6,904 research outputs found

    Proposal of a Monitoring System for Collaborative Robots to Predict Outages and to Assess Reliability Factors Exploiting Machine Learning

    Get PDF
    Industry standards pertaining to Human-Robot Collaboration (HRC) impose strict safety requirements to protect human operators from danger. When a robot is equipped with dangerous tools, moves at a high speed or carries heavy loads, the current safety legislation requires the continuous on-line monitoring of the robot’s speed and a suitable separation distance from human workers. The present paper proposes to make a virtue out of necessity by extending the scope of on-line monitoring to predicting failures and safe stops. This has been done by implementing a platform, based on open access tools and technologies, to monitor the parameters of a robot during the execution of collaborative tasks. An automatic machine learning (ML) tool on the edge of the network can help to perform the on-line predictions of possible outages of collaborative robots, especially as a consequence of human-robot interactions. By exploiting the on-line monitoring system, it is possible to increase the reliability of collaborative work, by eliminating any unplanned downtimes during execution of the tasks, by maximising trust in safe interactions and by increasing the robot’s lifetime. The proposed framework demonstrates a data management technique in industrial robots considered as a physical cyber-system. Using an assembly case study, the parameters of a robot have been collected and fed to an automatic ML model in order to identify the most significant reliability factors and to predict the necessity of safe stops of the robot. Moreover, the data acquired from the case study have been used to monitor the manipulator’ joints; to predict cobot autonomy and to provide predictive maintenance notifications and alerts to the end-users and vendors

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    A Vision of Collaborative Verification-Driven Engineering of Hybrid Systems

    Get PDF
    Abstract. Hybrid systems with both discrete and continuous dynamics are an important model for real-world physical systems. The key challenge is how to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires significant human guidance, since hybrid systems verification tools solve undecidable problems. It is thus not uncommon for verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) modeling hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks.

    Human-robot collaborative assembly in cyber-physical production: Classification framework and implementation

    Get PDF
    The production industry is moving towards the next generation of assembly, which is conducted based on safe and reliable robots working in the same workplace alongside with humans. Focusing on assembly tasks, this paper presents a review of human-robot collaboration research and its classification works. Aside from defining key terms and relations, the paper also proposes means of describing human-robot collaboration that can be relied on during detailed elaboration of solutions. A human-robot collaborative assembly system is developed with a novel and comprehensive structure, and a case study is presented to validate the proposed framework. © 2017

    Challenges in the Safety-Security Co-Assurance of Collaborative Industrial Robots

    Full text link
    The coordinated assurance of interrelated critical properties, such as system safety and cyber-security, is one of the toughest challenges in critical systems engineering. In this chapter, we summarise approaches to the coordinated assurance of safety and security. Then, we highlight the state of the art and recent challenges in human-robot collaboration in manufacturing both from a safety and security perspective. We conclude with a list of procedural and technological issues to be tackled in the coordinated assurance of collaborative industrial robots.Comment: 23 pages, 4 tables, 1 figur

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • 

    corecore