270 research outputs found

    Sinbad Automation Of Scientific Process: From Hidden Factor Analysis To Theory Synthesis

    Get PDF
    Modern science is turning to progressively more complex and data-rich subjects, which challenges the existing methods of data analysis and interpretation. Consequently, there is a pressing need for development of ever more powerful methods of extracting order from complex data and for automation of all steps of the scientific process. Virtual Scientist is a set of computational procedures that automate the method of inductive inference to derive a theory from observational data dominated by nonlinear regularities. The procedures utilize SINBAD – a novel computational method of nonlinear factor analysis that is based on the principle of maximization of mutual information among non-overlapping sources (Imax), yielding higherorder features of the data that reveal hidden causal factors controlling the observed phenomena. One major advantage of this approach is that it is not dependent on a particular choice of learning algorithm to use for the computations. The procedures build a theory of the studied subject by finding inferentially useful hidden factors, learning interdependencies among its variables, reconstructing its functional organization, and describing it by a concise graph of inferential relations among its variables. The graph is a quantitative model of the studied subject, capable of performing elaborate deductive inferences and explaining behaviors of the observed variables by behaviors of other such variables and discovered hidden factors. The set of Virtual Scientist procedures is a powerful analytical and theory-building tool designed to be used in research of complex scientific problems characterized by multivariate and nonlinear relations

    A review of machine learning applications for the proton MR spectroscopy workflow

    Get PDF
    This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.</p

    Machine learning for the subsurface characterization at core, well, and reservoir scales

    Get PDF
    The development of machine learning techniques and the digitization of the subsurface geophysical/petrophysical measurements provides a new opportunity for the industries focusing on exploration and extraction of subsurface earth resources, such as oil, gas, coal, geothermal energy, mining, and sequestration. With more data and more computation power, the traditional methods for subsurface characterization and engineering that are adopted by these industries can be automized and improved. New phenomenon can be discovered, and new understandings may be acquired from the analysis of big data. The studies conducted in this dissertation explore the possibility of applying machine learning to improve the characterization of geological materials and geomaterials. Accurate characterization of subsurface hydrocarbon reservoirs is essential for economical oil and gas reservoir development. The characterization of reservoir formation requires the integration interpretation of data from different sources. Large-scale seismic measurements, intermediate-scale well logging measurements, and small-scale core sample measurements help engineers understand the characteristics of the hydrocarbon reservoirs. Seismic data acquisition is expensive and core samples are sparse and have limited volume. Consequently, well log acquisition provides essential information that improves seismic analysis and core analysis. However, the well logging data may be missing due to financial or operational challenges or may be contaminated due to complex downhole environment. At the near-wellbore scale, I solve the data constraint problem in the reservoir characterization by applying machine learning models to generate synthetic sonic traveltime and NMR logs that are crucial for geomechanical and pore-scale characterization, respectively. At the core scale, I solve the problems in fracture characterization by processing the multipoint sonic wave propagation measurements using machine learning to characterize the dispersion, orientation, and distribution of cracks embedded in material. At reservoir scale, I utilize reinforcement learning models to achieve automatic history matching by using a fast-marching-based reservoir simulator to estimate reservoir permeability that controls pressure transient response of the well. The application of machine learning provides new insights into traditional subsurface characterization techniques. First, by applying shallow and deep machine learning models, sonic logs and NMR T2 logs can be acquired from other easy-to-acquire well logs with high accuracy. Second, the development of the sonic wave propagation simulator enables the characterization of crack-bearing materials with the simple wavefront arrival times. Third, the combination of reinforcement learning algorithms and encapsulated reservoir simulation provides a possible solution for automatic history matching

    Multivariate methods for interpretable analysis of magnetic resonance spectroscopy data in brain tumour diagnosis

    Get PDF
    Malignant tumours of the brain represent one of the most difficult to treat types of cancer due to the sensitive organ they affect. Clinical management of the pathology becomes even more intricate as the tumour mass increases due to proliferation, suggesting that an early and accurate diagnosis is vital for preventing it from its normal course of development. The standard clinical practise for diagnosis includes invasive techniques that might be harmful for the patient, a fact that has fostered intensive research towards the discovery of alternative non-invasive brain tissue measurement methods, such as nuclear magnetic resonance. One of its variants, magnetic resonance imaging, is already used in a regular basis to locate and bound the brain tumour; but a complementary variant, magnetic resonance spectroscopy, despite its higher spatial resolution and its capability to identify biochemical metabolites that might become biomarkers of tumour within a delimited area, lags behind in terms of clinical use, mainly due to its difficult interpretability. The interpretation of magnetic resonance spectra corresponding to brain tissue thus becomes an interesting field of research for automated methods of knowledge extraction such as machine learning, always understanding its secondary role behind human expert medical decision making. The current thesis aims at contributing to the state of the art in this domain by providing novel techniques for assistance of radiology experts, focusing on complex problems and delivering interpretable solutions. In this respect, an ensemble learning technique to accurately discriminate amongst the most aggressive brain tumours, namely glioblastomas and metastases, has been designed; moreover, a strategy to increase the stability of biomarker identification in the spectra by means of instance weighting is provided. From a different analytical perspective, a tool based on signal source separation, guided by tumour type-specific information has been developed to assess the existence of different tissues in the tumoural mass, quantifying their influence in the vicinity of tumoural areas. This development has led to the derivation of a probabilistic interpretation of some source separation techniques, which provide support for uncertainty handling and strategies for the estimation of the most accurate number of differentiated tissues within the analysed tumour volumes. The provided strategies should assist human experts through the use of automated decision support tools and by tackling interpretability and accuracy from different anglesEls tumors cerebrals malignes representen un dels tipus de càncer més difícils de tractar degut a la sensibilitat de l’òrgan que afecten. La gestió clínica de la patologia esdevé encara més complexa quan la massa tumoral s'incrementa degut a la proliferació incontrolada de cèl·lules; suggerint que una diagnosis precoç i acurada és vital per prevenir el curs natural de desenvolupament. La pràctica clínica estàndard per a la diagnosis inclou la utilització de tècniques invasives que poden arribar a ser molt perjudicials per al pacient, factor que ha fomentat la recerca intensiva cap al descobriment de mètodes alternatius de mesurament dels teixits del cervell, tals com la ressonància magnètica nuclear. Una de les seves variants, la imatge de ressonància magnètica, ja s'està actualment utilitzant de forma regular per localitzar i delimitar el tumor. Així mateix, una variant complementària, la espectroscòpia de ressonància magnètica, malgrat la seva alta resolució espacial i la seva capacitat d'identificar metabòlits bioquímics que poden esdevenir biomarcadors de tumor en una àrea delimitada, està molt per darrera en termes d'ús clínic, principalment per la seva difícil interpretació. Per aquest motiu, la interpretació dels espectres de ressonància magnètica corresponents a teixits del cervell esdevé un interessant camp de recerca en mètodes automàtics d'extracció de coneixement tals com l'aprenentatge automàtic, sempre entesos com a una eina d'ajuda per a la presa de decisions per part d'un metge expert humà. La tesis actual té com a propòsit la contribució a l'estat de l'art en aquest camp mitjançant l'aportació de noves tècniques per a l'assistència d'experts radiòlegs, centrades en problemes complexes i proporcionant solucions interpretables. En aquest sentit, s'ha dissenyat una tècnica basada en comitè d'experts per a una discriminació acurada dels diferents tipus de tumors cerebrals agressius, anomenats glioblastomes i metàstasis; a més, es proporciona una estratègia per a incrementar l'estabilitat en la identificació de biomarcadors presents en un espectre mitjançant una ponderació d'instàncies. Des d'una perspectiva analítica diferent, s'ha desenvolupat una eina basada en la separació de fonts, guiada per informació específica de tipus de tumor per a avaluar l'existència de diferents tipus de teixits existents en una massa tumoral, quantificant-ne la seva influència a les regions tumorals veïnes. Aquest desenvolupament ha portat cap a la derivació d'una interpretació probabilística d'algunes d'aquestes tècniques de separació de fonts, proporcionant suport per a la gestió de la incertesa i estratègies d'estimació del nombre més acurat de teixits diferenciats en cada un dels volums tumorals analitzats. Les estratègies proporcionades haurien d'assistir els experts humans en l'ús d'eines automatitzades de suport a la decisió, donada la interpretabilitat i precisió que presenten des de diferents angles

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    Mass Spectrometry and Nuclear Magnetic Resonance in the Chemometric Analysis of Cellular Metabolism

    Get PDF
    The development and awareness of Machine Learning and “big data” has led to a growing interest in applying these methods to bioanalytical research. Methods such as Mass Spectrometry (MS), and Nuclear Magnetic Resonance (NMR) can now obtain tens of thousands to millions of data points from a single sample, due to fundamental instrumental advances and ever-increasing resolution. Simple pairwise comparisons on datasets of this magnitude can obfuscate more complex underlying trends, and does a disservice to the richness of information contained within. This necessitates the need for multivariate approaches that can more fully take advantage of the complexity of these datasets. Performing these multivariate analyses takes high degree of expertise, requiring knowledge of such disparate areas as chemistry, physics, mathematics, statistics, software development and signal processing. As a result, this barrier to entry prevents many investigators from fully utilizing all the tools available to them, instead relying on a mix of commercial and free software, chained together with in-house developed solutions just to perform a single analysis. While there are numerous methods in published literature for statistical analysis of these larger datasets, most are still confined to the realm of theory due to them not being implemented into publicly available software for the research community. This dissertation outlines the development of routines for handling LC-MS data with freely available tools, including the Octave programming language. This presents, in combination with our previously developed software MVAPACK, a unified platform for metabolomics data analysis that will encourage the wider adoption of multi-instrument investigations and multiblock statistical analyses. Advisor: Robert Power

    Data mining techniques for protein sequence analysis

    Get PDF
    This thesis concerns two areas of bioinformatics related by their role in protein structure and function: protein structure prediction and post translational modification of proteins. The dihedral angles Ψ and Φ are predicted using support vector regression. For the prediction of Ψ dihedral angles the addition of structural information is examined and the normalisation of Ψ and Φ dihedral angles is examined. An application of the dihedral angles is investigated. The relationship between dihedral angles and three bond J couplings determined from NMR experiments is described by the Karplus equation. We investigate the determination of the correct solution of the Karplus equation using predicted Φ dihedral angles. Glycosylation is an important post translational modification of proteins involved in many different facets of biology. The work here investigates the prediction of N-linked and O-linked glycosylation sites using the random forest machine learning algorithm and pairwise patterns in the data. This methodology produces more accurate results when compared to state of the art prediction methods. The black box nature of random forest is addressed by using the trepan algorithm to generate a decision tree with comprehensible rules that represents the decision making process of random forest. The prediction of our program GPP does not distinguish between glycans at a given glycosylation site. We use farthest first clustering, with the idea of classifying each glycosylation site by the sugar linking the glycan to protein. This thesis demonstrates the prediction of protein backbone torsion angles and improves the current state of the art for the prediction of glycosylation sites. It also investigates potential applications and the interpretation of these methods

    Automatic learning for the classification of chemical reactions and in statistical thermodynamics

    Get PDF
    This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations

    Data mining techniques for protein sequence analysis

    Get PDF
    This thesis concerns two areas of bioinformatics related by their role in protein structure and function: protein structure prediction and post translational modification of proteins. The dihedral angles Ψ and Φ are predicted using support vector regression. For the prediction of Ψ dihedral angles the addition of structural information is examined and the normalisation of Ψ and Φ dihedral angles is examined. An application of the dihedral angles is investigated. The relationship between dihedral angles and three bond J couplings determined from NMR experiments is described by the Karplus equation. We investigate the determination of the correct solution of the Karplus equation using predicted Φ dihedral angles. Glycosylation is an important post translational modification of proteins involved in many different facets of biology. The work here investigates the prediction of N-linked and O-linked glycosylation sites using the random forest machine learning algorithm and pairwise patterns in the data. This methodology produces more accurate results when compared to state of the art prediction methods. The black box nature of random forest is addressed by using the trepan algorithm to generate a decision tree with comprehensible rules that represents the decision making process of random forest. The prediction of our program GPP does not distinguish between glycans at a given glycosylation site. We use farthest first clustering, with the idea of classifying each glycosylation site by the sugar linking the glycan to protein. This thesis demonstrates the prediction of protein backbone torsion angles and improves the current state of the art for the prediction of glycosylation sites. It also investigates potential applications and the interpretation of these methods
    corecore