style point-to-point communication em-

ployed; no constraints on communication model.

37

Chapter 2. A Survey of Novel Network Architectures

ITDS

The proposal ITDS 8 [93] is a response to the simple store-and-forward model of the

current Internet. The architecture calls for in-network support of a broader range of

services by dealing with information abstractions 9 rather than simple bit transfers.

Hence the communication model proposed is aware of information rather than simply

being a bit-plumbing medium. Additionally, in-network data processing is proposed

to implement dynamic user service requirements.

The service model of [93] may be stated as providing information transfer in response

to user (endpoint) speci�ed service expressions through in-network processing/data

handling.

Information/data and Computation design space:

• Type: data, information; semantics: various transfer characteristics (stream-

ing, random access, interactive, canned,. . .)

• Processing: general purpose computation model on routers to support data ser-

vices; data services already o�ered by network and not dynamically deployed by

users (contrast to active nets for example); service speci�cations are mapped to

computation model rather than dynamically introduced; service composition,

control;

• Storage: in-network storage/caching possible on routers.

Computation design space: User speci�es intent and network maps computation

to resources, hence, limited user control. Communication design space: can

operate on top of various communication models (e.g., Internet); ITDS focuses on

information transfer models �on top of the network�.

8Information Transfer and Data Services
9The proposal explicitly di�erentiates between information (e.g., �the requested web

page did not change�) and data/content (e.g., the actual web page data).

38

Chapter 2. A Survey of Novel Network Architectures

WiKI

The proposal Wireless Knowledge Infrastructure (WiKI) [94] addresses the limita-

tions of the current Internet in supporting the needs of applications and services

given the huge proliferation of wireless, mobile, and ubiquitous computing. WiKI

takes a clean-slate approach to designing a future declarative network in which in-

network state (router, network, and host state) is treated as distributed data that

can be queried by users through declarative languages. Such approach separates log-

ical representation from actual implementation making the network more �exible to

change, and more informed about its operations. Hence, WiKI realizes a knowledge

plane [102] for the Internet.

The service model of WiKI may be stated as providing a network query interface to

users for expressing intent and implementing operations through a declarative frame-

work for managing in-network information and state (router and host state, and data

streams).

Information design space:

• Type: internal network information (state), data streams, continuous/static

queries; cross layer, cross domain views of data streams; archives

• Processing: integration, aggregation, fusion, joins, etc.

• Security: policy enforcement; distributed monitoring; access-control.

Computation design space: built-in distributed WiKI runtime (proxies); query

processing and optimization; user-control: user has control over computation (e.g.,

route selection/protocol, service composition) through queries (mechanism: Net-

work Datalog language to specify computation); Communication design space:

wireless/mobile endpoints query WiKI proxy nodes (infrastructure or overlay) that

perform query processing; can operate as overlay.

39

Chapter 2. A Survey of Novel Network Architectures

2.2.3 Computation-oriented

A detailed survey on active network is provided by Tennenhouse [87], and a more

general one on programmable networks is provided by Campell [86]. The area of ac-

tive networks has extensively explored the idea of programmable networks with the

ability to introduce change into networks dynamically. Some pointers to prominent

work in this �eld can be found at DARPA's site http://www.sds.lcs.mit.edu/darpa-

activenet/, and at the IEEE issue [103, 104]. This section overviews several example

of programmable networks instead of surveying the AN �eld.

In [105], the authors introduce the concept of programming the network by shift-

ing the computing paradigm on current networks from an end-to-end system to a

system in which each �ne-grained data element participates in the computation.

Within active networks, traditional packets are replaced by �capsules� which con-

tain programs and content simultaneously. Nodes on the network (routers, switches,

servers - �rewall) can dynamically execute the capsule programs safely and e�iciently.

The capsules are loaded into a transient environment on the node and are safely ex-

ecuted/interpreted eliminating the ability of the capsule programs to stray beyond

the restricted env and thus to compromise the shared resources on the network.

The programming abstraction provided by active networks allows user-driven cus-

tomization of the infrastructure to enable faster deployment new services. It also

enables for dynamically adaptive protocols on the network, thus tailoring the infra

for user/application needs. Logically, active networks shift the intelligence in the

network from the node to the capsule. A capsule for example will compute its path

within the network (might need to access routing tables on nodes) instead of the

capsule (packet) being dumb. PLAN [106] is a functional programming language

for active networks used within packets. It is resource limited and secure enabling

a smart means of communicating between nodes. PLANet [107] is an active net-

work implementation that utilizes PLAN to implement network layer on top of an

40

http://www.sds.lcs.mit.edu/darpa-activenet/
http://www.sds.lcs.mit.edu/darpa-activenet/

Chapter 2. A Survey of Novel Network Architectures

IP-free link layer. PLANet uses active packets and allows active extensions, used

to operate the network, to be downloaded to routers (for ex. to implement services

like DNS, address resolution, routing). An active packet within PLANet needs to

explicitly specify the destination of evaluation, avoiding the evaluation of the packet

program on every node on the packet's path. This is mainly due to the reason that

evaluation is computationally expensive. Programs in packets are marshalled at the

source node and unmarshalled only at point of evaluation. In general a packet is only

forwarded by an intermediary node (by executing an routeFun attribute speci�ed

by the packet) until it reaches the intended destination on which it is evaluated.

Addressing within PLANet is based on 48 bit addresses (implemented with 32 bit

IP appended to 16 bit port number) assigning one address per network interface on

a node.

2.3 Conclusion

This chapter presented a survey of novel network architectures. We have shown

that while the communication structure is necessary for de�ning and representing a

modern network architecture, it is in general insu�cient. Information and computa-

tion structures are other building blocks that need to be properly understood within

modern networks. We shall leverage this observation later in the chapter 4 to present

a taxonomy that revolves around the architecture's information model. In the next

chapter, we elaborate on a speci�c clean-slate architectural instance, the Transient

Network Architecture (TNA). TNA is a novel architecture centered around the con-

cept of persistent identi�cation of all network entities. We introduce the building

blocks of TNA and we present the Persistent Identi�cation and NeTworking research

framework (PINT) and test-bed deployment.

41

Chapter 3

The Transient Network Architecture

Instance

3.1 Introduction

In chapter 2, we have surveyed a large variety of clean-slate network architectures

and proposals. As we have seen, the di�erent designs explore di�erent points in the

design space and aim at providing new services as part of the network's functionality.

Supporting content location and distribution, programmability and service compo-

sition, storage and caching, virtualization and re-con�gurability, identi�cation and

authentication by design are all examples of such services that are of interest for a

future Internet (check Table 2.1). This chapter elaborates on one point in the design

space by presenting the Transient Network Architecture (TNA) and a framework for

experimenting with it. TNA is centered around the theme of persistent identi�cation

of all network entities to foster mobility and security.

The emergence of key wireless technologies, the proliferation of mobile devices,

and the nomadic user and computing lifestyles on current networks are continu-

42

Chapter 3. The Transient Network Architecture Instance

ously evolving in synergy. Wireless mesh networks (WMNs), wireless sensor net-

works (WSNs), mobile ad-hoc networks (MANETs), and vehicular area networks

(VANs) are examples of self-organizing unstructured networks that have their lo-

cal communication paradigms and are optimized to perform under their particular

physical constraints. The Internet Protocol (IP) is currently employed to provide

inter-networking among heterogeneous access networks. IP uni�es the underlying

forwarding mechanisms and the routing identi�ers providing end-to-end tranparency.

In other words, the whole intermediate network appears to be homogeneous with a

well-de�ned topology as far as the endpoint is concerned. This abstraction has been

very successful and scalable and is based on the assumptions of the original Internet

design.

However, with the emergence of heterogeneous access technologies, and with the

continuous adoption of wireless communication, maintaining the end-to-end IP ab-

straction is becoming harder puting more strain on the evolution of the network.

Additionally, unifying the addressing scheme (IP address) has led to ine�ciencies

within emerging networks. Such networks must support IP addressing with the

added administration requirements despite the fact that the topological IP address

has little physical signi�cance as a routing directive within these networks. Part of

our recent work [108, 109] has demonstrated that a persistent identi�er might be uti-

lized as a routing identi�er (forwarding directive) within a local mesh network that

implements a multi-hop routing protocol, hence replacing IP. Another recent work

by Kim et al. [110] shows that ethernet bridging can be made scalable and e�cient

and can route based on MAC addresses within an enterprise network eliminating

the need for internal IP subnetting and administration. Again, in this scenario, IP

is only useful for external reachability and application interoperability. Add to this

the fact that even when IP is implemented within such networks, the majority of

communications between the endpoints requires a high level naming system and an

indirection mechanism, whether hierarchical (eg. DNS) or �at (eg. DHT [111]),

43

Chapter 3. The Transient Network Architecture Instance

which endpoints can utilize.

Several research test-beds have been recently proposed to enable experimenta-

tion with next generation networks, coexistence of heterogeneous systems, mobile

networking, and wireless environments, etc. [112, 113]. This chapter presents the

Persistent Identi�cation and NeTworking research framework (PINT) and test-bed

deployment that was initiated at the university of New Mexico and the Corporation

for National Research Initiatives (CNRI) , as part of the Transient Network Archi-

tecture (TNA) [33] project. PINT may either coexist as a deployment on top of

the readily available test-beds to provide the identi�cation framework, or it may be

deployed into a separate test-bed for scoped research with persistent identi�cation.

Brie�y, PINT exposes to the research community a modular and extensible set of

networking components and primitives, which enables novel research and experimen-

tation atop a persistent identi�cation and networking framework. The framework is

designed to support the following key concepts:

• Intrinsic support for unstructured networks;

• persistent identi�cation and certi�cation of network entities;

• distributed control-plane fucntionality provisioning using mobile agents; and

• seamless mobility.

The framework components include 1) entities that represent the communicating

endpoints, 2) areas of in�uence that abstract sets of entities sharing a common

communication protocol, 3) a virtualization model for agent based provisioning of

control-plane functionality, and 3) a network substrate virtualization. Novel net-

working primitives are exposed through the Persistent Identi�cation and Networking

Layer (PINL), allowing mobile and stationary entities to communicate securely based

44

Chapter 3. The Transient Network Architecture Instance

on persistent identi�ers that are location independent. The chapter presents a modu-

lar, extensible, and portable implementation of the components and primitives within

PINT. It then discusses our experiences with the framework so far, based on a �rst

deployment on wireless mesh and traditional ethernet networks.

The remainder of this chapter is structured as follows. Section 3.2 discusses the

principal TNA design decisions that guided the development of PINT. Section 3.3

describes the PINT framework and test-bed, and the reseach opportunities enabled

thereof. A deployment over mesh neworks is then illustrated in section 3.4. Sec-

tion 3.5 overviews our current and future work and concludes.

3.2 Transient Netowrk Architecture

We have previously introduced a general architectural vision for a possible future

Internet which we call the Transient Network Architecture (TNA) [33]. TNA rep-

resents an abstract vision which PINT instantiates. The main goal of TNA is to

enable seamless end-to-end communication between mobile and stationary devices

across heterogeneous networks and through multiple communication environments.

TNA builds on the original logical model of the Internet to form a logical network

that allows the e�ective merging of heterogeneous networks without forcing them to

modify their communication protocol but rather their logical coordination mecha-

nism. Mobility, security, and identity persistence are some of the chracteristics that

TNA tries to support by design.

In this section, we layout the principal design guidelines that pertain to TNA

and that guided the development of PINT.

45

Chapter 3. The Transient Network Architecture Instance

3.2.1 Area of In�uence - AoI

Whenever we speak of a local network, we are referring to what we call the Area

of In�uence (AoI), i.e., the AoI captures the scope of �local� when trying to under-

stand how local is �local�. Brie�y, an AoI is a local communication community that

de�nes its own communication protocols and network architecture implementations.

Examples of local implementations include, but are not limited to, LANs, Cellular

networks, MANETs, sensor nets, and mesh networks. These networks implement

their own communication mechanisms and protocols and can survive independently

of the global system. A sketch of how currently available networks can �t into the

AoI framework, is shown in Figure 3.1. The �gure shows how the nodes of a mesh

network, for instance, may assemble into an AoI. The AoIs themselves may de�ne

their own local communication implementation such as Ethernet, RF or Bluetooth,

and even their own local identi�cation mechanisms. The basic constituents of AoIs

are network entities which we formally de�ne next.

BS

Base Station

PI1.2/car

MSC

PI12

PI4/sat1

PI3/user2

PI5/user

PI2/user

C
e
l
l
u
l
a
r

I
n
f
r
a

s
t
r
u

c
t
u
r
e

a
d
-
h
o
c

T
r
a
d
i
t
i
o
n
a
l

L
A
N

PI4/sat2

PI : Persistent Identifier

AoI : Area of Influence

S
e
n
s
o
r

A
r
r
a
y

A
d
-
h
o
c

AoI [cell]

PI1.1

AoI [cell]

PI1.2

AoI [satellite]

PI4

 AoI [LAN]

PI5

AoI [PAN]

PI2

PI3/user1

M
e
s
h

W

L
A
N

AoI [MESH]

PI3

I
n
t
e
r
-
p

l
a
n
e
t
a
r
y

PI2/cell1

PI1.1/cell

PI2/cell2

AoI [sensor]

PI1.3

sensor

Figure 3.1: Examples of di�erent Areas of In�uence that form TNA

46

Chapter 3. The Transient Network Architecture Instance

3.2.2 Entities and Communication

Based on the de�nition in [30], an entity is the end-point of communication. It is an

abstract construct that can represent di�erent network elements including, but not

limited to, a process, a thread, a device, a cluster of devices, or a service. The entity

is the smallest element on the network that can be mobile. Each entity has its own

Persistent Identi�er (PI) that is globally unique, and secure by design. Security, as

we shall see later, results from the direct association of the PI with a set of credentials

that can be challenged by the network at any point in time.

How is this di�erent from the traditional Internet implementation and what ad-

vantages does it o�er? To answer this question, it is instructive to understand the

relation between the entity and the attachment point to which the entity is bound.

Traditionally, the Internet and particularly IP has taken a location-oriented paradigm

to identifying entities, i.e. the most basic entity identi�er expressed as a tuple {IP

address, port number} is directly dependent on the topological IP address. So far,

the IP address has performed well as a location identi�er since it inherently embeds

topological information and thus fosters routing scalability. However, when mobility

is introduced as in the case of wireless networks, IP looses any meaning of iden-

tity reference and degenerates into a pure routing identi�er. Coupling the entity

identi�er to the routing identi�er hinders mobility and poorly identi�es the actual

entity, which should exist independent of its network location or state. Several pro-

posals have focused on solving the mobility problem by decoupling the host identity

from the attachment point [28, 29, 26, 27]. Most of these e�orts propose inserting

a level of indirection on top of the network layer that manages the abstraction of

host identities. These proposals share the overlay approach on top of IP whereby

a high level address is translated to an IP address at some point and routing is an

end-to-end, IP-based mechanism. The bottom-line is, the Internet architecture de-

sign makes it ine�cient to initiate communication with an arbitrary entity on the

47

Chapter 3. The Transient Network Architecture Instance

current Internet, unless that entity has a public IPv4 (or an IPv6) address. As a

result, several architectures were proposed to solve the Internet addressing issue as

in [82, 81, 80]. However, even when a public address is available, ine�cient mobil-

ity management schemes prevail requiring centralized infrastructure and continuous

end-to-end negotiations between the endpoints over a simple �core�.

Our entity-oriented approach to identi�cation and communication elevates the

entity to become the �rst-class network citizen and the center of design. More pre-

cisely, and contrasted to the traditional Internet approach, our starting design point

is an entity with a globally unique PI that is independent of any topological in-

formation. We do so by asking the question: Starting with persistently identi�ed

entities, how should an underlying network be engineered to seamlessly and securely

incorporate those entities?

3.2.3 Persistent Identi�cation

After introducing our entity-oriented approach to identi�cation, we describe the

characteristics of the PI, and the certi�cation and resolution mechanisms attached

to it.

Persistence and global uniqueness are two attractive characteristics of the PI.

Persistence of the identi�er is essential when the attributes (e.g., state and location

information) of the identi�ed entity change, but the identi�er itself persists. Global

uniqueness is necessary to avoid identi�er con�icts especially when the identi�ed

entity is highly mobile.

48

Chapter 3. The Transient Network Architecture Instance

Certi�cation and Resolution

An identi�er is used by the entity for interaction with the rest of the system provided

the identi�er can be challenged and certi�ed within the environment of communica-

tion whenever necessary. We isolate three certi�cation realms, as follows:

• Instance (Red Realm) is de�ned relative to the user. It represents the authori-

tative domain of the user to which a set of entities belong.

• Local (Yellow Realm) is de�ned relative to the local network, AoI. This realm

represents the authoritative domain of an AoI which is essential for local inter-

actions among the entities of the AoI.

• Global (Green Realm) is perhaps the most challenging to create and maintain,

simply because it has to simultaneously guarantee global certi�cation and scal-

ability. The Green Realm represents globally trusted authorities. Note that

at this level, many globally trusted authorities can co-exist and inter-operate

avoiding the pitfalls of a single trust system as is the case with the current

Internet.

The colors of the realms indicate the level of trust within the system. For example,

certi�cation by the Green Realm represents the highest level of trust with respect to

the overall system. Certi�cation, or the �ow of trust, is �top-down�, from Green to

Yellow to Red Realms. Hence, an identi�er certi�ed by the Green Realm is globally

trusted, while an identi�er certi�ed by the Yellow Realm may only be used for secure

interactions within the AoI.

As to resolution, the PI is generally resolved into some information useful for

the interaction between the communicating entities. The result of the PI resolution

requires certi�cation by the respective realm. Resolution is performed in a �bottom-

up� fashion as follows: First, try to resolve against the Red Realm. A failure here will

49

Chapter 3. The Transient Network Architecture Instance

percolate the resolution one level up against the Yellow Realm and then against the

Green Realm. The mechanisms for certi�cation and resolution are closely coupled

and their details will depend on the particular architecture implementation.

3.2.4 Distributed control-plane functionality provisioning us-

ing the Ghost/Shell model

TNA de�nes two new abstractions, as follows:

Ghost is the abstraction of a service that provides control-plane functionality; the

Ghost is itself an entity that is persistently identi�ed, hence it is mobile.

Shell is the abstraction of the platform/infrastructure over which the Ghosts exe-

cute.

TNA utilizes the concept of mobile agents in distributed systems [114] to instantiate

Ghosts. The concept of mobile agents provides a novel approach to �exible and

scalable distributed network management by better utilizing the network resources

and minimizing human intervention [115]. For example, an agent can move the

intelligence to the resource instead of moving the resource itself which can save

bandwidth. Technologies to support mobile agents (e.g., JINI, JAVA RMI, and

CORBA) are becoming more popular and are moving closer to mainstream adoption.

The agent makes its own decisions and listens to external requests. It can execute

custom business logic, move itself across the network, terminate itself, etc.

50

Chapter 3. The Transient Network Architecture Instance

3.3 PINT Framework

Before delving into the details of the PINT implementation, we summarize the key

features of our framework:

• Intrinsic support for unstructured networks : the framework is designed with

emerging networks in mind, especially wireless environments. WMNs, WSNs,

MANets, VANs, and traditional structured networks should all be able to par-

ticipate and seamlessly inter-network, while respecting each of the networks'

local communication paradigm and protocol implementation.

• Persistent identi�cation and certi�cation of network entities : The advantages

of using the PI as the network address are several, including:

� Mobility: The independence of the PI from its attributes is an attractive

property for a network layer identi�er. The direct advantage of persistence

is mobility since an entity that is persistently addressed by the network

layer is reachable on that address at all times. Consequently, mobility

occurs natively eliminating the network layer indirection introduced by

other proposals [28, 29, 26, 27]. In other words, the indirection from a

persistent name to a forwarding address (e.g., DNS name [116] to IP ad-

dress) is eliminated in our framework, since the PI is itself the forwarding

address.

� Security: The PI address is stamped, i.e., it is inherently associated with

security information (e.g., public/private keys) which can be used at all

times by the communicating parties (and the network if necessary) for

accountability, identi�er authentication, and con�dentiality.

PINT allows the experimentation with di�erent persistent identi�cation tech-

nologies. The framework is oblivious of the particular semantics of the PI, or

51

Chapter 3. The Transient Network Architecture Instance

the mechanisms attached to it including authentication, resolution, and regis-

tration. Consequently, several current technologies can be experimented with.

For example, the PI implementation might be hierarchical as in the case of the

current Handle System [117] and the Domain Name System (DNS), or �at as

in the case of hashes whether self-certifying (e.g HIP [28]) or not (e.g., Chord,

Pastry).

• A novel approach to dynamic and extensible network control-plane service pro-

visioning using mobile agents; Routing as well as identi�cation are essential

network services that provide control plane functionality. The abstraction of

each such service is what we have previosuly referred to as a Ghost (section

3.2.4). Within the PINT framework, Ghosts are implemented as mobile agents,

of which we isolate the following:

� Identi�cation Ghost: This agent is particularly disseminated into the net-

work with the goal of implementing the identi�cation service for the AoI.

Managing the namespace including creating, removing, and updating per-

sistent identi�ers within the AoI are operations of the identi�cation service

which this Ghost implements. The entities within the AoI are oblivious of

the actual implementation speci�cs of the identi�cation service. For ex-

ample, upgrading the identi�cation service model from a centralized sys-

tem to a P2P system requires simply upgrading the identi�cation Ghosts

within the the AoIs and the upgrade is transparent to the AoI entities.

The same is true with the routing Ghost.

� Routing Ghost: It is similar to the identi�cation Ghost except for its func-

tionality. The routing Ghost implements the actual PI routing protocol

that delivers packets to their correct destination(s).

Ghosts1 may register for providing a discovery service that allows for their
1Note here that the Ghost is a logical entity, and it might be that both the identi�cation

52

Chapter 3. The Transient Network Architecture Instance

automatic discovery by other entities within the network. Note that the Ghosts

do not represent infrastructural components within the AoI, but instead provide

dynamic on-the-�y services for the rest of the entities in the AoI. For example,

in an emergency (�rst responder) network, we envision a set of nodes rapidly

forming into an AoI with the necessary Ghosts automatically initializing the

AoI and relocating to optimize the network utility. The routing Ghost, for

instance, locates a node with Internet connectivity bridging the emergency

network to the Internet. Optimizing the placement of Ghosts for maximum

network utility is a topic we re investigating in parallel [118].

• Seamless entity mobility : directly results from the network being PI-aware. En-

tities, whether devices, services, or processes can relocate and re-bind while still

being reachable on their PI. PINT is generic enough to allow the deployment

and experimentation with various mobility mangement schemes.

3.3.1 Components and networking primitives

Figure 3.2: PINT components and primitives in sample test-bed showing a multi-
hop ad-hoc AoI connected virtually to a traditional ethernet AoI. The PINL layer
running on all nodes is able to deliver packets to persistently identi�ed entities.

and the routing Ghosts are implemented as one physical entity.

53

Chapter 3. The Transient Network Architecture Instance

Figure 3.2 shows the basic components within the PINT framework. First, a set

of nodes is abstracted into an AoI. AoIs are allowed to inter-connect either through

dedicated links, or through virtual UDP tunnels that abstract the Internet link.

Nodes implement the Persistent Identi�cation and Network Layer (PINL) as part of

a modi�ed networking stack. Entities attach to the network through PINL, either

directly, or through transport layers that can add reliability and/or security to the

end-to-end communication. We start by describing the entity identi�cation assump-

tions and continue to discuss the details of the PINL layer and the primitives and

interfaces it exposes to upper layers.

Entity identi�cation

With the proliferation of mobile devices and the anticipated large scale of the net-

work, comes the challenge of how to design a system that is capable of identifying

individual entities at a large scale. PINT makes some assumptions in this regard

in order to organize entities within the system. First, in order to participate in the

system, an entity must acquire a stamped PI, i.e., a PI associated with a stamp. The

latter is a credential acquired from a certi�cation authority (CA) to authenticate the

owner(s) of the PI. Second, and for scalability reasons, we allow the aggregation of a

set of processes into a single entity by assigning a di�erent type to each. An aggre-

gated process set appears as a single entity with respect to the rest of the network.

Hence, in the case that one of the processes intends to become mobile (for example

to migrate), that process must obtain a valid globally unique PI that identi�es the

process itself. Our type analogy is similar to the application port number in current

TCP/IP stack and is useful for local demultiplexing.

54

Chapter 3. The Transient Network Architecture Instance

Figure 3.3: PINL layer building blocks

Persistent Identi�cation and Networking Layer

PINL provides the necessary network services to foster the evolution of the network.

Services and protocols belonging to this layer mainly handle the initialization of

entities within the AoI, and packet delivery between persistently identi�ed entities

that may be challenged and authenticated based on their PIs. Presented with a

PI, this layer is intelligent enough to deliver a packet to its destination(s). Reliable

and/or secure delivery mechanisms are part of a separate upper layer, and motivate

an interesting future research e�ort.

Figure 3.3 shows the componentized architecture of PINL. The PINL layer in-

cludes a set of modules that implement the basic layer services, and exposes an

55

Chapter 3. The Transient Network Architecture Instance

extensible neutralizing interface, which we refer to as the NELO inerface2, to the up-

per layers. Entities may directly interface with PINL through the NELO interface.

The details of the modules and the interface follow:

• PILOW: The main responbilities of PILOW is switching incoming requests be-

tween modules and maintaining layer state such as PI tables and ARP tables.

Additionally, it implements the RouterEngine interface which is employed to

route packets to their destination. We ship a default implementation of the

RoutingEngine interface in order to provide basic routing functionalities, i.e.

routing packets whithin the AoI. The default routing algorithm may be overri-

den at runtime when a new entity (a routing Ghost) assumes routing respon-

sibilities through the use of the NELO interface. A more complex router can

thus be implemented on-the-�y as we shall see later in the discussion. PILOW

additionally implements the PI_Socket_IFACE which provides the traditional

socket primitives to entities based on a connectionless transport mechnism that

simply demultiplexes incoming packets to resident entities. For example, to use

this interface, an entity implements the following code:

socket . bind (pi , type) ;

// bind e n t i t y wi th PI ' p i ' to a sock e t

. . .

s ocke t . send (pi_packet) ;

// sends a PIPacket out

. . .

while (true) {

PIPacket pi_packet = socket . r e c e i v e () ;

// l i s t e n f o r incoming packe t s

}

2NELO stands for Neutral Environment Language for Operation.

56

Chapter 3. The Transient Network Architecture Instance

• AgentService module: provides service to Ghosts in general. Since Ghosts are

abstracted as entities, the Ghost must bind to the layer and authenticate itself

before executing. This module implements the AgentService_IFACE, which

might be extended to add particular agent functionality. The RouteAgent_IFACE

for example extends AgentService_IFACE, introducing functionality speci�c

to routing agents. Through this interface, for example, a routing Ghost can

securely bind to PINL overriding the routing service.

• Discovery module: provides a discovery service to Ghosts and entities in gen-

eral. An agent may invoke allowDiscover() on the AgentService_IFACE to

enable external entities to discover it. Upon invocation of the allowDiscover()

function, the discovery module will answer discovery requests destined to the

registering agent entity. For example, as we shall see section 3.4, a routing

agent within an AoI may assume the role of routing beyond the AoI, hence

acting as a default gateway that can be discovered by all the AoI entities.

• Routing module: accepts packets from PILOW for routing, based on PI. Within

our framework, the routing service can be easily extended to support various

routing implementations. The actual router implementation is determined at

runtime for extensibility. A simple device will normally utilize a default router,

while a gateway will need a more complex router implementation (e.g., Click

router [119]). PILOW is oblivious of the router type and will forward packets

to whatever router currently active on the node. The �exibility of this im-

plementation is better explained by introducing a simple example in which a

Click router asks PINL to replace the default routing algorithm at run time.

Figure 3.4 shows how a Click routing Ghost is able to override the default

gateway implementation: 1) the Click entity asks for router binding issuing

RouteAgent_IFACE.bindForRoutingprimitive; 2) the PINL AgentService mod-

ule (see Figure 3.3) will then authenticate the Ghost; 3) when authenticated,

57

Chapter 3. The Transient Network Architecture Instance

PILOW sets up a tap interface through which the PINL daemon and the Click

entity communicate.

Figure 3.4: Click router asks for agent binding from NELO interface.

• Authentication module: The authentication module de�nes the primitives that

allow identi�er authentication mechanisms, validates certi�cates, signatures,

etc. The complexity of this module will eventually depend on the actual PI

implementation technology.

• Events module: enables entities or upper layers to listen on network events

through an extensible Events_IFACE. The module takes care of propagating

registered event callbacks to upper layers (transport protocols or entities),

58

Chapter 3. The Transient Network Architecture Instance

Protocols

1. Simple Persistent Identi�cation Protocol (SPIP): is the basic networking pro-

tocol used for communication. The format of the SPIP packet is illustrated

in Figure 3.5. This is the most basic unit of communication that all entities

within the PINT framework currently use to communicate. The source and

0-7
 8-15
 16-23
 24-31

Dst. PI

Address Length

Payload Length

Src. Type
 Dst. Type

Dst. PI Address

Payload

0

32

Bits

Src. PI

Address Length

.
.
.

 Src. PI Address

Header Checksum
64

Figure 3.5: PI packet format.

destination PI addresses are variable length with a max size of 32 bytes. We

allow a variable size identi�er to support di�erent implementations of the PI,

such as a string (a handle in the Handle System implemetation [117]) or a hash

(HIP [28])3. In order to send a packet, the sender entity addresses the packets

to the 2-tuple {PI, type} identi�er of the destination entity.

Regarding the ARP and the Discovery protocols, we have simply extended current

implementations of those and introduced a PI ethernet frame type speci�c to our

implementation.

3Despite the expensive header size, we have deliberately chosen a 32 byte max PI size
to allow experimantation with various PI technologies. WSNs, for example, are expected
to utilize a signi�cantly smaller PI size.

59

Chapter 3. The Transient Network Architecture Instance

3.3.2 Implementation Details

The implementation of the Persistent Identi�cation and Networking Layer (PINL)

consists of a daemon running at the user-space, and a client library which is used

by the entities in order to utilize the functionality provided by the daemon. The

layer code is written in object oriented C by exploiting the facilities provided by the

portable GLib library [120]. Additionally, a java JNI interface is provided for the

NELO to allow Java entities to communicate with PINL.

The C code has been designed with portability in mind, and at the same time

targetting embedded devices with very limited RAM and CPU resources like mo-

bile phones, PDAs and routers. In this sense, we have designed the code base to

depend only on highly portable libraries such as libpcap, libglib and libgnet which

are known to run on Unixes, Windows, Mac OS X and on di�erent architectures like

x86, ARM, Mipsel, and SPARC. The PINL has been compiled and tested on the

following platforms and devices without the need for patching the code base: Linux

(Debian/Ubuntu), Mac OS X, neo1973 using openmoko, n770/n800 using maemo

platform, and on the router WRT54G using the openwrt distribution.

The daemon is the fundamental building block of PINL, implementing all the

functionality that we have described so far in the previous sections and exposing

the NELO interface to the entities. In particular, we have used libpcap to bypass

the IP layemr both when sending and receiving PI packets; libpcap listens on all

the interfaces that are con�gured and captures all inbound frames that are either

PI packets, Discovery packets or ARP packets by inspecting the MAC type �eld

within a frame. The captured frame is then received by the PILOW module by

issuing a callback function (see Figure 3.3) that, based on the MAC type, forwards

the frame payload to the right module. When a module needs to send a packet on

the network it will use the inject feature which is available using the pcap library.

60

Chapter 3. The Transient Network Architecture Instance

Using pcap as an interface to the link layer is very convenient as we are able to send

and receive frames bypassing the IP layer and providing a service that is oblivious

of the underlying link layer.

In order to be able to communicate with the PINL daemon the entities must link

their code to the pientity library. The latter internally utlizes sockets to implement

inter process communication. The library exports a very simple API through which

the entities can communicate in a transparent way with the NELO interface.

3.3.3 Research Impact

PINT provides a research framework and test-bed for emerging networks such as wire-

less mesh networks, wireless sensor networks, MANets, as well as traditional networks

to inter-connect and communicate beyond the limitations of the traditional Internet

Protocol (IP), which was not designed for wireless and mobile environments. Those

networks can experiment with a novel persistent identi�cation framework locally

and globally, exploiting the novel identi�cation and networking primitives. PINT

may either coexist as a deployment on top of the readily available test-beds such as

ORBIT [112] to provide the identi�cation framework, or it may be deployed into a

separate test-bed for scoped research with persistent identi�cation.

We are currently pursuing several interesting research topics that are based on

the TNA architecture. Some of the prominent topics involve:

• Investigating inter-AoI routing implementaions based on PIs; routing based on

PIs is a critical research challenge and is essential for our framework to function

properly;

• Investigating transport protocols that provide reliability and/or security; cur-

rently, as part of the PINL implementation, we provide a simple connectionless

61

Chapter 3. The Transient Network Architecture Instance

transport protocol that demultiplexes incoming packets based on PI and PI-

type combinations. We envision di�erent transport protocols emerging on top

of PINL, which can add reliability, congestion control, and security to commu-

nication while respecting the wireless and mobile nature of the communication;

• Invetigating e�cient mobility management schemes.

PINT provides the framenwork to experiment with the feasibility, e�ciency, and

scalability of possible solutions to the above topics. A preliminary deployment of

mesh/ethernet AoIs is discussed next.

3.4 Mesh/Ethernet Deployment

In this section, we describe a mesh/ethernet deployment over PINT at the ECE

department building at the university of new mexico. The goal of the deployment is

to validate the operation of the components and primitives rather than to measure

their performance. Performance measurements will directly depend on the inter-AoI

routing mechanisms, PI technology, and mobility management schemes that we will

end up adopting and this is part of our future work.

We setup two distinct multi-hop mesh networks with SSIDs mesh1 and mesh2,

repectively, and an ethernet network as shown in Figure 3.6. mesh1 is comprised of

4 nodes dispersed across the �rst �oor of the building, while mesh2 is comprised of

4 nodes dispersed across the third �oor, and the ethernet network is comprised of 3

nodes deployed in the second �oor. As part of each network is a special WRT54G

router node that runs the PINL layer. The three networks are connected through

the routers with UDP tunnels that traverse the local IP network internal to the

building. All the nodes run the PINL layer at the user level on top of an Ubuntu7.04

OS. Within the mesh networks, PINL attaches to the AWDS mesh link state routing

62

Chapter 3. The Transient Network Architecture Instance

protocol [121] which exports a virtual layer 2 interface (�awds0�). As to the nodes

within the ethernet network, PINL attaches to layer 2 through interface �eth0�. A

sketch of the complete deployment is shown in Figure 3.6.

WRT54G

WRT54G

Laptop

Laptop

Laptop

Ethernet

I
n
t
e
r
n
a
l

U

D

P

t
u
n
n
e
l

vopi1

vopi2

WRT54G

Laptop

Laptop

Laptop

vopi3

I
n

t
e

r
n

a
l

U

D

P

t
u

n
n

e
l

mesh1
- multi-hop

mesh2
 - multi-hop

rt1

rt2

rt3

Figure 3.6: Mesh/Ethernet deployment of 3 AoIs (2 mesh and 1 ethernet network).
Red circles represent entities.

All nodes employ the default routing engine that ships with PINL, except for the

WRT54G nodes that are running a virtualized Click router to handle the inter-AoI

PI based routing, i.e., acting as a gateway. The Click entities are represented by

rt1, rt2, and rt3 in Figure 3.6 Internal AoI nodes use the discovery protocol to dis-

cover the gateway, and forward all tra�c that is not local to the latter. To know

whether a destination PI is local, the default routing engine employs an extended

ARP mechnism for local resolution of PIs. Additionally, entities utilize the discov-

ery protocol to proactivly announce their presence to the gateway, which in turn

maintains soft state about the local network. Finally, and most importantly, the

gateways implement a simple PI propagation protocol periodically exchanging their

local state. This inter-AoI PI propagation mechanism is not scalable; however, it is

just a proof of concept implementation that enables the gateways to locate external

63

Chapter 3. The Transient Network Architecture Instance

entities and hence, to route inter-AoI tra�c correctly. As mentioned previously, part

of our current research is targeted at examinig e�cient and scalable PI propagation,

caching, and replication mechanims.

Aside from the deployment, our experience with the PINL layer particularly shows

that PINL is performing as good as UDP/IP over a local mesh network, and that both

PINL and IP are constrained by the underlying physical and link layer characteristics.

3.5 Discussion, Future Work, and Conclusion

This chapter introduced the PINT framework developed by UNM and CNRI. PINT

exposes to the research community a modular and extensible set of networking com-

ponents and primitives, which enables novel research and experimentation atop a

persistent identi�cation and networking platform. The framework may either coexist

as a deployment on top of readily available test-beds to provide a novel identi�cation

framework, or it may be deployed into a separate test-bed for scoped research with

persistent identi�cation and networking. Aside from investigating the identi�cation,

routing, and mobility mechanisms as discussed in section 3.3.3, in the future we hope

to enhance our implementation to allow easy deployment of the framework within

the ORBIT test-bed [112] and the bridging of external networks to the ORBIT de-

ployment. Brie�y, ORBIT is the Open Access Research test-bed for Next Generation

Wireless Networks. It is a radio grid (20x20 APs) developed for scalable evaluation

of next generation wireless network protocols. The grid allows multiple simultaneous

experiments speci�ed using scripts and uses virtualization of APs for that purpose.

This is essential for broad participation of the research community especially with

the recent bridging of ORBIT and PlanetLab [113]. Finally, for what concerns the

implementation of the Persistent Identi�cation Network Layer, we hope to port the

code to kernel space by targeting �rst the Linux operating system once the API be-

64

Chapter 3. The Transient Network Architecture Instance

comes stable. We would like to note that an initial version of this chapter appeared

in [122].

The common practice in the community for evaluating architectural work is

through experimentation. Multiple test-beds are readily available for experimen-

tation (such as VINI [113], ORBIT [112], and PlanetLab [123]). In addition, the

Global Environment for Network Innovations (GENI) [4] initiative is tasked with

creating a global test-bed for experimenting with clean-slate network architectures.

As the number of architectural proposals grow, however, the architectural work re-

mains idiosyncratic and descriptions of network architectures are mostly idiomatic.

The community generally lacks a uni�ed framework or a taxonomy for thinking about

new models and their design implications. Chapters 4 and 5 attempt to add a for-

malism dimension to the evaluation process, evaluation through formal modeling.

Chapter 4 presents a taxonomy of network architectures, while chapter 5 provides a

framework for their formal modeling.

65

Chapter 4

Towards a Taxonomy of

Inter-network Architectures

4.1 Introduction

Chapter 2 presented a survey of the diverse and novel Internet architectures by

examining their supported service models whether communication-, information-, or

computation-centric. Classifying the literature based on the supported service model

has helped us understand the underlying goals behind an architectural design, and

has additionally highlighted the information model as the main de�ning element of

our taxonomy. Besides, surveying a large set of architectural proposals, we have

presented the TNA architecture along with an implementation in chapter 3.

Unfortunately however, the majority of the architectural work remains idiosyn-

cratic and descriptions of network architectures are mostly idiomatic. This current

state of a�airs is expected to worsen as we start designing and deploying a future

Internet, an e�ort already initiated by NSF's FIND [3], and GENI [4] initiatives. In

fact, after surveying the literature, it became obvious that the majority of the recent

66

Chapter 4. Towards a Taxonomy of Inter-network Architectures

architectural work is either aimed at exploring novel usage models that adhere to

a class of applications, or at directly addressing a set of limitations of the current

Internet 1. Ostensibly, there seems to be a growing consensus in the community

about the need for designing a smarter network that is more than just a transparent

�bit-plumbing� medium. While such evolution into a smarter and more complex In-

ternet is bringing new potentials and service models, the community generally lacks

a uni�ed framework or a taxonomy for thinking about such models and their design

implications.

This chapter presents an attempt towards a taxonomy of inter-networking archi-

tectures. We believe that a network architecture taxonomy is a timely contribution

that can potentially frame the architectural work, clarifying the problem and the

solution spaces. Additionally, such a taxonomy provides a uni�ed framework for net-

working researchers: (1) to better reason about their work at the architectural level,

(2) to clearly compare the di�erent proposals and better understand their similari-

ties and di�erences, and (3) to explore new dimensions for contributing to the �eld.

Our taxonomy de�nes a network architecture based on the information model. The

latter operates on top of the substrate structure and characterizes the underlying

addressing structure, the data objects and the functionality attached to them, and

the relative control structure. It is worthwhile mentioning that several classes of our

taxonomy may be further elaborated. Additionally, we fully expect that several new

classes and properties will be added by other researchers. We would like to note that

the current taxonomy is not intended for evaluating the performance of architectures

and for determining whether one architecture is better than another. Any such e�ort

would require a thorough understanding of the design space (design parameters, rela-

tionships, cost structures, etc.), an e�ort that we believe is more likely to succeed at

1Those limitations are mainly the lack of information, security, management, trou-
bleshooting, mobility and QoS support, and the economic con�icts as acknowledged by
the community [7, 8, 9].

67

Chapter 4. Towards a Taxonomy of Inter-network Architectures

narrower scopes than the one at hand. In addition, we would like to mention that the

literature is replete with network proposals that correspond to the di�erent taxons

discussed throughout the chapter. The examples we provide throughout are solely

meant to help the reader assimilate our ideas rather than provide an exhaustive list

of the related work.

As we started studying the taxonomy problem, it seemed that the body of net-

work architecture work is di�cult to classify due to the independent nature of the

many contributions to the �eld. However, we have noticed that modern networks are

becoming increasingly intelligent, and the intelligence is being manifested by intro-

ducing more processing [124] and storage elements [125], and by providing the users

with richer instruction sets instead of the simple static IP packet. Interestingly, such

evolving network architectures resemble the computer architecture �eld, in the sense

that a network architecture is currently being designed to provide a general pur-

pose computing platform to its diverse users. Consequently, it is our belief that the

modern network architecture and the computer architecture converge conceptually

at the architectural level, despite the fact that they signi�cantly diverge otherwise,

primarily due to the distributed and large-scale nature of network architectures. We

shall leverage this idea to directly apply some useful taxonomical notions from the

computer architecture �eld to our work, particularly from [126, 127].

The remainder of the chapter is structured as follows: building on the service-

model perspective of chapter 2, a taxonomy based on the information model is then

discussed in section 4.2. We demonstrate the descriptive power of the taxonomy by

applying it to the Data-Oriented Networks Architecture (DONA) [34] in section 4.3.

Related work is then presented in section 4.4 before concluding with a discussion of

the value and limitations of our work in section 4.5.

68

Chapter 4. Towards a Taxonomy of Inter-network Architectures

4.2 Taxonomy

Our taxonomy is based on the network's information model, as it aims to clarify the

following questions:

• What are the types of data objects recognized by the network?; and

• How does the network operate on those objects? In other words, how is the

network capable of manipulating the objects?

Towards this end, the taxonomy de�nes architectures starting with the underlying

substrate structure (the topology, the functional units, and their interconnection

structure) over which the information model operates, and ending with the informa-

tion model itself (addressing structure, types of data objects, and control structure).

4.2.1 Substrate Structure

The network substrate is comprised of the underlying physical network elements over

which the information model is de�ned. The substrate structure, hence, describes

the network topology, the functional units, and their interconnection structure.

Topology

Assumptions regarding the inter-network topology are crucial to our analysis. We

assume the inter-network is composed of zones. A zone forms an autonomous part

of the inter-network and represents a logical region with explicit boundaries. We

intentionally de�ne the notion of a network zone to be abstract enough to encapsulate

the various de�nitions proposed in the literature, including the Internet Autonomous

Systems (AS), Contexts in Plutarch [89], Turfs in Turfnet [90], and so on. The zone

69

Chapter 4. Towards a Taxonomy of Inter-network Architectures

has an explicit �boundary�, a logical construct that can take various forms, such as

administrative, physical, protocol, or even social boundaries. Within the remainder

of the discussion, the notions of �global� and �local� are to be interpreted relative

to the zone. For example, a global function (examples of functions are addressing,

naming, and forwarding) is one that operates across zones, whereas a local function

is to be interpreted as zone-local.

Of particular interest to our taxonomy are the following topological properties:

• Structure: is an important property that can take any of the values: hierar-

chical, �at, or special (e.g., ring) topology. An inter-network that is composed

of hierarchical zones will topologically include a root set of zones, generally

referred to as �Tier-1�. A �at topology on the other hand does not necessitate

a topological root.

• Composition: The topological structure depends on how the zones are com-

posed. Composition can take three forms as follows: 1) controlled-overlap

means that part of the topology is shared by multiple zones, 2) integration

is when one zone subsumes another resulting in an integrated data/control

plane for the composed zone (sometimes referred to as horizontal composi-

tion), and 3) direct peering is when zones, generally heterogeneous, directly

connect through dedicated elements (sometimes referred to as vertical compo-

sition). Note that from a physical viewpoint, direct peering encapsulates the

Internet AS relationships, whether customer-provider, or peering.

Components and Interconnections

We isolate the following components types or functional units:

• Storage Elements (SEs) which may be of two types:

70

Chapter 4. Towards a Taxonomy of Inter-network Architectures

� Memory Elements (ME) are abstract elements that store information

within the network, such as content servers/providers; and

� Cache Elements (CE) are memory elements that provide faster access to

their information, either by being physically closer to the user and/or

because they are connected to the user by a higher bandwidth link than

the ME. Examples include proxies or caches used in content distribution

networks (CDNs).

• Processing Elements (PEs) which perform information processing and may be

further divided into:

� Data Processing Element (DPE); and

� Instruction Processing Element (IPE).

More details on instructions and data are presented later in the informa-

tion model. However, for now, one may envision an IPE instance to be a

router, or a proxy that operates on packets 2, while a DPE instance might

be a content transcoding element inside the network.

• Switching Elements (SWEs) are abstract elements that switch information be-

tween SEs and PEs.

Having introduced the abstract component types, we proceed to describe their prop-

erties that are of interest to this taxonomy, as follows:

1. The Dispersal property/factor is speci�ed for each of the above component

types. It describes the required physical distribution/placement of an element

type relative to the topology, with a number n to mean one element (or a

constant set of elements) per n zones. Values for n may be: 1 (to mean an

element exists for each zone), k (to mean an element exists for a group of k

2A packet is a form of a static instruction.

71

Chapter 4. Towards a Taxonomy of Inter-network Architectures

zones, such as a Tier-1 ISP provider hierarchy or the set of edge domains on

the Internet), and Z (to mean an element exists for all the zones, such as in

the case of a centralized global service), where Z is assumed to be the total

number of zones in the topology.

2. The Interconnection property describes the logical interconnection structure

among the component types. Two combinations of element interconnections

Figure 4.1: Interconnection types; A square represents an abstract element (SE or
PE), while an ellipse represents a switching element (SWE).

are of interest to us, mainly those specifying the PE −PE, and the PE − SE

element interconnections. The di�erent types of interconnections are depicted

in Figure 4.1, and those may be: 1) dedicated to mean that the ith component

of the �rst type is connected to the ith component of the second type; 2)

meshed to mean that every component of the �rst type is directly connected to

every component of the second type; and 3) switched to mean that a switching

element connects components of the �rst type to those of the second type.

Consequently, the tuple (Dispersal, Interconnection) fully describes the component

interconnection structure. Additionally, it directly relates to scalability by exposing

the bottleneck infrastructure elements. We brie�y present some examples related

to the current Internet substrate structure to better illustrate the aforementioned

properties. Internet routers are IPEs (that process implicit forward instruction)

with dispersal factor n = 1, and for which their IPE-IPE interconnections is meshed.

DNS infrastructure elements, and particularly domain DNS servers are IPEs (that

process resolve instructions) with n = 1 and may simultaneously be CEs (that cache

72

Chapter 4. Towards a Taxonomy of Inter-network Architectures

query results) and MEs (that serve the domain's zone �les) with n = 1. The DNS

root servers, however, are MEs (root database) with n = Z 3. Additionally, the

IPE-ME interconnection is generally switched since resolutions have to pass by the

root servers that act as the switch between the IPEs and the MEs.

4.2.2 Information Model

The information model is de�ned based on three classes of data objects that en-

capsulate the information abstractions recognized by the network. At the core of

the information model is the notion of data objects (alternatively entities) that are

bound to and accessed from network `locations' relative to some addressing struc-

ture. Consequently, before delving into the details of the data objects, we discuss

the �rst de�ning element of the network information model, namely the addressing

structure.

Loc A

Loc F

Loc Z

…

Locations

…...

…...

…...

Inter-network cloud

Loc A

Loc Z

…

…

Locator

Space

Addr A

Addr F

Addr Z

…

…

…

Loc F

Figure 4.2: Abstracting network locations (red circles) and visualizing a locator
space.

Addressing Structure

We brie�y introduce the concepts of locator and identi�er in this chapter, and we

shall elaborate on these concepts later in chapter 6 to eliminate the confusion that

3Assuming not replicated.

73

Chapter 4. Towards a Taxonomy of Inter-network Architectures

Locations

Locator

Space

Identifier

Space

(2)

.
.
.
Addr X

.
.
.

.
.
.

(1)
 .
.
.

Figure 4.3: Identi�er space is either integrated (1), or disconnected (2).

generally arises when discussing them. The information model starts by assuming

the existence of locations within the network, where the term `location' may have

topological or geographical connotation. When the locations are addressable, we

obtain the notion of the network locator belonging to the locator space. The latter

consists of all the possible addresses of all the addressable locations on the network

and is denoted by L. Consequently, the locator is de�ned as a location identi�er.

Figure 4.2 depicts our visualization of the locations and of the address space con-

structs. Examples of Addr A in Figure 4.2 may be an IP address, a path, a set of

coordinates, etc. (as long as there exists an underlying control that can link the

locator to the network location it points to).

On the other hand, when the objects on the network are being addressed, we obtain

the notion of the identi�er belonging to a identi�er space, I. Some examples of

systems that instantiate identi�er spaces are naming/directory systems, metadata

registries, and trackers. According to our de�nitions, there is a conceptual di�erence

between the locator and the identi�er in terms of what is being identi�ed. The lat-

ter generally identi�es some high level information abstraction (such as a host, or a

content object) in contrast to identifying a location with the former. Data objects,

which we shall characterize shortly, are always bound to the locations, and hence ev-

ery access to an object on the network will require an address (locator or identi�er)

to succeed. Throughout the rest of the discussion, an address is to be interpreted as

either a locator or an identi�er unless otherwise speci�ed.

74

Chapter 4. Towards a Taxonomy of Inter-network Architectures

As far as the taxonomy is concerned, the following set of properties characterizes

the addressing structure. The �rst property, address spaces, describes whether the

addressing structure explicitly de�nes and makes available as part of the ISA a locator

space (L), an identi�er space (I), or both.

• Locator: Solely providing a L implies that objects are only addressable (and

generally accessible) by location. In addition to necessitating prior knowledge

of location, this model falls short of supporting object binding volatility (such

as in the case of mobility, re-homing, and disconnections). The IP addressing

architecture [2] is one example in which only the IP locator space is made

available as part of the ISA addressing structure.

• Virtual: On the other hand, solely providing an identi�er space implies that

only objects are addressable and not locations. Since no locator space is pro-

vided, there is no embedded notion of location on the network from the user's

perspective. In this sense, the identi�er space is directly integrated with lo-

cations, i.e., an access to an identi�er will automatically result in accessing

the location(s) to which the identi�er points. Figure 4.3 (1) illustrates this

addressing style. Some example architectures that support this style are [37]

and [95].

• Both: When both spaces are provided, it is necessary to characterize their

relationship de�ned with space-correlation, as follows:

� Independent: I ∩ L = ∅

This is the general case of current addressing architectures in which the

spaces are semantically and syntactically independent, and are only re-

lated through the mapping/search function. Examples of I could be a

space of �at hashes (e.g., DHT approaches) or human-readable strings

(e.g., DNS) which is independent of an underlying locator space (e.g., IP,

75

Chapter 4. Towards a Taxonomy of Inter-network Architectures

or topology labels in labeled compact routing [44]).

� Correlated-partitioned: I ⊂ L

In this model (and the following one), the spaces are consolidated (gen-

erally syntactically) and the semantic distinction between the spaces is

made statically (i.e. known a priori) or dynamically (i.e. at runtime).

The model has the feature that the mapping function from locatores to

locations (otherwise referred to as routing) is inherently aware of I and

could be reused for identi�er translation. An example here is Mobile

IP [27].

� Correlated-embedded: L ⊂ I

If we are allowed to think of the IPv6 space as an identi�er space, then

an example of this model would be the embedding of the IPv4 space in

the IPv6 space.

� Partial-overlap: L ∩ I 6= {∅,L, I}

We are not aware of any addressing architecture that supports this model.

Second, for each of the locator and the identi�er spaces, two structural properties

are de�ned:

• Space structure: may be hierarchical, �at, or special; and

• Addressing scope: de�nes the scope over which the address is valid. Values for

scope are based on the topology structure de�ned in the previous section, and

those include: local (per zone), global (to all zones), and partial (to a set of

zones).

To gain a better insight into the taxonomy's descriptive powers, consider the follow-

ing examples of addressing structures described with the properties just introduced:

76

Chapter 4. Towards a Taxonomy of Inter-network Architectures

1) locator space is (hierarchical, global): The Internet and NIRA [99] are two ar-

chitectures that explicitly rely on a global, strictly hierarchical addressing scheme.

Some of the advantages of this scheme are scalable routing and small routing table

sizes 4; 2) identi�er space is (flat, global): ROFL [37] and SFS [31] are architectures

that utilize this �at, DHT-style addressing scheme. Some of its advantages include

semantic-free, �at, and location independent-addressing. On the other hand, some

of the disadvantages include global maintenance overhead, consistency issues, and

scalability concerns; and 3) Either space is (∗, local) 5: This is the case for example

when each network has its own private address space. Plutarch [89], Turfnet [90] are

some examples. Some of the advantages of such mode are provider-independent ad-

dressing and easier re/multi-homing. However, some disadvantages include extensive

translation, complex routing, and larger global routing tables.

Having discussed the addressing structure, we proceed to identify the di�erent

classes of network data objects that comprise the second de�ning element of the

information model.

Data Objects

The data objects are characterized by the ordered tuple (C, S, F), where C denotes

the object class, S denotes the scope or context within which the object is meaningful,

and F denotes the set of functions applicable to the object. We isolate three classes

C of data objects 6: 1) primitive objects, 2) group objects, and 3) complex objects,

and their respective functions as follows:

4Scalability depends on e�cient address aggregation, however. The de-aggregation prac-
tice on the current Internet's routing system has driven the latter to be unscalable [12].

5The symbol `*' is the wildcard character.
6Recall that we are solely concerned with the internal network information model, and

hence the end-to-end data abstractions which are transparent to the network are irrelevant
to this taxonomy.

77

Chapter 4. Towards a Taxonomy of Inter-network Architectures

Primitive Data Objects - are further categorized as either carrier objects or

consumable objects. The former set represents the information carriers that are stored

or processed within the network but are generally not consumed, i.e., neither bound

to nor accessed from locations. We have identi�ed the following set of carriers: 1)

locator; 2) identi�er; 3) instruction, represents a functional expression to be executed

by the network. Instructions may range in their functional expressiveness. For

example, the IP packet is an instance of an instruction data object that is inherently

static, i.e., the packet implicitly instructs the network to deliver a payload from source

to destination. On the other hand, [93] recognizes a more expressive instruction set

for dynamic service composition; 4) Data Unit, is the unit of communication and

could include control and data; 5) stream, is an aggregation of Data Units; and 6)

status block, may be of di�erent types. A status block encapsulates the internal

network state as well the status of operations performed within the network.

As to the consumable objects, those represent data objects that are explicitly

bound to the network locations and consumed from their locations. The following

two styles of consumable objects are identi�ed:

• Raw Information Bit Stream (RIBS): represents an untyped consumable data

object that appears to the network as a bit stream. All RIBS objects must be

self-descriptive, i.e., knowledge about the RIBS data (e.g., typing, and inter-

pretation) is encapsulated within the data itself. The Internet, for example,

solely supports RIBS objects and is hence transparent of information types (i.e.

all typing intelligence is end-to-end);

• Typed Abstract Content Object (TACO): represents any typed consumable

data. Interpretation of TACOs is generally part of the network's control struc-

ture. Several examples of possible typed content objects may be recognized

from today's applications, including: static and dynamic content (such as �les

and web pages), continuous content (such as multi-media or live sensor feeds),

78

Chapter 4. Towards a Taxonomy of Inter-network Architectures

interactive content (such as the case with online gaming), and metadata ob-

jects.

The object scope S de�nes the scope within which the object is valid, taking

values: local, global, or partial relative to the substrate structure.

Several classes of functions F are applicable to primitive data objects. While we

overview these classes, we simply focus on characterizing the binding, access, and

transfer functions that the network makes available for manipulating the consumable

data objects.

• Binding Functions: In its simplest form, binding is the process of assigning a

data object to some location on the network. Assume X and Y denote network

addresses, we isolate the following forms of binding:

� Direct-value binding has the form X = value. Binding a data object

to an IP address, or a host join in [37] are some examples;

� Processed value binding has the form X = f(.). Some processing is

performed before assigning the object. For example, f(.) might be a query

whose result is assigned to an address;

� Multiple-value binding 7 has the form X = Y . The data object in

Y is replicated to X. In general, this form of binding requires some

form of COPY/MOVE instruction as part of the architecture's ISA. Data

replication as in the case of CDNs is an instance of such binding style;

� Shared-value binding 8 has the form X = &Y to mean that X points

to the same data object as Y . Mobile IP [27] is an example here.

7This is similar to assignment by value.
8This is similar to assignment by reference.

79

Chapter 4. Towards a Taxonomy of Inter-network Architectures

While instances of such binding styles are present in the literature and were

noted above, the majority of the styles are still not explicitly supported by the

current architectures' instruction sets.

• Access Functions: Accessing information on the network may be character-

ized by the following properties: 1) access type speci�es whether primitive,

group and/or complex object access is supported; 2) access paradigm speci�es

synchronous and/or asynchronous access. For example, publish-subscribe

architectures provide an asynchronous access paradigm; 3) access mode dic-

tates whether read, write, and/or read-modify-write are supported; ; and

�nally 4) addressing mode which is characterized with:

� Direct/absolute addressing (locator and/or identi�er): The absolute

address of the object to be accessed is known, whether locator (e.g., IP

addressing) or identi�er (e.g., [90]).

� Indirect addressing (locator and/or identi�er) represents the in-

direction style addressing, where the absolute address of the object is

unknown, but an alternative address (pointer) is used for indirect access.

Locator-to-locator indirection (e.g., [27]), and identi�er-to-locator indirec-

tion (e.g., [29]) are some �avors of indirect addressing.

� Associative addressing (locator and/or identi�er) is analogous to in-

tentional addressing, in which the sought object's address is unknown, but

some of its attributes are known and are employed for addressing. Dis-

tributed searching, whether in the locator space (e.g., [89]) or the identi�er

space (e.g., [92]), is generally utilized to locate the objects of interest.

� Group addressing (locator and/or identi�er) involves addressing a group

of locations (e.g., geocast and multicast addressing), or a group of objects.

Addressing a group of objects is equivalent to addressing a group object

type (to be discussed shortly).

80

Chapter 4. Towards a Taxonomy of Inter-network Architectures

� K-preference addressing (locator and/or identi�er): is similar to group

addressing except that k elements of the group are addressed instead of

the whole group. Anycast addressing, for example, is a special case of this

mode in which k = 1 and the preference is `any' (e.g., IP anycast, [34]).

• Transfer/Delivery Functions: Two properties of the delivery function are

essential to this taxonomy, while several others may be deduced from other

properties of the information model (such as the addressing modes). First,

the information recognition describes whether the delivery is cognizant of in-

formation types. For example, delivery of continuous content objects (such as

multi-media stream) requires time-sensitive transport mechanisms to preserve

the real-time nature of the data. Second, the transfer multiplicity denotes the

multiplicities at both ends of the transfer pipe and can take the following forms

starting with the multiplicity of the information source:

� 1-1 is single source, single destination transfer similar to unicast delivery;

� 1-N is single source, multiple (or group) destination transfer similar to

multicast delivery; and

� N-1 represents multiple source delivery as is the case with swarming ar-

chitectures (e.g., Bittorrent and USwarm [92]);

� N-N is a multiple source, multiple destination delivery model. This model

is probably the most intriguing. An example of such model would be a

swarm-like information distribution to a multicast group.

The rest of the functions apply to primitive data objects in general. We simply

distinguish those and we leave their characterization for a future work. To start

with, Transformation Functions convert the data objects from one representa-

tion to another. Some examples include interstitial functions [89], and NAT boxes

that perform address/instruction/protocol translation, and transcoding. Decoding

81

Chapter 4. Towards a Taxonomy of Inter-network Architectures

Functions interpret the data objects and generate control vectors as a result. In-

terpretation of the data objects follows from their representation. On the current

Internet, for example, every router interprets the instruction in the same way and

generates a forwarding control vector that determines the next hop. Construction

Functions produce new objects and their values. Information fusion/integration,

aggregation, joining, splitting etc. are some examples of manufacturing functions.

Finally, Status Functions get/set the various status blocks within the network,

whether those involve internal network state or operation status.

Group Data Objects - A group data object is a collection of primitive objects

that generally share some properties such as their type or their access control/pol-

icy. The constituent elements of the group belong to the same address space. While

the group as a whole is an addressable entity, its constituent elements might not

be individually addressable. Elements are identi�ed by a combination of the group

object identi�er and the element identi�er within the group. Group addressing is

thus required for group object access. One example of a group object on the current

Internet is the multicast group. Additional functions that apply to group data ob-

jects include: creating the group object, adding elements (group joining), removing

elements (group leaving), and removing the group object.

Complex Data Objects - Complex data objects are simply data structures that

the architecture makes explicit. It is intuitive that such complex data structures will

emerge in the future, but it is hard at this stage to anticipate their properties. One

may envision an explicit distributed stack data structure for example that is tailored

to some architecture with an explicit push/pop usage model.

The third and �nal de�ning element of the information model is the control struc-

ture which de�nes the underlying control to support the information model. Almost

every aspect of the information model discussed so far requires its dedicated control

protocols and algorithms. For example, control for mapping characterizes the control

82

Chapter 4. Towards a Taxonomy of Inter-network Architectures

required for mapping from identi�er/locator spaces to location, and for maintaining

the pointers. Control for data access de�nes the control to support the address-

ing model and modes, etc. Clearly, such control structures (and others) represent

a signi�cant body of the networking research, where each aspect stands alone as a

research topic by itself. Consequently, characterizing the control structure is beyond

the scope of this dissertation and is left for a future work.

4.2.3 Towards a complete taxonomy

Our approach towards a complete network architecture taxonomy is syntactically

de�ned (using a BNF metasyntax) in Table 4.1. We have decided to represent the

taxonomy textually rather than graphically since the textual representation is clear

and compact. We clarify the following notation: `,' means concatenation; (x, y)

means grouping in which terms x, and y are separated by any whitespace character;

{x} means a set of elements of x; < x > means term x is left unspeci�ed; and [x]

means optional term.

network_arch := (`ARCH', id, `begin', substrate_struct, info_model,

`end')

substrate_struct := (`SUB_STRUCT', `begin', topology, {component},

{interconnection}, `end')

topology := (top_struct, top_composition), �;�

component := ([id], component_type, dispersal_factor), �;�

interconnection := ([id], ic_type, ic_link), �;�

top_struct := �hierarchical" | ��at" | �special"

83

Chapter 4. Towards a Taxonomy of Inter-network Architectures

top_composition := �controlled_overlap" | �integration" | �direct_peering"

component_type := �SE" | �ME" | �CE" | �PE" | �IPE" | �DPE" | �SWE"

dispersal_factor := �1" | �k" | �Z"

ic_type := �PE-PE" | �PE-SE"

ic_link := �dedicated" | �meshed" | �switched"

id := character, {character | digit | “_”}

info_model := (`INFO', `begin', addr_struct, {data_type},

<control_struct>, `end')

addr_struct := (`ADDR_STRUCT', `begin', loc_space, id_space,

both_spaces, `end')

data_type := (`DATA', `begin', data_class, {function}, `end')

loc_space := (`LOC_SPACE', space_structure, addr_scope), �;�

id_space := (`ID_SPACE', space_structure, addr_scope), �;�

both_spaces := (`BOTH_SPACES', space_correlation), �;�

data_class := (class_type, {data_object})

function := (binding_fcn | access_fcn | transfer_fcn) |

search_fcn), �;�

space_structure := �hierarchical_addr" | ��at_addr" | �special"

addr_scope := �local_scope" | �global_scope" | �partial_scope"

space_correlation := �independent" | �partitioned" | �embedded" | �overlap"

class_type := (�primitive" | �group" | �complex"), �:"

data_object := (�locator" | �identi�er" | �instruction" | �data_unit" |

�stream" | �status_block" | �RIBS" | �TACO" |

group_object | complex_object, object_scope), �;�

84

Chapter 4. Towards a Taxonomy of Inter-network Architectures

binding_fcn := (�FN_BINDING", {assign_mode})

access_fcn := (�FN_ACCESS", access_type, access_paradigm,

{access_mode}, {addressing_mode})

transfer_fcn := (�FN_TRANSFER", info_cognizant,

{s2d_multiplicity})

group_object := `group_', id

complex_object := `complex_', id

object_scope := addr_scope

assign_mode := �direct-value" | �processed-value" | �multiple-value" |

�shared-value"

access_type := {class_type}

access_paradigm := �synchronous" | �asynchronous"

access_mode := �read" | �write" | �read-modify-write"

addressing_mode := �direct_locator" | �direct_identi�er" |

�indirect_locator" | �indirect_identi�er" |

�associative_locator" | `associative_identi�er" |

�group_locator" | �group_identi�er" | �k-preference"

info_cognizant := {class_type}

s2d_multiplicity := �1-1" | �1-N" | �N-1" | �N-N"

Table 4.1: A BNF syntax for taxonomical speci�cation of network architectures.

4.3 Applying the taxonomy

To illustrate the applicability of our taxonomy in terms of its classi�cation powers, we

have applied it to a rather special network architecture, the Data Oriented Network

85

Chapter 4. Towards a Taxonomy of Inter-network Architectures

Architecture (DONA [34]) 9. The textual description is listed below. In the listing

below, `%' stands for comment, �NA� means the term is irrelevant.

ARCH DONA

begin

SUB_STRUCT begin

% -topology structure

hierarchical NA; %Internet ASes

% -components

RH IPE 1; %Resolution Handlers

ROUTER IPE 1; %traditional BGP routers

PROVIDER ME k; %content providers

CACHE CE k; %content caches, extended RH

% -interconnection structure

PRVIDERS ME-ME meshed;

%exploits hierarchical topology

RH_RH PE-PE meshed;

end

INFO_MODEL begin

ADDR_STRUCT begin

% -addressing structure

LOC_SPACE hierarchical_addr global_scope;

%IP addressable locations, but global

% addressing is not necessary

ID_SPACE flat_addr global_scope;

%HIP style identification

BOTH_SPACES independent;

9DONA's description is based on our understanding of the architecture, which may well
be incomplete.

86

Chapter 4. Towards a Taxonomy of Inter-network Architectures

end %ADDR_STRUCT end

DATA begin

% -data type(s)

primitive:

locator global; %IP, or maybe src route

identifier global;% name is (P:L) tuple

instruction global; %find,lookup packets

data_unit global; stream global;

RIBS global; % datum-metadata, service

%e2e type intelligence

% -functions

FN_BINDING direct-value;

%REGISTER(.) func

FN_ACCESS primitive:group:

synchronous

direct_locator direct_identifier

k-preference; %anycast FIND(.) func

FN_TRANSFER NA 1-1 1-N; % for multicast

% FIND required

end %DATA

end %INFO end

end

A signi�cant amount of knowledge about the architecture is conveyed by simply

observing such a compact taxonomical representation. Additionally, architectures

are easily compared along their convergence and divergence points by observing their

respective representations side by side. For example, it easy to notice the signi�cant

similarity, from our taxonomy point of view, between DONA and TRIAD [88] by

87

Chapter 4. Towards a Taxonomy of Inter-network Architectures

representing the latter. Aside from the di�erences in terms of the control structure

and name semantics which we do not consider in the taxonomy, their main other

di�erence is the identi�er space structure.

4.4 Related Work

The major di�erentiator of our work is its generality in understanding networks at

the architectural level rather than being con�ned to the communication/switching

properties, or to the computational properties, or to particular scoped network archi-

tectures that focus on naming, or routing, or content delivery. This section overviews

the related work. To start with, some recent work has focused on creating a tax-

onomy for overlay (or virtualized) networks, relative to the current Internet. Clark

et. al [128], presents a taxonomy of overlays that helps thinking about their mo-

tivations and their implications. Augusto [129] classi�es networks based on their

application-speci�c or purpose-speci�c nature. Moreover, [130] presents a simple

taxonomy of Network Computing (NC) systems (or overlays) based on their appli-

cations, platforms, and management. Additionally, classifying a particular type of

overlay, the Content Delivery Networks (CDN), has been the subject of some recent

work [131, 132]. Again, while all this work is related (and complementary) to ours,

our work addresses the general architecture classi�cation problem.

Other recent work has focused on modeling and reasoning about the communi-

cation aspects (mainly switching and binding properties) of networks [24, 22]. Such

network modeling work is complementary to ours in trying to better understand and

formally reason about the network architecture space.

Classifying programmable networks has also been addressed in the literature [86,

87]. Reference [86] provides a generalized model for programmable networks that

explicitly includes a computational model relevant to such networking environments.

88

Chapter 4. Towards a Taxonomy of Inter-network Architectures

In the same way, our general service model perspective acknowledges a computational

model as a building block for modern network architectures.

4.5 Discussion: Value and Limitations

The main contribution of our work is a taxonomy that helps organizing and thinking

about the architectural space. The taxonomy is based on a bottom up character-

ization of a network starting with the underlying physical substrate (the topology,

components, and their interconnections) and ending with the information model (the

addressing structure, the data objects and the operations allowed on them, and the

control structure). In terms of value, in addition to o�ering a comprehensive overview

of the set of architectural possibilities as well as a tutorial for introduction to the �eld,

our taxonomy helps organizing and thinking about the architecture space beyond

the communication model (switching/delivery characteristics of networks) which has

been the major approach adopted in the literature for taxonomizing architecture

(as we have seen with connection-oriented vs connectionless models). The latter

approach has weak discriminatory power and hence fails to distinguish the di�er-

ent (and particularly modern) architectures as to their information structures. Our

taxonomy additionally helps in highlighting gaps in the design space for exploring

new contributions to the �eld by identifying unexplored research areas. Examples

of some gaps that were highlighted include the ISA support for binding models and

addressing modes, the N-N delivery, and address space correlation. Moreover, the

descriptive nature of our taxonomy helps in comparing modern network architectures

along their convergence and divergence points. Finally, the taxonomy helps set the

stage to for attempting to answer the question of whether intelligence in the network

is useful, and what is the minimal set of functionality that could be part of an archi-

tecture while maintaining the elegance of end-to-end design. In this regard, we lack

89

Chapter 4. Towards a Taxonomy of Inter-network Architectures

the expertise necessary to take any position in trying to answer those questions.

In terms of its limitations, the chapter in its current form falls short of providing

tangible outcomes beyond the descriptive one. Additionally, by no means do we claim

that our taxonomy is complete. The taxonomy does not provide characterizations for

the control structure, for security in general, and for the timeliness of information.

Each of these missing structures spans multiple aspects of the information model,

and their treatment is left for a separate work due to lack of space. Despite those

limitations at this point, which we plan to address in a future work, we believe that

this chapter is helpful to the community.

4.6 Conclusion

In chapters 2 and 4, we have seen that while the communication structure is necessary

for de�ning and representing a network architecture, it is not su�cient. Information

and computation structures are building blocks that need to be properly understood

within modern network architectures. This chapter presented a classi�cation model

that is descriptive in nature and that helps in framing the solution space, and in

�nding similarities and di�erences among architectural designs. We would like to note

that an initial version of this chapter appeared in [133]. Chapter 5 presents a design

methodology for formally describing and reasoning about network architectures and

architectural styles. The framework enables researchers to better represent, analyze,

reason about, and infer important properties about their architectures.

90

Chapter 5

Towards Formalizing Network

Architectural Descriptions

5.1 Introduction

Despite the rich literature on network architecture and communication system design,

the current practice of describing architectures remains informal and idiosyncratic.

This was caused by the evolution of a semantically rich terminology that has been

adopted by network architects over time. The terminology, despite being informal,

reveals a lot of architectural information and has so far enabled e�cient communi-

cation between architects. This scenario is very similar to the evolution of software

architecture modeling in the context of software engineering [20]. This state of a�airs

has however, led to the overloading of architectural terms, and to the emergence of

a large body of network architecture proposals with no clear understanding of their

cross similarities, compatibility points, their unique properties, and architectural

performance and soundness.

Several models for communication systems have been recently proposed, some of

91

Chapter 5. Towards Formalizing Network Architectural Descriptions

which are focused on particular communication aspects such as binding [21, 22] or

routing [23]. Others [24, 25] are more general, and concern themselves with multiple

communication aspects such as forwarding, naming, addressing. It is important to

notice however, that the formal modeling and representation of network architec-

tures is fundamentally di�erent from that of communication systems. In fact, while

the communication structure is necessary for de�ning and representing a network

architecture, it is not su�cient. In addition to the communication structure, in-

formation and computation structures are building blocks that need to be properly

understood within modern network architectures. Communication systems tend to

share the same set of elements and are generally concerned with switching properties

of networks and their associated communication and control primitives. On the other

hand, network architectural descriptions are concerned with high-level architectural

abstractions, their interactions, their structural and behavioral properties, and the

constraints and invariants that de�ne each architecture.

Towards formalizing network architectural descriptions, we utilize concepts rele-

vant to architectural style modeling. An architectural style 1 is a family of network

architectures that share a common representation vocabulary. Hence, while archi-

tectural instances specializing a particular style may vary in their particulars, their

overall structure remains the same and obey the general style constraints. There

are signi�cant advantages associated with architectural style design. Those include

a better overall system understandability by de�ning a precise common design vo-

cabulary, the availability of design re-use among all instances of a class, architectural

interoperability, and specialized analysis of a class of architectures by constraining

the design space [55]. This chapter presents a design methodology for formally de-

scribing and reasoning about network architectures and architectural styles. The

methodology is demonstrated by detailing a formal model for the FARA [30] fam-

1Architecture style (or pattern) is a term commonly used in the software engineering
�eld [20].

92

Chapter 5. Towards Formalizing Network Architectural Descriptions

ily of network architectures. Our work provides a framework for network architects

to formally group various architectures into a set of styles based on their common

structural and behavioral characteristics, enabling researchers to better represent,

analyze, reason about, and infer their important properties.

The rest of the chapter is organized as follows: Section 5.2 presents the necessary

background related to architectural styles and to the language Alloy. Alloy is a

simple declarative language based on relations and �rst-order predicate logic and is

the language that we shall use throughout the discussion for formal modeling and

veri�cation. Section 5.3 details our approach through a case study of the FARA [30]

class of network architectures. Section 5.4 then discusses the related work. Finally,

we present a discussion of our approach and our current and future work towards

formalizing network architectural descriptions in section 5.5, before concluding in

sections 5.6.

5.2 Background

5.2.1 Architectural Styles: What and Why?

Software architectures are usually viewed as a set of interconnected elements that

de�ne the structure of a system. The elements are mainly components (computa-

tional and storage elements) and connectors (interactions among the components).

For example, in a client-server architecture description, one might model the client

and server elements as components and an RPC communication protocol between

them as a connector. An architectural style represents a family of architectures that

share a common structural organization. Despite the di�erent representations of a

style [51, 54, 56, 20], it is typically composed of component/connector types, and a

collection of constraints on how the types are combined. Associated with a style are

93

Chapter 5. Towards Formalizing Network Architectural Descriptions

a design vocabulary, an underlying computational model, and invariants [20].

Styles may be treated as stand-alone structures and may be related through inher-

itance, or composition. Inheritance, an extremely attractive property for describing

architectural styles is the ability of a sub-style to extend one or more super-styles in-

heriting their structural properties, vocabulary, and constraints/invariants. Compo-

sition is another form relating multiple styles. The composed style is an aggregation

of the vocabulary, structure, and constraints of the its constituent styles. Gener-

ally, the composed style introduces a new structure to relate the constituent styles

together.

The advantages of modeling architectural styles are several (check [55]). First,

given the abstraction level of an architectural style, it is generally hard to verify

properties pertaining to the style or even to implement the style itself. A compact

model then allows the veri�cation of a style's structural and behavioral properties

over constrained instance sets without having to actually implement the style. This

is an important step when applied prior to the actual instantiation of a complete

architecture from the style. In other words, a formal model helps the transition

from abstract style design to actual instantiations. Additionally, claims of compat-

ible network architectures, whether those pertaining to general architectures, or to

scoped architectures (such as naming, addressing, or routing) may then be logically

veri�ed. Finally, a formal model helps to classify the literature into related styles

and architectures, and to succinctly illuminate the relations between them, whatever

forms those may end up taking.

Modeling the structural properties of software architectural styles has generally

been associated with the component/connector abstractions, and has utilized archi-

tectural description languages (ADLs) [51, 54, 55, 56] for formal description. We be-

lieve that traditional component/connector abstractions associated with style mod-

94

Chapter 5. Towards Formalizing Network Architectural Descriptions

eling do not provide su�cient abstractions for network architects to work with 2.

Therefore, we simply borrow the notion of �architectural style� without constraining

ourselves to the component, connector, port, and role abstractions. Additionally,

we choose to use the Alloy modeling language [134] rather than ADLs based on

Alloy's simplicity, its expressive power and ability to describe structural and behav-

ioral aspects of an architectural style, and its ability to model desired speci�cation

properties that �t our needs (invariants, inheritance, and composition). Despite

Alloy's scalability concerns, we have found it useful to formally describe network

architectures/styles because of the presumably small scope of abstractions involved

in describing network architectural styles.

5.2.2 Alloy

Architectural design revolves around exploring the right abstractions, which are sim-

ple ideas expressed in some primitive form. Designing those abstractions requires

a formal speci�cation language that is intuitive, expressive, and at the same time

avoids the intricacies of coding. Alloy [134] is one such language that we use to

write our formalization of the FARA style [30] (to be detailed shortly). Alloy is

a declarative language based on relations and �rst-order predicate logic. A brief

overview of Alloy's logic, language, and analysis follows. A complete reference is

located elsewhere [134].

The Logic - At the core of Alloy is a relational logic that combines relational

algebra with �rst-order predicate logic. Structures are composed of atoms and rela-

tions. Atoms represent typed, immutable structures that are uninterpreted and can

be related through relations. A relation is a set of tuples each being an atom and

can have arbitrary arity. Relations are combined with operators to form expressions.

2The component/connector abstractions might be su�cient when modeling communi-
cation systems, as may be deduced from the axiomatic model in [24].

95

Chapter 5. Towards Formalizing Network Architectural Descriptions

Set operators Relational operators Logical operators
+ for union → for product ! for negation
− for di�erence . for join && for conjunction
& for intersection ~ for transpose || for disjunction
in for subset ^ for transitive closure ⇒ for implication
= for equality * for re�exive-transitive closure , for alternative

⇔ for bi-implication

Table 5.1: Operators in Alloy.

Some of the most common operators in Alloy are tabulated in Table 5.1.

Constraints are formed of expressions and logical operators. Quanti�ed con-

straints take the form Q x : e|F , where F is a constraint over x, e is an expression

bounding x, and Q is a quanti�er that can take values all (universal), some (exis-

tential), no (no values), and lone (at most one value). For example, no x : e|F is

true when no x in e satis�es F . When Let is used as in Let a = b|F , every occurrence

of a in F is replaced by b.

Declarations in Alloy take the form relation-name : expression, where expression

is the bounding expression for the declared relation (as if : is replaced by in).

Bounding expressions can specify multiplicity markings, which can take values one

(exactly one), some (one or more), set (zero or more), or lone (at most one). For

example, r : Am → nB, where m and n are multiplicities, is a declaration saying

that relation r is constrained to map each element of set A to n elements of set B,

and each element of set B to m elements of set A.

The Language - In addition to the logic, Alloy provides some language con-

structs to help organize a model. A model in Alloy may consist of signatures (sig),

facts (fact), functions (fun), predicates (pred), and assertions (assert).

Signature: A signature, declared with sig, introduces a basic type along with

a collection of �elds, their types and restrictions over their values. A signature

can extend another signature inheriting its �elds and constraints. An abstract

signature has no elements except those belonging to its extensions. For example, if

96

Chapter 5. Towards Formalizing Network Architectural Descriptions

we write:

abstract sig A { abstract sig B {}

f: set B sig A1 extends A {}

}{--constraints go here} sig A2 extends A {}

one sig C{} --`one' means sig constrained to one element

we have declared three elements A, A1, and A2. Since A1 and A2 extend A, it follows

that A in A1 +A2. Additionally, because A is abstract, it follows that A = A1 +A2

and A1 and A2 are disjoint sets that partition A. A declares a �eld f of type B.

This is saying that for each element A, A.f is a set of type B, i.e., the relation f is

mapping from elements in A to elements in B.

Facts, Predicates, Functions, and Assertions: A fact is simply a constraint that

is assumed always to hold, and hence needs not be explicitly invoked. Facts usually

describe global model constraints. The facts and the signature constraints thus

constitute a complete set of structural constraints over the model.

A function, declared with fun, is a named reusable expression that can be invoked

within the model. A function takes zero or more arguments and returns either a

true/false or a relational value.

A predicate, declared with pred, is a named reusable constraint that can be

invoked. A predicate takes zero or more arguments.

An assertion, declared with assert, is a named constraint that is intended to

follow from the model's facts. Assertions take no arguments and are usually checked

by the Alloy Analyzer as discussed next.

The Analysis - The Alloy Analyzer (AA) [135] is an automated tool for an-

alyzing models written in Alloy. Two kinds of analysis are enabled by AA, based

on commands. The �rst is simulation (using run command) whereby the validity

of a predicate or function is veri�ed by showing a snapshot of the system for which

97

Chapter 5. Towards Formalizing Network Architectural Descriptions

the predicate is valid. The second analysis technique is checking (using check com-

mand), whereby an assertion is tested and AA tries to �nd a counterexample. This

requires a �nite scope, bounding the number of atom instances within the universe,

within which AA looks for solutions. Given the undecidability of predicate logic,

a �nite scope is necessary to bound the space within which AA searches. Finding

an instance to a predicate or a counterexample to an assertion guarantees the con-

sistency of the constraint. However, failure to �nd such instance simply makes it

inconsistent within the scope. The intuition is that subtle design bugs are likely to

be detected even in small scopes.

5.3 Case Study

To motivate the usefulness of formal architectural modeling, and the expressiveness

of the Alloy language, we represent the FARA[30] family of network architectures

(or the FARA architectural style) using a formal model. Brie�y, FARA [30] is an

abstract network model in which the current Internet architecture is generalized and

remodeled to enable clean separation of endpoint names from network addresses.

Modeling FARA is an illustrative exercise in architectural abstraction, whereby a

basis set of structural and behavioral components, assumptions, and constraints (in-

variants) that pertain to a desired class of architectures are extracted at the �rst

stage of design to describe the general architectural model. Instantiations of the

general model may then specialize it, obeying the general design assumptions and

invariants. The authors of FARA had to implement a prototype of a FARA instan-

tiation, M-FARA [30], in order to validate FARA's usefulness, and self-consistency.

One of the goals of this section is to show how a formal model can be expressive and

e�cient in validating architectural design decisions, hoping to replace �validation

through implementation� by �validation through formal modeling�. Aside from pro-

98

Chapter 5. Towards Formalizing Network Architectural Descriptions

viding a conceptual framework for reasoning about a class of architectures, a formal

model of an architectural style (such as FARA) transcends into a formal framework

over which essential architectural design decisions can be modeled and veri�ed.

5.3.1 FARA Overview

The sought goals of FARA include cleanly decoupling the application identity from

network address, avoiding a new global namespace, and providing security with a

range of assurance levels. An overview of the basic components, assumptions, and

functionality of the FARA style follows. More details are provided within the for-

mal model in the next section. The FARA abstraction recognizes communication

among pairs of entities via logical links referred to as associations on top of a com-

munication substrate. An entity in FARA is the end-point of communication and

smallest unit that can be mobile, such as a process, a thread, or a cluster of devices.

An association is a logical communication link between a pair of entities represent-

ing persistent communication state. Entities maintain local association state and

may have multiple concurrent associations. A packet belongs to one association and

carries an association ID (AID) that enables the receiving entity to correctly demul-

tiplex the packet to its association. As to the communication substrate, it represents

underlying infrastructure that is able to deliver packets on behalf of associations.

Addressing, routing, forwarding are mechanisms employed by the substrate and are

left unspeci�ed by FARA. However, FARA assumes connectionless point-to-point

communication between entities. An entity supplies the substrate with a packet

and header that contains a destination Forwarding Directive (FD). The latter con-

tains enough information that the substrate can use to deliver the packet all the

way to the destination entity that contains the association. The clear separation

between entities and associations on one hand, and the communication substrate on

the other hand is visualized in FARA by a �red line� horizontally separating the two

99

Chapter 5. Towards Formalizing Network Architectural Descriptions

Listing 1 Listing 2
abstract sig AID{}

abstract sig Entity{

associations: Entity->Time,

state: associations->one AID,

}{

no (this & associations.univ)

all t:Time, aid:AID |

lone (state.aid).t

#state = #associations

}

abstract sig RIString {}

abstract sig FD{}

abstract sig Packet{

dstFD: FD,

replyFD: FD

}

abstract sig DPacket extends Packet{

srcAID: AID,

dstAID: AID

}

abstract sig SPacket extends Packet{

ri: RIString

}

(entities/associations above the line).

5.3.2 FARA model

We hereby lay out a formal description of FARA's basic structural and behavioral

components (static and dynamic properties) along with the constraints attached to

the components and to the overall architectural style. The description accounts for

dynamic behavior by explicitly including logical time steps to model evolution over

time. Note however that analyzing the static properties of the architecture, simply

requires dealing with a snapshot of the system at some timestep t, i.e., constraining

the analysis scope of the Time signature to 1 instance.

Structural aspects

A formal de�nition of the entity and the association is given in Listing 1. An

Entity is an abstract element that can have multiple concurrent associations. An

association is a relation between two entities over time. Each entity maintains local

immutable state per association, the association ID (AID). A particular association

100

Chapter 5. Towards Formalizing Network Architectural Descriptions

has exactly one AID, and AIDs are reusable over time. Several constraints are

attached to the entity de�nition: the �rst constraint eliminates associations that

connect an entity to itself for simplicity. The second constraint is one of FARA's

key assumptions, and it states that no two associations of an entity can have the

same AID at any given time. The third structural consistency constraint forces each

association to have state. An entity does not de�ne a universal name since FARA

does not require a global namespace. Our approach to modeling an association

as part of the entity's signature versus modeling it as a separate semantic element

renders the dynamic constraints simpler and clearer.

Listing 2 de�nes the Forwarding Directive (FD) and the packet abstractions. The

FD encapsulates enough topological information to allow the substrate to deliver a

packet to its intended destination. A generic packet, Packet, says nothing about

the identity of the entities, and must indicate a destination forwarding directive

(dstFD) that will be used by the communication substrate (to be de�ned shortly)

to deliver the packet to a destination entity. A packet might also include a reply

FD (replyFD) which the destination entity utilizes on the reverse path. FARA

distinguishes between a packet that belongs to an association, a DPacket, and a

setup packet, SPacket, that bootstraps an association. DPacket must specify the

association state at both ends of an association, srcAID and dstAID, allowing the

destination entity to correctly demultiplex the packet to its association. SPacket

includes a rendezvous information string, ri of type RIString, and does not include

association state since the association is being bootstrapped.

Listing 3 de�nes the communication substrate component, CommSubstrate,

representing a single global medium (the underlying operating systems and network)

that is able to deliver packets on behalf of associations. The substrate assumes

a basic connectionless delivery, delivery, without making any assumptions about

the delivery function itself. A particular FARA instance, as we shall see later, will

101

Chapter 5. Towards Formalizing Network Architectural Descriptions

provide the respective addressing, routing and forwarding mechanisms required for

successful packet delivery. Supplied with an FD, the substrate delivers a packet all

the way to its destination entity. The point-to-point assumption in FARA is modeled

as part of the CommSubstrate constraints specifying that an FD can lead to a single

entity at any time. So far, the model de�nes entities and associations independently

of the mechanisms employed by the substrate for packet delivery. This acknowledges

FARA's �red line� logical separation, whereby entities and associations operate above

the line while the communication substrate operates below the line. Additionally,

as a key assumption of FARA, no global address space is de�ned, with the intent of

supporting a multitude of forwarding mechanisms.

Global style constraints, or simply invariants, are speci�ed in Listing 4. The �rst

consistency invariant constrains the association to be symmetric. Hence, entity A

has an association with entity B if and only if the latter has an association with

entity A. The second constraint eliminates dangling association states.

Having formally described the style, we may now proceed to validate some of

its properties, speci�ed as predicates and checked through the AA. For example,

to check whether an entity might have overlapping state for distinct associations

at some time, we de�ne and run the predicate in Listing 5. AA does not �nd any

instance of overlapping state within the simulated scope (7 Entity, Packet, FD, etc.;

15 AID; and 20 Time instances). This guarantees the correctness of the above claim

only within the speci�ed �nite scope, and not in general. However, if inconsistent

Listing 3 Listing 4
abstract one sig CommSubstrate{

delivery: FD-> Entity -> Time

}{

all t:Time | delivery.t in

FD -> one Entity

}

fact Invariants{

all t:Time | associations.t

= ~(associations.t)

Time.(Entity.(Entity.state))

= AID

}

102

Chapter 5. Towards Formalizing Network Architectural Descriptions

Listing 5
pred showOverlapState {

all t:Time |

some disj e1,e2,e3:Entity

|let w12=getAssociation[e1,e2,t],

w13=getAssociation[e1,e3,t]

|e1.w12=e1.w13 and some w12

}

run showOverlapState for 7

but 15 AID, 20 Time

--Returns the entity AIDs on both

--sides of the association

fun getAssociation

[fst,snd:Entity,t:Time]:Entity->AID

{

fst -> t.(snd.(fst.state)) +

snd -> t.(fst.(snd.state))

}

models can indeed be found, it is likely to �nd those within the speci�ed scope.

Functional aspects

This section shows how functional aspects are formally speci�ed at a high level of

abstraction, leaving the details for architectural instances to specify.

The �rst function speci�ed in FARA deals with the creation of associations. To

model the system's dynamic behavior as a response to establishing and tearing down

associations, we use Alloy traces to capture state transitions over time. Initially, at

time t0, there are no associations. As presented in Listing 6, we consider two events

that may change the system's state, the establishment or the tearing down of an

association. The time instants t1 and t2 describe the state of the system before and

after an operation is performed, respectively.

Given the possible state transitions of the system, we can form those into an

execution trace by modeling the latter as a fact (Listing 7). Assertions may then be

checked against the trace. An invalid assertion will demonstrate a trace showing how

the assertion was violated. The Alloy analyzer may be used to show some execution

trace of the system. For example, running the showSomeState assertion using

AA, we obtain a counterexample showing a sample trace which, when projected over

time, clearly demonstrates the state change resulting from creating or tearing down

103

Chapter 5. Towards Formalizing Network Architectural Descriptions

Listing 6
pred init[t:Time]{

no associations.t

}

pred establishAssociation

[t1,t2:Time, fst,snd: Entity]{

--Preconditions

---association does not exist

let aset = {fst->snd+snd->fst}

| no (aset & associations.t1)

--Postconditions

--no association change

let aset = {fst->snd+snd->fst} |

{

noAssociationStateChange[t1,t2]

associations.t2 =

associations.t1 + aset

}

}

pred teardownAssociation

[t1,t2:Time, fst,snd: Entity]{

--association exists

let aset={fst->snd+snd->fst}|

some (aset & associations.t1)

--remove it

let aset={fst->snd+snd->fst}|

associations.t2 =

associations.t1 - aset

}

--associations @t1 valid @t2

pred noAssociationStateChange

[t1,t2: Time] {

all e1,e2:Entity |

getAssociation[e1,e2,t1]

in getAssociation[e1,e2,t2]

}

associations.

M-FARA: an Instantiation

M-FARA [30] is an instantiation of FARA that speci�es its own addressing, forward-

ing, and FD management mechanisms. M-FARA is not a complete architecture, but

it is speci�c enough to explore two points in the FARA design space: 1) location/i-

Listing 7
fact Traces {

init [TO/first[]]

all t:Time-TO/last[] |

let t' = TO/next[t] |

some disj e1,e2:Entity|

establishAssociation[t,t',e1,e2]

or teardownAssociation[t,t',e1,e2]

}

assert showSomeState{

no e:Entity |

#e.associations >=1

}

check showSomeState for 4

but 7 AID, 7 Time,

0 RIString, 0 Packet

104

Chapter 5. Towards Formalizing Network Architectural Descriptions

dentity separation, and 2) mobility. This section models M-FARA, particularly its

addressing and forwarding mechanisms, using Alloy to demonstrate style specializa-

tion.

First, a new module for M-FARA is created importing the FARA module just

de�ned. Several new addressing and topological abstractions are introduced by the

M-FARA module, as shown in Listing 8. M-FARA assumes multiple addressing

realms, Domains, each having a space of unique addresses. A subFD represents a

set of addresses that determine a local path within a domain. A domain has a static

address space, space, and a dynamic forwarding mechanism, forwarding. The

latter delivers a packet that is destined to some subFD to the entity that is bound

to the respective subFD. Moreover, the topology assumed in M-FARA consists of

Listing 8
sig subFD{}

abstract sig Domain {

space: set subFD,

forwarding:space->Entity->Time

}{

--point2point forwarding

all t:Time | forwarding.t in

subFD -> lone Entity

}

--*No global address space*--

one sig MF_CommSubstrate

extends CommSubstrate{

domains: set Domain,

}

one sig Core extends Domain {}

sig PrivDomain extends Domain{

upspace: some subFD,

downspace: set subFD

}{

upspace in space

downspace in space

no (upspace & downspace)

-- up forwarding is implicit

no ((forwarding.Time).Entity)

& upspace

}

a two-level domain hierarchy with a single distinguished central �Core� domain

to which the private domains, PrivDomains, connect (Listing 8). The extended

communication substrate,MF_CommSubstrate, may thus be viewed as the set of

all domains including the core. Part of a private domain's space, upspace, is used to

reach the �core� domain. Similarly, part of the �core� domain's space, downspace, is

used by the core to reach the private domains. In this model, it is implicitly assumed

105

Chapter 5. Towards Formalizing Network Architectural Descriptions

Listing 9
sig MF_FD extends FD {

up: lone subFD,

down: one subFD

}

sig MF_Entity extends Entity{

--canonical route

fddown: subFD -> Time,

}

that the forwarding function of every domain delivers subFDs belonging to upspace

to the core. On the other hand, forwarding from the core down to the domain is

explicitly speci�ed in the domain's forwarding function (hence subFDs belonging to

downspace originate at the �core�).

Listing 9 de�nes the complete end-to-end FD in M-FARA, MF_FD. It consists

of a tuple (FDup, FDdown) which the substrate can use to forward a packet from

the source up to the �core� (up), and then from the �core� down to the destination

entity (down). Regarding the entity abstraction, MF_Entity, M-FARA extends

the entity de�nition with the local subFD to which the entity is bound, fddown

and on which it is reachable. M-FARA does not specify whether an entity may be

multi-homed (simultaneously bound to multiple domains) or not and our model does

not restrict that either.

Some general structural constraints apply to the model and are expressed in

Listing 10. No dangling subFDs or domains are allowed. Additionally, a subFD can

belong to a single domain's address space. Finally, the forwarding operation is local

to the domain, i.e., an entry in the domain's forwarding table means that the entity

Listing 10
fact Invariants{

--no dangling subFDs

Domain.space = subFD

--no Dangling Domains

MF_CommSubstrate.domains

= Domain

--space is private

all sf: subFD | lone space.sf

--Forwarding is local to a domain

all t:Time, d:Domain |

let fwd = d.forwarding.t

| all sfd:subFD, e:MF_Entity

| {sfd ->e in fwd

=> sfd->t in e.fddown}

}

106

Chapter 5. Towards Formalizing Network Architectural Descriptions

is bound to the domain.

Modeling mobility in M-FARA is another interesting exercise, which we do not

address in this chapter. This task requires extending the FARA dynamical behavior,

which so far includes establishing and tearing down associations, with a new mobility

operation.

Abstract style properties

We have so far modeled an architectural style, FARA, and a particular instantiation

of the style, M-FARA. The FARA style advertises a global theme of separating the

entity from the communication substrate, and a set of style goals and properties.

Despite the fact that the style leaves much of the functional details unspeci�ed (such

as addressing and forwarding mechanisms in our example), it is still essential for the

style architect to model super-properties. A super-property is a property of the style

that is expressed in terms of abstract unspeci�ed functionality. In other words, the

architect needs to con�rm that any instantiation of the style that speci�es the missing

functionality will do that in such a way that the super-properties are respected. In

object-oriented programming, such design methodology is known as polymorphism.

This section demonstrates a process for modeling style super-properties and checking

those against the instantiation, by referring back to the FARA style and the M-FARA

instantiation models.

As a �rst step, the style model includes the super-properties as facts, predicates,

or assertions expressed in terms of unspeci�ed functionality. The snippet in Listing

11 augments the previous FARA model with two new invariants (super-properties),

expressed in Alloy as facts. The �rst fact is a �below the line� property. It states

that delivery, which we have previously de�ned as part of the CommSubstrate in

FARA, must be supported by the substrate's addressing and forwarding mechanisms.

107

Chapter 5. Towards Formalizing Network Architectural Descriptions

Listing 11 Listing 12
--Step1: super-property 1

fact {

all t:Time |

let delv=CommSubstrate.delivery.t

| all fd:FD, e:Entity

| {fd->e in delv =>

this/isDeliverable[fd,e,t]}

}

--super-property 2

fact {

all t:Time, e:Entity |

let ea = e.associations.t

|some fd:FD |

this/ise2eDeliverable[e,ea,fd,t]

}

--*To be specified by Instance

pred isDeliverable

[fd:FD, e:Entity, t:Time]{}

pred ise2eDeliverable

[src,dst:Entity,dstfd:FD,t:Time] {}

--Step 2

--Replicate facts from FARA

...

--*overriden function

pred isDeliverable

[dst:FD,e:Entity,t:Time]{

let d_sfd=dst.down,

d_dom = (getDomain[d_sfd])

|d_sfd in d_dom.downspace and

(d_sfd->e in

d_dom.forwarding.t) }

--*overriden function

pred ise2eDeliverable

[src,dst:Entity,dstfd:FD,t:Time]{

some dstfd.up and

dstfd.up in

(getEntityAttachments[src,t].univ)

.upspace

this/isDeliverable [dstfd,dst,t]

}

In other words, if the substrate is able to deliver a message to an entity based on some

destination FD, then the substrate's forwarding mechanism must be able to deliver

to that entity, hence satisfying isDeliverable. Again, note that isDeliverable is left

unspeci�ed by the style (in step 1), and is to be implemented by an instantiating

architecture based on the forwarding mechanisms employed. The second fact is an

end-to-end property (�above the line�) stating that an association exists and is valid

only if packets are able to �ow over the association from source to destination. In

other words, there must exist some FD that satis�es ise2eDeliverable.

As a second step, the style instantiation extends the style model implement-

ing the unspeci�ed functionality. Super-properties are then enforced and checked

against the instantiation to verify that the desired style goals are satis�ed by all

instantiations. To illustrate this step, the M-FARA model is augmented with the

108

Chapter 5. Towards Formalizing Network Architectural Descriptions

Alloy snippet in Listing 12, overriding the abstract functionality, isDeliverable and

ise2eDeliverable 3.In M-FARA, isDeliverable or deliverability implies that: 1) some

packet may be forwarded from the �core� down to destination's domain, i.e., the

FDdown part of the destination FD should belong to the downspace of the entity's

current domain, and 2) the domain's forwarding function delivers to the entity given

FDdown. End-to-end deliverability, in turn, requires two valid paths: one from the

source entity's domain up to the core, and another from the �core" down to the

destination entity.

In the same fashion that facts about the style were replicated in the instantiation

above, assertions and predicates may also be replicated. It is straightforward to add

assertions that verify the facts introduced above. For example, assertions dealing

with mobility may easily be implemented.

Composition

Having already demonstrated inheritance and polymorphism in style modeling, we

proceed to de�ne and brie�y overview composition as a means for composing sep-

arately de�ned modules or styles and checking for their compatibility. Let Si|ni=1,

n > 1 be two or more styles, and let Pi, i = 1..n, be the global consistency con-

straints de�ned by Si. The new composed style is denoted by S = C(S1, .., Sn) and

contains the merged constraint set
⋃n
i=1 Pi. Sis are compatible styles iff the new

consistency constraint P = &&n
i=1Pi is satis�ed by S.

As an example of composition, assume that a global-hierarchical addressing style,

GHAR, is de�ned in which address spaces or domains are composed hierarchically (for

example through customer-provider or peering relationships) with a distinguished

core. The FARA style may then be composed with GHAR into a new style, say

3In Alloy, the super-properties have to be replicated to the M-FARA model since Alloy
does not directly support inheritance of a style or �module�.

109

Chapter 5. Towards Formalizing Network Architectural Descriptions

FARA-GH. An entity in FARA-GH extends the FARA entity and de�nes a global

address �eld that is inherently hierarchical. Interestingly, the new FARA-GH ar-

chitecture resembles the NIRA [99] routing architecture with the added conceptual

clarity and design space partitioning.

5.4 Related Work

There are two broad areas of related work. The �rst is concerned with network archi-

tecture and communication system modeling, while the second deals with software

system modeling.

Regarding network architecture modeling, the Internet architecture has been

thoroughly studied over the past decade. The design principles of the DARPA In-

ternet are clearly outlined in Clark's seminal paper [2]. The paper highlights the

connection between the intended goals of the DARPA Internet and design decisions

that govern its current operation. The paper was intended to illuminate the Inter-

net's design principles rather than to formally model the Internet architecture. The

same applies for other architectural design papers [47, 50].

A methodology for designing and assessing evolvable network architectures based

on invariants (or �xed points) is proposed in [48]. The authors highlight a useful point

which calls for considering invariants at an early design phase. However, they do not

provide a complete design methodology or formal framework for reasoning about

network architectures. Our formalization model inherently accounts for invariants

as a part of the complete architectural description, and hence provides the architect

with a clearer formal framework to work with invariants.

As to communication system modeling, we identify several relevant proposals that

we believe are complementary to our work. However, our work is again concerned

with modeling general architectural descriptions rather than switching properties of

110

Chapter 5. Towards Formalizing Network Architectural Descriptions

networks. Karsten et al. [24] have proposed a general axiomatic basis to consistently

model communication primitives such as forwarding, naming, and addressing for

better expressing architectural invariants and formally proving properties about node

reachability within any communication system.

Another relevant work is that proposed by Zave [21, 22]. In [22], the author uti-

lizes the Alloy modeling language to formally model identi�er binding schemes which

enables informed architectural design decisions for better supporting networking ser-

vices. A less general abstraction of the domain and the requirements on binding

composition to satisfy inter-operation was modeled by in [21].

The proposal MDCM [25] attempts to describe a wide variety of multi-domain,

multi-layer communication systems through a uni�ed model.

Regarding the modeling of software architectures, a lot of work has focused on

formally describing those using Architecture Description Languages (ADL) [51, 54,

55, 56]. Some of the common ADLs are the Acme ADL with the underlying �rst-

order logic [55], extended WRIGHT [54], process ADL with the underlying process

algebra [56], and π-ADL with the underlying π-calculus [57]. The Acme model in [55]

utilizes Alloy and is a very relevant work to ours. Style inheritance and composition

as well as veri�cation of structural properties and compatibility checking are concepts

demonstrated by the authors; however, their current model falls short of capturing

the behavioral aspects of the architectural style. Alternatively, the model in [56]

explicitly involves topology speci�cation (i.e. component/connector instances and

their interconnections) as part of the architectural style description, which we believe

is not an e�cient approach considering the level of abstraction at hand.

Finally, Alloy has been utilized within several modeling case studies that as de-

scribed on the Alloy website [135]. We mention here some of those that pertain to

networking and that were useful for this work. Khurshid [136] has used Alloy for

modeling and correcting the architecture of the Intentional Naming System (INS).

Jackson [135] has used it to model the Chord peer-to-peer lookup protocol. Some

111

Chapter 5. Towards Formalizing Network Architectural Descriptions

recent work by Narain [137] utilizes Alloy's model �nding techniques to �nd network

con�gurations that satisfy a set of input requirements expressed with predicate logic.

5.5 Discussion and Future Work

As previously stated, we have refrained from using the component/connector/inter-

face abstractions for modeling network architectural styles. By surveying the network

architecture literature, we have noticed that architects have di�erent approaches to

modeling abstractions. It is our belief that constraining them to component/con-

nector/interface abstractions limits the expressiveness of the model and hence the

innovation. It is additionally hard to anticipate whether and what modeling abstrac-

tions for networks will emerge in the future. The language we have utilized, Alloy,

is generic and �exible enough to allow the architect to represent whatever abstrac-

tions she �nds suitable. Despite the scalability concerns associated with constrained

instances in Alloy, which does not represent a major limitation to us considering the

high level of abstraction being modeled (and hence the presumable small instance

sets required), the problem is currently being addressed in the literature (such as

in [138]).

While this work has presented a �rst step towards formalizing network architec-

tures and architectural styles, several research challenges remain to be solved and

we address those as part of our current and future research. First, there needs to

be a consensus regarding the most imminent styles that span the network architec-

ture design space. Modern and future network architectures, as has been recently

acknowledged [3], are being equipped with more intelligence, generally introducing

information and computation structures that are manifested through increased in-

network processing and storage. Extracting a complete, and disjoint set of network

architectural styles may potentially frame the architectural problem and provide a

112

Chapter 5. Towards Formalizing Network Architectural Descriptions

formal framework for classifying, relating, and reasoning about architectures. To-

wards this end, we believe that the architecture taxonomy presented in chapter 4 is

a timely and essential contribution.

5.6 Conclusion

To conclude, this chapter has presented a methodology towards formally describ-

ing and modeling network architectures and architectural styles. Style inheritance,

polymorphism, and composition were demonstrated on the FARA class of network

architectures using the Alloy modeling language. Our work helps network architects

and researchers, whereby architects are able to formally represent and group various

architectural patterns into styles, while researchers are provided with a means to

better understand, analyze, and reason about network architectures. We would like

to note that an initial version of this chapter appeared in [139]. This chapter con-

cludes part I of the dissertation which has focused on general architectural design,

classi�cation, and modeling. Building on part I and speci�cally on our experiences

with the TNA architecture, part II proceeds to introduce naming and discovery in

networks, and to present two contributions in that vein.

113

Part II

Naming and Discovery

114

Chapter 6

Background on Naming and

Discovery

6.1 Introduction

Almost every networking application relies on discovery and naming/identi�cation

services. As we have seen in section 2.2, naming and discovery is an integral part of

a network architecture. This chapter de�nes and elaborates on the terms identi�er

and locator and de�nes identi�er-based discovery to set the stage for further investi-

gation of naming and discovery problems in later chapters. Confusion about naming

and addressing in communication networks (with the terms name, address, route,

identi�er etc.) dates almost three decades back. Shoch [140] constructed the general

de�nitions of the terms name, address, and route. Building on that, Saltzer in his

RFC [141] explains the confusion by shedding a di�erent and very helpful perspective

on the constructs of naming and addressing in data communication networks. He

argues that in order to distinguish names and addresses, it is helpful to distinguish

four di�erent kinds of objects: a service, a node, an attachment point, and a path.

115

Chapter 6. Background on Naming and Discovery

Any of the four kinds of objects may have a name where a name identi�es �what

you want�. On the other hand, the address of an object is merely a name of the

object it is bound to, hence the importance of the binding concept. For example, the

address of a node is the name of an attachment point to which the node is bound,

and the address of the attachment point is the name of a path to which the attach-

ment point is bound. The address then identi�es �where the object is�. The route

identi�es �how to get there�. Saltzer presents a clarifying example which we think is

instructive to review here: when trying to understand whether the IP address is a

name of the attachment point or a name of the node, confusion may arise. Consider

a node x having IP address x.y. The node changes its attachment point and keeps

the address x.y unchanged in the new attachment point by changing the forwarding

tables within the network. One may be tempted to think that the IP address is then

a name of the node since it remained unchanged across changes of the attachment

point. Notice however that by changing the routing tables within the network, what

has really happened is that the permanent name of the new attachment point has

changed. Hence the IP address is the name of the attachment point instead (which

in this case is the name of the node as well). There is a subtle di�erence when it

comes to changing the name versus changing the binding which generally confuses

the discussion. One needs to distinguish two types of bindings: the binding between

a name and the named object which is generally a long-term binding; and the bind-

ing of an object to another object to which it is bound. Saltzer leaves room for

interpretation when he seems to explain a long-term binding as one requiring change

in �more than one table�:

. . . The association of the name with the service is quite permanent, and

because of that permanence is not usually expressed in a single, easily

changed table.

. . . Changing tables super�cially appears to be what rebinding is all about,

116

Chapter 6. Background on Naming and Discovery

the need to change more than one table is the tip-o� that something

deeper is going on.

Chiappa [11] utilizes Saltzer's model to elaborates on the problems that arise from

coupling the attachment point name and the node name in the Internet TCP/IP

implementation (the IP address provides both names). Chiappa deviates from the

generic de�nition of �address� (as the name of some object to which something is

bound) to link it to a speci�c object which is the attachment point:

. the exact de�nition of "address", at least in an internetwork with

routers, ought to be . . . "the name of a network connection entity to which

the system of routers will deliver a packet".

Chiappa introduces the �endpoint� object which is the endpoint of communication in

the end-to-end TCP/IP architecture. He di�erentiates it from a node or host object

by recognizing that a mobile process on a host is a di�erent object than the host.

Building on Saltzer's de�nitions, we revisit the generic concepts of name and

address in information networks and we attempt at rede�ning those by �xing a

boundary between di�erent types of objects. Our goal is to further clarify the con-

cepts of naming and addressing in light of recent work on the topic, and to set up a

framework for thinking about naming and discovery that will help us investigate the

design space, and will set the stage for later chapters.

We use the graph abstraction to model a network where a node is an abstract

construct. We assume the existence of a logical plane that divides each node 1 (and

hence the whole network) into two spaces: an upper space in which entities (e.g.,

endpoints [11]) reside and a lower space in which locations reside (check [140, 11, 30]

1When we refer to a node, we are referring to the an abstract node in the graph abstrac-
tion. This is not to be confused with Saltzer's node object [141] which is analogous to the
host. The distinction between the two should be clear from the context.

117

Chapter 6. Background on Naming and Discovery

for similar models). Only after �xing the boundary, we allow ourselves to talk of

names (identi�ers) and addresses (locators) which are again names of di�erent objects

at di�erent layers. We present de�nitions for the terms identi�ers and locators that

conform to Saltzer's RFC [141]. However, our de�nitions are less restrictive in the

sense that we are solely interested in highlighting the boundary relationship between

the location and the entity abstractions or objects. We use the term entity as a

generic term to refer to endpoints in the upper space (subsumes node and service

objects in [141], processes, etc.) and location to refer to anything in the lower space

(subsumes attachment point and path objects in [141]). Multiple objects and levels

of naming could exist in the upper space such as intentional names to service names,

and service names to node names. We only model the entity abstraction as we are

mainly interested in examining that binding between the entity and the underlying

location.

The rest of the chapter is organized as follows: section 6.2 rede�nes the terms

identi�er and locator and elaborates on the confusion that arises between them.

Section 6.3 de�nes discovery and relates it to routing. Finally, we illustrate the

concepts in section 6.4 by examining two special architectural designs: the TCP/IP

Internet [1], and compact routing design [44] before concluding in section 6.5.

6.2 De�nitions

We now de�ne a simple and generic model for addressing in information networks

whose currency is locations, and entities. All the de�nitions presented hereafter

assume the existence of some undirected graph G = (V,E). Topology in this context

refers to the graph topology. Denote the neighbor set of node v by Nv = {u ∈ V :

(v, u) ∈ E}.

118

Chapter 6. Background on Naming and Discovery

Locations Location is a relative concept. We denote the location of a node v relative

to node u by luv and we keep it abstract. We assume that every node v knows

about the location of its neighbors, and hence lvu = (v, u) ∈ E,∀u ∈ Nv. The

location of node v, lv, is then de�ned to be lv =
⋃
u∈V l

u
v which is the node's

relative location to the rest of the network.

Locators and Locator Space We then de�ne a locator of node v kept by node

u, denoted by locu[v], as a name of the location object or its address �how

to get to it� 2. Some examples of locu[v] include a route u v in G (e.g.,

source routing IETF RFC 4728), or the distance d(u, v) and a direction in

some metric space (e.g., greedy routing [142]), or a set of coordinates in a

cartesian metric space (assuming the graph is embedded in the metric space),

or an IP address (as in IP addressing and BGP [42]). The multiple paths to

some location lv potentially implies multiple locators, and the relative concept

potentially allows di�erent locators to be used by di�erent groups of nodes (this

concept shall become clearer when we discuss compact routing architectures in

section 6.4.2). We say that a locator is global when it is the same for all u ∈ V

and we refer to it as simply loc[v]. Again the same location might have multiple

global locators. The set of all locators is referred to as the locator space and

denoted by L, i.e., locu[v] ∈ L,∀ u, v ∈ V .

Forwarding Functions and State Since the ultimate goal of locating something

on an information network is to access it, locators and forwarding work in

tandem to provide location access. The forwarding function provides the means

to get to the location using a locator. The forwarding function is local to a node.

It is de�ned as a set-valued function fu : L → V which maps a locator to a set of

neighbor nodes u ∈ Nv. The function generally utilizes forwarding information

2We do not distinguish between the name of a location object and the name of the path
object (how to get to the location) and we use locator to refer to either name. The reason is
that below the imaginary plane, we are only interested in how to get to the location object.

119

Chapter 6. Background on Naming and Discovery

(hard state) that is kept locally at the node - the bindings between location

name and path(s). When the locator is the name of a location that does not

carry information about how to get to the location, then the binding between

the location and the path(s) to the location is in the forwarding state. There

is generally a tradeo� between the path information that the locator carries

(how to get to the location) and the amount of network forwarding state; the

more information in the locator, the less forwarding state is required and vice

versa. For example when the locator is a source route then no forwarding state

is needed.

Entities and Default Entities : In contrast to locations, entities reside above the

imaginary plane. Each node v ∈ V can host a set of entities Ov ⊆ O where

O is the set of all entities. Among the set of entities hosted on a node v, let

ov, be the node's default entity ∀v ∈ V where a default entity is intentionally

de�ned to be attached to a node. The entity subsumes Saltzer's node and

service objects [141] and is intended to be more generic than the endpoint [11]

in the sense that it is not restricted to end-to-end architectures or TCP/IP.

The default entity is identical to Saltzer's node object except that here we

treat Saltzer's node and service objects the same way - entities that reside

above the imaginary plane. The best way to think of entities is �things� that

attach to locations. Examples of entities include endpoints of communication

(such as services or processes), users, or even higher level abstractions. There

are instances in which a node object and location object are confused. For

example, in the Internet a node is an object that is distinct from the location

and that may be named separately. In compact routing on the other hand (as

discussed in section 6.4.2), the notion of a node in the graph abstraction might

encapsulate both an entity and a location. The default object is intended to

alleviate the confusion in the following sense: a location object by de�nition

can not move while a default entity can move. When the entity and the location

120

Chapter 6. Background on Naming and Discovery

have the same name, then one may think of this name as simultaneously naming

the location and the default object bound to the location. By de�nition, when

we say that the default object moved and maintained the same name across

the location change, then the new location has been assigned a new name. In

a Distributed Hash Table (DHT) when the node and the data �les hosted on

it take names from the same namespace(e.g., [143, 100], one may think of the

�les as entities and the node as a default entity.

Identi�ers An identi�er is a name of some entity o ∈ O and is denoted by ID[o].

The identi�er exists in some arbitrary identi�er space I. Note that one may

refer to ID[ov] as the node identi�er or the default entity identi�er to mean the

same thing. In this sense, the set of node identi�ers is de�ned as Î = {ID[ov] :

∀v ∈ V }, satisfying Î ⊆ I. Multiple identi�er spaces may exist. Depending

on the design, multiple entities may have the same identi�er (as in the case of

entity replicas in CDNs) or an entity may have multiple identi�ers.

Before concluding this section, it is instructive to revisit some of the causes of

confusion in terminology. First, notice that the de�nition of a locator does not

require that it �follows topology� (Rekhter's law 3). As we just mentioned a locator

does not need to carry any topological information. For example, one may identify

locations with �at names and in the extreme case maintain O(n) state per node

about the locator space (as in Provider-Independent IP addressing). In this case,

the �at name is still a locator. The binding between the name of the location and

location itself is maintained in the forwarding state. Translating the locator to an

address is performed by the forwarding function. If some location with a �at name is

to relocate and keep its name, then it must update the forwarding state in the whole

network. In this case, the name of the new location has changed versus the binding

3For scalability, Yakov Rekhter (one of the authors of BGP4 [42]) states that �Addressing
can follow topology or topology can follow addressing. Choose one..� [144].

121

Chapter 6. Background on Naming and Discovery

between the name and the location. This concept is important as it eliminates a

lot of the confusion in terminology. If a location changes then by de�nition it is a

new location. Keeping the name after the change means that the new location has

been renamed. On the other hand, if an entity moves to a new location, the entity

is still the same object conceptually. It is this distinction that gives the locator its

de�nition (as the name of a location) and distinguishes it from the identi�er. Finally,

one may not directly assume that if the forwarding system is aware of the name then

the name automatically becomes a locator (check [143] for a system in which the

forwarding system is aware of entity names as well). According to our de�nition, the

forwarding function is tied to a context: the context of location objects. Whenever

the forwarding function is aware of a name then the name becomes a locator in that

context. The name could be an identi�er in a di�erent context: the context of

entities. To eliminate the confusion, it helps to think of contexts in which objects

exist before making a distinction. On the TCP/IP internet, the layering design

cleanly and explicitly separates the contexts where each layer is a di�erent context

that recognizes a di�erent type/set of objects. In the compact routing design (as we

shall see later in section 6.4), there is no explicit separation of contexts of objects.

6.3 What is Identi�er-based Discovery?

To recap, it should be clear that the name of an entity is an identi�er while the

address of an entity is a locator which is the name or address of the location to

which the entity is bound. Discovery is a general term that could mean di�erent

things in di�erent contexts depending on what is being discovered. In a broad sense,

discovery is the process of �nding resources of interest to the seeker starting with

some expression of what is needed. Generally, the seeker does not know at time of

discovery whether a resource exists, who provides it, or where it is located. There are

122

Chapter 6. Background on Naming and Discovery

two main activities involved in discovery: the �rst step is announcing or advertising

the resource availability (along with state about the resource) in some context. This

step creates the bindings between the resource and some other object or attribute of

interest in the particular context. The second step is discovering the resource starting

with some expression of what is needed. In our network model, the resource to be

discovered is a named entity and discovering a route/path to the entity is the end goal

using the entity name. Discovering a route to some object (whether an entity or a

location) is termed routing. Routing utilizes the underlying forwarding function when

discovering the route(s). Identi�er-based discovery, or simply discovery hereafter, is

a set-valued function de�ned as dfu : I → V which maps an identi�er to a set of

locations to which the identi�ed object is bound. Discovery subsumes routing. To

see how, we distinguish two scenarios as follows:

• Scenario 1: the forwarding function ff is aware of identi�ers, then identi�er-

based discovery is essentially routing on the identi�ers (e.g., [37, 39]).

• Scenario 2: the forwarding function ff is not aware of identi�ers, then discovery

is a two-step process: �rst discover the mapping from the identi�er to some

locator(s), and then discover the route(s) based on the locator(s). Only the

second step is routing. In this case, discovery subsumes routing.

Note that the forwarding function may be aware of identi�ers only (e.g., [37]), of

locators only (e.g., [42] and IP), or of both ((e.g., [39])).

Generally, the process of identi�er-based path discovery involves a search or dis-

covery query that is forwarded based on a series of calls �forward to next node that

should have more (≥) information about the named destination� starting at a source

node. Discovery schemes in large-scale networks require maintaining distributed

state about the identi�er space. Note here that by considering path discovery that

involves distributed in-network state, we are clearly restricting the discussion to

123

Chapter 6. Background on Naming and Discovery

stateful routing (proactive) schemes which seem to be more common in large-scale

networks. Reactive or on-demand discovery schemes generally involve �ooding which

renders them less e�cient to implement at large scales. From an algorithmic stand-

point, a generalized discovery scheme provides the following operations:

• Discovery operations: encapsulate the interface that the entities use to com-

municate with the mechanism and include two operations:

� join(i, level): allows an entity i to request a discovery service possibly

expressing a desired service level (and potentially her valuation of some

service level as shall become clearer in the next chapter).

� discover(i, j): allows and entity i to discover entity j.

• Service operations: are implemented on the service nodes and dictate a set of

rules for maintaining state about the namespace and for handling the above

queries.

6.4 Exploring the Design Space

The design of discovery schemes aims at satisfying a set of requirements and is based

on a set of assumptions. Some of the common requirements we observe in the lit-

erature include e�ciency, scalability, dynamism support, user-control, robustness,

resilience, manageability, trust, security, privacy and anonymity, accountability, eco-

nomic requirements, etc. In terms of assumptions, the most common ones address

the underlying graph structure, and model. For example, assumptions about the

graph model include general ones such as hierarchical, scale-free, or small-world as-

sumptions, or more speci�c structural assumptions of underlying metric embeddings.

Other assumptions specify whether graph is static or dynamic. In order to illustrate

the de�nitions of locator and identi�er and to highlight some of the inherent tradeo�s

124

Chapter 6. Background on Naming and Discovery

in the design of discovery schemes, we explore two architectural designs: the TCP/IP

Internet, and compact routing [44, 45] and we examine the tradeo�s between scala-

bility, e�ciency, and dynamism support.

6.4.1 TCP/IP Internet

The IP address on the Internet names two objects simultaneously: the node object

and the attachment point [141]. To be more precise, the IP address names the end-

point of a TCP connection using {IP address, port} [11]. Hence, the IP address is

simultaneously an identi�er and a locator. This design has advantages and disad-

vantages. Our imaginary plane abstraction may be directly mapped to the TCP/IP

Internet by drawing this plane between the network layer and the transport layer.

The inter-network routing system resides below the plane while the entities (end-

points) reside above the plane. The original design of the routing system assumes

aggressive aggregation of the addressing space where locators follow the hierarchical

topology. This allows the routing system to scale as long as the topology and the ad-

dressing structure closely follow each other. However, recently provider-independent

addressing, multi-homing, and tra�c engineering practices have put strains on the

routing system [12]. Multi-homing for example (a customer connecting to multiple

providers), requires that a customer AS advertise a provider supplied pre�x through

its multiple providers. For example, assume the provider's pre�x is 192.0.0.0/8 and

part of it is delegated to the customer, say 192.10.0.0/16. This addressing structure

follows the hierarchical topology (customer-provider). In the event that the customer

connects to another provider for reasons of redundancy, the customer now advertises

the pre�x 192.10.0.0/16 through the other provider. This requires the �rst provider,

who originally aggregated the customer's pre�x, to de-aggregate the general pre�x

192.0.0.0/8 and advertise the sub-pre�x 192.10.0.0/16 as well (or otherwise the more

speci�c route through the second provider will always be used to reach the cus-

125

Chapter 6. Background on Naming and Discovery

tomer!). The outcome is that the global routing table will now contain two pre�xes

due to de-aggregation. Provider-Independent (PI) pre�xes as well may not be ag-

gregated and each pre�x requires O(n) 4 state in the global routing table (the BGP

Routing Information Base (RIB) [42]) since every router in the Default Free Zone

(DFZ) must keep state about the pre�x. This deviation from the original design

causes serious scalability issues with the routing system which again may only scale

with aggressive aggregation. This reality is exacerbated by the fact that the number

of BGP pre�xes in the global routing table/RIB is increasing exponentially at a rate

of roughly 100, 000 entries every 2 years and is expected to reach a total of 388, 000

entries in 2011 [145]. Remedies to the scalability problem, such as [146, 147], at best

scale linearly. Hence, while the original design of the routing system is scalable, the

current reality is that it is not scalable.

In terms of e�ciency, since the entity name is the same as the location name, we

focus on the e�ciency of the routing system. The Border Gateway Protocol (BGP)

is a policy-based path-vector protocol and is the de-facto protocol for Internet inter-

domain routing. The protocol's speci�cation [42] was initially intended to empower

domains with control over route selection (which path or route to pick among mul-

tiple advertised routes to a destination), and route propagation (who to export the

route to among an AS's direct neighbors) [148]. Route reachability information is

broadcasted in BGP and nodes pick the routes that they value most which are not

necessarily the shortest routes. Routing is intended to allow for a rich set of AS

policies to be implemented [149, 70]. For example, if all ASes agree to implement

shortest path, then BGP allows for it (but that is not the goal neither the reality

as we shall explain in chapter 9). In [13], it has been shown that hierarchical aggre-

gation schemes (such as BGP [42]) are not optimal 5 when it comes to the Internet

4n being the number of nodes.
5Hierarchical addressing is not e�cient since it requires large distances between nodes

for e�ciency.

126

Chapter 6. Background on Naming and Discovery

topology which is scale-free (i.e. power law [150] degree distribution) and obeys

small world (with more than 80% of AS pairs 2-4 hops apart).

Finally, in terms of dynamism we distinguish topology dynamics versus entity

dynamics. BGP is designed to handle topology dynamics gracefully and to route

around link or node failures. However, any such failure requires O(n) communication

which does not scale. For example, a link failure results in a BGP route withdraw

message(s) that is propagated to all the DFZ. BGP dynamics are a major concern

to the scalability of the Internet routing system [12]. In terms of entity dynamics,

overloading of the entity name and the location name with the same IP address

hinders mobility and portatbility [11]. If an entity wishes to move to a new location

while keeping its name, then the permanent name of the new location must be

changed which is very costly. This is perhaps the main drawback of using the same

name for both location and entity objects. To remedy the problem, one of the

recurring themes in the community is the need to separate the entity's identi�er from

its locator to enhance mobility (entity can move while maintaining the identi�er) and

security (trust information may be associated with the object at all levels). Check

for example [11, 26, 27, 28, 29, 151, 144] for incremental proposals, and [30, 31, 32]

for architectural approaches and considerations.

6.4.2 Compact Routing

We introduce the compact routing problem here which we shall refer to throughout

the rest of the dissertation, and we review its two variants: labeled versus name-

independent compact routing. We refer the reader to [44, 45] for surveys on the topic.

Given a weighted, undirected graph G = (V,E,w), a compact routing scheme routes

messages between nodes with the goal of minimizing stretch, and space. Stretch is

de�ned as the ratio between the cost of the path taken by the routing scheme, to the

127

Chapter 6. Background on Naming and Discovery

minimum cost path. The maximum of the ratio for all source-destination pairs in

G is the stretch. Space is the routing state (in bits) stored per node. Clearly, there

is a tradeo� between space and stretch: the more information nodes keep about the

graph (hence the more space), the better path they can choose for routing (hence

smaller stretch). For example, a trivial stretch 1 scheme may be devised when each

node keeps O(n) state about the rest of the network. For universal graphs, Gavoille

et al. [44] gave a lower bound dictating that the stretch is at least 3 when each node

keeps o(n) bits, which is the best that any routing scheme may achieve. The �rst

variant of compact routing is labeled (or name-dependent) compact routing (LCR)

which allows the designer of the routing scheme to pick node identi�ers to better suit

the routing scheme, giving her more control by potentially embedding topological

information into the identi�ers. On the other hand, name-independent compact

routing (NICR), �rst distinguished in [38], allows nodes to be named arbitrarily,

making the stretch at best larger (or equal) than that with labeled routing. This last

observation is intuitive, since the name-independent routing scheme has to discover

the additional binding between the name and the route before routing - a step that

increases stretch [39]. The compact routing framework models a single abstract

object, the node, and does not distinguish between locations and entities. In this

sense, there is room for di�erent interpretations of what is being named when we

say the �node name�. Is it the default entity or the location object? In LCR, the

name which is referred to as the label names a location (a route) and discovery is

simply discovering a path to the named location starting with the label (for example

a route on a spanning tree). In NICR, on the other hand, we view the node name

as an identi�er (of the default entity) and a locator at the same time (similar to the

IP address). When the NICR scheme builds on an underlying LCR scheme, then

discovery invoves two steps: �rst discover the mapping from the name to a routing

label and then from the label to the route.

Compact routing distinguishes either (1) single-source routing (simply routing

128

Chapter 6. Background on Naming and Discovery

from a designated source node to all destinations - generally performed using a tree

where source = root), or (2) any-pair routing (any node should �nd any other node).

The general approach in the present compact routing schemes is to split the names-

pace into compact sets (of sub-linear size example
√
n). Each one of those sets forms

a group (or a color) and the state about each group is distributed throughout the

network. Looking up a name requires identifying the group to which the name be-

longs, and contacting a group representative who generally knows about the locators

of all names in the group. For example, in the single-source routing case on trees, any

graph degenerates into a spanning tree rooted at the source. Each of the neighboring

nodes of the root node will maintain state about a distinct group allowing the root

to lookup any destination node by referring to the respective group representative

node which is one of its neighbors. Check Arias et al. [152] for such a stretch-3

scheme. In the same sense, in any-pair routing on general graphs, where any node

needs to be able to lookup any other node, each node will know about the group

representatives that generally belong to its neighborhood. For example in the opti-

mal stretch-3 routing scheme by Abraham et al. [39] on general graphs which we

shall elaborate on shortly (and the previous stretch-5 by Arias et al. [152]), this is

exactly the case. Each neighborhood is fully colored and a node that represents the

group/color knows about all nodes in the group. The challenge with such schemes

lies in the means to distribute the group responsibilities to nodes (i.e. which node

represents what groups?) such that (1) each neighborhood has at least a representa-

tive for each group, and (2) no node represents more than a logarithmic number of

groups. It has been shown in [152] [Lemma 3.1] that such assignment exists and is

computable in polynomial time.

The space vs. stretch tradeo� in the routing system may be directly associated

with scalability vs. e�ciency, respectively. While the compact routing framework

quanti�es the tradeo� between scalability and e�ciency and presents several schemes

along the spectrum, its major disadvantage lies in the fact that it is not concerned

129

Chapter 6. Background on Naming and Discovery

with the dynamics of the network (for example node churn). The compact routing

schemes consider a static graph on which a data structure is constructed, ignoring the

construction algorithm and cost of constructing the data structure. The whole state

might need to be re-constructed for a single node join which makes compact routing

schemes in general unattractive for dynamic networks. As we shall see in the next

chapter, our interest in compact routing is primarily due to the mathematical bounds

imposed on space and stretch which supports our service di�erentiation concept.

Before concluding this section, we present a concrete example that illustrates the

NICR design problem. For optimal LCR schemes, check the Thorup-Zwick (TZ)

scheme [153] which scales in�nitely on universal graphs, and the Brady-Cowen LCR

scheme which is specialized for power law graphs and scales in�nitely [154]. Abraham

et. al [39] developed a universal name-independent compact routing scheme that is

optimal in the strict sense, i.e., requires O(
√
n) space with stretch 3. Recall that

this is proven to be the lower bound achievable by any compact routing scheme.

This result is interesting as it proves that choosing arbitrary (�at) locators does

not necessarily degrade the performance (scalability and e�ciency) of the routing

scheme. A sketch of Abraham's routing scheme is provided next:

The Abraham Scheme

Brie�y, the scheme operates as follows on a graph G = (V,E,w): each node u keeps

track of its vicinity ball Bk(u) that includes the set of k closest 6 nodes to u in G.

The value of k is picked to be 8
√
n log n. Each node u has a color, c(u), assigned

from a a set of
√
n colors. The node's color is determined by hashing its name (which

may be arbitrary), and picking the �rst log
√
n bits from the hash h(u) as the color.

The number of nodes belonging to a particular color set is shown to be 6 2
√
n. Any

6Closeness is based on distance measure d(u, v) which is the cost of a path from u to v,
i.e., sum of weights on edges.

130

Chapter 6. Background on Naming and Discovery

Figure 6.1: Sketch of virtual and physical routing in Abraham name-independent
compact routing scheme.

one of the color sets is chosen to be the landmark set L. Based on the balancing

assumption which results from hashing, each node u will have a landmark node lu in

its vicinity. In Figure 6.1, we show the vicinities of two nodes: a source node s with

blue color (i.e. c(u) = blue) and a red destination node t as well as t's landmark

node lt. The routing scheme builds on optimal labeled compact routing in trees,

which is shown to be performed optimally using O(log2 n/ log log n) space [155] per

node. Hence, in terms of routing state (space), each node u maintains the following:

1) for each landmark node l, u's label for the minimum spanning tree (MST) rooted

at l requiring O(
√
n) space (note that routing on those trees is optimal - stretch 1);

2) for each node v ∈ B(u), node u's label in the MST rooted at v requiring O(
√
n)

space; and 3) for each node v having the same color as u, i.e., h(v) = c(u), lv's and

v's labels in the MST rooted at lv requiring O(
√
n) space but no additional MSTs 7.

Given this O(
√
n) space at each node, it can be shown that routing is optimal

with stretch 3 requiring message header re-writes [39]. Figure 6.1 shows how node s

routes optimally towards node t, which has a di�erent color just by knowing t's �at

name denoted as < t >. Note that names for the nodes are globally unique and are

7Note that the size of a neighborhood B(u) is 4α
√
nlog(n) which is very large, i.e., for

n ≤ 65, 000, |B(u)| > n and hence n has to be very large or otherwise each node will have
to know about every other node. Hence, Abraham scheme is not very useful for AS level
graph where n ≈ 10, 000.

131

Chapter 6. Background on Naming and Discovery

picked arbitrarily from the integer set {1,2,. . . ,n}. The name of a node is independent

of topology, whereas its label in some MST is topology dependent. Starting with the

identi�er < t >, discovey involves two steps as follows: �nd a node w in my vicinity

that has same color as t (dotted arrow in Figure 6.1). Node w is guaranteed to have

a binding between the t's identi�er and a locator (the locator is a label in the MST

rooted at lt). Step 2 (solid arrows in Figure 6.1) involves optimally routing on the

MST.

This scheme focuses at naming default objects (or nodes) with unique names. Ex-

tending Abraham's algorithm to support entities as Distributed Hash Tables (DHTs)

is straightforward as described in [143]. Two variants of the DHT problem are dis-

tinguished depending on whether the designer can pick the nodes on which entities

may be hosted or can not pick the location. In the �rst variant 8, an object o is

hosted on a node u such that c(u) = h(o) (u has the same color as o), and < u > is

closest to < o >. It is easy to show that routing towards any object o is optimal in

the constructed DHT. In the other variant of the DHT problem, the designer does

not have control over the placement of o. Generally, such model is employed for

locality-aware closest copy routing. The concept of locality-aware means that the

cost of locating an object o is proportional to the distance to the closest copy of

o. Again, it is shown in [143] that the Abraham routing scheme may be extended

incurring O(
√
n) pointers in the DHT per object name and maintaining scalability.

6.5 Conclusion

In this chapter, we have formalized the de�nitions of identi�er, and locator. Ac-

cording to our de�nitions, neither the association between a name and its form, nor

between the name and some system are relevant in making the distinction between

8This is similar to strucutred P2P networks - DHTs - of single copy objects (e.g., [100,
156]).

132

Chapter 6. Background on Naming and Discovery

an identi�er and a locator. It is only the association between the name and the

object that is being named that quali�es the distinction. We de�ned the discovery

function to be the process of discovering a path to a named entity. To illustrate our

de�nitions, we examined two architectural designs that generally lead to confusion:

the TCP/IP Internet, and the compact routing architectures. We focused on the

inherent tradeo�s between scalability, e�ciency and dynamics when it comes to the

design of discovery schemes. Finally, we have introduced the compact routing prob-

lem, and the concept of stretch, which will be relevant to the discussion in chapter 7

when we introduce discovery service di�erentiation. This chapter is necessary to

eliminate the terminology confusion and to set the stage for further investigation of

the topic throughout the rest of the dissertation.

133

Chapter 7

Discovery Service Di�erentiation

7.1 Introduction and Motivation

In the previous chapter we have elaborated on the de�nitions of the terms identi-

�er, and locator and we have introduced discovery. Brie�y, identi�ers and locators

are names of di�erent objects. We isolated two di�erent types of objects on the

network, the entities and the locations to which they are bound. Identi�ers name

entities whereas locators name locations. Identi�er-based discovery (simply referred

to as discovery hereafter) is a core network service aimed at discovering a network

path to an identi�ed entity. Discovery is usually the �rst step in communication,

even before a path to the destination entity is established. Given an identi�er of

some entity on the network, discovering a path to the entity could either utilize

mapping/resolution where the identi�er is mapped to some locator 1 (see for exam-

ple [36, 28, 144], and the Domain Name System (DNS)), or it could utilize routing-

on-identi�ers (see [34, 37, 38, 39] etc.). In either case however, an underlying routing

scheme that routes on locators typically exists and is utilized after a path has been

1The terms locator and label are used interchangeably in this context.

134

Chapter 7. Discovery Service Di�erentiation

discovered for e�cient communication. Note that the terms identi�er and locator

are both names at di�erent layers of abstraction. We di�erentiate the two terms

only after we �x an upper layer: an identi�er at the upper layer maps into a locator

which is an address relative to the upper layer.

This chapter is concerned speci�cally with the di�erentiation of the discovery ser-

vice. A named entity (such as a node or service), referred to as a player, demands to

be discoverable by the rest of the network. A discovery scheme provides such service

to the players. We de�ne the discovery level to be a measure of �how discoverable�

a player is by the rest of the network. This is �how easy� it is for the network to

discover the player not the opposite. The performance of discovery, or the discovery

level, could signi�cantly a�ect the player's business model especially in time-sensitive

application contexts. If discovering an entity takes a signi�cant time relative to the

entity's delivery/download time, the experience of the requesting user su�ers. As

an example, when no caching is involved, the DNS resolution latency comprises a

signi�cant part of the total latency to download a webpage (10-30 %) [40, 41]. This

overhead becomes more noticeable in Content Distribution Networks (CDNs), where

content objects are extensively replicated throughout the network closer to the user

and the discovery (or resolution) could potentially become the bottleneck. Tradi-

tionally, the design of discovery schemes has assumed that all players have the same

discovery performance requirements, thus resulting in homogeneous demand. In such

a setting, the discovery schemes deliver a discovery service that is oblivious to the

actual, possibly heterogeneous, discovery requirements - and valuations - of the dif-

ferent players. In reality however, the CNN site will likely value a higher discovery

level more than a generic residential site. The main question posed in this chapter

is therefore the following: should the design of discovery schemes account for service

di�erentiation? We answer this question by introducing the Multi-Level Discovery

(MLD) framework which is concerned with the design of discovery schemes that can

provide di�erent service levels to di�erent sets of players. To further motivate the

135

Chapter 7. Discovery Service Di�erentiation

problem, we note that on the current Internet, Akamai provides such an expedited

resolution service [125]. However, the service which is based on DNS su�ers from

the same pitfalls of the latter (expensive �rst lookup and critical dependence on

caching) and tightly couples the content distribution provider with the resolution

service provider.

The �rst question we ask is whether di�erentiated discovery is algorithmically

feasible i.e. is it possible to devise a scheme that is scalable and that provides

di�erent levels of service to di�erent players. Along this dimension, we de�ne the

algorithmic problem in section 7.2, and we present a proof-of-concept MLD scheme

in section 7.3 along with an analysis of its scalability properties.

7.2 What is Multi-Level Discovery (MLD)?

We start by providing a generic de�nition of the MLD problem. The problem speci�cs

will depend on the context, mainly the design assumptions and requirements.

De�nition 1. Multi-level discovery (MLD) problem statement: Given a graph G =

(V,E), a set of nodes with unique identi�ers (identi�er of node i is simply <i>),

set of m discovery levels where each node is associated with some level l ∈ Λ 2,

and possibly some underlying routing function fp that routes on locators, devise a

discovery scheme that routes on identi�ers. The set Λ of possible discovery levels

is known to all nodes. The scheme is expected to deliver to each node i in G its

requested discovery level l ∈ Λ.

The main challenges inherent to the MLD problem arise from the following re-

quirements:

2When the set of discovery levels is discrete, a level becomes a �class� of service.

136

Chapter 7. Discovery Service Di�erentiation

• di�erent levels of service must be supported by the same scheme, and

• the discovery level of a destination <t> is unknown at the time of discovery.

The challenge here is that information about the discovery level of the desti-

nation is to be discovered as well by the scheme and is not known apriori. The

only attribute that is known apriori is the identi�er.

7.3 A Multi-Level Discovery Scheme

A traditional class of discovery schemes that satis�es the single default entity per

node assumption and that has been extensively investigated in the research com-

munity is the general Name Independent Compact Routing (NICR) problem �rst

introduced in [38]. We have introduced the NICR problem previously in chapter 6

and we have reviewed Abraham's optimal NICR scheme on universal graphs [39].

NICR is of particular interest to this section and we shall extend the framework for

implementing a MLD scheme. We restrict our attention to trees rather than universal

graphs. More speci�cally, we extend Laing's NICR scheme [157] which operates on

top of the optimal Thorup-Zwick labeled routing scheme on trees [153]. The latter

represents a locator-based routing function over which the identi�er-based discovery

scheme is implemented.

7.3.1 Background: NICR scheme on trees

A name-independent compact routing scheme on trees (NICRT) is developed by

Laing [157] with a space/stretch tradeo� based on a parameter k. The scheme

achieves stretch 2k − 1 for a space requirement of Õ(k2n1/k), where n is the number

of nodes. From a high level perspective, the tradeo� is achieved by asking each node

to know about a set Σi of nodes (|Σi| = ni/k) at concentric circles or neighborhoods

137

Chapter 7. Discovery Service Di�erentiation

N i, 0 ≤ i ≤ k − 1 from itself. Routing towards a destination d proceeds through

pre�x matching of d's identi�er <d> represented in base n1/k (denoted by <d>n1/k).

Delivery is guaranteed in at most k hops i.e. by matching the k letters of d's identi�er

base n1/k. The main idea is that as the value k increases (i.e. as the number of

concentric circles or layers increases), a node will keep less information about the

rest of the network but the stretch which is directly proportional to the number of

layers will increase. On the other hand, as k decreases (i.e. fewer layers), a node

will keep more information about the rest of the network and the stretch decreases

accordingly.

Laing's scheme is based on a coloring theorem for trees. The coloring theorem

states that any tree with n nodes can be colored with q colors such that every

neighborhood Nq(v) of size q (for every node v ∈ V) is distinctly colored i.e. each

node in Nq(v) has a unique distinct color from the set of colors [q] (check [157]). For

reference, we include the theorem here:

Theorem 1. [157] Let T = (V,E) be a tree with n ≥ q nodes (q ≥ 1), and positive

edge weights. There exists a function c : V → [q] such that ∀v ∈ V,Nq(v) is fully-

colored.

The theorem is used in the NICRT scheme to uniquely color neighborhoods N i(v)

of size ni/k at each layer i, 0 . . . k − 1.

Laing's scheme works as follows: Given a tree T = (V,E,w), and a k ≥ 1,

multiple layers of coloring are assigned to nodes as follows: at layer 1 ≤ i ≤ k− 1, T

is fully colored with Σi colors where |Σi| = ni/k and Σ = {0, 1, . . . , n1/k − 1} is the

alphabet. Note that the neighborhood of a node v is denoted by N i(v) and is the

set of ni/k closest nodes to v including the latter. Hence |Σi| = |N i| and the coloring

theorem achieves a full coloring. Each node u ∈ V is hence assigned a unique color

ci(u) at layer i, where ci(u) ∈ Σi. In addition to the k − 1 colors node u obtains, it

138

Chapter 7. Discovery Service Di�erentiation

has its unique identi�er <u> picked from the set {0, . . . , n − 1} and represented in

base n1/k and padded to the left with zeroes. Thus |<u>| = k.

Storage: Each node u has an identi�er <u> and k − 1 colors ci(u). Denote by

σi(u) the length i pre�x of <u>. In addition to the labeled compact routing table

information of [153] 3, node u creates its routing table according to Algorithm 1.

Routing: In terms of routing to some destination t with identi�er <t> starting

at some source s, routing proceeds as indicated in Algorithm 2.

Note in Algorithm 2 that each next hop (i.e. vi+1) is guaranteed to belong to

N i+1(vi). Note as well that the only node that matches σk(t) is the node whose

identi�er is <t> which guarantees delivery [157].

Algorithm 1 Routing table construction for node u
1: for each layer i, 0 . . . k − 1 do

2: Let λ = {ci(u), σi(u)}, where c0(u) and σ0(u) are the empty string ε

3: for each τ ∈ Σ do

4: store label of closest node v to u that satis�es ci+1(v) = λτ or σi+1(v) = λτ

5: end for

6: end for

Algorithm 2 Routing to <t>
1: let v0 = s

2: for each layer i, 0 . . . k − 1 do

3: route to node vi+1 which is the closest node to vi that matches σi+1(t) i.e. node vi+1

satis�es ci+1(vi+1) = σi+1(t) or σi+1(vi+1) = σi+1(t)

4: end for

3This information is used for optimal stretch-1 routing based on locators (topological
labels).

139

Chapter 7. Discovery Service Di�erentiation

7.3.2 Extending Laing scheme to support MLD

In the preceding scheme, the e�ect of the parameter k was to control the space/stretch

tradeo� achieving stretch 2k−1 for a space requirement of Õ(k2n1/k). In this section,

we extend Laing's scheme by allowing multiple stretch levels (or multiple values of

k) on the same tree T for di�erent sets of nodes. Discovery levels will correspond to

values of k in Laing's scheme which directly determines the stretch.

More clearly, we assume the existence of a set K = {k1, . . . , km} (m = |Λ|) of

stretch levels ordered in ascending order with Λ ⊆ Z+. Assume also without loss of

generality that n is a kmth power and that k1 ≥ 2. Each ki corresponds to a discovery

level l = 1
2ki−1

, l ∈ [0, 1] and we assume that m = |Λ| = O(n
1
km). The main idea that

we shall use for extending Laing's algorithm to support multiple discovery levels on

the same tree T introduces ACCELERATE tables that expedite discovery/routing for

nodes that demand higher discovery levels. The extended scheme starts by providing

the lowest discovery level (1
2km−1

) to all nodes by constructing Laing scheme for k =

km. The pseudocode for construction of the routing tables is listed in Algorithm 3.

Lines 6, 17 in Algorithm 3 and lines 5, 6 in Algorithm 4 encapsulate the main logic

for expedited discovery.

In terms of routing to destination <t> using the extended scheme, we extend

routing Algorithm 2 as depicted in Algorithm 4 given that each node knows the set

of stretch levels kj, j = 1 . . .m.

Analysis: It can be easily veri�ed that delivery is guaranteed as well as d(vi, vi+1) ≤

2id(s, t) in the extended algorithms (check [158]). In order to maintain the sub-linear

space requirements at each node, the extra state maintained at each node for discov-

ering higher level nodes must be less than a constant factor of k2n
1
k . First, at line 15

of Algorithm 3, in the worst case there are at most n1− s
km nodes in Dkj that have the

same length s pre�x (when |Dkj | = n) i.e. that can potentially introduce state on the

140

Chapter 7. Discovery Service Di�erentiation

same set of nodes Bs. Thus the maximum increase in any node's routing table size

is m ·n1− s
km . We have already assumed that the total number of levels m = O(n

1
km).

Formally, in order to maintain sub-linear space at each node, the following condition

must hold: n1− s
km ≤ αk2

mn
1
km for some large constant α, or s ≥ km(1− logαk2

m

logn
)− 1.

This constraint must hold when choosing the set of possible discovery levels Λ (and

hence the respective set K) in order for the extended routing scheme to satisfy the

sublinear space requirement inherent to compact routing design.

7.4 Discussion and Conclusion

The MLD framework allows for discovery service di�erentiation. We have de�ned

the problem, motivated it, and demonstrated its algorithmic feasibility in the context

of NICR. As mentioned earlier in chapter 6, the major disadvantage inherent to

most compact routing schemes is the fact that they are not concerned with the

dynamics of the network and particularly with node churn. The schemes consider

a static graph on which a data structure is constructed and do not worry about

the construction algorithm and cost. However, our interest in compact routing in

this chapter is primarily due to the mathematical bounds imposed on space and

stretch which support our discovery level concept by providing guarantees on levels

of performance. While we have studies the problem for NICR, di�erentiation of

discovery is important as well in the context of the TCP/IP Internet. All current

discovery schemes (such as DNS) su�er from the same problem: performance of

discovery. If we ever think of using domain names as endpoint identi�ers in the

TCP/IP Internet, the impact of discovery (i.e. the �rst mapping from domain name

to IP address) becomes of great importance. This is due to the fact that TCP treats

the �rst packet as representative of congestion. We would like to note that an initial

version of this chapter appeared in [159].

141

Chapter 7. Discovery Service Di�erentiation

Finally, in this chapter we have focused on the algorithmic feasibility questions.

Notice however that there is a non-trivial cost associated with being discoverable.

This could be the cost of distributing and maintaining information (state) about the

identi�ers to provide a certain discovery level. Hence, the second challenge is that

of providing an economic model that accounts for cost and valuation in the design

of discovery mechanisms. The next two chapters (chapters 8 and 9) are dedicated to

studying the economic dimension. By adding an economic dimension to the discovery

design space, we hope to gain more knowledge about the complex design decisions

pertaining to naming and discovery in networks, and to be able to design discovery

mechanisms that are suitable for a future Internet.

142

Chapter 7. Discovery Service Di�erentiation

Algorithm 3 Extended table construction for node u
1: Let K ′ = {k1 − 2, . . . , km−1 − 2}

2: for each layer i, 0 . . . km − 1 do

3: Let λ = {ci(u), σi(u)}, where c0(u) and σ0(u) are the empty string ε

4: for each τ ∈ Σ do

5: if i ∈ K ′ then

6: store label of closest node v to u that satis�es ci+1(v) = λτ

7: store label of closest node w to u that satis�es σi+1(w) = λτ only if w ∈ N i+1(u)

8: else

9: store label of closest node v to u that satis�es ci+1(v) = λτ or σi+1(v) = λτ

10: end if

11: end for

12: end for

{Construct the ACCELERATE table}

13: for each level kj , j : m− 1 downto 1 do

14: Let s = kj − 1

15: Let Dkj be set of nodes requiring level kj

16: for each node u ∈ Dkj do

17: Let Bs be set of nodes whose color at layer s is σs(u)

18: Add extra pointer {<u>n1/km → label(u)} at each node v ∈ Bs
19: end for

20: end for

143

Chapter 7. Discovery Service Di�erentiation

Algorithm 4 Routing to <t> using extended scheme
1: let v0 = s

2: for each layer i, 0 . . . km − 1 do

3: if <t> ∈ ACCELERATE table then

4: route directly to t using label(t)

5: else if i = kj − 2 for any j = 1 . . .m then

6: route to node vi+1 which is the closest node to vi such that ci+1(vi+1) = σi+1(t)

or <vi+1> = <t>

7: else

8: route to node vi+1 which is the closest node to vi that matches σi+1(t) i.e. node

vi+1 satis�es ci+1(vi+1) = σi+1(t) or σi+1(vi+1) = σi+1(t)

9: end if

10: end for

144

Chapter 8

On the Economics of Identi�er-based

Discovery

8.1 Introduction

Traditionally, the design process in the context of the Internet has focused on sources

of value as they relate to performance, robustness, resilience, reliability, etc. with

less emphasis on the socio-economical dynamics that underly the latter. The value

of any new design in the new era does not solely depend on performance and must

take into account the complex social and economic interactions and incentives of

the agents using the design if success is to be reached [61, 62]. Check [61] for an

interesting overview of several tools that are important in bridging computer science

and economics to better understand the complex socio-economic interactions in the

context of the Internet, and [62] for an interesting overview of several of the problems

and applications arising at the interface between information and networks.

The previous chapters have motivated the importance of naming and discovery

in computer networks. Hereafter we assume that a naming or identi�cation system

145

Chapter 8. On the Economics of Identi�er-based Discovery

for a large scale network, the Internet mainly, is required given the network's mobile

and ubiquitous usage models. For example, on the Internet, this translates into

either designing a new system or enhancing the current ones (for example DNS).

While there is a rich literature on applying game theory and economics models

to Internet games, we �nd in the networking literature a number of proposals for

Internet discovery schemes (and id routing) requiring signi�cant coordination among

sel�sh users while ignoring the economic aspects that may possibly render them

infeasible or ine�cient (and we shall give several examples of such system or proposals

later in section 8.3). In a future Internet in which domains or Autonomous Systems

(ASes) are self-interested, welfare-maximizing agents, the design of any identi�er-

based discovery scheme could bene�t from establishing the right economic models.

The problem on the Internet speci�cally is exacerbated as there are multiple layers

of identi�cation managed by di�erent systems, mainly DNS [116] at the application

and the Border Gateway Protocol (BGP) [42] at the network layer.

In chapter 6, we have introduced discovery in large-scale networks. We have addi-

tionally de�ned the multi-level discovery framework in chapter 7 which is concerned

with the design of discovery schemes that can provide di�erent service levels to dif-

ferent sets of nodes. Obviously, there is a cost associated with being discoverable.

This could be the cost of distributing and maintaining information (state) about the

identi�ers. In current schemes, the discovery demand is actually insensitive to cost

since no cost structure exists and hence demand �attens out to a homogeneous level.

Accounting for and sharing the cost of discovery is an interesting problem whose

absence in current path discovery schemes has led to critical economic and scala-

bility concerns. As an example, the Internet's BGP [42] control plane functionality

is oblivious to cost. A BGP speaker that advertises a provider-independent pre�x

(identi�er) does not pay for the cost of being discoverable. Notice here that BGP with

its control and forwarding planes represents a discovery scheme on pre�xes which are

technically �at identi�ers in a largely de-aggregated namespace. Hereafter, we refer

146

Chapter 8. On the Economics of Identi�er-based Discovery

to this form of BGP as BGP-DA for De-Aggregation. This problem becomes more

important in settings where the state (and the cost) is incurred by service nodes that

are not themselves players. 1 In this case, the cost must be paid for or else the service

nodes will have no incentive to implement the discovery service. Hence, we conjec-

ture that a discovery scheme should be aware of incentives and cost necessitating that

players/nodes pay for the cost of getting the service. Providing such a service while

accounting for the cost and making sure that the incentives of the players are aligned

is the general economic problem that we frame in this chapter.

The rest of the chapter is organized as follows: �rst we review background ma-

terial in section 8.2. Speci�cally, we motivate the notion of strategic interactions on

networks by presenting three games in section 8.2.1 that we shall refer to throughout

the discussion. We also distinguish between the search function and receiver-based

discovery function in section 8.2.2. Distinguishing the two functions is important

to frame our work. Section 8.3 presents a taxonomy of discovery schemes based on

their business models. Finally, section 8.4 presents our thoughts on suitable eco-

nomic models for the di�erent discovery models highlighted in the taxonomy before

concluding in section 8.5.

8.2 Background

8.2.1 Networks and Strategic Behavior

Game theory is a fundamental mathematical tool for understanding the strategic

interactions among sel�sh network agents, particularly on the Internet over which

self-interested agents (e.g., ASes) interact. The theory provides several solution con-

1Service nodes implement the discovery service. Players are customers of the discovery
service or agents that wish to be discoverable.

147

Chapter 8. On the Economics of Identi�er-based Discovery

cepts to help study games that arise in di�erent situations and that have speci�c

requirements and varying underlying assumptions [65]. We overview some basic ones

here and we provide examples to illustrate each. The most central and widely ap-

plicable solution concept is the pure strategy Nash equilibrium (PSNE or NE) which

could be simply thought of as a set of strategies that forms a stable solution of the

game. A set of strategies for the players is termed a strategy pro�le. Under NE

strategy pro�le, no player can move pro�tably (i.e., increase her payo�) by deviating

from her strategy given every other player's strategy. Despite its wide applicability,

the NE solution has several shortcomings in that it may not exist (and hence might

require mixing), there could be multiple equilibria, and it might be computation-

ally intractable to get to it. In this sense, the mixed strategy solution concept was

developed by Nash to guarantee that an equilibrium will always exist in the game

by mixing the player's strategies (introducing probability distributions over the pure

strategies and hence rendering the strategy space a convex set). A more stringent

solution concept is the dominant strategy solution. Unlike the pure strategy solution,

a dominant strategy yields a player the highest payo� independent of the strategies

of the rest of the players. Dominant strategies are very attractive solutions when

they exist, and when they do not exist, game designers might try to design for them.

For example, when a player's strategy is to declare some private information that is

necessary to the social welfare of the game, an attractive solution would be to make

the truthful revelation a dominant strategy hence making sure that the player will

never have an incentive to lie. The mechanism design framework [66] provides ex-

actly this solution allowing the mechanism �designer� to achieve a dominant strategy

solution (in addition to other design goals). A extension to mechanism design, Algo-

rithmic Mechanism Design (AMD) [64], deals with the computational complexity of

the solution and Distributed AMD [67] further considers the �network complexity�

in distributed settings. Several other solution concepts exist; however, we will only

overview one more which is the subgame perfect Nash equilibrium (SPNE) which ex-

148

Chapter 8. On the Economics of Identi�er-based Discovery

tends the one-shot NE concept to settings in which players take turns playing (e.g.,

player 1 plays �rst, then player 2 plays). In such setting, the subgame perfect NE

(SPNE) becomes more �natural� as it captures the order of decision taking. Brie�y,

a SPNE is a NE in every subgame of the original game where a subgame could be

informally de�ned as a portion of the game that can be independently analyzed.

Note that by the formal de�nition of a subgame, every game is a subgame of itself

and hence every SPNE is necessarily a NE. For formal de�nitions of the solution

concepts and a comprehensive treatment of the topic, we refer the reader to [63].

How does strategy factor into networking problems? To motivate the importance

of strategic behavior, we hereby present three networking applications that employ

di�erent solution concepts and that we shall refer to throughout the discussion. Our

hope is that the games highlight some of the basic economic issues that are of interest

to network settings and the tools that are useful in studying these settings. Note

that the games we present here might not be straightforward for the unexperienced

reader who we refer to [63, 65] for introductory material on the subject. The �rst

application we present is that of �query incentive networks� and is due to Kleinberg

and Raghavan [78]. The second application is that of �trading networks with price

setting agents� due to Blume et al. [160]. The common aspect of the �rst two games

is that price setting is a strategic behavior of the players which is not the case with

the third application we present, �Incentive-compatible interdomain routing� due to

Feigenbaum et al. [161]. Additionally, while the �rst two games are solely interested

in studying the equilibria, the third presents a distributed mechanism that achieves

the solution.

Nash Equilibria and Query Incentive Networks Game [78]

Query incentives are motivated in peer-to-peer and in social networks where some

root node issues a query seeking a piece of information or a service on the network.

149

Chapter 8. On the Economics of Identi�er-based Discovery

The seeker does not know which nodes on the network have the answer (neither does

any other node) and hence the only way to �nd the answer is to propagate the query

deeper into the network until a node with an answer is reached. In order to do so,

every node needs to incentivize its direct children to propagate the query deeper

where hopefully a destination node with an answer will be reached. Propagation is

assumed to occur on a tree and incentives are provided by each parent in the tree to

its children in the form of rewards. A node that gets o�ered a reward will itself o�er

a smaller reward to its children if its does not posses the answer hence pocketing

some reward if an answer to the query is found under the node's subtree. We shall

refer to this game hereafter as the QUERY-GAME and we note that this game is

based on a similar game initially introduced by Li et al. [77].

Formally, each node (player) u receives a reward r from its parent and o�ers the

same reward fu(r) < r to its children if it does not have the answer. Otherwise, if

u has the answer to the query it responds to its parent with the answer. Each node

holds the answer with probability 1 − p and on average one in every n nodes holds

the answer (n is referred to as the rarity of the answer). The node's strategy is hence

fu(r) which is assumed to be integer-valued and the payo� is simply (r−fu(r))αu(f)

where αu(f) is the probability that an answer is found in the subtree rooted at u given

that node u has played fu and every other node's strategy is given by f = {fv,∀v}

(f is a strategy pro�le). Fig. 8.1 depicts a sample game on a tree.

Figure 8.1: Query Incentive Game: node v has an answer to the query.

150

Chapter 8. On the Economics of Identi�er-based Discovery

There are several questions that arise in such a game: How will a node act

strategically to tradeo� its payo� and the probability that an answer is found in its

subtree knowing that a higher promised reward potentially means higher probability

of �nding an answer but less payo�? How much initial investment r∗ is required (as

a function of the tree structure and the rarity of the answer n) in order to �nd an

answer with high probability? The authors answer these questions in [78] by modeling

a general class of branching processes parametrized on the branching factor b, where

the latter is the mean number of active o�springs (or children) per node in the tree

constructed using a random branching process [78] (when b < 1, the tree is almost

surely �nite while it is in�nite when b > 1 with positive probability). When looking

for the equilibria, one important point to notice in this game is the interdependency

of the players' strategies as given by the tree structure - the strategy of a player

will depend on the strategies of its children and so on. The authors show that the

Nash equilibrium exists (and is unique with some caveats) by constructing a set of

functions g (a strategy pro�le) inductively and showing that the resulting strategy

pro�le is indeed an equilibrium. This result simply says that there exists a stable

solution to the game such that if the nodes play the strategies g then no node will be

able to move pro�tably given the strategy pro�le of the rest of the nodes. However,

the model does not provide a recipe to get to the solution. Knowing that a solution

exists, the next step is to study the breakpoint structure of rewards to be able to

say something about the initial investment required (check [78] for results there).

In summary, the goal of this game (and the one in [77]) is to provide incentives for

query propagation in decentralized networks with uncertainty about the destination

of the answer knowing that such a process could incur cost that must be paid for by

someone to keep the incentives aligned. In the next game, we shall discuss a game

the uses the SPNE solution.

151

Chapter 8. On the Economics of Identi�er-based Discovery

Subgame Perfect Nash Equilibria and Trading Networks Game [160]

The next game we present is that of trading networks which despite being more

motivated from a markets angle will provide several insights into networking games

that involve competition. A set of sellers S wish to sell their goods to a set of

buyers B indirectly through a set of traders T . While [160] studies both cases where

the goods are distinguishable or not, in this brief overview we shall only focus on

indistinguishable goods, i.e., a single type of good where all copies are identical. Each

seller holds exactly one copy of the good initially and each seller is only interested

in buying one copy of the good as well. Trade between the buyers and the sellers

can only happen through a set of traders T as speci�ed by a graph G. G speci�es

how sellers and buyers are connected to the traders where each edge in G connects

a node in B ∪ S to a node in T . Sellers are assumed to have zero value for the good

while each buyer j has a value θj for the good. Fig. 8.2 depicts such a setting where

the indices i, j, t are used to refer to the sellers S, the buyers B, and the traders T ,

respectively.

Figure 8.2: Trading Network Game: sellers S to the left (circles) connect to traders
T (squares) who in turn connect to buyers B to the right (circles). The buyers'
values are indicated inside the circles (1 in this case). Equilibrium bid and ask prices
are shown above the links.

We shall refer to this game as the TRADE-GAME. The game aims at studying

the process of strategic price setting in markets with intermediaries, and proceeds as

follows: �rst each trader o�ers a bid price βti to each seller i to which it is connected,

152

Chapter 8. On the Economics of Identi�er-based Discovery

and an ask price αtj to each buyer j to which it is connected. The vector of bid/ask

prices is the strategy pro�le of the traders. Then buyers and sellers choose among the

o�ers they got, the traders pay the sellers the bid price and get the ask price from the

buyers. If a trader gets more buyer o�ers than the seller o�ers it has, the trader will

have to pay a very large penalty - so that this is not the case at equilibrium. This is

so that such a scenario will never happen at equilibrium. The payo�s of the di�erent

players are as follows: a player that does not participate in a trade gets no payo�.

A buyer that participates in a trade through some trader t gets a payo� of θj − αtj,

while a seller i that participates in a trade with trader t gets a payo� of βti (again

here assuming the seller has no value for keeping the good). Finally, a trader that

participates in trade with a set of buyers and sellers gets a payo� of
∑

r(αtjr − βtir)

minus a penalty if more buyers than sellers accept its o�er (where the index r runs for

each distinct buyer, seller combination that have accepted t's o�er). It is important

to notice that price setting in this game is strategic. Hence, as in the previous game,

the �rst question to ask is how will the traders act strategically to set the market

prices knowing that multiple traders could be competing for the same business, and

what solution concept is most suitable to studying this game? The solution concept

used in this game is the subgame perfect NE which is suitable in such a two stage

game where traders play �rst and then buyers and sellers react. With this in mind,

the next step to understanding the strategic behavior of the players (or equivalently

the price setting dynamics) is to ask whether a solution (equilibrium) exists and to

understand the structure of any such solution. In Fig. 8.2, the equilibrium strategies

are shown above the links. Two interesting equilibrium phenomena in this game

are the e�ects of monopoly and perfect competition. Both traders in this example

make a maximum pro�t (of 1) from the single monopolized buyer/seller pairs that

have access to one trader, while the traders make zero pro�t when competing for the

business of the middle seller and buyer. This must be the case at equilibrium. It

turns out as shown by the authors that the equilibrium always exists and that every

153

Chapter 8. On the Economics of Identi�er-based Discovery

equilibrium is welfare maximizing (where the welfare of an outcome is simply the

di�erence between the values of the buyers and those of the sellers). These results

are shown by resorting to the primal/dual solutions of a welfare maximization linear

program. In any solution, no trader will be able to make any pro�t unless the latter

is essential for the social welfare of the game (this result captures the case where

traders could have di�erent costs and hence only the cheaper ones will be part of

the equilibrium). The game (with distinguishable goods) could be directly extended

to account for trading costs, i.e., where traders incur costs to perform the trade and

the same results hold, i.e., a trader will be able to make pro�t only when the trader

is crucial to the social welfare.

Mechanism Design and Interdomain Routing Game [161]

The third game we present in this section is that of interdomain routing incentives,

particularly for BGP. First, we brie�y overview how BGP operates after which we

proceed to describe the incentive mechanism. The Internet is mainly composed of

independent Autonomous Systems (ASes), or administrative domains, that must

coordinate to implement a distributed routing algorithm that allows packets to be

routed between the domains to reach their intended destinations. BGP is a policy-

based path vector protocol and is the de-facto protocol for Internet interdomain

routing. The protocol's speci�cation [42] was initially intended to empower domains

with control over route selection (which path or route to pick among multiple ad-

vertised routes to a destination), and route propagation (who to export the route to

among the direct neighbors of an AS). The commercialization of the Internet quickly

transformed ASes into economic entities that act sel�shly when implementing their

internal policies and particularly the decisions that relate to route selection and prop-

agation [148]. Intuitively, sel�shness and the lack of coordination could potentially

lead to instabilities in the outcome of the protocol, as is actually the case with BGP.

154

Chapter 8. On the Economics of Identi�er-based Discovery

Gri�n et al. have studied this problem and the authors provided the most widely ac-

cepted formulation, the stable paths problem, with su�cient conditions under which

the protocol converges to a stable solution, the no dispute wheel condition [162]. In

addition to the algorithmic side of BGP which deals with convergence and stability,

recent work has focused on the economic side, particularly studying the equilibria of

a BGP game and trying to align the incentives of the players (check [71, 161] and

references therein).

The interdomain routing incentive game of [161], hereby referred to as ROUTING-

GAME, aims to study the policies (strategies) under which BGP is welfare maximiz-

ing (i.e., it maximizes the social welfare), and incentive-compatible (i.e., no player

has an incentive to deviate from telling the truth where the player's action is to

declare private information), and to design a distributed mechanism to provide these

attractive properties. Formally, in this game we are given a graph G = (N,L) that

represents the AS level topology (nodes N are the ASes and L the set of links be-

tween them). The route computation problem is studied for a single destination

d and may be directly extended to all destinations assuming route computation is

performed independently per destination. Hence, there exists a set of n players in-

dexed by i, and the destination d. Each player has a valuation function vi : P i → R

which assigns a real number to every permitted route to d, P i being the set of all

permitted routes from i to d. Note that a route is permitted if it is not dropped by

i and its neighbors. No two paths are assumed to have the same valuation. Social

welfare of a particular outcome, an allocation of routes Ri, ∀i that forms a tree Td,

is de�ned to be WTd =
∑n

i=1 vi(Ri). Clearly, the concept of internal policy is cap-

tured with the strict valuation or preference function vi over the di�erent routes to

d which is private information given that the nodes are autonomous. In this sense,

and as mentioned earlier, the goal of this problem is to design a mechanism that

can maximize the social welfare despite the fact that its components, the vi func-

tions, are unknown or private. The mechanism design framework and particularly

155

Chapter 8. On the Economics of Identi�er-based Discovery

the Vickery-Clark-Groves (VCG) mechanism provides the solution [65]. To do so,

a central bank is assumed to exist whose sole task is to allocate a payment pi(Td)

to each node i based on the outcome. More clearly, a player may either truthfully

reveal her valuation to the mechanism (by always picking the best valued routes to

d) or not, hoping to manipulate the outcome to her advantage. Based on the players'

actions and hence on the outcome tree Td, a payment pi(Td) will be made by the

central bank to each player. The utility of each player from an outcome will then

be ui(Td) = vi(Ri) + pi(Td). The VCG payment scheme is intentionally designed

to make the truthful action a dominant strategy for all players, hence no player has

an incentive to lie about her valuation. To achieve this, AS i will be compensated

an amount pi proportional to the decrease in the value of all upstream ASes that

have picked their best route to d through i when the latter does not participate.

This is exactly the impact on the social welfare when i is not playing [65]. From a

game standpoint, the solution concept that was targeted is the dominant strategy

solution - playing truthfully is a dominant strategy and achieving such an attractive

solution comes at the expense of assuming a central bank that regulates payments.

The authors show that BGP augmented with a VCG payment scheme is incentive-

compatible and welfare maximizing in several well studied settings (assumptions on

policies or valuation functions).

In the above problem, and generally in problems involving mechanism design,

the common scenario is an allocation mechanism that distributes some resource to

a set of participating players. In order for a mechanism to implement the Social

Choice Function (SCF), for example maximizing the social welfare of all players, the

mechanism needs to know the real private information (such as true valuations for

example) of the players. This is the case because players might be able to strategically

manipulate the output of the mechanism by lying about their private information

or strategies. Hence, the mechanism tries to make �truthfully declaring the private

information� a dominant strategy for the players.

156

Chapter 8. On the Economics of Identi�er-based Discovery

8.2.2 Discovery versus Search: Why receiver-based discov-

ery?

Before discussing the economic issues the arise in discovery mechanisms, we review

two main operations in discovery (discussed earlier in section 6.3) and we discuss the

source of value of each operation. This section is important to frame our work.

We introduce the notions of advertisers and seekers. In identi�er-based discovery,

advertisers are the entities that wish to be discoverable by the rest of the network

using their identi�ers. They utilize the join(i, level) interface to express their wish

to the mechanism. Seekers, who could be advertisers as well, wish to locate the

advertisers and they utilize the discover(i, j) operation to do so. In our model

players are advertisers who may simultaneously be seekers (think of a node in a

Distributed Hash Table (DHT) for example as in [100]).

It is important to distinguish two di�erent classes of problems that relate to

discovery and that have been considered in the literature. The �rst, distributed

information retrieval, is that of locating information without prior knowledge of the

providers or the location of the information (information could be located anywhere

in the network). This problem is generally referred to as unstructured search (as in

Gnutella, Freenet P2P networks, social networks, etc.). One key idea here is that in

order for the requester to �nd the requested information, she must search for it and

be willing to invest in the search. The provider either can not or is not willing to do

so. Prominent work in this vein that addresses cost and incentive structures includes

the work by Kleinberg [78].

The second class of problems, which we are more interested in and which we refer

to as identi�er-based discovery, aim at discovering a path to a uniquely identi�ed

entity assuming the seeker is given the identi�er(s) of the destination beforehand.

This problem is common in service-centric networks where there generally exists

157

Chapter 8. On the Economics of Identi�er-based Discovery

many competing providers for the same service. Within this class of problems, we

distinguish two subclasses based on the cost model employed. The �rst subclass

deals with routing problems and focuses on the transit or forwarding cost which is

to be bore by the seeker. Several proposals fall under this subclass and many utilize

economic tools based in mechanism design [64, 68, 69]. We distinguish another �avor

of the problem by noticing that in service-centric network environments, the seeker

gets no utility from the discovery part but rather gets the utility from consuming

the service itself. In this sense, the utility of discovery is mainly to the provider

or the advertiser: the provider wishes to sell the service and can e�ciently do so

only when the service is �discoverable�. This is the main point that distinguishes our

work from the literature on routing and forwarding incentives. The players may be

thought of as providers that receive a utility from being discoverable by the rest of

the network, the utility of being famous, the latter being inevitably related to the

player's business. Hence, in the receiver-based business model, the player does not

care about whether other players are discoverable or not, whereas with general P2P

resource sharing applications the player's utility is to share the resources of other

players and hence to be able to discover the rest of the network (originator-based).

8.3 A Taxonomy of Discovery Schemes

Fig. 8.3 shows some classic models used by current discovery schemes (and proposals).

Big circles (light and dark) represent nodes used by the routing function (nodes V).

Big dark circles represent a subset of those nodes that maintains state about the

identi�er space. We refer to these nodes as the service nodes denoted with VD

where VD ⊆ V . Small dark circles (colored red) are the entities that wish to be

discovered. We refer to those entities as the players denoted with P . Fig. 8.3 tries to

illuminate the relationship between the players P (who receive the discovery service),

158

Chapter 8. On the Economics of Identi�er-based Discovery

Figure 8.3: Representation of some common models for discovery.

Model Representative Schemes

model I DNS, DONA [34], eFIT [144], LIS ([36], etc.)
model II DHTs (Chord [100], etc.)
model III NICR ([38, 39], etc.), BGP-DA, ROFL [37]

Table 8.1: Identi�er-based discovery schemes.

and the nodes VD (who provide the service and incur the cost). This relationship

is important in an economic setting, such as when studying pricing schemes and

when devising a strategic model (and solution concept) for the problem at hand. For

example, service nodes in model I (described shortly) may be generally considered to

be obedient (i.e., to follow the protocol) as they belong to the same administrative

entity (or to multiple competing entities each providing the same service). In models

II and III however one needs to consider strategic service nodes in addition to the

strategic agents where the two sets could be the same. Some of the representative

schemes in the literature that follow these service models are listed in Table 8.1.

In model (I) [VD 6= P], there is a dedicated set of nodes VD (possibly infrastruc-

ture) that keep the state information about the identi�er space while the players P

159

Chapter 8. On the Economics of Identi�er-based Discovery

reside on di�erent nodes. DNS is one example of a centralized scheme that follows

this model. In DNS, VD is the set of root/gTLD (for global Top Level Domain)

servers and the players are domain servers that keep zone �les. Another scheme that

uses this model and that is distributed is the recent DONA proposal [34] where VD

is the set of resolution handlers, and the players are generally objects on edge nodes.

Another set of proposals that �ts under this model is embodied by the Locator-ID-

Split (LIS) work which aims at providing discoverability to edge sites (e.g., [36]) or

nodes (e.g., [28]) in the Internet.

In model (II) [VD = P], the state is kept on the same set of nodes that the

players reside on. In such a model, the players themselves have a common interest in

implementing the discovery scheme. The typical example here is Distributed Hash

Tables (DHT).

In model (III) [VD = V = P], the state is maintained on all the nodes V and the

players are all the nodes. This model is common to proposals that perform routing

on identi�ers. One class of schemes that �ts under this model is represented by the

Name Independent Compact Routing (NICR) [38]. In NICR, the forwarding function

is aware of the the node identi�ers. BGP-DA is the another representative scheme

here where the players or nodes are the ASes advertising the pre�xes and where it

is necessary for all nodes V to keep the state in order for pre�x path discovery (i.e.,

routing in this case) to succeed. Another recent scheme is the DHT-based ROFL [37],

in which the routers are the nodes (if we ignore data objects here) that are themselves

the players identi�ed by �at identi�ers (hashes). Note that models (II) and (III) are

the same for our purposes and we shall not make the distinction between the two

hereafter.

160

Chapter 8. On the Economics of Identi�er-based Discovery

8.4 Incentives and Pricing

Having introduced the discovery problem and overviewed di�erent discovery models

used in the literature, we now proceed to motivate the need for incentives in discovery.

Recall that in order for a node to be discoverable, a cost must be incurred by the set

of service nodes VD generally for maintaining state about the node's identi�er. The

term state in this context refers to the information stored on the service nodes to

allow the players to be discoverable. The per-node state may be thought of as simply

the node's routing table which is generally comprised of mappings from identi�er to

location information. The question that arises then is who pays for maintaining the

state, and what incentive models are suitable for the di�erent discovery models. In

this section, we present our initial thoughts on incentive models that are applicable

to each of the discovery models, and we set the stage for the BGP incentive model

which will be discussed in the next chapter.

Model I: VD 6= P

Recall that in this setting, the players P are requesting a discovery service from

a set of infrastructure service nodes VD. When VD 6= P , mechanism design and

particularly Distributed Algorithmic Mechanism Design (DAMD) [67] in addition

to general cost-sharing models [65] seem to be intuitive frameworks for modeling

incentives and pricing. Di�erent situations may arise based on whether the service

nodes are obedient or not (obedient service nodes will not try to manipulate the

protocol), belong to multiple competing economic entities or not, and on whether

the mechanism is subsidized or not. Note that when the mechanism is subsidized,

the designer of the mechanism does not have to worry about budget-balance where

the latter means that the total payments made by the players must o�set the total

cost of providing the service.

161

Chapter 8. On the Economics of Identi�er-based Discovery

Assume the service nodes to be obedient and no competition dynamics present,

and consider the following DAMD model: each player has a valuation of being dis-

coverable, which she presents to the mechanism. The mechanism logically controls

(and operates on) the service nodes collecting all the players' valuations, the de-

mand, and allocating payments back to the players to achieve a mix of goals. These

goals could potentially include incentive-compatibility (or strategy-proofness), wel-

fare maximization (or e�ciency), and/or budget-balance. When the mechanism is

subsidized, the goal of the mechanism is to maximize the social welfare (instead of

budget-balance) under the constraint that a cost is associated with providing the

service. In this sense, valuations of the service need to be declared truthfully by the

players, and hence the goal of incentive-compatibility (especially when the mecha-

nism is able to provide di�erent levels of the service). We sketch such a DAMD model

that accounts for service di�erentiation in Appendix A. A one-shot VCG variant [65]

is a natural solution here that could achieve e�ciency and incentive-compatibility

again assuming that the mechanism could be subsidized in other ways. The VCG

pricing scheme is a cost-sharing scheme, i.e., it shares the total cost of providing the

service among the participating players. The mechanism will always maximize the

social welfare of all the players and will pick prices (cost shares) such that a player i

pays an amount equal to the di�erence in the total welfare of the other players with

and without player i's participation - the damage caused by player i's participation 2.

Note that the budget-balance requirement becomes essential when the subsidization

assumption does not hold since the total cost must be collected so that service nodes

are paid for participating. For example, if a node j is not compensated for the cost

of keeping state about the rest of the network, the node will have no incentive to

participate. It has been proven by La�ont and Green and later by Satterwaite im-

possibility theorems [65] that cost-sharing mechanisms can be either strategy-proof

and e�cient, or strategy-proof and budget-balanced but not both.

2This VCG pricing scheme is referred to as the Clark Pivot rule [65].

162

Chapter 8. On the Economics of Identi�er-based Discovery

When competition among the service providers is present, then the one-shot

mechanism design framework seems less practical. This case is more representative

of model (I) than the no-competition case. The main idea here is that multiple

competing Discovery Service Providers (DSPs) o�er the service to the players. Each

DSP is assumed to be owned and operated by an autonomous economic entity and

DSPs compete for service or market share. Dynamic pricing is more suitable in such

a model and a realistic strategic model for this setting based on repeated games

was introduced by Afergan [163]. The model discusses price strategies at Internet

interchange locations, such as multiple ISPs providing service to a customer (e.g., a

CDN). The same model may potentially apply to the discovery mechanism pricing

where multiple competing DSPs compete for market share.

Models II, III: VD = P

When the set of service nodes VD = P , players incur a cost due to participation of

other players and the issue of incentive and pricing becomes even more challenging.

In this distributed setting, the traditional game theoretic and economic tools seem

to be more applicable, since the centralized designer and the obedient service nodes

assumptions inherent to the mechanism design framework no longer hold. Consider

BGP for example where every node that wishes to be discoverable introduces state

about its identi�er on every other node in the DFZ. NICR [38, 39] schemes on

the other hand are less costly as they try to optimize the tradeo� between state

and stretch (check section 6.4.2 for more on stretch and space/state tradeo�s in the

context of compact routing). In this sense, a node that wishes to be discoverable must

introduce state on a subset of other nodes in the network. In both examples above,

one can directly recognize the incentive mismatch issue and the challenges inherent

to the design of incentive and pricing models that are suitable for this setting. In

the next chapter, we present one such incentive model for BGP-DA.

163

Chapter 8. On the Economics of Identi�er-based Discovery

8.5 Conclusion

This chapter has motivated the need for considering strategic interactions in network

design. We presented three games that highlight the most common solution con-

cepts employed when analyzing strategic interactions among self-interedted, welfare-

maximizing agents. The solution concepts reviewed are pure-strategy Nash equi-

librium (QUERY-GAME), dominant strategy equilibrium (ROUTING-GAME), and

subgame-perfect equilibrium (TRADE-GAME). The games are very relevant to the

discussion of the next chapter (chapter 9) where we present an incentive model for

route distribution in the context of BGP. To illustrate the incentive issues that arise

in discovery mechanism design, we presented a taxonomy of discovery schemes based

on their business models. We highlighted two main models: one in which the set of

service nodes is di�erent than the set of players (model I) and another in which the

the two sets of nodes are the same (models II and III). We discussed our thoughts

on suitable economic models for each of the two discovery models. We would like

to note that an initial version of this chapter appeared in [164]. The next chapter

elaborates on the incentive issues that arise in the BGP scheme (BGP follows models

II,III). We present an incentive model that allows for route distribution (and hence

discoverability) while aligning the incentives of all participating agents.

164

Chapter 9

Route Distribution Incentives in

BGP

9.1 Introduction

The Border Gateway Protocol (BGP) is a policy-based path vector protocol and is the

de-facto protocol for Internet interdomain routing. The protocol's speci�cation [42]

was initially intended to empower domains with control over route selection, and route

propagation. The commercialization of the Internet transformed Autonomous Sys-

tems (AS) into economic entities that act sel�shly when implementing their internal

policies and particularly the decisions that relate to route selection and propaga-

tion [148]. BGP is intrinsically about distributing route information to destinations

(which are IP pre�xes) to establish paths in the network. Path discovery, or simply

discovery hereafter, starting with some destination pre�x is the outcome of route

distribution and route computation.

As discussed earlier in chapter 8, accounting for and sharing the cost of discovery

is an interesting problem whose absence from current path discovery schemes has

165

Chapter 9. Route Distribution Incentives in BGP

led to critical economic and scalability concerns. As an example, the BGP control

plane functionality is oblivious to cost. More clearly, a node (BGP speaker) that ad-

vertises a provider-independent pre�x (identi�er) does not pay for the cost of being

discoverable. Such a cost, which may be large given that the pre�x is maintained at

every node in the Default Free Zone (DFZ), is paid by the rest of the network. For

example, Herrin [165] has preliminarily analyzed the non-trivial cost of maintaining

a BGP route. Such incentive mismatch in the current BGP workings is further exac-

erbated by provider-independent addressing, multi-homing, and tra�c engineering

practices [12]. Given the fact that the number of BGP pre�xes in the global routing

table (or RIB) is constantly increasing at a rate of roughly 100, 000 entries every 2

years and is expected to reach a total of 388, 000 entries in 2011 [145], has motivated

us to devise a model that accounts for distribution incentives in BGP.

A large body of work has focused on choosing the right incentives given that ASes

are self-interested, utility-maximizing agents. While exploring incentives, most previ-

ous work has ignored the control plane incentives (route advertisement/distribution)

and has instead focused on the forwarding plane incentives (e.g., transit costs). 1

One possible explanation for this situation is based on the following assumption: a

node has an incentive to distribute routes to destinations since the node will get paid

for transiting tra�c to these destinations, and hence route distribution is ignored as

it becomes an artifact of the transit process. We argue that this assumption is not

economically viable by considering the arrival of a new customer (BGP speaker).

While the servicing edge provider makes money from transiting the new customer's

tra�c to the customer, the middle providers do not necessarily make money while

still incurring the cost to maintain and distribute the customer's route information.

In this work, we separate the control plane incentives (incentives to distribute route

information) from the forwarding plane incentives (incentives to forward packets)

1In this chapter, we use the term�control plan� to refer only to route pre�x advertisements
(not route updates) as we assume that the network structure is static.

166

Chapter 9. Route Distribution Incentives in BGP

and use game theory to model a BGP distribution game. The main problem we are

interested in is how to allow BGP pre�x information to be distributed globally while

aligning the incentives of all the participating agents?

9.1.1 A Simple Distribution Model

We synthesize many of the ideas and results from [70, 78, 161, 71] into a coherent

model for studying BGP route distribution incentives. In�uenced by the social net-

work query propagation model of Kleinberg and Raghavan [78], we use a completely

distributed model in the sense that it does not assume a central bank (in contrast to

previous work on truthful mechanisms [65]).

A destination d advertises its pre�x and wishes to invest some initial amount of

money rd in order to be globally discoverable (or so that the information about d

becomes globally distributed). Since d may distribute its information to its direct

neighbors only, d needs to provide incentives to get the information to propagate

deeper into the network. Therefore, dmust incentivize its neighbors to be distributors

of its route, who then incentivize their neighbors to be distributors, and so on. A

distributor node will be rewarded based on the role it plays in the outcome routing

tree to d, Td. The utility of the transit node i from distributing d's route, as we shall

describe shortly, increases with the number of nodes that route to d through i - hence

the incentive to distribute. While we take BGP as the motivating application, we are

interested in the general setting of distributing a good to a set of agents. Agents are

located on a network and trade may only occur between directly connected agents.

Prices are chosen strategically and the agents are rewarded by volume of sales.

The model seems to correctly capture many of the details behind how policy-

based BGP (and in general path-vector protocols) works and the inherent incentives

required. Additionally, the model is consistent with the simple path vector formu-

167

Chapter 9. Route Distribution Incentives in BGP

lation introduced by Gri�n in [70]. More clearly, it is widely accepted that each

AS participating in BGP has as part of its decision space, the following decisions to

make:

• import policy: a decision on which routes to d to consider,

• route selection: a decision on what route to d to pick among the multiple

possible routes,

• export policy: a decision on who to forward the advertisement to among its

direct neighbors.

All three policies are captured in the game model we describe next.

There are two main properties of interest in when it comes to the BGP game

model: convergence, and incentives. The BGP inter-domain routing protocol han-

dles complex interactions between autonomous, competing economic entities that

can express local preferences over the di�erent routes. Given the asynchronous inter-

actions among the ASs and the partial information, convergence of BGP to a stable

solution becomes an essential property to aim for when studying policies. Gri�n et

al. [70] de�ned the stable paths problem which is widely accepted as the general prob-

lem that BGP is solving. The authors formulated a general su�cient condition under

which the protocol converges to an equilibrium state, mainly the �no dispute wheels�

condition. A game-theoretic model was recently developed by Levin et al. [71] builds

on the stable paths formalization and studies the incentive-compatibility question.

In addition to convergence, incentive issues are crucial to the success and stability

of BGP mainly since nodes are assumed to be sel�sh entities that will act strategi-

cally to optimize their utility. In this sense, any distribution and route computation

mechanism or policy may only bene�t from aligning the incentives of the players to

achieve the mechanism's goals [65, 161, 166, 71].

168

Chapter 9. Route Distribution Incentives in BGP

9.1.2 Our Results

In section 9.2, we present the general distribution game. In this game, a player's pure

strategy involves deciding on a �best� route to d as well as determining the reward

to o�er to her direct neighbors. We de�ne the player's utility as a function of the

volume of downstream players that she can recruit based on the assumption that the

advertiser or destination, d, receives a �xed marginal utility from each player that

maintains a route to d. In this chapter, we are mainly interested in studying the

existence of equilibria in the general game. Our main results include:

• First, in section 9.3 we prove that in order to maximize her utility, a player

will always choose the route with the highest promised reward. We refer to the

resulting policy as the Highest Rewards Path (HRP). We show that under HRP,

the BGP protocol always converges to a stable routing tree for any strategy

pro�le by employing the su�cient condition for convergence de�ned by Gri�n

et. al [70]. The convergence result allows us to focus on the existence of

equilibria as it directly means that any equilibrium strategy pro�le converges

under the BGP protocol to a stable tree.

• Due to the complexity of the strategic dependencies and the competition dy-

namics, section 9.4 presents the initial equilibrium results on the simplest pos-

sible class of graphs with and without competition. Particularly, we present

existence results for: 1) the line (and the tree) graphs which involve no com-

petition, and 2) the ring graph which involves competition. We show that a

subgame perfect equilibrium always exists for the game induced on the line

graph and on the tree, while no such equilibrium exists for the game induced

on the ring graph (with an even number of nodes) due to oscillation of best-

response dynamics under competition when the incentive rd is �large�. To the

best of our knowledge, this is the �rst result to consider competition which

169

Chapter 9. Route Distribution Incentives in BGP

has not been studied in similar previous work [78, 77]. While the full game

does not have a subgame perfect equilibrium, we show that there always exists

a Nash equilibrium for a special class of subgames. This requires us to �rst

quantify the growth of rewards in the game, or in other words the minimum

incentive rd such that there exists an equilibrium outcome which is a spanning

tree (i.e., d is globally discoverable).

• Finally, section 9.4.5 extends the static version of the game to a repeated

version. We show how a Nash equilibrium may be constructed in a �nitely

repeated version of the game by adding a convergence constraint on utility

which essentially dis-incentivizes oscillation.

9.1.3 Related work

The Simple Path Vector Protocol (SPVP) formalism [70] develops su�cient condi-

tions for the outcome of a path vector protocol to be stable. The two main com-

ponents of the formalism are permitted paths and local strict preference relations

over alternate paths to some destination. A respective game-theoretic model was

developed by Levin [71] that captures these conditions in addition to incentives in a

game theoretic setting. Feigenbaum et. al study incentive issues in BGP by consid-

ering least cost path (LCP) policies [166] and more general poilicies [161]. We have

elaborated on the ROUTING-GAME of [161] earlier in section 8.2.1. Our model is

fundamentally di�erent from [166] (and other works based in mechanism design [69])

in that the prices are strategic, the incentive structure is di�erent, and we do not

assume the existence of a central �designer� (or bank) that allocates payments to the

players but is rather completely distributed as in real markets. The bank assump-

tion is limiting, and an important question posed in [161] is whether the bank can

be eliminated and replaced by direct payments by the nodes. A desirable property

of our model is that payments are bilateral and may only �ow between neighbors

170

Chapter 9. Route Distribution Incentives in BGP

where a player i should not be able to send a payment to another player j unless the

latter is a direct neighbor. This renders the model more robust to manipulation.

Li et. al [77] study an incentive model for query relaying in peer-to-peer (p2p)

networks based on rewards, upon which Kleinberg et. al [78] build to model a more

general class of trees. As discussed in the QUERY-GAME earlier in section 8.2.1,

Kleinberg and Raghavan [78] allude to a similar version of our distribution game in

the context of query incentive networks. They pose the general question of whether

an equilibrium exists for general Directed Acyclic Graphs (DAGs) in the query prop-

agation game. Both of these probabilistic models do not account for competition.

While we borrow the basic idea, we address a di�erent problem which is that of route

distribution versus information seeking.

Finally, our work relates to price determination in network markets with inter-

mediaries (refer to the work by Blume et al. [160] and the references therein). We

have discussed the TRADE-GAME of [160] earlier in section 8.2.1. A main di�er-

entiator of this class of work from other work on market pricing is its consideration

of intermediaries and the emergence of prices as a result of strategic behavior rather

than competitive analysis or truthful mechanisms. Our work speci�cally involves the

cascading of traders (or distributors) on complex network structures.

9.2 The General Game

Reusing notation from [71, 161], we consider a graph G = (V,E) where V is a set of

n nodes (alternatively termed players, or agents) each identi�ed by a unique index

i = {1, . . . , n}, and a destination d, and E is the set of edges or links. Without

loss of generality, we study the BGP discovery/route distribution problem for some

�xed destination AS with pre�x d (as in [70, 71, 161]). The model is extendable

to all possible destinations (BGP speakers) by noticing that route distribution and

171

Chapter 9. Route Distribution Incentives in BGP

computation are performed independently per pre�x. The destination d is referred

to as the advertiser and the set of players in the network are termed seekers. Seekers

may be distributors who participate in distributing d's route information to other

seeker nodes or consumers who simply consume the route (leaf nodes in the outcome

distribution tree). For each seeker node j, Let P (j) be the set of all routes to d that

are known to j through advertisements, P (j) ⊆ P(j), the latter being the set of all

simple routes from j. The empty route φ ∈ P(j). Denote by Rj ∈ P (j) a simple

route from j to the destination d with Rj = φ when no route exists at j, and let

(k, j)Rj be the route formed by concatenating link (k, j) with Rj, where (k, j) ∈ E.

Denote by B(i) the set of direct neighbors of node i and let next(Ri) be the next

hop node on the route Ri from i to d. De�ne node j to be an upstream node relative

to node i when j ∈ Ri. The opposite holds for a downstream node. Finally, we use

rnext(Ri) to refer to the reward that the upstream parent from i on Ri o�ers to i. For

example in Fig. 9.1, next(R5) = 3 and 3 is an upstream node relative to 5.

Figure 9.1: Sample network (Not at equilibrium): Solid lines indicate an outcome
tree Td under the advertised rewards.

The general distribution game is as follows: destination d �rst exports its pre�x

(identi�er) information to its neighbors promising them a reward rd ∈ Z+ (rd = 10 in

Figure 9.1) which directly depends on d's utility of being discoverable. A node j (a

player) in turn receives o�ers from its neighbors where each neighbor i's o�er takes

172

Chapter 9. Route Distribution Incentives in BGP

the form of a reward rij. A reward rij that a node i o�ers to some direct neighbor

j ∈ B(i) is a contract stating that i will pay j an amount that is a function of rij and

of the set of downstream nodes k that decide to route to d through j (i.e., j ∈ Rk

and Rj = (j, i)Ri). Note that such a reward model requires that the downstream

nodes k notify j of their best route so that the latter can claim its reward from its

upstream parent. After receiving the o�ers, player j strategizes by selecting a route

among the possibly multiple advertised routes to d, say (j, i)Ri, and deciding on a

reward rjl < rij to send to each candidate neighbor l ∈ B(j) that it has not received

a competing o�er from. Note then that rlj < rjl where rlj = 0 means that j did not

receive an o�er from neighbor l. Node j then pockets the di�erence rij − rjl. The

process repeats up to some depth that is directly dependent on the initial investment

rd as well as on the strategies of the players. We intentionally keep this reward model

abstract at this point, but will revisit it later in the discussion when we de�ne more

speci�c utility functions. For example, in Fig. 9.1, node d promises its neighbor set

{1, 2} a reward rd = 10. Node 1 exports route (1, d) to its neighbor promising a

reward r13 = 8. Similarly node 2 exports the route (2, d) to its neighbor set {3, 4}

with r23 = r24 = 7 and so on. Clearly in this model, we assume that a player can

strategize per neighbor, presenting di�erent rewards to di�erent neighbors. This

assumption is based on the autonomous nature of the nodes and the current practice

in BGP where policies may di�er signi�cantly across neighbors (as with the widely

accepted Gao-Rexford policies [149] for example).

Assumptions To keep our model tractable, we take several simplifying assump-

tions. In particular, we assume that:

1. the graph is at steady state for the duration of the game, i.e., we do not consider

topology dynamics;

2. the advertiser d does not di�erentiate among the di�erent players (ASes) in

173

Chapter 9. Route Distribution Incentives in BGP

the network, i.e., the ASes are indistinguishable to d.

3. the advertised rewards are integers and are strictly decreasing with depth, i.e.,

rij ∈ Z+ and rij < rnext(Ri), ∀ i, j. We let 1 unit be the cost of distribution

(a similar assumption was taken in [78] to avoid the degenerate case of never

running out of rewards, referred to as �Zeno's Paradox�);

4. a node that does not participate will have a utility of zero;

5. �nally, our choice of the utility function isolates a class of policies which we refer

to as the Highest Reward Path (HRP). As the name suggests, HRP policies

incentivize players to choose the path that promises the highest reward. Such

class of policies may be de�ned more generally to account for more complex

cost structures as part of the decision space 2. We assume for the scope of

this work that transit costs are extraneous to the model. This is a restrictive

assumption given that BGP allows for arbitrary and complex policies that are

generally modeled with a valuation or preference function over the di�erent

routes to d (see [70, 161]).

Strategy Space: Given a set of advertised routes P (i) where each route Ri ∈ P (i)

is associated with a promised reward rnext(Ri) ∈ Z+, a pure strategy si ∈ Si of an

autonomous node i comprises two decisions:

• After receiving o�ers from neighboring nodes, pick a single �best� route Ri ∈

P (i) (where �best� is de�ned shortly in Theorem 2);

• Pick a reward vector ri = [rij]j promising a reward rij to each candidate neigh-

bor j (and export route and reward to respective candidate neighbors).

2Metric based policies could be modeled with HRP by �xing one of the players' decisions.
For example, �xing rij = rnext(Ri) − 1, ∀i, j results in hop count metric; or alternatively
setting rij = rnext(Ri) − ci, where ci is some local cost to the node results in Least Cost
Path (LCP) policy [161], etc.

174

Chapter 9. Route Distribution Incentives in BGP

A strategy pro�le s = (s1, . . . , sn) and a reward rd de�ne an outcome of the game 3.

Every outcome determines a set of paths to destination d given by Od = (R1, . . . , Rn).

A utility function ui(s) for player i associates every outcome with a real value in R.

We use the notation s−i to refer to the strategy pro�le of all players excluding i. The

Nash equilibrium is de�ned as follows:

De�nition 2. A Nash Equilibrium (NE) is a strategy pro�le s∗ = (s∗1, . . . , s
∗
n) such

that no player can move pro�tably by changing her strategy, i.e., for each player i,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ Si.

Cost: The cost of participation is local to the node and includes for example the

cost associated with the e�ort that a node spends in maintaining the route informa-

tion 4. Other cost factors that depend on the volume of tra�c (proportional to the

number of downstream nodes in the outcome Od) are more relevant to the forwarding

plane and as mentioned earlier in the assumptions, we ignore this cost in the current

model. Hence, we simply assume that every player i incurs a cost ci which is the

cost of participating. We assume for the scope of this chapter that the local cost is

constant with ci = c = 1.

Utility: We experiment with a simple class of utility functions which rewards a

node linearly based on the number of sales that the node makes. This model incen-

tivizes distribution and potentially requires a large initial investment from d. More

clearly, de�ne Ni(s) = {j ∈ V \{i}|i ∈ Rj} to be the set of nodes that pick their best
3We abuse notation hereafter and we refer to the outcome with simply the strategy

pro�le s where it should be clear from context that an outcome is de�ned by the tuple
< s, rd >. Notice that a strategy pro�le may be associated with an outcome if we model
rd as an action. We refrain from doing so to make it explicit that rd is not strategic.

4A preliminary estimate of this cost is shown by Herrin [165] to be $0.04 per
route/router/year for a total cost of at least $6,200 per year for each advertised route
assuming there are around 150,000 DFZ routers that need to be updated.

175

Chapter 9. Route Distribution Incentives in BGP

route to d going through i (nodes downstream of i) and let δi(s) = |Ni(s)|. Let the

utility of a node i from an outcome or strategy pro�le s be:

ui(s) = (rnext(Ri) − ci) +
∑

{j|i=next(Rj)}

(rnext(Ri) − rij)(δj(s) + 1) (9.1)

The �rst term (rnext(Ri) − ci) of (9.1) is incurred by every participating node and

is the one unit of reward from the upstream parent on the chosen best path minus

the local cost. Based on the �xed cost assumption, we often drop this �rst term

when comparing player payo�s from di�erent strategies since the term is always

positive when c = 1. The second term of (9.1) (the summation) is incurred only

by distributors and is the total pro�t made by i where (rnext(Ri) − rij)(δj(s) + 1) is

i's pro�t from the sale to neighbor j (which depends on δj). We assume here that

node i gets no utility from an oscillating route and gets positive utility when Ri

is stable. A rational sel�sh node will always try to maximize its utility by picking

si = (Ri, [rij]j). There is an inherent tradeo� between (rnext(Ri) − rij) and (δj(s))

s.t. i = next(Rj) when trying to maximize the utility in Equation (9.1) in the face

of competition as shall become clear later. A higher promised reward rij allows the

node to compete (and possibly increase δj) but will cut the pro�t margin. Finally,

we implicitly assume that the destination node d gets a constant marginal utility of

rd for each distinct player that maintains a route to d - the marginal utility of being

discoverable by any seeker - and declares rd truthfully to its direct neighbors (i.e., rd

is not strategic).

9.3 Convergence under HRP

Before proceeding with the game model, we �rst prove the following theorem which

results in the Highest Reward Path (HRP) policy.

176

Chapter 9. Route Distribution Incentives in BGP

Theorem 2. In order to maximize its utility, node i must always pick the route Ri

with the highest promised reward, i.e., such that rnext(Ri) ≥ rnext(Rl),∀ Rl ∈ P (i).

Proof. The case for |B(i)| = 1 is trivial. The case for |B(i)| = 2 is trivial as well

since i will not be able to make a sale to the higher reward neighbor by picking the

lower reward o�er. Assume that node i has more than 2 neighbors and that any two

neighbors, say k, l advertise routes Rk, Rl ∈ P (i) s.t. k = next(Rk), l = next(Rl) and

rki < rli, and assume that i's utility for choosing route Rk over Rl either increases

or remains the same, i.e., uRki ≥ uRli . We will show by contradiction that neither of

these two scenarios could happen.

scenario 1: uRki > uRli From Equation (9.1), it must be the case that either (case

1) node i was able to make at least one more sale to some neighbor j who would

otherwise not buy, or (case 2) some neighbor j who picks (j, i)Ri can strictly increase

her δj(s) when i chooses the lower reward path Rk. For case 1, and assuming that

rij is the same when i chooses either route, it is simple to show that we arrive at

a contradiction in the case when j ∈ {k, l} (mainly due to the strictly decreasing

reward assumption, i.e., ri < rnext(.)); and in the case when j /∈ {k, l}, it must be

the case that j's utility increases with i's route choice, i.e., u(j,i)Rk
j > u

(j,i)Rl
j . This

contradicts with Equation (9.1) since w.r.t. j, both routes have the same next hop

node i. The same analogy holds for case 2.

scenario 2: uRki = uRli Using the same analogy of scenario 1, there must exist

at least one neighbor j of i that would buy i's o�er only when the latter picks Rk, or

otherwise node i will be able to strictly increase its utility by picking Rl pocketing

more pro�t.

The theorem implies that a player could perform her two actions sequentially, by

�rst choosing the highest reward route Ri, then deciding on the reward vector rij to

export to its neighbors. Thus, we shall represent player i's strategy hereafter simply

with the rewards vector [rij] and it should be clear that player i will always pick the

177

Chapter 9. Route Distribution Incentives in BGP

�best� route to be the route with the highest promised reward. When the rewards

are equal however, we assume that a node breaks ties consistently.

The question we attempt to answer here is whether the BGP protocol dynamics

converge to a unique outcome tree Td under some strategy pro�le s. A standard

model for studying the convergence of BGP protocol dynamics was introduced by

Gri�n et al. [70], and assumes BGP is an in�nite round game in which a scheduler

entity decides on the schedule, i.e., which players participate at each round (models

the asynchronous operation of BGP). The authors devised the �no dispute wheels�

condition [70], which is the most general condition known to guarantee convergence

of possibly �con�icting� BGP policies to a unique stable solution (tree). From Theo-

rem 2, it may be easily shown that �no dispute wheels� exist under HRP policy, i.e.,

when the nodes choose highest reward path breaking ties consistently. This holds

since any dispute wheel violates the assumption of strictly decreasing rewards on

the reward structure induced by the wheel. Hence, the BGP outcome converges to

a unique tree Td [70] under any strategy pro�le s. This result allows us to focus

on the existence of equilibria as it directly means that the BGP protocol dynamics

converges to a tree under any equilibrium strategy pro�le.

9.4 Equilibria

In the general game model de�ned thus far, the tie-breaking preferences of the play-

ers is a de�ning property of the game, and every outcome (including the equilibrium)

depends on the initial reward/utility rd of the advertiser. Studying the equilibria of

the general game for di�erent classes of utility functions and for di�erent underlying

graph structures is not an easy problem due to the complexity of the strategic de-

pendencies and the competition dynamics. Hence, we start by studying the game on

the simplest possible class of graphs with and without competition. We assume full

178

Chapter 9. Route Distribution Incentives in BGP

information as we are interested in studying the existence question initially rather

than how the players would arrive at the equilibrium 5. Particularly, we present exis-

tence results for the simplest two classes of graphs: 1) the line (and the tree) graphs

which involve no competition, and 2) the ring graph which involves competition.

To study the existence of equilibria on the simple line and ring graphs, we �x

the schedule of play (i.e., who plays when?) as we formalize shortly. We start by

examining a static version of the full-information game in which each player plays

once at a single stage based on proximity to d, and we then proceed to examine the

repeated version of the static game.

9.4.1 The Static Multi-Stage Game with �xed schedule

In order to apply the correct solution concept, we �x the schedule of play. The

schedule is based on the inherent order of play in the model: recall that the advertiser

d starts by advertising itself and promising a reward rd; the game starts at stage 1

where the direct neighbors of d, i.e., the nodes at distance 1 from d, observe rd and

play simultaneously by picking their rewards while the rest of the nodes �do-nothing�.

At stage 2, nodes at distance 2 from d observe the stage 1 strategies and then play

simultaneously and so on. Stages in this multi-stage game with observed actions [63]

have no temporal semantics. Rather, they identify the network positions which have

strategic signi�cance. The closer a node is to the advertiser, the more power such a

node has due to the strictly decreasing rewards assumption. The key concept here is

that it is the information sets [63] that matter rather than the time of play, i.e., since

all the nodes at distance 1 from d observe rd before playing, all these nodes belong

to the same information set whether they play at the same time or at di�erent time

instants. We refer to a single play of the multi-stage game as the static game. We

5This of course is an interesting question in its own right.

179

Chapter 9. Route Distribution Incentives in BGP

resort to the multi-stage model (the �xed schedule) on our simple graphs to eliminate

the synchronization problems inherent in the BGP protocol and to focus instead on

the existence of equilibria. By restricting the analysis to the �xed schedule, we do

not miss any equilibria. This is due to the fact that the �xed schedule is only meant

to replace the notion of �fair and in�nite schedule� [70] with a more concrete order of

play. The resulting game always converges in a single play for any strategy pro�le,

and the outcome tree is necessarily one of shortest-paths (in terms of number of

hops) 6. The main limitation of this model however is that it can not deal with

variable costs ci for which the outcome (HRP tree) might not be a shortest-path

tree.

Formally, and using notation from [63], each player i plays only once at stage

k > 0 where k is the distance from i to d in number of hops. At every other

stage, the player plays the �do nothing� action. The set of player actions at stage

k is the stage-k action pro�le, denoted by ak = (ak1, , . . . , a
k
n). Further, denote by

hk+1 = (rd, a
1, . . . , ak), the history at the end of stage k which is simply the initial

reward rd concatenated with the sequence of actions at all previous stages. We let

h1 = (rd). Finally, hk+1 ⊂ Hk+1 the latter being the set of all possible stage-k

histories. When the game has a �nite number of stages, say K + 1, then a terminal

history hK+1 is equivalent to an outcome of the game (which is a tree Td) and the

set of all outcomes is HK+1.

The pure-strategy of player i who plays at stage k > 0 is a function of the history

and is given by si : Hk → Rmi where mi is the number of direct neighbors of player

i that are at stage k + 1 (implicit here is that a player always picks the highest

reward route). Starting with rd (which is h1), it is clear how the game produces

actions at every later stage based on the player strategies resulting in a terminal

6This follows in the multi-stage game since a player at stage k will not o�er rewards to
its neighbors at stage l < k, i.e., rewards �ow in one direction away from d. The outcome
is necessarily a shortest path tree since every player at stage k must pick must pick its best
route from the o�ers its received from neighbors at stage k − 1.

180

Chapter 9. Route Distribution Incentives in BGP

action pro�le or outcome. Hence, given rd, an outcome in HK+1 may be associated

with every strategy pro�le s, and so the de�nition of Nash equilibrium (De�nition

(2)) remains unchanged. Finally, it is worthwhile noting that the �observed actions�

requirement (where a player observes the full history before playing) is not necessary

for our results in the static game as we shall see in the construction of the equilibrium

strategies. Keeping this requirement in the model allows us to classify the play from

some stage onward, contingent on a history being reached as a subgame in its own

right as we describe next.

De�nition 3. [63] A proper subgame of a full game is a restriction of the full game

to a particular history. The subgame inherits the properties of the full game such as

payo�s and strategies while simply restricting those to the history.

In our game, each stage begins a new subgame which restricts the full game to a

particular history. For example, a history hk begins a subgame G(hk) such that the

histories in the subgame are restricted to hk+1 = (hk, ak), hk+2 = (hk, ak, ak+1), and

so on.

De�nition 4. [63] A strategy pro�le s∗ = (s∗1, . . . , s
∗
n) is a subgame-perfect equilib-

rium if it is a Nash equilibrium for every proper subgame of the full game.

Hereafter, the general notion of equilibrium we use is the Nash equilibrium and

we shall make it clear when we generalize to subgame perfect equilibria. We are only

interested in pure-strategy equilibria [63] and in studying the existence question

as the incentive rd varies. A Nash equilibrium hereafter is a pure-strategy Nash

equilibrium. We now proceed to study the equilibria on special networks.

No Competition: the line graph and the tree

In the same spirit as [78] we inductively construct the equilibrium for the line graph

(simply referred to as the line hereafter) of Figure 9.2 given the utility function of

181

Chapter 9. Route Distribution Incentives in BGP

Figure 9.2: Line graph: a node's index is the stage at which the node plays; d
advertises at stage 0; K = n.

Equation (9.1). We present the result for the line which may be directly extended to

trees. Before proceeding with the construction, notice that for the line, mi = 1 for

all players except the leaf player since each of those players has a single downstream

neighbor. In addition, δi(s) = δj(s) + 1,∀i, j where j is i's child (δi = 0 when i is a

leaf). We shall refer to both the player and the stage using the same index since our

intention should be clear from the context. For example, the child of player i is i+ 1

and its parent is i− 1 where player i is the player at stage i. Additionally, we simply

represent the history hk+1 = (rk) for k > 0 where rk is the reward promised by

player k (player k's action). The strategy of player k is therefore sk(hk) = sk(rk−1)

which is a singleton (instead of a vector) since mi = 1 (for completeness, let r0 = rd).

This is a perfect information game [63] since a single player moves at each stage and

has complete information about the actions of all players at previous stages. Hence,

backward induction may be used to construct the subgame-perfect equilibrium.

We construct the equilibrium strategy s∗ inductively as follows: �rst, for all

players i, let s∗i (x) = 0 when x ≤ c (where c is assumed to be 1). Then assume that

s∗i (x) is de�ned for all x < r and for all i. Obviously, with this information, every

player i may compute δi(x, s∗−i) for all x < r. This is simply due to the fact that

δi depends on the downstream players from i who must play an action or reward

182

Chapter 9. Route Distribution Incentives in BGP

strictly less than r. Finally, for all players i we let s∗i (r) = arg maxx(r − x)δi(x, s
∗
−i)

where x < r.

Theorem 3. The strategy pro�le s∗ is a subgame-perfect equilibrium.

Sketch of Proof The proof for the line is straightforward and follows from backward

induction by constructing the optimal strategies starting with the last player (player

K) �rst, then the next-to-last, and so on up to player 1. The strategies are optimal

for every history (by construction) and given the utility function de�ned in Equation

(9.1), no player can move pro�tably. Notice that in general when rnext(Ri) ≤ c,

propagation of the reward will stop simply because at equilibrium no player will

want a negative utility and will prefer to not participate instead (the case with the

leaf player).

The proof may be directly extended to the tree since each player in the tree has

a single upstream parent as well and backward induction follows in the same way.

On the tree, the strategies of the players that play simultaneously at each stage are

also independent.

Competition: The ring

As opposed to the line, we present next a negative result for the ring graph (simply

referred to as the ring hereafter). In a ring, each player has a degree of 2 and mi = 1

again for all players except the leaf player. We consider rings with an even number

of nodes due to the direct competition dynamics. Figure 9.3 shows the 2-stage, the

3-stage, and general K-stage versions of the game. In the multi-stage game, after

observing rd, players 1 and 2 play simultaneously at stage 1 promising rewards r1

and r2 respectively to their downstream children, and so on. We shall refer to the

players at stage j using ids 2j − 1 and 2j where the stage of a player i, denoted as

l(i), may be computed from the id as l(i) = d i
2
e. For the rest of the discussion, we

183

Chapter 9. Route Distribution Incentives in BGP

Figure 9.3: Ring network with even number of nodes: (i) 2-stage game, (ii) 3-stage
game, and general (iii) K-stage game.

assume WLOG that the player at stage K (with id 2K − 1) breaks ties by picking

the route through the left parent 2K − 3.

For the 2-stage game in Figure 9.3, it is easy to show that an equilibrium always

exists in which s∗1(rd) = s∗2(rd) = (rd − 1) when rd > 1 and 0 otherwise. This

means that player 3 enjoys the bene�ts of perfect competition due to the Bertrand-

style competition [63] between players 1 and 2. The equilibrium in this game is

independent of player 3's preference for breaking ties. We now present the following

negative result,

Claim 4. The 3-stage game induced on the ring (of Figure 9.3(ii)) does not have a

subgame-perfect equilibrium. Particularly, there exists a class of subgames for h1 =

rd > 5 for which there is no Nash equilibrium.

Sketch of Proof The proof makes use of a counterexample. Using the backward

induction argument, notice �rst that the best strategy of players 3 and 4 is to play

a Bertrand-style competition as follows: after observing a1 = (r1, r2), player 3 plays

r3 = 0 when r1 = 1, r3 = min(r1 − 1, r2 − 1) when both r1 > 1 and r2 > 1, and

r3 = 1 when r1 > 1 and r2 = 1. Player 4 plays symmetrically. Knowing that, players

184

Chapter 9. Route Distribution Incentives in BGP

1 and 2 will choose their strategies simultaneously and no equilibria exist for rd > 5

due to oscillation of the best-response dynamics. This may be shown by examining

the strategic form game, in normal/matrix form, between players 1 and 2 (in which

the utilities are expressed in terms of rd). We brie�y show the subgame for rd = 6

and we leave the elaborate proof as an exercise for the interested reader. Figure 9.4

shows the payo� matrix of players 1 and 2 for playing actions r1 ∈ {2, 3} (rows) and

r2 ∈ {1, 3} (columns), respectively. The payo� shown is taken to be ui = (rd− rij)δi
ignoring the �rst term of Equation (9.1). The actions shown are the only remaining

actions after applying iterated strict dominance, i.e., all other possible actions for

the players are strictly dominated. Clearly, no pure strategy Nash equilibria exist 7.

Figure 9.4: The payo� matrix of players 1 and 2 for the 3-stage game on the ring of
Figure 9.3(ii) when rd = 6.

The argument could be directly extended to any rd > 5 since player 2 will still have

the incentive to oscillate.

The value rd > 5 signi�es the breaking point of equilibrium or the reward at

which player 2, when maximizing her utility (rd−r2)δ2, will always oscillate between

competing for 5 (by playing large r2) or not (by playing small r2). We elaborate

on this value later in section 9.4.4. Hence, under the linear utility given in Equa-

tion (9.1), an equilibrium does not exist on the simple ring. This negative result for

the game induced on the 3-stage ring may be directly extended to the general game

7There is however a single mixed strategy equilibrium in which player 1 plays r1 = 2
with probability 2

3 while player 2 plays r2 = 1 with probability 1
2 , yielding expected payo�s

6 and 5 for players 1 and 2 respectively.

185

Chapter 9. Route Distribution Incentives in BGP

for the K-stage ring by observing that a class of subgames G(hK−2) of the general

K-stage game are identical to the 3-stage game. While the full game does not have

an equilibrium for K > 2 stages, we shall show next that there always exists an

equilibrium for the special subgame G(r∗d) (for h
1 = r∗d), where the reward r

∗
d is the

minimum incentive to guarantee that d's route is globally distributed at equilibrium.

We de�ne and compute r∗d next before constructing the equilibrium.

9.4.2 Growth of Incentives

We next answer the following question: Find the minimum incentive r∗d, as a function

of the depth of the network K (equivalently the number of stages in the multi-stage

game), such that there exists an equilibrium outcome for the subgame G(r∗d) that is

a spanning tree. We seek to compute the function f such that r∗d = f(K). First, we

present a result for the line, before extending it to the ring. On the line, K is simply

the number of players, i.e., K = n.

Lemma 5. On the line graph, we have f(0) = 0, f(1) = 1, f(2) = 2, and ∀ k > 2

f(k) = (k − 1)f(k − 1)− (k − 2)f(k − 2) (9.2)

Proof. First, f(0) = 0, f(1) = 1 and f(2) = 2 are trivially true given the utility

function of Equation (9.1). The proof uses induction on the depth of the network.

First, for the base case k = 3, in the 3-stage line the Nash equilibrium is for player

1, the player at distance 1 from d, to play r1 = 2 and for player 2 to play r2 = 1

(in every NE, si(1) = 0, ∀i). Given r∗d = f(3) = 3, the utility of player 1 is

u1 = (3 − 2)2 ≥ (3 − r′2)δ′2, ∀r′2 < 3. Similarly player 2 may not move pro�tably

from playing r2 = 1.

Assume f(x) = (x−1)f(x−1)− (x−2)f(x−2) holds ∀ x < k. We construct the

k-stage game from the (k − 1)-stage game by adding a node/player between node d

186

Chapter 9. Route Distribution Incentives in BGP

and node 1 in the (k − 1)-stage game. Notice the player 2 in the k-stage game used

to be player 1 in the (k − 1)-stage game. By de�nition of f , in the k-stage game,

when player 1 plays r1 = f(k − 1) then δ1 = (k − 1) and no player i, 2 ≤ i ≤ k may

deviate pro�tably from playing ri = f(k − i). Here r1 = f(k − 1) is the minimum

reward to get a δ1 = (k−1). In general, it holds by construction of f that there are k

possible outcomes for player 1, corresponding to the values δ1 = 0, 1, . . . , k − 1. For

each of these outcomes, we have an action for player 1, r1 = f(x), which results in

the outcome tree corresponding to δ1 = x,∀ x < k and such that no player besides

player 1 may deviate pro�tably contingent on player 1 playing r1 = f(x) (In this

outcome player i plays f(x− i + 1) ∀ 2 ≤ i ≤ n). In order for δ1 = k − 1 to be the

equilibrium outcome, it must be the case that r1 = f(k − 1) maximizes player 1's

utility given rd (and hence no player including player 1 may deviate pro�tably), i.e.,

it must be that ∀ 2 ≤ j ≤ k

(rd − f(k − 1))(k − 1) ≥ (rd − f(k − j))(k − j)

This condition is equivalent to:

(rd − f(k − 1))(k − 1) ≥ (rd − f(k − 2))(k − 2) (9.3)

since (rd−f(k−2))(k−2) ≥ (rd−f(k−j))(k−j),∀ 3 ≤ j ≤ k and for rd ≥ f(k−1).

Equation (9.3) implies that rd ≥ (k − 1)f(k − 1) − (k − 2)f(k − 2). The minimum

such incentive is:

r∗d = f(k) = (k − 1)f(k − 1)− (k − 2)f(k − 2) (9.4)

which is greater than f(k − 1) concluding the proof.

Notice that f(K) grows exponentially with the depth K of the line network 8.

By subtracting f(k− 1) from both sides of the recurrence relation, it may be shown

8On the other hand, on complete d-ary trees, it may be shown that the function f(k) =
Θ(k) = Θ(logd n) for d ≥ 2 since the number of players, and hence δi, grows exponentially

187

Chapter 9. Route Distribution Incentives in BGP

that

f(k)− f(k − 1) = (k − 2)! (9.5)

9.4.3 A Special Subgame

We now revisit the the K-stage game of Figure 9.3(iii) on the ring and we focus on

a speci�c subgame which is the restriction of the full game to h1 = r∗d = f(K), and

we denote this subgame by G(r∗d). Consider the following strategy pro�le s∗ for the

subgame: players at stage j play s∗2j−1(hj) = f(K− j), and s∗2j(hj) = f(K− j−1),∀

1 ≤ j ≤ K − 1, and let s∗2K−1(hK) = 0.

Theorem 6. The pro�le s∗ is a Nash equilibrium for the subgame G(r∗d) on the

K-stage ring, ∀ K > 2.

Proof. Notice �rst that the complete history hK+1 which corresponds to r∗d and s∗

is an outcome that is a spanning tree (each player picks the best route through the

upstream parent while the last player 2K−1 prefers the left parent who is promising

a higher reward). We will show that no player i can deviate from playing s∗i given s
∗
−i

by considering the players at each stage j,∀ 2 ≤ j ≤ K − 1 �rst and then we extend

the reasoning to the players at stage 1. For the players at stage j we show that player

2j−1 may not deviate pro�tably from playing s∗2j−1(hj) = r2j−1 = f(K−j) given the

strategies of the rest of the players (particularly given s∗2j(h
j) = r2j = f(K− j− 1)),

and the same for player 2j. Given that r2j < r2j−1 (i.e., player 2j not competing

with player 2j − 1), then by de�nition of the function f , there exists an outcome on

with depth K. These growth results on the line graph and the tree seem parallel to the
result of Kleinberg and Raghavan [78] (and the elaboration in [167]) which states that the
reward required by the root player in order to �nd an answer to a query with constant
probability grows exponentially with the depth of the tree when the branching factor of the
tree is 1 < b < 2, i.e., when each player has an expected number of o�springs 1 < b < 2,
while it grows logarithmically for b > 2.

188

Chapter 9. Route Distribution Incentives in BGP

the ring such that δ2j−1 = K − j when r2j−1 = f(K − j) and r2j < r2j−1 (this holds

at each stage 2 ≤ j ≤ K − 1 given the tie-breaking preference of player 2K − 1).

The utility then to player 2j − 1 of playing r2j−1 = f(K − j) is:

u2j−1 = (f(K − j + 1)− f(K − j))(K − j) (9.6)

= (f(K − j + 1)− f(K − j − 1))(K − j − 1) (9.7)

= (K − j)! (9.8)

where the second equality holds by de�nition of function f (Equation (9.4)) and

the third equality holds because (f(K)− f(K − 2))(K − 2) = (f(K)− f(K − 1) +

f(K − 1) − f(K − 2))(K − 2) = ((K − 2)! + (K − 3)!)(K − 2) = (K − 1)!. Given

the strategies of the rest of the players, player 2j − 1 may not deviate pro�tably,

i.e., u2j−1(f(K − j), s∗−(2j−1)) ≥ u2j−1(r′, s∗−(2j−1)),∀ r′ 6= f(K − j). This is simply

because playing an r′ > f(K − j) will strictly decrease u2j−1 since δ2j−1 is already

maximized (δ2j−1 = K − j in this case), while playing r′ < f(K − j) can at best

yield player 2j − 1 the same utility when r′ = f(K − j − 1) (Equation (9.7)).

The same reasoning holds for player 2j who may not deviate pro�tably by playing

r′′ 6= f(K − j − 1). Speci�cally, any r′′ < f(K − j − 1) can at best yield player

2j the same utility when r′′ = f(K − j − 2), and in order to compete with player

2j − 1 (and possibly increase δ2j) player 2j must play r′′ > r2j−1 = f(K − j) which

violates the decreasing rewards assumption. Hence neither player at stage j may

deviate pro�tably for all 2 ≤ j ≤ K − 1. It remains to show that players at stage

1 may not deviate pro�tably. First, player 1 may not deviate pro�tably using the

same argument we used for player 2j − 1 where j = 1. The utility to player 1 is

u1(f(K − 1), s∗−1) = (K − 1)!. On the other hand, player 2 gets the same utility as

player 1 where u2(f(K − 2), s∗−2) = (f(K) − f(K − 2))(K − 2) = (K − 1)!. In the

same way, player 2 may not deviate pro�tably since playing any r′2 6= f(K − 2) may

189

Chapter 9. Route Distribution Incentives in BGP

not increase u2 given s∗−2. More clearly, in order for player 2 to compete with player

1 and possibly increase δ2 from K− 2 to K− 1, player 2 must play an r′2 > f(K− 1)

which in the best case yields a utility u2(r′2, s
∗
−2) = (f(K)− r′2)(K − 1) < (K − 1)!.

Hence, neither player 1 nor player 2 may deviate pro�tably given the strategies of

the other players. Finally, the case for player 2K − 1 is trivial. This concludes the

proof.

This result may be interpreted as follows: if the advertiser were to play strategi-

cally assuming she has a marginal utility of at least r∗d and is aiming for a spanning

tree (global discoverability), then r∗d = f(K) will be her Nash strategy in the game

induced on the K-stage ring, ∀ K > 2 (given s∗).

We have shown in Lemma (5) that the the minimum incentive r∗d on the line (such

that there exists an equilibrium spanning tree for the subgame G(r∗d)) as a function

of depth K is r∗d = f(K). We now extend the result to the ring denoting by fr(K)

the growth function for the ring in order to distinguish it from that of the line, f(K).

Corollary 7. On the ring graph, we have fr(k) = f(k) as given by Lemma (5).

Sketch of Proof We have shown in Theorem (6) that s∗ is a an equilibrium for the

subgame G(r∗d) for r∗d = f(K) and that the equilibrium is a spanning tree. What

remains to show is that f(K) is the minimum incentive required. This follows by

isolating the left branch of the ring, which is a line graph that constitutes of player

d and all the players with odd identi�ers, and using the same argument of Lemma

(5) on this branch: an rd < f(K) allows player 1 to move pro�tably by playing an

r1 < f(K−1) which violates the spanning tree requirement (by de�nition of f).

Next, we present an important result which we utilize to extend the subgame equi-

librium of Theorem (6) and later as well for the general equilibrium in the repeated

version of the game.

190

Chapter 9. Route Distribution Incentives in BGP

9.4.4 Competition Rewards

Competition on the general K-stage ring starts between players 1 and 2 who compete

for the last player 2K − 1, knowing that the latter picks the highest reward route

breaking ties by going through the left parent. This section aims at answering the

following question: What does it take for player 2 (and the players in the right

branch of the ring) to be able to compete with player 1 (and the players in the left

branch of the ring) given that the left branch of the ring is preferred to the right

branch under the tie-breaking preference of player 2K − 1? Formally, for the players

i, 1 ≤ i ≤ n, let Vodd = {i|i is odd, and i /∈ {2K − 1}} be the subset of players i with

odd identi�ers (players in the left branch of the ring), while Veven = {i|i is even}. In

an abuse of notation, denote by sVodd the strategy pro�le of all the players in Vodd and

similarly for sVeven . We are interested in computing a strategy pro�le ŝVeven such that

si = min(r′i)
r′i∈Z+

, ∀ si ∈ ŝVeven and such that the players in Vodd will have no incentive

to compete given ŝVeven , given that player 1 is playing r1 = x (rd is assumed to be

arbitrarily large here). Speci�cally, we are interested in the strategy s2 ∈ ŝVeven of

player 2 which we refer to as s2 = gK(x). In other words, in the subgame G(h2) for

h2 = (rd, r1 = x, r2 = gK(x)) (for x ≥ f(K − 1)), the outcome tree is guaranteed

to have a δ2 = K − 1. For example, in the 3-stage ring of Figure 9.3(ii), we have

g3(x) = x+1 or in other words, player 2 must play at least r2 = r1 +1 if she is to win

over player 5's business and hence compete with player 1. Finding a closed form for

gK(x) is not necessary for the existence results we seek in this chapter. Our goal here

is to show that gK(x) always exists. We show the existence of gk(x) in the Appendix

at the end of this chapter and we show a plot of the function gK(x)−x in Figure 9.5

which increases exponentially with K. It may be shown that gK(x)− x ≤ (K − 2)!

peaking at x = f(K − 1) + j(K − 2)!, ∀ j ≥ 0. Speci�cally, for x = f(K − 1), then

gK(x) = f(K) according to Equation (9.5).

Having de�ned ŝVeven and gK(x), we now proceed to generalize the result of The-

191

Chapter 9. Route Distribution Incentives in BGP

orem (6) as follows:

Theorem 8. The pro�le s∗ constructed in Theorem (6) is a Nash equilibrium for

the class of subgames G(h1) for f(K) ≤ h1 = rd ≤ f(K + 1) on the K-stage ring,

∀ K > 2.

Proof. We need to show that s∗ is a Nash equilibrium for all the histories f(K) ≤

h1 = rd ≤ f(K+ 1). Theorem (6) presents the proof for the history h1 = rd = f(K).

To show that s∗ remains an equilibrium for f(K) < h1 ≤ f(K+1), we prove that no

player may deviate pro�tably for all these histories. First, we consider the players

in Vodd and we note that every player i ∈ Vodd at stage j may not deviate pro�tably

from playing f(K − j) given s∗−i by de�nition of f and since δi is already maximized

(δi = K − j). As for the players in Veven, we start with player 2. We have shown

in section 9.4.4 that in order for player 2 to compete with player 1 (who is playing

r1 = f(K − 1)) and possibly increase δ2 (from K − 2 to K − 1), player 2 must play

r2 = gK(f(K−1)) = f(K). Any action r′2 < r2 will not provide enough incentive for

the players downstream of 2 to compete and possibly increase δ2. Hence, the question

is to �nd the value of rd such that player 2 may not deviate pro�tably from playing

f(K − 2) (i.e., not competing) to playing f(K) (i.e., competing). This requirement

follows due to the fact that if player 2 has an incentive to compete, then the outcome

of the game will oscillate between competing or not (i.e., no equilibrium) as we have

demonstrated on the simple 3-stage game in Claim (4). The requirement may be

192

Chapter 9. Route Distribution Incentives in BGP

stated as:

u2(f(K), s−2) ≤ u2(f(K − 2), s−2)

⇒ (rd − f(K))(K − 1) ≤ (rd − f(K − 2))(K − 2)

⇒ rd ≤ (K − 1)f(K)− (K − 2)f(K − 2)

= (K − 1)(f(K − 1) + (K − 2)!)− (K − 2)f(K − 2)

= f(K) + (K − 1)!

= f(K + 1)

where the second inequality follows since as we have already mentioned, player 2 wins

over the competition by playing f(K); the fourth and the last inequalities follow from

Equation (9.5). Hence, player 2 may not deviate pro�tably from playing f(K − 2)

while rd ≤ f(K + 1). The same holds for the rest of the players ∈ Veven since their

strategies are contingent on player 2's action r2. Finally, the case for the last player

2K − 1 is trivial which concludes the proof.

We have shown earlier in Claim (4) that no SPE exists in the 3-stage version of

the game (K = 3) by showing that the class of subgames for rd > 5 = f(3 + 1) do

not have a Nash equilibrium. Theorem (8) explains the signi�cance of the reward

rd = 5 where 5 = f(K + 1) when K = 3. Hence, the result for K = 3 conforms to

the general result of Theorem (8).

Before concluding this section, we construct the Nash equilibrium for the class of

subgames G(h1) for h1 = rd < f(K) on the K-stage ring as follows: Recall �rst that

each player i at stage j observes the history hj before playing and that rnext(Ri) is a

component of the history hj and particularly of the action pro�le aj−1 (for example

for any player i at stage 1, rnext(Ri) = rd). For each player i at stage j, let s∗i (1) = 0,

193

Chapter 9. Route Distribution Incentives in BGP

and let s∗i (h
j) = f(κ∗ − 1) where κ∗ = maxκ

κ<K

satisfying f(κ) ≤ rnext(Ri). Finally, let

s∗2K−1 = 0.

Theorem 9. The pro�le s∗ thus constructed is a Nash equilibrium for the class of

subgames G(h1) for h1 = rd < f(K) on the K-stage ring, ∀ K > 2.

Proof. For rd < f(K) there is no competition under s∗ and for every player i at stage

j, rnext(Ri) < f(K − j + 1) which could be shown recursively starting with players

at stage 1 and moving downwards. We show that no player can move pro�tably.

By construction of the strategy, each player i will �rst observe the promised reward

rnext(Ri), then compute κ∗, then play f(κ∗− 1). By de�nition of κ∗ and by de�nition

of f , it must be that for every player i, playing f(κ∗ − 1) will yield an outcome in

which δi = (κ∗ − 1). Additionally, (rnext(Ri) − f(κ∗ − 1))(κ∗ − 1) ≥ (rnext(Ri) − r′i)δ′i,

∀ r′i 6= f(κ∗−1). This is because playing r′i > f(κ∗−1) will still yield a δi = (κ∗−1)

while playing r′i < f(κ∗ − 1) will yield a δ′i < κ∗ − 1 and a weakly lower utility by

construction of f i.e., no player may deviate pro�tably. The case for the last player

2K − 1 is trivial which concludes the proof.

With Theorems (9) and (8), we have constructed the Nash equilibria for the class

of subgames G(h1) for h1 ≤ f(K + 1) on the general K-stage ring. On the hand,

we have also shown in Claim (4) that the subgame G(h1) for h1 > f(K + 1) does

not have a Nash equilibrium. While the static multi-stage game does not exhibit

an equilibrium for rd > f(K + 1), an equilibrium could be constructed in a �nitely

repeated version of the multi-stage game if we add a convergence constraint on utility

which essentially dis-incentivizes oscillation as discussed next.

194

Chapter 9. Route Distribution Incentives in BGP

9.4.5 The Repeated Game

First, we revisit the concrete example of the 3-stage game for rd = 6 in Figure 9.4.

An important observation in this simple game is that player 1 may guarantee a payo�

of 6 by committing to playing the pure strategy r1 = 3 (assuming player 2 knows

that) and there is no equilibrium that can yield player 1 a higher payo�. In the

general setting when rd > 5, it may be shown that player 1 may threaten player 2

by playing r1 = d rd
2
e since player 2 will have no incentive to deviate from playing

r2 = 1 given r1. In this case, the payo� to player 1 is rd when rd is even and rd − 1

when rd is odd, while the payo� of player 2 is rd − 1.

While the static game is instructive, it fails to capture the repeated dynamics

of BGP and the convergence concept introduced earlier. Many recent e�orts have

focused on modeling the repeated dynamics inherent to the BGP game [70, 71,

163, 168]. The repeated dynamics are critical to determining the outcome of the

game. Afergan [163] shows that BGP is not incentive compatible in the repeated

version of the game (at a speci�c Internet interchange) which violates the incentive-

compatibility result of Feigenbaum et al. [166] obtained in the one-shot version of

the game. In addition, the game-theoretic BGP model of Levin et al. [71] models

the BGP convergence game as an in�nitely repeated game and is based on the widely

celebrated model of Gri�n et al. [70]. We extend the basic game described thus far

to model the repeated play in addition to strategic price setting.

In the repeated version of the game, after d advertises itself and declares rd to

its direct neighbors, a �nite horizon, repeated, multi-stage game begins. Each round

of the game is exactly the multi-stage game described earlier in section 9.4.1 and

rd remains unchanged throughout the game. Recall that the multi-stage model is

intended to capture the order of play which is based on proximity to d. The multi-

stage game is played a �nite number of rounds whereby the rounds are intended to

195

Chapter 9. Route Distribution Incentives in BGP

capture repeated strategic price setting among the players over time. Before playing

at stage k in round t, player i observes the complete history of all the previous rounds

she participated in (rounds 0, 1, . . . , t − 1) as well as the history hk in round t. We

denote this complete history up to stage k in round t by hk,t, which is an outcome

of the game. Implicitly here, d observes the outcome of every round. For example,

player 1 plays at stage 1 in round 0 after observing h1, then plays again at stage 1

in round 1 after observing h1,1 which is the complete history/outcome of stage 0 in

addition to h1 in round 1, and so on.

Let M be the number of rounds played in the �nite horizon game where M is

su�ciently large and is common knowledge. The pure strategy of a player is now a

map {sti}M−1
t=0 where sti is player i's strategy at round t which maps every possible

complete history hk,t to a feasible action. The key property that may be de�ned

in the repeated model is convergence. More clearly, we have speci�ed earlier that a

player receives no utility from an oscillating route. The static game fails to capture

this concept of route stability since the game is played only once. The repeated play

extension on the other hand allows us to more realistically model route convergence

and the respective utility. We have de�ned convergence earlier to be the convergence

of the outcome to a stable tree Td given some strategy pro�le s. We have shown

that given any pro�le s the protocol will converge, and indeed in the multi-stage

model, it will do so in a single round, i.e., the outcome of each round t is a tree

T td. Convergence in the repeated game is the convergence of player strategies to an

equilibrium. Players will only be rewarded for their stable volume and this is common

knowledge, i.e., a player i may claim rewards from her upstream parent j only when

i's subtree is stable. As we shall see, it is this convergence requirement which results

in an equilibrium emerging. Intuitively, we are saying that given that best response

dynamics lead to oscillation in the static game, adding the requirement that players

will only be paid if they converge will result in convergence. Formally, let T ti be i's

subtree in the outcome tree T td of round t. In an M round game, Ti is stable only

196

Chapter 9. Route Distribution Incentives in BGP

when it remains unchanged from some round ts onwards. The parameterM , number

of rounds, represents the patience of the advertiser d. This is how much d is willing

to wait for convergence before distributing any rewards to the players. Suppose that

the players discount future payo�s with a common discount factor δ. In order to be

able to compare the payo�s of the static game to those of the repeated game, the

utility of a player i from repeated play of the multi-stage game, known as the average

discounted payo� [63], is normalized and is given by,

ûi(s) =
1− δ

1− δM
M−1∑
t=ts

δtui(s
t
i, s

t
−i) =

δts − δM

1− δM
ui(s

t
i, s

t
−i) (9.9)

where ui(sti, s
t
−i) is the per-round payo� which depends solely on the players' actions

and the outcome at round t and is given by Equation (9.1); and ts = min(t) s.t.

T ti = T t
′
i ,∀ t < t′ ≤ M ; and 1−δ

1−δM is simply a normalization factor which equates

to 1PM−1
t=0 δt

. First, notice how the utility of a player decreases with ts according to
δts−δM
1−δM (as ts varies between 0 and M − 1). Notice also that when T ti is stable, it

does not necessarily mean that T tj is stable ∀j ∈ Ri. We restrict ui to consider T ti

only since this is the subtree that i has control over. The reality is that every T tj for

j ∈ Ri must be stable before rewards may �ow from d towards i.

Consider the following grim trigger strategy s∗1 for player 1 in the 3-stage game

of Figure 9.4: let s∗1(1) = 0, s∗1(2) = 1 (Theorem (9)), s∗1(3) = s∗1(4) = 2 (Theorem

(8)), and s∗1(rd) for rd > 4 be to play r1 = 2 in round 0 and continue playing 2 until

player 2 plays an r2 > 2 after which switch to playing r1 = d rd
2
e for the rest of the

game. 9 Player 2's strategy s∗2 is to always play s
∗
2(rd) = 1 for rd ≥ 2 and 0 otherwise.

Players 3 and 4 will repeatedly compete in every round playing the strategies of the

static game. Finally, s∗5 = 0.

Theorem 10. The strategy pro�le s∗ is a Nash equilibrium in the 3-stage (K = 3)

game (for every history h1).

9Here player 1 has an advantage over player 2 and is threatening the latter to force a
desirable outcome.

197

Chapter 9. Route Distribution Incentives in BGP

Proof. We show that s∗ is a Nash equilibrium for every history h1. The case for

h1 = rd < 5 follows from Theorems (9) and (8) since by repeatedly playing the Nash

strategies of the static game, then ts = 0 and no player may deviate pro�tably as

can be seen from Equation (9.9) since ûi = ui, ∀ i.

For rd ≥ 5, player 1 is maximizing her average utility û1(s∗) by playing r1 =

f(K−1) = 2 (by de�nition of f) given that r2 = 1 in every history and hence player

1 may not gain by any deviation. Notice that this is the only history we consider

based on player 2's equilibrium strategy as we are constraining our attention to Nash

equilibria. What remains is to show that player 2 may not gain by deviating from

playing r2 = 1 (i.e., not competing) in any single round while conforming to r2 = 1 in

every other round (this is true since player 2 has one of two options when playing in

any round: compete, i.e., r2 ≥ gK(r1), or don't compete, i.e,. r2 = 1; a strategy s2 is

a combination of these options across the rounds; by showing that competing in any

single round, say t, may not bene�t player 2, it follows directly as we shall show that

competing in any future round t′ > t as well may not bene�t player 2 given s∗1). In

order for player 2 to possibly increase her utility (by increasing δ2), she must deviate

by playing an r2 ≥ gK(r1) = r1 + 1 as de�ned in section 9.4.4. If player 2 deviates

in round 0, then given the threat strategy of player 1, player 2 will strictly decrease

her average payo� since the deviation will cause ts > 0 without any possibility of

increasing u2 for any t > 0 when player 1 switches to playing r1 = d rd
2
e. This holds

since u2(r2, r1) does not increase, i.e., u2(r′2, d rd2 e) < u2(1, d rd
2
e),∀ r′2 ≥ r1 = d rd

2
e (by

construction of r1 = d rd
2
e as the minimum reward such that player 2 may not bene�t

by competing given rd). This argument may be extended to every round in which

player 2 participates. Finally, notice that players 3 and 4 may not deviate pro�tably

from repeatedly playing the static strategies (the Bertrand competition) given the

strategies of the rest of the players which concludes the proof.

For example, in the rd = 6 subgame of Figure 9.4, at equilibrium players 1 and

198

Chapter 9. Route Distribution Incentives in BGP

2 are expected to play (r1, r2) = (2, 1) in every round yielding (û1, û2) = (8, 5)

(again here ignoring the �rst term of Equation (9.1)). In the general setting when

rd ≥ 3, the equilibrium action pro�le remains (r1, r2) = (2, 1) in every round yielding

(û1, û2) = (2rd−4, rd−1). In summary, while no Nash equilibrium exists in the static

game, an equilibrium emerges in the repeated model mainly due to the convergence

restriction on the players' payo�s which essentially restricts player 2 to concede and

avoid oscillation. However, in order for this equilibrium to emerge, player 2 must be

aware of the threat strategy of player 1. The result for the 3-stage repeated game on

the ring may be extended to the K-stage repeated game.

9.5 Discussion

The Nash equilibria constructed in this chapter are not unique. It is additionally

well known that in a multi-stage game setting, the Nash equilibrium notion might

not be �credible� as it could present suboptimal responses to histories that would not

occur under the equilibrium pro�le [63], rendering subgame perfect equilibria more

suitable in such circumstances. All the Nash equilibria that we have constructed are

credible and are consistent with backward induction for the respective histories of the

subgames studied. A distinct aspect of our game is that a player i at stage k may not

carry an empty threat to an upstream parent at stage k − 1, since player i's actions

are constrained by the parent's action as dictated by the network structure and

the decreasing rewards assumption. In this chapter, we have studied the equilibria

existence question only. Other important questions include quantifying how hard is

it to �nd the equilibria, and devising mechanisms to get to them. These questions,

in addition to extending the results to general network structures and relaxing the

�xed cost assumption, are part of our ongoing work.

While the distributed incentive model has advantages over centralized mecha-

199

Chapter 9. Route Distribution Incentives in BGP

nisms that rely on a �designer�, the model might su�er from exponential growth of

rewards which could potentially make it infeasible for sparse and large diameter net-

works. Quantifying the suitability of this model to general network structures and

to the Internet connectivity graph speci�cally requires further investigation. Inter-

estingly, while it is a complex network, the Internet's connectivity graph is a small-

world network, i.e., the average distance between any two nodes on the Internet is

small [169].

Finally, we have only considered the setting in which d's marginal utility is con-

stant which seems intuitive in a BGP setting where global reachability is the goal,

since every node in the DFZ must keep state information about d or else the latter

will be unreachable from some parts of the network. Other economic models that

assume the network is a market with elastic demand (based on d's utility) and that

determine prices based on demand and supply, are interesting to investigate. They

may even be more intuitive in settings where it makes sense to advertise (or sell) a

piece of information to a local neighborhood.

Appendix: Existence of gK(x)

It is straightforward to show that g3(x) = x + 1 given the Bertrand competition of

players 3 and 4 on the 3-stage ring. For K ≥ 4 and for any r1 = x ≥ f(K − 1) 10,

10When x < f(K − 1), then gK(x) = f(K − 1) by de�nition of f .

200

Chapter 9. Route Distribution Incentives in BGP

ŝVeven is part of the solution to the following Integer Linear Program (ILP) 11:

minimize
∑2K−5

i=2 ri
i odd

− β
∑2K−5

i=2 ri
i even

s.t.

−r2K−5 + r2K−4 = 1

∀ 3 ≤ i ≤ 2k − 4, (ri−2 − ri)(k − l(i)) ≥

(ri−2 − f(k − l(i)− 1))(k − l(i)− 1)

∀ 1 ≤ j ≤ k − 3, r2j ≥ r2j−1 + 1

where β is a su�ciently large constant. The variables in the ILP above signify the

actions of the players in the subgame G(h2) while the constraints guarantee that

all players compete while they have an incentive to do so knowing that each player

may choose between competing or not. The constraints are constructed based on the

de�nition of ŝVeven to make sure that players in Vodd have no incentive to compete.

Figure 9.5 shows a plot of gK(x)− x for di�erent values of K and for x ≥ f(K − 1)

where the solution to the above ILP (including r2 = gK(x)) is computed using the

lp_solve [170] ILP solver (we set β = 105).

11Where gK(x) is the r2 element in the solution.

201

Chapter 9. Route Distribution Incentives in BGP

0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

25

50

75

100

125

K
=
7

K
=
6

x

g
K
(x
)
-
x

K=5
K=4

Figure 9.5: Plot of gK(x)− x for K = 4, 5, 6, 7.

202

Part III

Conclusion

203

Chapter 10

Conclusion

The reasonable man adapts himself to the world; the unreasonable one

persists in trying to adapt the world to himself. Therefore all progress

depends on the unreasonable man.

- GEORGE BERNARD SHAW (Playwright, winner of a Nobel prize and

an Oscar, and author of Maxims for Revolutionists)

In this dissertation, we have explored two problems towards designing a future

Internet: the lack of a framework for thinking about network architecture, and the

limitations of traditional discovery schemes. The thesis of the dissertation is thus

two fold:

• Architectural contributions will remain idiosyncratic and hard to assess and

evaluate unless we devise the correct frameworks to think about the design space,

compare architectures, and analyze their properties and their design implica-

tions.

• The separation of identi�er and locator is a widely accepted design principle

for a future Internet. The design of discovery models to support this separation

204

Chapter 10. Conclusion

bene�ts from accounting for the valuations of (and the cost incurred by) the

parties involved.

Our work is the �rst to present a general information-centric taxonomy for thinking

about the network architecture space. Additionally, this work is the �rst to frame

and formalize the discovery problem along with two important aspects of its design

process: service di�erentiation and economic incentives. By adding an economic di-

mension to the discovery design space, we gained more knowledge about the complex

design decisions pertaining to naming and discovery in networks.

10.1 Open Problems

Designing a future Internet architecture is a very broad problem statement. The

community is still in the process of converging on a set of goals and requirements

for the future Internet. Much work remains to be done in the requirements analysis

phase before we can start seeing concrete outcomes towards the �nal goal. Our

work addresses several aspects of the design process to help guide the design of a

future Internet. We re�ect on some of the open problems that were suggested by our

research and the respective research opportunities:

First, in terms of architectural modeling, while chapters 4 and 5 present an impor-

tant step towards formalizing network architectures and architectural styles, several

research challenges remain to be solved. Extracting a complete and disjoint set of

network architectural styles may potentially frame the architectural problem and pro-

vide a formal framework for classifying, relating, and reasoning about architectures.

The taxonomy is a timely and essential contribution in that direction. However,

we believe that several technological and cultural limitations remain to be solved

before assessing whether formal modeling will be of signi�cant value to the commu-

205

Chapter 10. Conclusion

nity. Some of the main limitations we encountered include the di�culty of modeling

the behavioral aspects of the architecture (mainly dynamics and evolution), the dif-

�culty of composing large complex systems in formal models, and the di�culty of

large scale veri�cation. While recent work has focused on addressing some of these

limitations (e.g. [138, 171]), signi�cant work remains to be done (engineering tools

and techniques, formal languages, and cultural changes are necessary) before formal

architectural modeling becomes a reality.

In chapter 7 we presented a framework for discovery service di�erentiation. The

cost associated with �being discoverable� and the resulting incentive mismatch prob-

lem that arises were elaborated on in chapter 8. In light of these contributions, an

important question is whether one can design a mechanism that allows di�erenti-

ation and that accounts for the cost and the incentives. A player that demands

and receives a higher discovery level is technically introducing more cost into the

system i.e. the distributed state is generally proportional to the discovery perfor-

mance attained. A cost-sharing discovery mechanism determines �how discoverable�

players are, and the payments or cost shares they have to make. We sketch one

such mechanism based on the mechanism design framework in Appendix A. Some of

the main limitations of this model (and of the AMD framework in general) include:

(1) formulating a cost function that is tractable given its dependence on globally

distributed state; (2) devising distributed implementations of the mechanism and

studying their algorithmic complexity [67] for the di�erent discovery models; and

(3) investigating the feasibility of implementing the distributed schemes as scalable

extensions to legacy discovery schemes such as BGP, DNS, and DHT as identi�ed

in [67]. While it provides tractable results, algorithmic mechanism design [64] suf-

fers from several limitations including (i) the simple one-shot model versus the more

realistic repeated dynamics that are prevalent in distributed settings, (ii) the oblivi-

ousness to malicious behavior, (iii) the inability to concurrently account for demand

and supply [79], and the computational hardness of implementing the mechanism in

206

Chapter 10. Conclusion

a distributed setting [74]. These limitations have guided our decision to investigate a

rather distributed incentive model in chapter 9. However, introducing di�erentiation

as part of the rewarding model, devising algorithms that lead to the constructed

equilibria, and extending the model to general network structures remain part of our

future work.

In chapter 6 we have explained two main aspects of the identi�er-based discovery

process: (i) advertisers wishing to be discoverable by advertising themselves, and

(ii) seekers seeking advertisers. These two aspects have di�erent value arguments

and cost structures as we explained in section 8.2.2. For example, sometimes the

seeker who seeks a resource gets value from the path discovery process. However,

the game model examined in chapter 9 in the context of BGP considers value as it

relates to the advertiser only. The other game that considers the forwarding part of

discovery is concerned with transit costs versus distribution costs. In summary, the

two aspects of the discovery process are distribution and forwarding in the context

of BGP. Whether the two games may be combined and analyzed simultaneously is

an open question.

207

Part IV

Appendices

208

Appendix A

A Mechanism Design Model

The goal in this section is to design identi�er-based discovery mechanisms that are:

(1) distributed (i.e. inputs and outputs of the mechanism are distributed throughout

the network as de�ned in Distributed AMD [67]), (2) e�cient (i.e. the mechanism will

try to maximize some concept of social welfare), (3) incentive-compatible (i.e. the

players will not try to manipulate the outcome of the mechanism to their bene�t), and

most importantly (4) cost-sharing and possibly budget-balanced. Recall that budget-

balance occurs when the global cost of the mechanism is o�set by the payments made

by the players. Note that the problem we are currently addressing assumes that all

participating nodes cooperate to implement routing and forwarding i.e. nodes do

not try to computationally manipulate the routing/forwarding functions. The only

strategic aspect of our current model is the players' valuations of discovery levels

that are declared to the mechanism designer. Such assumption is directly applicable

in schemes that follow model I in Figure 8.3 since the players can not manipulate

routing when VD 6= P .

209

Appendix A. A Mechanism Design Model

A.1 The Discovery Mechanism

The ingredients of the discovery mechanism are: (1) an input valuation function vi(.)

for each player i where vi ∈ Vi, the latter being the valuation function space Vi ⊆ RΛ,

(2) an output functionO : V1×V2 . . .×VN → ΛN which utilizes some discovery scheme

to deliver a discovery level pro�le L to the players, L ∈ ΛN , and (3) a cost-sharing

function ξ : V1 × V2 . . . × VN → RN that distributes the payments p to the players,

p ∈ RN . Hence, the discovery mechanism M : V1 × V2 . . . × VN → ΛN × RN maps

valuations to a discovery level pro�le and a payment pro�le. We shall brie�y describe

each of the ingredients next.

Figure A.1: The discovery mechanism design framework: mechanism M = (O, ξ)
.

The valuation function: Each player i has a private valuation function vi :

Λ → R, that assigns a real value to each possible discovery level l ∈ Λ. Intuitively,

a player will have a valuation that matches its true internal business requirements -

user demand internal to the player/node will require a certain performance level to

satisfy the demand.

The output function: An output of the mechanism is a decision that aggregates

the players' valuations. More clearly, the output function O : V1×V2×. . .×VN → ΛN

maps the players' valuations to a discovery level pro�le L ∈ ΛN , delivered to the

players. Denote by (L)i the element of vector L (i.e. the discovery level l) delivered

to player i , and by (L)−i the pro�le delivered to the rest of the players. To deliver

a discovery level pro�le, the mechanism relies on a discovery scheme, denoted as

(D,Al). The discovery scheme (D,Al) dictates 1) how the namespace registrations

210

Appendix A. A Mechanism Design Model

(or state) are distributed on the nodes VD ⊆ V (denoted byD), and 2) how the search

queries are forwarded such that players will be discoverable (denoted by algorithm

Al). Let Su be the registration state maintained at node u ∈ VD and let S be the

global state under D, i.e. S =
⋃
u∈VD Su.

The cost-sharing scheme ξ: In addition to delivering a discovery pro�le, the

mechanism implements a function ξ that distributes payments pi to the players (en-

tities) where pi is the amount player i pays to the mechanism.

The cost function C: The cost function is de�ned by C : ΛN → R+ ∪ {0}

that assigns to each output pro�le a real cost for delivering the pro�le. Given that

a scheme (D,Al) will assign a set of registrations Su to each node u that delivers an

output pro�le L, the total cost associated with L under some �xed scheme (D,Al)

is C(D,Al)(L) =
∑

u∈VD cost(Su) where cost is the cost function of maintaining the

Su registrations at node u. In this sense, the cost we try to formulate is the control

plane cost of the discovery scheme (D,Al) 1. The mechanism assumes the existence

of some stable scheme (D,Al) and the cost is minimized over the argument S where

the former could be suboptimal. By �xing the discovery scheme, the stability of the

mechanism increases and the network complexity that might arise due to changes in

vi decreases.

Utility and welfare: The value that a player i obtains as a result of an output

pro�le (L) is simply her valuation of the discovery level she receives vi((L)i)
2. The

utility of player i is ui = vi − pi. It is implicitly assumed here that the player's pref-

erences are quasi-linear and that no externalities exist i.e. player only cares about

the discovery level she receives and not about other player levels. The global welfare

of all the players under a scheme (D,Al) is, NW (L) =
∑

i vi(L)− C(D,Al)(L) which

1Note that we are not accounting for the forwarding plane costs which could be handled
through per query rewards. We are solely concerned with the initial cost of constructing
and maintaining the state.

2This is the value of being globally discoverable or known at the expected level i.e. the
value of being famous!.

211

Appendix A. A Mechanism Design Model

measures the total bene�t obtained by all players independent of payments. A mech-

anism is said to be e�cient if it maximizes the global welfare NW (L) implementing

a social choice function.

212

References

[1] V. Cerf and R. Kahn, Communications, IEEE Transactions on, vol. 22, no. 5,
pp. 637�648, 1974.

[2] D. Clark, �The design philosophy of the darpa internet protocols,� in SIG-
COMM '88: Symposium proceedings on Communications architectures and pro-
tocols. New York, NY, USA: ACM Press, 1988, pp. 106�114.

[3] �NSF Nets FIND initiative,� http://www.nets-�nd.net/.

[4] �GENI: Global environment for network innovations,� http://www.geni.org/.

[5] �European future internet portal,� http://www.future-internet.eu/.

[6] �The AKARI architecture design project,� http://akari-project.nict.go.jp.

[7] �The internet is broken,� MIT Technology Review.
http://www.technologyreview.com/article/16356/, December 2005.

[8] S. M. Bellovin, D. D. Clark, A. Perrig, and D. Song, �A clean-slate design for
the next-generation secure internet,� March 2005, this is the report of an NSF
workshop held in July, 2005.

[9] A. Feldmann, �Internet clean-slate design: what and why?� SIGCOMM Com-
put. Commun. Rev., vol. 37, no. 3, pp. 59�64, 2007.

[10] J. H. Saltzer, D. P. Reed, and D. D. CLark, �End-to-end arguments in system
design,� ACM TOCS, vol. 2, no. 4, pp. 277�288, November 1984.

[11] J. N. Chiappa, �Endpoints and endpoint names: A proposed enhancement to
the internet architecture,� http://www.chiappa.net/tech/endpoints.txt, 1999.

[12] D. Meyer, L. Zhang, and K. Fall, �Report from the iab workshop on routing
and addressing,� Internet RFC 4984, Sep 2007.

213

http://www.nets-find.net/
http://www.geni.org/
http://www.future-internet.eu/
http://akari-project.nict.go.jp

References

[13] D. Krioukov, kc cla�y, K. Fall, and A. Brady, �On compact routing for the
internet,� SIGCOMM Comput. Commun. Rev., vol. 37, no. 3, pp. 41�52, 2007.

[14] M. S. Blumenthal and D. D. Clark, �Rethinking the design of the internet:
the end-to-end arguments vs. the brave new world,� Communications Policy
in Transition: The Internet and Beyond, pp. 91�139, 2001.

[15] A. Weiss, �Net neutrality?: there's nothing neutral about it,� netWorker,
vol. 10, no. 2, pp. 18�25, 2006.

[16] W. R. Stevens and K. Fall, TCP/IP Illustrated: The Protocols v. 1. USA:
Addison-Wesley Publishing Company, 2009.

[17] S. Floyd and V. Paxson, �Di�culties in simulating the internet,� IEEE/ACM
Trans. Netw., vol. 9, no. 4, pp. 392�403, 2001.

[18] M. Coates, A. Hero, R. Nowak, and B. Yu, �Internet tomography,� IEEE Signal
Processing Magazine, vol. 19, pp. 47�65, 2002.

[19] D. Garlan, R. Allen, and J. Ockerbloom, �Architectural mismatch, or, why
it's hard to build systems out of existing parts,� in Proceedings of the 17th
International Conference on Software Engineering, Seattle, Washington, April
1995, pp. 179�185.

[20] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[21] P. Zave, �A formal model of addressing for interoperating networks,� in FM,
2005, pp. 318�333.

[22] ��, �Compositional binding in network domains.� in FM, ser. Lecture Notes
in Computer Science, vol. 4085. Springer, 2006, pp. 332�347.

[23] T. G. Gri�n and J. L. Sobrinho, �Metarouting,� in SIGCOMM '05: Proceed-
ings of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM Press,
2005, pp. 1�12.

[24] M. Karsten, S. Keshav, S. Prasad, and M. Beg, �An axiomatic basis for com-
munication,� in Proceedings of SIGCOMM 2007. New York, NY, USA: ACM
Press, 2007, pp. 217�228.

[25] Y. Wang, J. Touch, and J. Silvester, �A uni�ed model for end point resolution
and domain conversion for multi-hop, multi-layer communication,� USC/ISI,
Technical Report ISI-TR-590, June 2004.

214

References

[26] A. C. Snoeren and H. Balakrishnan, �An end-to-end approach to host mobility,�
in Sixth Annual ACM/IEEE International Conference on Mobile Computing
and Networking, August 2000.

[27] C. E. Perkins, �RFC 3220: Ip mobility support for ipv4,� January 2002.

[28] R. Moskowitz, P. Nikander, and P. Jokela, �Host identity protocol architecture,�
RFC 4423, May 2006.

[29] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, �Internet indirection
infrastructure,� IEEE/ACM Transactions on Networking, vol. 12, no. 2, pp.
205�218, Apr. 2004.

[30] D. Clark, R. Braden, A. Falk, and V. Pingali, �Fara: reorganizing the address-
ing architecture,� in FDNA '03: Proceedings of the ACM SIGCOMM workshop
on Future directions in network architecture. New York, NY, USA: ACM Press,
2003, pp. 313�321.

[31] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica,
and M. Wal�sh, �A layered naming architecture for the internet,� in Proceedings
of ACM SIGCOMM 2004. Portland, Oregon, USA: ACM, August 2004, pp.
343�352.

[32] P. Nikander, �Identi�er / locator separation: Exploration of the design space
(ilse),� IETF Internet Draft draft-nikander-ram-ilse-00, august 2007.

[33] �The transient network architecture,� http://hdl.handle.net/2118/tna.

[34] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, �A data-oriented network architecture,� in Proceedings of SIG-
COMM'07. Kyoto, Japan: ACM, August 27-31 2007.

[35] �The FP7 4WARD project,� http://www.4ward-project.eu/.

[36] V. Fuller, D. Meyer, and D. Farinacci, �Lisp alternative topology (lisp+alt),�
http://tools.ietf.org/html/draft-fuller-lisp-alt-03.txt.

[37] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica, �Ro�:
routing on �at labels,� in Proceedings of SIGCOMM 2006. New York, NY,
USA: ACM Press, 2006, pp. 363�374.

[38] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, �Compact distributed data
structures for adaptive routing,� in ACM STOC '89. New York, NY, USA:
ACM, 1989, pp. 479�489.

215

http://www.4ward-project.eu/

References

[39] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, �Compact
name-independent routing with minimum stretch,� in ACM SPAA '04. New
York, NY, USA: ACM Press, 2004, pp. 20�24.

[40] L. Bent and G. M. Voelker, �Whole page performance,� Workshop on Web
Content Caching and Distribution, Boulder CO, August 2002.

[41] C. Huitema and S. Weerahandi, �Internet measurements: the rising tide and
the dns snag.� in Proceedings of the 13th ITC Specialist Seminar on IP Tra�c
Measurement Modeling and Management, ser. IPseminar. Monterrey, CA,
USA: ITC, September 18-20 2000.

[42] Y. Rekhter, T. Li, and S. Hares, �RFC 4271: A border gateway protocol 4
(bgp-4),� 2006.

[43] B. Awerbuch and D. Peleg, �Routing with polynomial communication-space
trade-o�,� SIAM J. Discret. Math., vol. 5, no. 2, pp. 151�162, 1992.

[44] C. Gavoille, �Routing in distributed networks: overview and open problems,�
SIGACT News, vol. 32, no. 1, pp. 36�52, 2001.

[45] C. Gavoille and D. Peleg, �Compact and localized distributed data structures,�
Distrib. Comput., vol. 16, no. 2-3, pp. 111�120, 2003.

[46] S. Shenker, �Fundamental design issues for the future internet,� IEEE Journal
on Selected Areas in Communication, vol. 13, no. 7, September 1995.

[47] D. D. Clark, K. Sollins, J. Wroclawski, and T. Faber, �Addressing reality:
an architectural response to real-world demands on the evolving internet,� in
FDNA '03: Proceedings of the ACM SIGCOMM workshop on Future directions
in network architecture. New York, NY, USA: ACM Press, 2003, pp. 247�257.

[48] B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, and S. Schmid, �Invariants: a
new design methodology for network architectures,� in FDNA '04: Proceedings
of the ACM SIGCOMM workshop on Future directions in network architecture.
New York, NY, USA: ACM Press, 2004, pp. 65�70.

[49] S. Ratnasamy, S. Shenker, and S. McCanne, �Towards an evolvable internet ar-
chitecture,� in SIGCOMM '05: Proceedings of the 2005 conference on Applica-
tions, technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2005, pp. 313�324.

[50] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, �Tussle in cyberspace:
de�ning tomorrow's internet,� IEEE/ACM Trans. Netw., vol. 13, no. 3, pp.
462�475, 2005.

216

References

[51] G. D. Abowd, R. Allen, and D. Garlan, �Formalizing style to understand de-
scriptions of software architecture,� ACM Trans. Softw. Eng. Methodol., vol. 4,
no. 4, pp. 319�364, 1995.

[52] �The ABLE Project at carnegie mellon university,�
http://www.cs.cmu.edu/�able.

[53] N. Medvidovic and R. N. Taylor, �A framework for classifying and comparing
architecture description languages,� in ESEC '97/FSE-5: Proceedings of the
6th European conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering. New York, NY, USA:
Springer-Verlag New York, Inc., 1997, pp. 60�76.

[54] R. Allen and D. Garlan, �A case study in architectural modelling: The aegis
system,� in IWSSD '96: Proceedings of the 8th International Workshop on
Software Speci�cation and Design. Washington, DC, USA: IEEE Computer
Society, 1996, p. 6.

[55] J. S. Kim and D. Garlan, �Analyzing architectural styles with alloy,� in
ROSATEA '06: Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis. New York, NY, USA: ACM Press, 2006,
pp. 70�80.

[56] M. Bernardo, P. Ciancarini, and L. Donatiello, �Architecting families of soft-
ware systems with process algebras,� ACM Trans. Softw. Eng. Methodol.,
vol. 11, no. 4, pp. 386�426, 2002.

[57] F. Oquendo, �π-method: a model-driven formal method for architecture-
centric software engineering,� SIGSOFT Softw. Eng. Notes, vol. 31, no. 3, pp.
1�13, 2006.

[58] R. Braden, D. Clark, and S. Shenker, �Integrated services in the internet ar-
chitecture: an overview,� RFC 1633, 1994.

[59] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, �An archi-
tecture for di�erentiated service,� RFC 2475, 1998.

[60] X. Zhou, J. Wei, and C.-Z. Xu, �Quality-of-service di�erentiation on the in-
ternet: a taxonomy,� J. Netw. Comput. Appl., vol. 30, no. 1, pp. 354�383,
2007.

[61] C. Papadimitriou, �Algorithms, games, and the internet,� in STOC '01: Pro-
ceedings of the thirty-third annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 2001, pp. 749�753.

217

References

[62] J. Kleinberg, �The convergence of social and technological networks,� Commun.
ACM, vol. 51, no. 11, pp. 66�72, 2008.

[63] D. Fudenberg and J. Tirole, Game Theory. MIT Press, October 1991.

[64] N. Nisan and A. Ronen, �Algorithmic mechanism design,� in Proceedings of the
31st ACM Symposium on Theory of Computing, Atlanta, GA, May 1999.

[65] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game
Theory. New York, NY, USA: Cambridge University Press, 2007.

[66] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic Theory. Ox-
ford University Press, June 1995.

[67] J. Feigenbaum and S. Shenker, �Distributed algorithmic mechanism design:
Recent results and future directions,� in In Proceedings of the 6th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications. ACM Press, 2002, pp. 1�13.

[68] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, �A BGP-based
mechanism for lowest-cost routing,� Distrib. Comput., vol. 18, no. 1, pp. 61�
72, 2005.

[69] S. Yuen and B. Li, �Strategyproof mechanisms towards dynamic topology for-
mation in autonomous networks,� Mob. Netw. Appl., vol. 10, no. 6, pp. 961�970,
2005.

[70] T. G. Gri�n, F. B. Shepherd, and G. Wilfong, �Policy disputes in path-vector
protocols,� in ICNP '99: Proceedings of the Seventh Annual International Con-
ference on Network Protocols. Washington, DC, USA: IEEE Computer Soci-
ety, 1999, p. 21.

[71] H. Levin, M. Schapira, and A. Zohar, �Interdomain routing and games,� in
STOC '08: Proceedings of the 40th annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 2008, pp. 57�66.

[72] L. Anderegg and S. Eidenbenz, �Ad hoc-VCG: a truthful and cost-e�cient rout-
ing protocol for mobile ad hoc networks with sel�sh agents,� in MobiCom '03:
Proceedings of the 9th annual international conference on Mobile computing
and networking. New York, NY, USA: ACM, 2003, pp. 245�259.

[73] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker, �Sharing the cost of
multicast transmissions,� Journal of Computer and System Sciences, vol. 63,
no. 1, pp. 21�41, 2001.

218

References

[74] R. Sami, �Distributed algorithmic mechanism design,� Ph.D. dissertation, New
Haven, CT, USA, 2003, director-Joan Feigenbaum.

[75] A. Fabrikant, A. Luthra, and C. H. Papadimitriou, �On a network creation
game,� in ACM PODC. ACM Press, 2003, pp. 347�351.

[76] N. Christin and J. Chuang, �On the cost of participating in a peer-to-peer
network,� In IPTPS'04, 2004.

[77] C. Li, B. Yu, and K. Sycara, �An incentive mechanism for message relaying in
unstructured peer-to-peer systems,� in AAMAS '07: Proceedings of the 6th in-
ternational conference on Autonomous agents and multiagent systems. ACM,
2007, pp. 1�8.

[78] J. Kleinberg and P. Raghavan, �Query incentive networks,� in FOCS '05: Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science. Washington, DC, USA: IEEE Computer Society, 2005, pp. 132�141.

[79] S. J. Bauer and P. Faratin, �Assessing the assumptions underlying mechanism
design for the internet,� In Proceedings of Economics of Networed Systems
(NetEcon'06), Michigan University, Ann Arbor, US, 2006.

[80] P. F. Ramakrishna, �Ipnl: A nat-extended internet architecture,� in Proceedings
of SIGCOMM 2001. New York, NY, USA: ACM Press, 2001, pp. 69�80.

[81] Z. Turányi, A. Valkó, and A. T. Campbell, �4+4: an architecture for evolving
the internet address space back toward transparency,� SIGCOMM Comput.
Commun. Rev., vol. 33, no. 5, pp. 43�54, 2003.

[82] T. S. E. Ng, I. Stoica, and H. Zhang, �A waypoint service approach to connect
heterogeneous internet address spaces,� in Proceedings of the General Track:
2002 USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2001, pp. 319�332.

[83] �Delay tolerant networking research group,� http://www.dtnrg.org/.

[84] M. Gruteser, �A geometric stack for location-aware networking,� NSF Nets
FIND Initiative.

[85] �NSF nets FIND: Breakout on networking at the information layer, 4th pi meet-
ing,� [online]: www.nets-�nd.net/Meetings/FourthPIMeeting/ BreakOut/In-
formationLayer.pdf, November 2007.

219

http://www.dtnrg.org/

References

[86] A. T. Campbell, H. G. D. Meer, M. E. Kounavis, K. Miki, J. B. Vicente,
and D. Villela, �A survey of programmable networks,� SIGCOMM Comput.
Commun. Rev., vol. 29, no. 2, pp. 7�23, 1999.

[87] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden, �A survey of active network research,� IEEE Communications Maga-
zine, vol. 35, no. 1, pp. 80�86, 1997.

[88] M. Gritter and D. R. Cheriton, �An architecture for content routing support in
the internet,� in USITS'01: Proceedings of the 3rd conference on USENIX Sym-
posium on Internet Technologies and Systems. Berkeley, CA, USA: USENIX
Association, 2001, pp. 4�4.

[89] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. War�eld, �Plutarch: an
argument for network pluralism,� SIGCOMM Comput. Commun. Rev., vol. 33,
no. 4, pp. 258�266, 2003.

[90] S. Schmid, L. Eggert, M. Brunner, and J. Quittek, �TurfNet: an architecture
for dynamically composable networks.� in WAC, 2004, pp. 94�114.

[91] R. Yates, D. Raychaudhuri, S. Paul, and J. Kurose, �Postcards from the edge:
A cache-and-forward architecture for the future internet,� NSF Nets FIND
Initiative.

[92] A. Venkataramani and D. Towsley, �A swarming architecture for internet data
transfer,� NSF Nets FIND Initiative.

[93] T. Wolf, �Service-centric end-to-end abstractions for network architecture,�
NSF Nets FIND Initiative.

[94] Z. I. Boon Thau Loo, Jonathan Smith, �Wireless knowledge infrastructure
(wiki),� NSF Nets FIND Initiative.

[95] R. Kahn, C. Abdallah, H. Jerez, G. Heileman, and W. Shu, �The Transient
Network Architecture (TNA),� NSF Nets FIND Initiative.

[96] B. Bhattacharjee, K. Calvert, J. Gri�oen, N. Spring, and J. Sterbenz, �Post-
modern internetwork architecture,� NSF Nets FIND Initiative.

[97] Cisco Systems Inc., �Internetworking technologies handbook,� Indianapolis, IN:
Cisco Press, 2004.

[98] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, �Resilient
overlay networks,� in Symposium on Operating Systems Principles, 2001, pp.
131�145.

220

References

[99] X. Yang, �Nira: a new internet routing architecture,� in FDNA '03: Proceedings
of the ACM SIGCOMM workshop on Future directions in network architecture.
New York, NY, USA: ACM Press, 2003, pp. 301�312.

[100] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, �Chord: a scalable peer-to-peer lookup protocol for in-
ternet applications,� IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17�32, 2003.

[101] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel, �Separating key
management from �le system security,� in SOSP '99: Proceedings of the sev-
enteenth ACM symposium on Operating systems principles. New York, NY,
USA: ACM Press, 1999, pp. 124�139.

[102] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, �A knowledge
plane for the internet,� in SIGCOMM '03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer com-
munications. New York, NY, USA: ACM, 2003, pp. 3�10.

[103] �DARPA active nets,� http://www.sds.lcs.mit.edu/darpa-activenet/.

[104] 2002 DARPA Active Networks Conference and Exposition (DANCE 2002), 29-
31 May 2002, San Francisco, CA, USA. IEEE Computer Society, 2002.

[105] D. L. Tennenhouse and D. J. Wetherall, �Towards an active network architec-
ture,� SIGCOMM Comput. Commun. Rev., vol. 26, no. 2, pp. 5�17, 1996.

[106] M. W. Hicks, A. D. Keromytis, and J. M. Smith, �A secure plan.� in DANCE,
2002, pp. 224�237.

[107] M. Hicks, J. Moore, D. Alexander, C. Gunter, and S. Nettles, �Planet: An
active internetwork,� 1999.

[108] J. Khoury, J. Crichigno, H. Jerez, C. Abdallah, W. Shu, and G. Heileman, �The
intermesh architecture (student demo),� in MobiCom 07, Montreal, Canada,
September 2007.

[109] ��, �The intermesh network architecture,� University of New
Mexico, Technical Report ECE-TR-07-007, April 2007, [online]:
http://hdl.handle.net/1928/3052.

[110] C. Kim and J. Rexford, �Revisiting ethernet: Plug-and-play made scalable and
e�cient,� to appear in Proc. of IEEE LANMAN Workshop 2007.

221

http://www.sds.lcs.mit.edu/darpa-activenet/

References

[111] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, �Opendht: a public dht service and its uses,� in Proceedings
of SIGCOMM '05. New York, NY, USA: ACM Press, 2005, pp. 73�84.

[112] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, �Overview of the orbit radio grid testbed for
evaluation of next-generation wireless network protocols,� inWireless Commu-
nications and Networking Conference, 2005 IEEE, vol. 3, 2005, pp. 1664�1669
Vol. 3.

[113] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, �In vini veritas:
realistic and controlled network experimentation,� in Proceedings of SIGCOMM
'06. New York, NY, USA: ACM Press, 2006, pp. 3�14.

[114] G. F. Coulouris and J. Dollimore, Distributed systems: concepts and design.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1988.

[115] T. C. Du, E. Y. Li, and A.-P. Chang, �Mobile agents in distributed network
management,� Commun. ACM, vol. 46, no. 7, pp. 127�132, 2003.

[116] P. Mockapetris, �RFC 1035: Domain names implementation and speci�cation,�
November 1987.

[117] �The handle system,� http://www.handle.net.

[118] J. Piovesan, C. Abdallah, H. Tanner, H. Jerez, and J. Khoury, �Resource al-
location for multi-agent problems in the design of future communication net-
works,� University of New Mexico, Technical Report EECE-TR-07-001, April
2007, [online]: http://hdl.handle.net/1928/2973.

[119] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, �The click
modular router,� ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263�297, 2000.

[120] �Glib library,� http://www.gtk.org/.

[121] �Ad-hoc wireless distribution service - awds,� http://awds.berlios.de/.

[122] J. S. Khoury, H. Jerez, and L. De Cicco, �Design and implementation of a frame-
work for persistent identi�cation and communication in emerging networks,� in
TridentCom '08: Proceedings of the 4th International Conference on Testbeds
and research infrastructures for the development of networks & communities.
ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008, pp. 1�8.

[123] �PlanetLab,� http://www.planet-lab.org.

222

http://www.gtk.org/
http://awds.berlios.de/

References

[124] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and
L. Mathy, �Flow processing and the rise of commodity network hardware,�
SIGCOMM Comput. Commun. Rev., vol. 39, no. 2, pp. 20�26, 2009.

[125] �Akamai Technologies,� http://www.akamai.com, 2008.

[126] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[127] W. K. Giloi, �Towards a taxonomy of computer architecture based on the ma-
chine data type view,� in ISCA '83: Proceedings of the 10th annual interna-
tional symposium on Computer architecture. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1983, pp. 6�15.

[128] D. Clark, B. Lehr, P. Faratin, R. Sami, and J. Wroclawski, �Overlay networks
and future of the internet�� Communications and Strategies, no. 63, pp. 1�21,
2006.

[129] M. Augusto, L. Silva, J. Quaini-Sousa, F. Redigolo, T. C. Carvalho, H. C.
Guardia, W. Ruggiero, and B. Ohlman, �A proposal for a taxonomy for vir-
tual networks,� Real Overlays And Distributed Systems (ROADS) workshop,
Poland, 2007.

[130] M. Maheswaran and S. Ali, �A taxonomy of network computing systems,�
Computer, vol. 37, no. 10, pp. 115�117, 2004.

[131] R. Buyya, M. Pathan, and A. Vakali, Content Delivery Networks, ser. Lecture
Notes in Electrical Engineering. Germany: Springer-Verlag, 2008, vol. 9.

[132] H. Kung and C. Wu, �Content networks: Taxonomy and new approaches,� in
The Internet as a Largescale Complex System, ser. Santa Fe Institute Series.
Oxford Press, 2002.

[133] J. Khoury and C. Abdallah, �Towards a taxonomy of inter-network architec-
tures,� University of New Mexico, Technical Report ECE-TR-08-008, June
2008, [online]: http://hdl.handle.net/1928/6626.

[134] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

[135] �The alloy analyzer,� http://alloy.mit.edu/.

[136] S. Khurshid and D. Jackson, �Exploring the design of an intentional naming
scheme with an automatic constraint analyzer,� in ASE, 2000, pp. 13�22.

223

http://alloy.mit.edu/

References

[137] S. Narain, �Network con�guration management via model �nding,� in LISA'05:
Proceedings of the 19th conference on Large Installation System Administration
Conference. Berkeley, CA, USA: USENIX Association, 2005, pp. 15�15.

[138] E. Torlak and D. Jackson, �Kodkod: A relational model �nder,� 2007, pp.
632�647.

[139] J. Khoury, C. Abdallah, and G. Heileman, �Towards formalizing network ar-
chitectural descriptions,� University of New Mexico, Technical Report ECE-
TR-08-03, February 2008, [online]: http://hdl.handle.net/1928/3674.

[140] J. Shoch, �Inter-network naming, addressing, and routing,� in IEEE COMP-
CON. New York: IEEE, Fall 1978, pp. 72�79.

[141] J. Saltzer, �On the naming and binding of network destinations,� RFC 1498.

[142] M. Boguna and D. Krioukov, �Navigating ultrasmall worlds in ultrashort time,�
Physical Review Letters, vol. 102, no. 5, p. 058701, 2009.

[143] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron, �Prac-
tical locality-awareness for large scale information sharing.� in IPTPS '05: In
Proceeding of the 4th International Workshop on Peer-to-Peer Systems, ser.
Lecture Notes in Computer Science, vol. 3640. Springer, 2005, pp. 173�181.

[144] D. Massey, L. Wang, B. Zhang, and L. Zhang, �A scalable routing system design
for future internet,� in ACM SIGCOMM workshop on IPv6 and the Future of
the Internet. New York, NY, USA: ACM Press, 2007.

[145] G. Huston, �Bgp in 2008,� http://www.potaroo.net/ispcol/2009-
03/bgp2008.html, March 2008.

[146] R. Gummadi, R. Govindan, N. Kothari, B. Karp, Y.-J. Kim, and S. Shenker,
�Reduced state routing in the internet,� HotNets 04, 2004.

[147] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and
I. Stoica, �Hlp: a next generation inter-domain routing protocol,� in SIGCOMM
'05. New York, NY, USA: ACM, 2005, pp. 13�24.

[148] M. Caesar and J. Rexford, �Bgp routing policies in isp networks,� IEEE Net-
work, vol. 19, no. 6, pp. 5�11, 2005.

[149] L. Gao, �On inferring autonomous system relationships in the internet,�
IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733�745, 2001.

224

http://www.potaroo.net/ispcol/2009-03/bgp2008.html
http://www.potaroo.net/ispcol/2009-03/bgp2008.html

References

[150] P. Mahadevan, D. V. Krioukov, M. Fomenkov, X. A. Dimitropoulos, K. C.
Cla�y, and A. Vahdat, �The internet as-level topology: three data sources and
one de�nitive metric,� Computer Communication Review, vol. 36, no. 1, pp.
17�26, 2006.

[151] M. OÕDell, �An alternate addressing architecture for ipv6,� IETF Draft. Febru-
ary 1997.

[152] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka, �Compact
routing with name independence,� in ACM SPAA '03. New York, NY, USA:
ACM, 2003, pp. 184�192.

[153] M. Thorup and U. Zwick, �Compact routing schemes,� in ACM SPAA '01.
New York, NY, USA: ACM, 2001, pp. 1�10.

[154] A. Brady and L. Cowen, �Compact routing on power-law graphs with additive
stretch,� ALENEX, 2006.

[155] P. Fraigniaud and C. Gavoille, �Routing in trees,� in ICALP '01: Proceedings of
the 28th International Colloquium on Automata, Languages and Programming,.
London, UK: Springer-Verlag, 2001, pp. 757�772.

[156] A. Rowstron and P. Druschel, �Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,� in Proceedings of IFIP/ACM
Middleware 2001. Heidelberg, Germany: ACM, November 2001.

[157] K. A. Laing, �Name-independent compact routing in trees,� Inf. Process. Lett.,
vol. 103, no. 2, pp. 57�60, 2007.

[158] ��, �Name-independent compact routing in trees,� Technical Report,
Tufts University [online] http://www.cs.tufts.edu/tech_reports/reports/2003-
2/report.pdf.

[159] J. Khoury and C. Abdallah, �Identi�er-based discovery mechanism design in
Large-Scale networks,� in International Workshop on the Network of the Future
(with IEEE ICC'09), Dresden, Germany, 6 2009.

[160] L. Blume, D. Easley, J. Kleinberg, and E. Tardos, �Trading networks with
price-setting agents,� in EC '07: Proceedings of the 8th ACM conference on
Electronic commerce. New York, NY, USA: ACM, 2007, pp. 143�151.

[161] J. Feigenbaum, V. Ramachandran, and M. Schapira, �Incentive-compatible in-
terdomain routing,� in EC '06: Proceedings of the 7th ACM conference on
Electronic commerce. New York, NY, USA: ACM, 2006, pp. 130�139.

225

References

[162] T. G. Gri�n, F. B. Shepherd, and G. Wilfong, �The stable paths problem and
interdomain routing,� IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 232�243,
2002.

[163] M. Afergan, �Using repeated games to design incentive-based routing systems,�
INFOCOM 2006, pp. 1�13, April 2006.

[164] J. Khoury and C. Abdallah, �Identi�er-based discovery in large-scale networks
an economic perspective,� in Applications of Intelligent Control to Engineering
Systems. Springer, 2009, pp. 395�425.

[165] W. Herrin, �What does a bgp route cost?�
http://bill.herrin.us/network/bgpcost.html, 2008.

[166] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, �A bgp-based
mechanism for lowest-cost routing,� Distrib. Comput., vol. 18, no. 1, pp. 61�
72, 2005.

[167] E. Arcaute, A. Kirsch, R. Kumar, D. Liben-Nowell, and S. Vassilvitskii, �On
threshold behavior in query incentive networks,� in EC '07: Proceedings of the
8th ACM conference on Electronic commerce. New York, NY, USA: ACM,
2007, pp. 66�74.

[168] S. Shakkottai and R. Srikant, �Economics of network pricing with multiple
isps,� IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1233�1245, 2006.

[169] A.-L. Barabasi, Linked. Perseus Publishing, 2002.

[170] �lp_solve 5.5,� http://lpsolve.sourceforge.net/5.5/.

[171] D. Garlan and B. Schmerl, � R©vol: A tool for de�ning and planning architecture
evolution,� in 2009 International Conference on Software Engineering, 20-22
May 2009.

226

http://lpsolve.sourceforge.net/5.5/

	University of New Mexico
	UNM Digital Repository
	2-9-2010

	Naming and discovery in networks : architecture and economics
	Joud Khoury
	Recommended Citation

	redborder
	dissertation_jkhoury
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Related Work

	I Architecture
	A Survey of Novel Network Architectures
	Classifying Network Architectures
	Classification Approach
	Service model perspective

	Technical Reference
	Communication-oriented
	Information-oriented
	Computation-oriented

	Conclusion

	The Transient Network Architecture Instance
	Introduction
	Transient Netowrk Architecture
	Area of Influence - AoI
	Entities and Communication
	Persistent Identification
	Distributed control-plane functionality provisioning using the Ghost/Shell model

	PINT Framework
	Components and networking primitives
	Implementation Details
	Research Impact

	Mesh/Ethernet Deployment
	Discussion, Future Work, and Conclusion

	Towards a Taxonomy of Inter-network Architectures
	Introduction
	Taxonomy
	Substrate Structure
	Information Model
	Towards a complete taxonomy

	Applying the taxonomy
	Related Work
	Discussion: Value and Limitations
	Conclusion

	Towards Formalizing Network Architectural Descriptions
	Introduction
	Background
	Architectural Styles: What and Why?
	Alloy

	Case Study
	FARA Overview
	FARA model

	Related Work
	Discussion and Future Work
	Conclusion

	II Naming and Discovery
	Background on Naming and Discovery
	Introduction
	Definitions
	What is Identifier-based Discovery?
	Exploring the Design Space
	TCP/IP Internet
	Compact Routing

	Conclusion

	Discovery Service Differentiation
	Introduction and Motivation
	What is Multi-Level Discovery (MLD)?
	A Multi-Level Discovery Scheme
	Background: NICR scheme on trees
	Extending Laing scheme to support MLD

	Discussion and Conclusion

	On the Economics of Identifier-based Discovery
	Introduction
	Background
	Networks and Strategic Behavior
	Discovery versus Search: Why receiver-based discovery?

	A Taxonomy of Discovery Schemes
	Incentives and Pricing
	Conclusion

	Route Distribution Incentives in BGP
	Introduction
	A Simple Distribution Model
	Our Results
	Related work

	The General Game
	Convergence under HRP
	Equilibria
	The Static Multi-Stage Game with fixed schedule
	Growth of Incentives
	A Special Subgame
	Competition Rewards
	The Repeated Game

	Discussion

	III Conclusion
	Conclusion
	Open Problems

	IV Appendices
	A Mechanism Design Model
	The Discovery Mechanism

	References

