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ABSTRACT 

 

Modern science is turning to progressively more complex and data-rich subjects, which 

challenges the existing methods of data analysis and interpretation.  Consequently, there is a 

pressing need for development of ever more powerful methods of extracting order from complex 

data and for automation of all steps of the scientific process.  Virtual Scientist is a set of 

computational procedures that automate the method of inductive inference to derive a theory 

from observational data dominated by nonlinear regularities.  The procedures utilize SINBAD – 

a novel computational method of nonlinear factor analysis that is based on the principle of 

maximization of mutual information among non-overlapping sources (Imax), yielding higher-

order features of the data that reveal hidden causal factors controlling the observed phenomena.  

One major advantage of this approach is that it is not dependent on a particular choice of 

learning algorithm to use for the computations.  The procedures build a theory of the studied 

subject by finding inferentially useful hidden factors, learning interdependencies among its 

variables, reconstructing its functional organization, and describing it by a concise graph of 

inferential relations among its variables.  The graph is a quantitative model of the studied 

subject, capable of performing elaborate deductive inferences and explaining behaviors of the 

observed variables by behaviors of other such variables and discovered hidden factors.  The set 

of Virtual Scientist procedures is a powerful analytical and theory-building tool designed to be 

used in research of complex scientific problems characterized by multivariate and nonlinear 

relations.     
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INTRODUCTION 

 

Modern science turns to progressively more complex and challenging subjects across many 

fields – medicine, neuroscience, genomics and related fields, ecology, economics, climatology, 

cosmology, etc.  This expansion of scientific inquiry into until recently inaccessible territories is 

brought about by ever growing advances in computer and sensor technologies, which enable the 

collection of large amounts of groundbreaking novel experimental and observational data.  On 

the other hand, the new subjects also address more complex phenomena that reflect causal 

relations among large numbers of relevant factors with only limited, if any, opportunities for 

experimental control and manipulation.  The growing size and complexity of collected data 

demand progressively more sophisticated analytical and theory-building methods, methods that 

can process large amounts of raw data and extract intricate, deeply hidden order (Mjolsness and 

DeCoste 2001).  

In this work, I describe a set of computational procedures that were developed to 

automate analysis and theory-building process for particularly difficult research problems that: 

(1) involve complex – multivariate and prominently nonlinear – interrelations among the 

measured entities; but (2) can be approached only, or mostly, through observation, without 

benefits of experimental manipulation of conditions; and (3) observations can be made only of 

spatial, but not temporal, patterns of events.   

Figure 1 describes a prototypical example of such a research problem.  This example will 

be used to illustrate practical implementation of the proposed set of theory-building procedures.  

The dynamical system used in this example is a prototypical mathematical model of a well-
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known class of physical systems, but its identity will be revealed only at the end of the exercise, 

so as to avoid using the prior knowledge of the system in interpreting the observational data.  In 

this exercise, designed to demonstrate the operation of the theory-building procedures, the 

studied system’s state is evaluated by taking seven different measurements, referred to as the 

“observed variables” V1 … V7.  Some variables are binary, others are continuous.  The seven 

measurements taken simultaneously at any given moment constitute a single “observation”; and 

the theory is to be built from large numbers of such observations.  The observations are not 

continuous, but are collected randomly without any temporal order. 

My approach to theory building is based on consideration of the importance of hidden 

causal factors in dynamical systems, i.e., subjects of study that can be characterized by variables 

and quantitative relations among those variables (Clark and Thornton 1997; Favorov and Ryder 

2004; Ryder 2004).  That is, the behaviors of the observed entities, or variables, might be 

controlled by some unknown factors (i.e., they are not among the variables that are observed in 

the study).   

Such hidden factors can vary greatly in the extent of their impact on the studied 

dynamical system, from factors that impact behaviors of just one or a few observed variables to 

factors that impact behaviors of most or even all of the observed variables.  Hidden factors that 

are reflected in the behaviors of sufficiently large numbers of the observed variables can, in 

principle, be extracted from them through some computation.  And they should be extracted: 

their reflectance in behaviors of multiple observed variables implies that these factors play 

prominent and central roles in the functioning of the studied dynamical system.  This makes the 

knowledge of such hidden, but extractable factors crucial to theory building. 
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Figure 1:  A research project to build a theory solely from snapshot observations of an unknown 
dynamical system.    (a) 16 exemplary observations of the system’s state.  The value of each 
observed variable is grayscale-coded (from white = 0 to black = 1).  (b) Plots of pair-wise 
relations among the observed variables.  Each variable is plotted as a function of every other 
variable.  These plots reveal no clear order among the variables, suggesting that the variables 
might be only weakly interdependent, or the order might be hidden in relations that are 
multivariate and possibly nonlinear.   
 

 

Thus, the theory-building process should first analyze the behaviors of the observed 

variables to infer the presence of as many hidden factors as possible and learn how to compute 

them from the observed variables.  In the next step, the theory-building process should learn 

orderly relations among all the observed variables and inferred factors.  What will emerge out of 

this process is a theory – a detailed quantitative tracing of connections among the components of 

the studied dynamical system.  This is a traditional approach to theory building (with hidden-
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factor learning recognized as conceptualization); its penetration of a subject depends on the 

ability of the employed analytical methods to discover hidden causal factors.  Recently we have 

developed SINBAD (Set of INteracting BAckpropagating Dendrites) – a novel computational 

method of nonlinear factor analysis designed specifically for finding deeply hidden factors 

(Ryder and Favorov 2001; Kursun and Favorov 2002; Favorov et al. 2003; Kursun and Favorov 

2003, 2004; Favorov and Ryder 2004).  This method enabled me to design a set of computational 

procedures for building theories of particularly difficult research subjects characterized by 

multivariate and nonlinear relations.  Reflecting on the fact that these procedures perform a 

quintessential work of a scientist, I named this set a “Virtual Scientist” (Kursun and Favorov 

2004).  
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METHODS FOR FINDING HIDDEN VARIABLES 

 

Hidden variables are often referred as high-order features, latent variables, or factors. Extracting 

hidden variables has attracted many researchers for a variety of reasons other than theory-

building and modeling, for example, it has been linked to modeling perceptual processing stages 

in brain and also has had uses in data visualization. Since it involves no target values, for most 

varieties of the unsupervised learning algorithms used, the targets are taken to be the same as the 

inputs. In other words, many types of procedures for searching for hidden variables perform the 

same task as an auto-associative network compressing the information from the inputs. For 

example, Hebbian learning is a very popular variety of unsupervised learning, which minimizes 

the same error function as an auto-associative network with a linear hidden layer, trained by least 

squares, and is therefore a form of dimensionality reduction.  

Although, this vast amount of research interest has been put into finding most compact 

representations of the data, the question of “what to do with the data” has not been properly 

addressed.  However, the purpose of collecting information is not to store it in a compact form, 

but to use it in developing a complete and concise understanding of the orderly relations in it.  

Therefore, the approach for finding hidden variables should be shaped up according to what will 

be the ultimate use of these variables.  I will show that SINBAD method should be employed if 

the goal is to find inferentially powerful hidden variables rather than highly-compressing ones.   

For a quick demonstrative comparison of different approaches on their abilities to extract 

hidden factors, we created an artificial problem with four observed variables. The variables are, 

in fact, pixels from images of the same size (respective x-y locations).  There are, in fact, 
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three hidden variables whose nonlinear integration gave rise to these four observed variables: 

pixels from images 1, 4, and 5 are nonlinearly mixed to produce pixels of the images 2 and 3.  

That is, each pixel in image 2 is a nonlinear function of identically located pixels in images 1 and 

5 (scaled between 0 and 1):  xyxyxyxyxy IMIMIMIMIM 512512 ⋅⋅−+= .  The same holds for image 3 – 

each pixel in image 3 is the analogous function of identically located pixels in images 4 and, 

again, 5.  Thus, image 5 is a hidden factor determining the contents of images 2 and 3. Images 1 

and 4 are random gray scale images.  Image 5 is chosen to be a gray scale image of a fine natural 

scene of some bushes and grass, which is to be hidden but coded nonlinearly into the patterns of 

the other variables. The task is to discover the hidden factor image 5, using the four variables 

(images).  

SINBAD Method for Finding Hidden Factors 

SINBAD belongs to the class of unsupervised learning algorithms that are based on the principle 

of maximization of mutual information among disjoint sources of information, developed by 

Becker as Imax (1995, 1996, 1999; Becker and Hinton 1992).  According to Becker and Hinton 

(1992), hidden factors can be discovered through a search for different, but nevertheless highly 

correlated functions of any kind over non-overlapping subsets of the available variables.  Such 

correlated functions must have a reason for their statistical interdependence, a causal source in 

the domain of the data.  Therefore, the correlated functions over different subsets of variables 

express a previously unrecognized feature (a hidden factor) that is responsible for the correlation 

(Becker and Hinton 1992; Phillips and Singer 1997; Ryder and Favorov 2001; Favorov and 
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Ryder 2004).  For examples of applications of this approach, such as discovery of surfaces in 

stereograms, recognition of moving objects, speaker-independent vowel recognition, see Becker 

and Hinton (1992), Becker (1995, 1996, 1999), Stone (1996).   

Becker’s Imax method works by maximizing Shannon’s mutual information measure 

among the outputs of learning modules receiving different subsets of input variables.  

Unfortunately, this method is computationally complex and requires making various restrictive 

assumptions about the output distributions of the modules to get a tractable expression for the 

mutual information between two continuous signals (Becker 1996).  SINBAD is a simpler 

approach that works by minimizing the mean-square-error among the outputs of the learning 

modules.  SINBAD method avoids trivial minimization of this error by forcing the output signals 

to have nonzero variance (otherwise, if all modules give the same constant output, the error 

would be trivially minimized).   

SINBAD cell is a powerful discoverer of hidden factors.  For a demonstration, consider 

the dataset of the four images.  As explained earlier), Images 1 and 2 share mutual information 

with images 3 and 4 in the form of the hidden image 5.  To discover this hidden factor, SINBAD 

cell is trained on the values of identically located pixels in images 1, 2, 3, 4.  Pixels from images 

1 and 2 are given to Dendrite 1, pixels from images 3 and 4 are given to Dendrite 2.  As shown in 

Figure 2, SINBAD cell gradually learns – without any guidance – to output the value of the 

identically located pixel in the hidden image 5 (compare IM5 with the image below the cell).  In 

conclusion, although image 5 was so well hidden in images 2 and 3 as to be invisible there, 

SINBAD cell nevertheless was able to easily detect its presence and extract its content.  In 

contrast, linear factor analysis methods, including PCA and ICA (Hyvarinen et al. 2001), will not 
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work here because of nonlinearity of the underlying relationship.  And even nonlinear factor 

extraction methods – Nonlinear PCA (Kramer 1991) and Nonlinear ICA (Lappalainen and 

Honkela 2000; Valpola et al. 2001) – could not accomplish this task (see Figure 4), reasons for 

which will be discussed later.  

The SINBAD architecture illustrated in Figure 2, contains two learning modules, each in 

a form of a backprop net (an error backpropagation network of Rumelhart et al. 1986).  

However, it is straight-forward to modify the architecture to include more than two learning 

modules or to use some other learning modules such as support vector machines instead of 

backprop-nets.  The backprop nets receive different, non-overlapping sets of input channels, 

while their outputs are added together to produce a final output.  This final output is used as a 

teaching signal for each of the backprop nets, which means that the nets are set up to teach each 

other to produce maximally correlated outputs in response to their different inputs.  As a result, 

the nets tune to the causal source (a hidden factor) responsible for the correlation.  

Imax approach is an important elaboration of information theoretical approaches as it 

defines a measure of value of the content of the data. In other words, Imax-based methods uses 

redundancies to decide what is interesting in the data (and more interesting if more independent 

modules can maximize their mutual information).   
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Figure 2:  The SINBAD cell with two dendrites.  In this particular design, each dendrite is an 
error backpropagation network with one output unit and a single layer of hidden units. 

 

 

SINBAD was originally developed as a model of a single neuron in the cerebral cortex 

(Ryder and Favorov 2001; Favorov et al. 2003; Favorov and Ryder 2004).  According to 

SINBAD hypothesis, the basic function of a cortical neuron is to discover and represent one of 

the hidden factors in its sensory environment.  This task is proposed to be accomplished by 

endowing each of several dendrites that originate from a neuron’s body with functional 

capabilities comparable to those of a backprop net.  Although the neurobiological origins of 

SINBAD algorithm are not important for the present subject, in this work I continue to call the 

entire setup a “SINBAD cell” and each backprop net a “dendrite”.  

The detailed formulation of the SINBAD cell can be found in (Ryder and Favorov 2001).  

As a brief description of its implementation in this section, the activity of a hidden unit h in 

dendrite d is computed as a sigmoid function of the activities of its input sources: 
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)tanh( ,,,, idhidihd AwH ⋅Σ= ,     (1) 

where Ad,i is the activity of input source d,i and wd,i,h is the weight of its connection onto the 

hidden unit h of dendrite d.  The activity of the output unit, i.e. the output of dendrite d, is: 

hd
h

hdd HwD ,, ⋅=∑ ,      (2) 

where wd,h is the weight of the connection from the hidden unit d,h to the output unit.  The 

outputs of the two dendrites are summated to produce the cell’s output: 

21 DDA += .       (3) 

 

The cell’s output A is the principal contributor to the training signal T; it is used to adjust 

the weights of connections on the two dendrites.  Additional factors contributing to the training 

signal are:  (1) the average output activity of the cell, Ā, driving the cell to have Ā = 0; and (2) 

deviation of the current output activity from the average, A – Ā, designed to expand the dynamic 

range of output values.  Thus, 

)( AAAAT −⋅+⋅−= βα ,     (4) 

where α and β are scaling coefficients.  The coefficient β is determined by the variability of the 

output activity: the smaller the variability, the greater the value of β.  It is computed as: 

[ +

−⋅−= ||max AAγββ ] ,     (5) 

where βmax and γ are controlling parameters, and [ . ]+ indicates that if the quantity is negative, the 

value is to be taken as zero.  The connections of the hidden units are adjusted according to the 

error backpropagation algorithm of Rumelhart et al. (1986).  Specifically, the error signals δd is 
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first computed for the two dendrites as: 

.2 dd DT ⋅−=δ       (6) 

For the hidden units, δd is backpropagated as:  

).1( 2
,,, hdhddhd Hw −⋅⋅= δδ

     (7) 

Connection weights are adjusted by: 

hdidihid Aw ,,,, δµ ⋅⋅=∆    and   ∆wd ,h = µh ⋅Hd ,h ⋅δ d ,  (8) 

where µi and µh are learning rate constants for the input and hidden unit connections, 

respectively.  

Other Methods for Finding Hidden Variables 

Linear Methods 

 

Linear factor analysis is limited to identifying the underlying sources that are mixed linearly to 

produce the observations. However, generally, the sources are convolved nonlinearly.  Two most 

frequently applied linear factor analysis methods are principal component analysis (PCA) and 

independent component analysis (ICA).  ICA is a linear factor analysis method that is recently 

developed for the case where the sources are nongaussian; whereas, PCA assumes gaussian 

sources.  An important use of linear methods is that nonlinear hidden variables can be searched 

after the linear ones are extracted first, mainly for reducing the nonlinear search time by linear 
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dimensionality reduction.  However, this approach can easily fail due to the creation of artificial 

linear dimensions.   

 

Principle Components Analysis: 

Principal component analysis and the closely related Karhunen-Loeve transform are classic 

techniques in linear factor analysis. The goal of PCA is to find a smaller set of variables with no 

linear redundancy that is as good a representation as desired. The measure of redundancy used in 

PCA is the linear correlations among the found factors. Because of that, PCA is based on second-

order statistics only. On the other hand, the measure of redundancy used in ICA is the concept of 

independence, which is much more general.   

 Computationally, closed-form and on-line learning algorithms are present for PCA. The 

on-line learning for PCA is a special case of nonlinear PCA discussed later. The closed form 

solution for PCA is based on first computing the covariance matrix and then solving for the 

eigenvectors of the covariance matrix. The eigenvectors with corresponding non-zero 

eigenvalues are the linear dimensions that are found to be more compact in explaining the given 

data.  

 The dataset of four images is passed through the principal component analysis. Although 

we know there are only three true independent underlying factors, PCA yields four non-zero 

eigenvalues.  That is because PCA is only a linear method.  Moreover, as expected, the found 

sources had no correlation to the original sources.  

 

  

 

12



Independent Components Analysis: 

ICA tries to find interesting linear dimensions.  By Central Limit Theorem, mixtures of random 

variables tend to be more Gaussian than the original ones.  Therefore, identifying random 

variables that are the least Gaussian yields single hidden variables.  The classical measure of 

nongaussianity is kurtosis or the fourth-order cumulant. The kurtosis of a random variable y is 

classically defined by  

224 }){(3}{)kurt( yyy EΕ −=     (9) 

 

Kurtosis is zero for a gaussian random variable. For most (but not all) nongaussian 

random variables, kurtosis is nonzero.  Kurtosis can be both positive or negative.  Random 

variables that have a negative kurtosis are called subgaussian, and those with positive kurtosis 

are called supergaussian.  Supergaussian random variables have typically a “spiky” probability 

distribution function (pdf) with heavy tails, i.e. the pdf is relatively large at zero and at large 

values of the variable, while being small for intermediate values.  Subgaussian random variables, 

on the other hand, have typically a “flat” pdf, which is rather constant near zero, and very small 

for larger values of the variable.  A typical example is the uniform distribution.  

Typically nongaussianity is measured by the absolute value of kurtosis. The square of 

kurtosis can also be used.  These measures are zero for a Gaussian variable, and greater than zero 

for most nongaussian random variables.  In practice we start from some weight vector w, 

compute the direction in which the kurtosis of  is growing most strongly (if kurtosis is 

positive) or decreasing most strongly (if kurtosis is negative) based on the available sample of 

mixture vector x, and use a gradient method for finding a new vector w.  

xwy T=
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Instead of having different update rules for minimizing or maximizing kurtosis, we can 

estimate the kurtosis of the current projection online and continue with the sign of the online 

kurtosis measure K: 

K = m4(t) - 3(m2(t))2 ,       (10) 

where, mn(t+1) = [(1-τ) mn(t)] + [τ (At)n],   (11) 

where, mn is the online estimate of the nth moment of the target cell activity At. Finally, the 

update rule for the weight is given by: 

wnew = wold +  RL [sign(K) As At
3   +  As At (1-||w||4)]  (12) 

where, RL stands for the rate of learning (rate of maturation for the weights).  

The rate of learning should be chosen small and should be annealed to zero for 

convergence.  However, as expected again, due to its linearity, when applied to our illustrative 

example of images, linear independent component analysis failed to extract the hidden factor 

image 5.   

 

Nonlinear Methods 

 

Not surprisingly, extracting the nonlinear factors is a much more difficult task than extracting the 

linear ones.  In fact, the non-uniqueness of nonlinear factors has been proven, which can simply 

be summarized as many of the nonlinear mixtures of the identified nonlinear factors might still 

be independent.   In fact, this is where our approach claims that, under certain conditions, only 

some of the independent nonlinear components are true factors as they can be measured to be 

more efficient and concise in explaining the regularities among the observed variables. 
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Several techniques have been developed in the nonlinear factor analysis field with 

different assumptions.  Two of the most remarkable types of these techniques that we will 

compare to are the nonlinear extensions of the linear methods PCA and ICA, known as nonlinear 

principal components analysis and nonlinear independent components analysis, respectively.  

In this section, we will review five-layer auto-associative neural network, which belongs 

to nonlinear principal components analysis category; Bayesian ensemble learning, which belongs 

to nonlinear independent components analysis category.    

 

Five-Layer Auto-Associative Neural Network: 

For auto-associative neural networks, output of the network should be equal to the input to the 

network. The only restriction here is that we have a bottleneck layer (Figure 3). Thus, the 

network should find some nonlinear directions that more efficiently code the given data.  

 

 

Figure 3:  Five-layer auto associative neural network, where σ represents the nonlinear activation 
functions of the units. The other units have linear activation functions. The units in the central 
layer can tune to any function of the input variables. In general, they tune to functions of all input 
variables. Such functions ought not to be local nor correspond to causal sources in the observed 
system as these causal sources are not complex mixtures in their nature. 
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If the central layer is given less number of units than the input layer, which is called a 

bottleneck layer, this architecture is forced to find a compact and hidden representation that 

captures all the information. First layer to third layer is where the compression takes place and 

third layer to fifth layer accomplishes the decompression.  In this architecture, there is a one-to-

one correspondence between the input and output layers, i.e., there are equal number of nodes in 

input layer and output layer and the training signal for the output channel j is equal to the activity 

of input channel j. The error function to be minimized for the training sample j becomes:  

∑ −=
i

j
i

j
i

j XXE 2)ˆ(      (13) 

where i ranges over all input/output channels. 

The connection weights are updated according to the standard back-propagation 

algorithm (Rumelhart et al. 1986).  It has been shown that this technique is equivalent to PCA if 

the nonlinear activations are replaced by linear activations.  If we keep the nonlinear activations, 

this architecture extracts nonlinear factors that can more compactly represent the input.  

However, these factors are, in general, nonlinear mixture of most of the input variables, which 

are neither local, nor orderly.  Thus, when applied to the dataset of four images, none of the 

found nonlinear factors corresponded to the hidden image 5.  

 

Bayesian Ensemble Learning: 

Bliss is a research project funded by the European Commision in the scope of the Information 

Societies Technology (IST) programme, whose one of the main objectives is to achieve 

significant advances in nonlinear factor analysis. Their web-address is http://www.bliss-

project.org/. We followed the links to nonlinear factor analysis and downloaded a 
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Matlab toolbox for a recently developed nonlinear factor analysis technique at 

http://www.cis.hut.fi/projects/ica/bayes/ for our comparative simulations.  In this section, we 

summarize the basics of ensemble learning developed by the top-researchers in factor analysis 

field working for Bliss-project.  

This nonlinear independent component analysis algorithm is based on generative 

learning, which means it looks for a compact model which allows a shorter description of the 

observed data (nonlinear dimensions) in the hope of discovering some of the underlying causes 

of the observations.  

The algorithm uses multi-layer perceptron (MLP) network to model the nonlinear 

mapping from sources to observations and ensemble learning to estimate the posterior 

distributions of the unknown variables of the model, consisting of the parameters of the MLP 

network, source signals, noise levels, etc.  

The learning algorithm is a gradient based second order method.  It is able to efficiently 

prune away superfluous parts of the network, which is linked to the robustness of the learning 

algorithm against overfitting.  It is necessary when fitting a flexible nonlinear model such as an 

MLP network to observations.   

The distribution of the sources is modeled by a mixture of Gaussians.  The procedure can 

be summarized as first using nonlinear PCA to estimate a nonlinear subspace and then using 

nonlinear ICA to refine the model.  This is analogous to the linear case where linear PCA is often 

used for estimating a linear subspace for the linear ICA.  
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Figure 4:  Discovery of nonlinear independent components by Bayesian Ensemble Learning 
algorithm for nonlinear factor analysis (Lappalainen and Honkela 2000; Valpola et al. 2001).  
This algorithm was applied to the set of 4 images shown in Figure 2 and run to extract three 
independent components (since, as explained in Figure 2 legend, that is the true number of 
independent variables characterizing these images).  Note that neither of the extracted 
independent components, shown as a set of three images on the right, resembles the true hidden 
variable, i.e., Image 5 in Figure 2.   
 

 

Although it is possible to measure the complexity of the mapping and the sources in 

generative approaches, no algorithms which would do this for nonlinear ICA have been proposed 

apart from this algorithm.  Self-organising maps (SOM) and generative topographic mapping 

(GTM) have been used for nonlinear ICA.  The number of parameters grows exponentially as a 

function of sources both in SOM and GTM, which makes these mappings unsuitable for larger 

problems (Valpola et al. 2001).  
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 However, ensemble learning becomes complicated if there are multiple computational 

paths from a latent variable to an input variable (Valpola et al. 2001).  Thus, one more time, we 

are not able to extract the hidden variable IM5 in our illustrative example of images.  Found 

sources are shown in Figure 4. 
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FINDING MINIMAL SETS OF RELATED VARIABLES 

 

For a SINBAD cell to be able to find a hidden factor, its dendrites must be given different but 

related groups of input variables; i.e., groups with no input variable(s) in common, but with 

implicit information about the same hidden factor.  In some cases such related groups might be 

obvious or easy to guess.  For example, in binocular vision, receptors in the two eyes obviously 

make up two different but related groups of sensory variables with mutual information about the 

third visual dimension (Becker and Hinton 1992).  In general, however, such knowledge is not 

available and the related groups of variables can only be found by trial and error.  In the absence 

of any heuristic, such a search is exponential – if we have a total of N observed variables, then 

we can separate them into O(2N) possible pairs of groups.  Each such pair will have to be tested 

for whether a hidden factor can be extracted from it by a SINBAD cell.  Overwhelming majority 

of such blindly tried partitions of the observed variables into pairs of groups will produce 

unrelated or insufficiently related groups, which will fail to yield any hidden factors (i.e., 

SINBAD cell’s dendrites will fail to learn to produce correlated outputs). 

 Because it is exponential, an exhaustive search among even small (e.g., 20) numbers of 

variables is prohibitively expensive and must be minimized as much as possible.  My approach 

to such minimization is based on choosing one of the variables as a “target” variable and then 

identifying the other variables that together can be used to make the most accurate prediction of 

that target variable, thus indicating a minimal but complete set of closely related variables 

(locality in the inferential space).  In other words, suppose that among the entire set of N 

observed variables, V1…VN, a variable Vt (a “target” variable) can be computed, with 
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minimal error ε, from a subset of variables Va…Vk and a hidden factor H:  .),...( ε+= HVVfV kat   

Suppose that this relationship is fully or at least mostly reversible, allowing H to be computed, 

with some minor error ε*, from Vt and Va…Vk:    Suppose also that H can 

be computed from the observed variables V

.)...,( ** ε+= kat VVVfH

l…Vp:    )....( pl VVhH =

 This means that if we set up a backprop net with inputs from all the observed variables 

V1…VN, except Vt, we might be able to train that net to output target variable Vt with an error 

close to ε (since the input variables include Va…Vk and Vl…Vp).  This also means that the 

number of inputs to the backprop net can be reduced without any loss of its performance, as long 

as the discarded variables do not include Va…Vk, Vl…Vp.   

In my terminology, the set of the observed variables Va…Vk, Vl…Vp is the “Predictive 

Set” of the “target” variable Vt.  A target variable together with its Predictive Set make up a 

“Minimal Set of Related Variables.”  

 The Minimal Set defined for target variable Vt contains all the observed variables needed 

for finding hidden factor H, and no other variables: it is the smallest possible set for finding H.  

If we test all possible two-group partitions of this set, one of the partitions will be {Vt, Va…Vk} 

vs. {Vl…Vp}.  With one dendrite of a SINBAD cell receiving Vt, Va…Vk and the other dendrite 

receiving Vl…Vp, the two dendrites will learn to produce correlated outputs by computing  

f*(Vt, Va…Vk) ≈ h(Vl…Vp) = H.    (14)  

 

The great benefit of confining an exhaustive search of variable partitions to a Minimal 

Set, rather than searching over all the observed variables, is a drastic reduction of the number of 

partitions that will require testing for hidden factors.  Moreover, conceptually, finding the 

  

 

21



minimal sets of related variables is necessary because the unsupervised search for the mutual 

information among the non-overlapping subsets would potentially lead to complex combinations 

of hidden variables if the subsets were allowed to be arbitrarily large. Such a search might, then, 

produce useless functions of the observed variables.  

For example, consider pixels in a visual field as the observed variables. If the subsets 

were allowed to be arbitrarily large, we could divide this visual field into two halves and look for 

mutual information between them. However, this search would not end up with any local image 

features such as lines, curves, textures which are the most prominent local features of natural 

images (Kursun and Favorov 2002, 2003; Olshausen and Field 1996) and the subject of the 

earliest stages of visual processing in the primary visual cortex (DiCarlo and Johnson 2000).  

Instead, it might end up deriving variables that are too trivial. An example of such trivial 

hidden variables discovered is the average illumination. Given such big subsets to train against 

each other, we might also end up with very complex, very high-level functions between these 

subsets, but we would not expect this search to end up with a hidden variable that represents, say 

a tree, in the visual field. On the other hand, first discovering lines and curves and then building 

on it, would allow us to be able to eventually discover deeper order regularities.  

The need to extract hidden variables from local-to-global is another important reason for 

finding minimal sets. The local hidden variables will have multiple uses (manifestations) and 

unless they are made explicit they will have to be implicitly computed in more complex 

inferential links. Consider that, as a simple illustrative example, variable x is one of the observed 

variables and many inferential links among the observed variables use some functions of x2, such 

as sin(x2) and cos(x2).  It would be more cost-efficient to make x2 an explicit variable before 
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sin(x2) and cos(x2) to reduce the time and space complexity of the computations (Kursun and 

Favorov 2004).  Relating to visual data, it would be easier to explain complex object in terms of 

building blocks such as rectangles, circles and so on; and in turn to explain these building blocks 

in terms of lines and curves.  

To summarize, for the SINBAD search for hidden factors to be thorough while 

accomplishable in reasonable time, Minimal Sets of related variables should be identified first.  

Then each Minimal Set should be partitioned in all possible ways into pairs of subsets.  Each 

such pair of subsets should be tested, using SINBAD cell method, for whether it will yield a 

hidden factor.  

To identify Minimal Sets, we can use each observed variable in turn as a target variable.  

For each Minimal Set, the first step is to determine how accurately its target variable can be 

predicted from all the available observed variables.  The next step is to determine which of the 

variables contribute to this prediction and which ones can be dropped without loss of prediction 

accuracy.  A simple way to accomplish the first step is to set up a backprop net with inputs from 

all but the target observed variables and train it on the target variable.  However, this approach 

can under-perform or even fail if the relationship between the target variable and the other 

variables is orderly but not unique.  For example, the available observed variables might only 

have information about how much the target variable deviates from its mean, but not in which 

direction (e.g., an ability to predict a line segment in an image from its context, but not whether it 

is darker or lighter than background).  In such cases it will be necessary to identify the “regular” 

component of the target variable; i.e., such a derivative of the target variable that preserves 

maximal information about the variable, and that is also maximally predictable from the other 
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available variables.  Such a regular component of a variable might be the variable itself or 

another unary function of it. 

The task of learning the regular component of the target variable and determining the 

accuracy of its prediction from the observed variables can be accomplished by using a SINBAD 

cell (Figure 5).  For this task one dendrite is given all but the target observed variables and the 

other dendrite is given only the target variable.  After a training period the second dendrite will 

learn to output the regular component of the target variable, while the first dendrite will learn to 

output the closest possible approximation of that component.  The accuracy of this 

approximation can be measured by coefficient of determination (i.e., the squared coefficient of 

correlation of the outputs of the two dendrites).    

To determine which variables are really used by the first dendrite in predicting the regular 

component of the target variable, a version of sequential backward elimination technique 

(Bishop 1995) is used.  Other network pruning techniques, such as weight elimination (Hanson 

and Pratt 1989; Lang and Hinton 1989), optimal brain damage (LeCun et al. 1990), or optimal 

brain surgeon (Hassibi and Stork 1993) are possible alternatives among famous methods for 

feature selection.  These methods prune the unnecessary connections after detecting them by 

using a measure of saliency of the weights.   

Weight elimination introduces a weight decay term as a form of regularization that favors 

very small or very large weights.  At the end of the training, the saliency of a weight is taken to 

be the magnitude (strength) of it.  
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Figure 5:  Learning the regular component of a target variable and the accuracy of its prediction 
from the observed variables.  Variable V5 from the research project described in Figure 1 is used 
as an example.  (a) SINBAD cell with dendrite 2 receiving V5 and dendrite 1 receiving all the 
other six observed variables.  R(V5) – the regular component of V5.  After a learning period, 
dendrite 2 will output R(V5) and dendrite 1 will output R(V5) + a minimal error.  (b) Time-course 
of learning.  ρ – correlation coefficient between outputs of dendrites 1 and 2.  ρ2, coefficient of 
determination, is plotted as a function of training time (i.e., the number of training trials).  Note 
that the two dendrites learned to match each other’s output almost perfectly (ρ2 = 0.999).  (c) The 
regular component of V5.  The plot shows that the regular component of V5 is the variable itself. 

 

 

Optimal brain damage, instead of computationally demanding direct evaluation of the 

change in the error function when a weight is set to zero (deleted), uses an estimate of the 

saliency of a weight by using the diagonal terms of the Hessian matrix.  However, the 

assumption that the Hessian matrix for a network is diagonal is, generally, a poor one.  Optimal 

brain surgeon technique does not make such an assumption and the saliency of a weight is 

computed by using the inverse Hessian matrix of the network, which is costlier in terms of 

computation.  
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Leave alone its simplicity and intuitiveness, there are three main reasons I chose to use 

sequential backward elimination in contrast to the other methods for finding minimal sets.  First 

and most importantly, these techniques are, ultimately, based on some approximations of the 

saliency of the weights, whereas, the most natural measure of the saliency of an input variable to 

a learning module regardless of what learning algorithm it uses (neuronal or not) is the increase 

in the error of the estimate of the training signal as a result of deleting that input variable, which 

is exactly what is measured by sequential backward elimination.  Secondly, I wanted the Virtual 

Scientist procedures to be independent of the learning algorithm used in SINBAD 

implementation.  Thus, the backward elimination algorithm appeared to be the only suitable 

choice as the others were neuronal algorithms.  Third and lastly, other network pruning 

techniques require additional parameter optimization.  However, based on a particular choice of 

learning algorithm used in SINBAD implementation, any suitable network pruning technique can 

be used for finding the minimal set of related variables.   

The version of backward elimination I employed works as follows: starting with the first 

dendrite connected to all but the target observed variables, we remove those variables one at a 

time and each time re-train (not necessarily fully) the dendrite.  At this stage, learning in the 

second dendrite must be stopped, so that the training signal for the first dendrite will remain to be 

the regular component of the target variable, already found by the second dendrite.  In effect, the 

SINBAD cell is reduced here to a single backprop net trained on the regular component.  If 

correlation between the two dendrites declines as a result of the removal of an input variable 

from the first dendrite, that means that the removed variable was useful for predicting the regular 

component of the target variable and should be restored.  If dendritic correlation does not 
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decline, it means that the removed variable was not relevant to the computation and should not 

be restored (Figure 6).   
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Figure 6:  Finding a Minimal Set of related variables, with V5 as a target variable.  Dendrite 1 of 
the SINBAD cell in Figure 5 is trained on R(V5).  Each plot shows the time-course of dendrite 1 
learning after removal of some of the input variables.  For a benchmark, the horizontal line at the 
top of each plot shows the magnitude of the coefficient of determination (ρ2) between R(V5) and 
the output of dendrite 1 when it had all six input variables, V1 – V4, V6, V7.   
 

 

In the panels from left to right in Figure 6,  variable V4 was removed from dendrite 1 first.  

Correlation between R(V5) and dendrite 1 output (“dendritic correlation”) dropped almost to 0  

and never recovered, indicating that V4 is crucial for predicting R(V5) and should be kept as an 

input to dendrite 1.  V2 was removed next (next panel).  Dendritic correlation declined only 

transiently and made a quick and complete recovery to the original level, indicating that V2 is not 

needed for predicting R(V5).  Next, V2 and V7 were removed, and since dendritic correlation 

dropped permanently, V7 was judged to be necessary for R(V5) prediction.  The same conclusion 

was reached for V6.  However, removing V2 and V3 did not reduce dendritic correlation, 

indicating that V3 can be discarded.  Finally, V1 was found to be needed.  Based on this series of 
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tests, R(V5) can be best predicted from the observed variables V1, V4, V6, V7.  Therefore, this set 

of variables is a predictive set of V5 and together they make up a Minimal Set {V1 V4 V5 V6 V7}. 

To be more precise, when we test whether a variable contributes to the prediction of a 

target variable, we compare the accuracy of the prediction with and without that variable.  If the 

difference is less than a predetermined threshold, then we conclude that the variable is not 

needed and remove it from the dendrite.  The variables that remain still connected to the first 

dendrite after testing all of them constitute the predictive set of the target variable.  The 

threshold, T, determines which and how many variables are chosen for the predictive set of the 

target variable.  Let PT denote the predictive set of the target variable found by the sequential 

backward selection algorithm with threshold T, where |PT| is the size (cardinality) of the 

predictive set, and ρ2
T is the coefficient of determination between the regular component of the 

target variable and its prediction by the set PT.  We want to use the threshold that yields the 

predictive set of the smallest size, but with the maximal prediction of the target variable.  

Formally, we are looking for a T value such that |PT+ξ| ≤ |PT| << |PT-ξ|, but ρ2
T+ξ << ρ2

T ≈ ρ2
T-ξ ≈ 

ρ2
0, where ξ is a small number and ρ2

0 is the coefficient of determination using all variables.   

 A given target variable and its predictive set constitute one Minimal Set of related 

variables.  We identify multiple such Minimal Sets, using every observed variable as a target 

variable (Table 1).  It is a common occurrence that Minimal Sets identified using different 

variables as targets will have identical compositions.  For example, in Table 1, sets 1, 4, and 5 

are identical, and so are sets 2 and 3, and sets 6 and 7.  As a result of such rediscoveries of the 

same Minimal Sets, the number of distinct Minimal Sets identified in a given study is likely to be 

smaller than the number of the observed variables.  
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Table 1 

List of Minimal Sets of related variables extracted from the observed variables V1 – V7. 
 

Set 
# 

Target 
Variable

Minimal         
Predictive Set 

ρ2

1 V1 V4  V5  V6  V7 .998
2 V2 V3  V4  V5  V6  V7 .921
3 V3 V2  V4  V5  V6  V7 .941
4 V4 V1  V5  V6  V7 .994
5 V5 V1  V4  V6  V7 .999
6 V6 V1  V2  V3  V7 .995
7 V7 V1  V2  V3  V6 .999
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PARTITIONING MINIMAL SETS TO FIND HIDDEN VARIABLES 

 

Once the Minimal Sets of related variables are identified, each of them should be partitioned in 

all possible ways and each partition should be tested for hidden variables.  As stated above, if in 

a given predictive set, the role of a subset of variables is to contribute information about a hidden 

factor relevant to the prediction, then a SINBAD cell will learn this factor if one of its dendrites 

is given this subset of variables and the other dendrite is given the rest of the predictive set 

together with the target variable (Equation 14).  Any other partitioning of the predictive set 

across the two dendrites will only reduce their mutual information, and will therefore reduce 

correlation of the dendrites’ outputs (Figure 7). 

A SINBAD cell was trained on each of the partitions shown in Figure 7, with time-course 

of learning shown in one of the panels.  For example, in the top-left panel, dendrite 1 was given 

variables V1, V4, V6 and dendrite 2 was given V5 and V7.  The plot of dendritic correlation (ρ2, 

coefficient of determination of the two dendrites’ outputs) shows that the dendrites were unable 

to correlate their outputs as well as in some other panels.  The best correlation was achieved in 

two panels, for partitions V1 V6 V7 vs. V4 V5 and V6 V7 vs. V1 V4 V5.  For these partitions, ρ2 = 

0.999 – the same level as was achieved by the entire predictive set of V5 against V5 (see Figure 

6).  All other partitions produced clearly much lower dendritic correlations, indicating that they 

are unnatural.  Therefore we take the two best partitions as apparently revealing two candidate 

hidden factors.  These factors are new variables derived from the observed variables.  They 

expand the list of variables characterizing the studied dynamical system; we label them as V8 and 

V9:  V8 = f8(V1, V6, V7) and V9 = f9(V6, V7).  These derived variables are computed by the 
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dendrite that does not receive the target variable (see Equation 14); the dendrite that receives the 

target variable computes only an approximation of the derived variable. 
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Figure 7:  Extracting hidden factors from a Minimal Set of related variables.  The analysis is 
performed on the Minimal Set {V1 V4 V5 V6 V7}, identified in Figure 6 using V5 as the target 
variable.  This set of five variables can be partitioned in 10 different ways (with at least two 
variables on each side of a partition).   
 

 

SINBAD testing of Minimal Set partitions identifies candidates for hidden factors.  To 

make certain that these candidates are true hidden factors, they should be tested for their ability 

to substitute fully for the observed variables from which they were derived (Figure 8).  If a 
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candidate cannot predict the target variable as well as the variables from which it is computed, 

then this candidate should be discarded.  As seen in Figure 8, hidden variables can greatly 

improve the speed of learning inferential relations, which makes them highly desirable to have in 

addition to the observed variables.   

Hidden variables boost the rate of learning convergence by reducing the number of 

samples required for training, because they reduce the number of variables (dimensions) that are 

used in the prediction.  Thus, hidden variables offer a means of dealing with the phenomenon 

known as “the curse of dimensionality”; i.e., the fact that characterizing a complex relation with 

many input variables requires exponentially greater numbers of training samples in the high-

dimensional data space.   
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Figure 8:  Testing a candidate hidden factor.   
 

 

According to Figure 6, V5 = f5(V1, V4, V6, V7).  In Figure 7, this Minimal Set was 

successfully partitioned into {V1 V6 V7} vs. {V4 V5}, suggesting that V5 = f(V4, V8), where V8 is 

taken as the output of the SINBAD dendrite in Figure 7 with inputs from V1, V6, V7.  In other 
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words, V8 = f8(V1, V6, V7) might be a true hidden factor.  To verify this suggestion, a backprop net 

(dendrite 1 used in Figure 5) is trained on V5, receiving its input either from V1, V4, V6, V7 or, 

alternatively, from V4, V8.  The plot in Figure 8 shows the time-courses of learning under these 

two conditions, reaching maximal ρ2 = 0.999.  The plot reveals not only that V5 prediction from 

V8 is just as good as from V1, V6, V7, but also that the net learns much faster with V8, indicating 

that V8 makes learning task much easier.  Thus we conclude V8 is a true hidden factor.  Learning 

the inferential relation using V8 is much easier than using V1, V6, and V7; as in the latter case, the 

network is learning to solve a bigger problem that involves some type of implicit computation of 

V8 for the computation of V5.  Also note that, unlike this simple illustration here, for more 

complex relations bigger networks will fail to produce as good approximations as the compact 

ones − higher input dimensionality will surrender to curse of dimensionality.   

 Hidden factors with effects on multiple observed variables are likely to be discovered 

again and again while searching different Minimal Sets of related variables.  For this reason, 

hidden factors derived from different Minimal Sets should be compared with each other (for 

example, compute cross-correlations among all the discovered factors) to identify any clones.  

Overall, a single Minimal Set can yield multiple hidden factors and different Minimal Sets can 

yield the same hidden factor (Table 2). 
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Table 2 

Hidden factors derived from all the Minimal Sets listed in Table 1. 
 

Minimal Set Successful Partitions Hidden Factor 

V1 V4 V5 V6 V7 
V4 V5 – V1 V6 V7 
V6 V7 – V1 V4 V5 

V8 
V9 

V2 V3 V4 V5 V6 V7
V4 V5 – V2 V3 V6 V7
V6 V7 – V2 V3 V4 V5
V2 V3 – V4 V5 V6 V7 

V8 
V9 
V10 

V1 V2 V3 V6 V7 
V6 V7 – V1 V2 V3  
V2 V3 – V1 V6 V7 

V9 
V10 
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LEARNING ORDERLY RELATIONS 

 

Hidden factors extracted from all the Minimal Sets extend, as derived variables, the list of 

variables with which we can characterize the studied dynamical system.  The next task of theory 

building is to identify, quantify and express in a comprehensive way, the interdependencies 

among all the available – observed and derived – variables.  To accomplish this goal, we need to 

identify the most direct relations among variables; these are the relations that involve minimal 

numbers of variables.  Suppose variable V can be computed from variables X, Y, and Z; this 

relation would not be a most direct relation if variable V could be computed from X and W, 

where W is a hidden variable discovered as a function of Y and Z.  That is to say that the natural 

computation of variable V requires having Y and Z integrated to compute W to be used in the 

computation of V.  Direct relations do not contain these types of redundancies in them.  Thus, 

such direct relations are the most practical ones with minimal representation for storage and 

minimal computation when used for inference.   

Once such relations are known in sufficient numbers to form a more or less complete 

web, then interdependencies among all the available variables can be traced through chains of 

these direct relations.   

In the process of identifying the Minimal Sets and the hidden factors, we have already 

learned a large number of relations, which computed one variable from a set of other variables.  

Together, they form the initial set of relations (Table 3).  These relations give us a starting point 

for finding the most direct relations; i.e., relations involving minimal numbers of variables.   
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Table 3 

List (compiled from all the relations listed in Tables 1 and 2) of all the ways by which each 
variable was learned, in the course of finding Minimal Sets and hidden factors, to be computed 
from other variables. 
 

Relation 
# 

Computed 
Variable 

Predictive Set ρ2

1 1 4, 5, 6, 7 .998
2 2 3, 4, 5, 6, 7 .921
3 3 2, 4, 5, 6, 7 .941
4 4 1, 5, 6, 7 .994
5 5 1, 4, 6, 7 .999
6 6 1, 2, 3, 7 .995
7 7 1, 2, 3, 6 .999
8 8 4, 5 1.00
9 8 1, 6, 7 .999
10 8 2, 3, 6, 7 .998
11 9 6, 7 1.00
12 9 1, 4, 5 .999
13 9 1, 2, 3 .999
14 9 2, 3, 4, 5 .997
15 10 2, 3 1.00
16 10 4, 5, 6, 7 .998
17 10 1, 6, 7 .999

 

 

The basic idea is to substitute a group of variables in a known relation with a single 

variable.  For example, we notice, in Table 3, that in relation #4, V4 is computed from V1, V5, V6, 

V7, but that V1, V6, V7 are also used to compute V8 (relation #9).  This observation raises the 

possibility that the role of V1, V6, V7 in relation #4 is to compute V8, suggesting that relation #4 

can be simplified to that of V4 = f(V5, V8) + ε.  An alternative possibility, however, is suggested 

by relation #17: in this relation V1, V6, V7 are used to compute V10, not V8.  Therefore, a possible 

role of V1, V6, V7 in relation #4 might instead be to compute V10, allowing relation #4 to be 
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simplified to that of V4 = f(V5, V10) + ε.  We can test these alternative hypotheses by training a 

backprop net on inputs either from V5, V8 or from V5, V10, with V4 as the training signal.  If the 

backprop net learns to perform on one of these inputs just as well as when learning on V1, V5, V6, 

V7, then we succeeded in simplifying relation #4 and finding a new and more direct relation.  We 

will add this new relation to our list of known relations and look for other such opportunities.   

The following algorithm automates the process of generating such substitutions and 

finding all the most direct relations.  To give a definition of this recursive algorithm, Set I is a set 

of inferential relations of the type Si  Vx, where the state of variable Vx is inferred with a 

maximal degree of accuracy by performing an optimized computation (carried out by a backprop 

net) on the states of a set of variables Si.  At the start, Set I comprises all the relations learned by 

SINBAD dendrites in the course of finding Minimal Sets and hidden factors.  This set is 

expanded by applying Rule 1 to it.  

 

Rule 1: if I contains two relations Si  Vx and Sj  Vy such that Sj is a subset of Si, and if the 

prediction accuracy of Vx by [{Vy} ∪ (Si − Sj)]  Vx is not significantly worse than prediction 

accuracy of Vx by Si  Vx, then relation [{Vy} ∪ (Si − Sj)]  Vx is added to Set I. 

 

Rule 1 is applied iteratively, expanding the size of Set I.  The search for new relations continues 

until no new pair of relations satisfying the rule’s conditions can be found anymore in I.   

Next, among all the relations in I, those that were not simplified by Rule 1 at any time 

during the search are taken to be the most direct relations.  They form a new set, D.  A new rule, 

Rule 2, is applied iteratively to relations in Set D.  This rule does not simplify relations; instead, 
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it defines new relations by trading one variable in the already present relation for a different 

variable. 

 

Rule 2: if D contains two relations [{Vx} ∪ Si]  Vy and [{Vy} ∪ Sj]  Vz, and if Si is a 

subset of Sj or is the same as Sj, then relation [{Vx} ∪ Sj]  Vz is added to Set D. 

 

In the last part of the algorithm, when after its iterative applications, Rule 2 fails to find any new 

pairs of relations satisfying the rule’s conditions, new relations are defined by reversing every 

relation in Set D and testing them for their predictive powers.  The reason is that if we know a 

relation in which Va and Vb successfully predict Vc, then we can expect that Va can also be 

predicted, more or less accurately, from Vb and Vc, and so can Vb from Va and Vc.  The predictive 

accuracies of the reversed relations are evaluated by training backprop nets to implement them. 

The product of this algorithm is a set of the most direct relations among the observed 

variables and the discovered factors, each relation executable by a backprop net.  This is a very 

efficient searching algorithm.  Applied, for example, to the set of 17 original relations in Table 3, 

it identified and tested on backprop nets 36 potential relations, 32 of which were accepted.  The 

algorithm found 21 most direct relations, listed in Table 4.  In comparison, if we searched for the 

most direct relations by testing, using backprop net training, all the possible relations among the 

10 available variables, we would have to perform 5020 such tests.   
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Table 4 

The most direct inferential relations among the seven observed and the three derived (hidden) 
variables, listing the sets of variables that are predictive of each of the 10 variables. 
 

Relation 
# 

Computed 
Variable 

Most Direct 
Predictive 

Set 
1 1 8, 9 
2 1 8, 10 
3 1 9, 10 
4 2 3, 10 
5 3 2, 10 
6 4 5, 8 
7 5 4, 8 
8 6 7, 9 
9 7 6, 9 
10 8 4, 5 
11 8 1, 9 
12 8 9, 10 
13 8 1, 10 
14 9 6, 7 
15 9 1, 8 
16 9 1, 10 
17 9 8, 10 
18 10 2, 3 
19 10 1, 9 
20 10 8, 9 
21 10 1, 8 
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FORMULATING A THEORY OF THE STUDIED SUBJECT 

 

The set of direct relations that Virtual Scientist procedures extract from the observed variables 

describe most explicitly the order discernable in the observed dynamical system (given that the 

only source of information about the system are the observed variables).  For a full appreciation 

of the interdependencies among the variables, this set of relations should be considered as a 

unified graph, rather than as a disjointed list of separate relations.  Different relations are linked 

by variables they have in common (such as, for example, when the same variable is predicted by 

one relation and is used for prediction by another relation).  As a result of such overlaps, all the 

different direct relations are linked together into a single functional entity, a web of inferential 

relations (Figure 9).   

In Figure 9, all 21 direct relations listed in Table 4 are shown by lines connecting the 

variables.  Note that the lines do not connect variables directly, but go through hubs, which tie 

several lines together.  The presence of a hub indicates that a given variable does not have 

predictive significance for another variable just by itself, but in conjunction with one or more 

other variables joining it in the hub.  Thus, each hub identifies a set of variables engaged together 

in a multivariate, typically nonlinear relation.   
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Figure 9:  The web of connections among the observed variables and hidden factors discovered 
by Virtual Scientist in the studied dynamical system.  The plot shows the seven observed 
variables (solid circles) and the three derived variables (shaded circles).   
 

 

An arrow emerging from a hub and pointing at a variable indicates that the state of that 

variable can be predicted with a significant degree of accuracy (in this plot, all have ρ2 > 0.9) 

from a combination of the states of the other variables linked by the hub.  Note also that multiple 

arrows converging on a variable indicate alternative sources of prediction and should not be 

viewed as additive in their effects.  Several of the variables in the plot are engaged in more than 

one relationship and, therefore, can alternatively be predicted from more than one set of 

variables. 
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 Viewed as a whole, this diagram of variables linked together by the web of connections 

provides a graphic representation of the order discovered by Virtual Scientist procedures in the 

studied dynamical system.  By virtue of its power to unravel and explain behaviors of the 

variables in terms of other variables, this web of inferential relations offers a concise and 

comprehensive theory of the studied subject. 

The web of inferential relations reveals all the pathways by which even remote 

interactions among distant variables can be traced through chains of variables connecting them.  

Furthermore, the usefulness of the web of relations extends beyond mapping functional 

interconnections among the variables.  Each direct relation in the web has been learned – in the 

process of its discovery – by a separate backprop net and can, therefore, be used to make 

predictions.  This type of insightful inference is very crucial especially in case of missing 

information.  Apart from Virtual Scientist, most learning algorithms are based on mapping of a 

set of input channels to some output.  These algorithms do not evaluate the significance of the 

input channels and which ones are truly necessary for a specific mapping task.  There are feature 

selection algorithms proposed for preprocessing tasks.  However, these approaches are of limited 

contribution for building inferential model of the observed system as their use are limited to an 

initial, one-time-only feature selection.  

Therefore, given partial input, other approaches will fail to make valid inferences because 

their mapping, in general, requires that all variables to be supplied into the black-box mapper.  

The reason I use the term “black-box” is that looking from outside we will have no idea how this 

mapping is done and how does the computation merge (integrate) different variables for the 

ultimate computation.  Another disadvantage of the black-box approach is that given partial input 

  

 

42



may be sufficient or insufficient for the computations but a black-box approach will fail to 

recognize that they failed.  However, using the method presented in this work, we can determine, 

following the inferential chains, which target variables we can correctly infer.  In this respect, 

Virtual Scientist can be thought as a self-aware system − it knows that it is designed for making 

the most reliable inferences.   

In addition, with a direct relation involving, typically, only a small number of variables, 

such a low-dimensional relation can be visualized by plotting the involved variables against each 

other, so that the underlying mathematical form of this relation can then be appreciated.  Finally, 

standard least-square approximation methods can be used to fit the data distribution with a 

suitable approximating function, thus expressing the relation mathematically.  Fitting 

approximating functions to all the direct relations in the web, it might be possible to arrive at a 

mathematical description of the studied dynamical system in a form of a system of equations. 

Whether expressed by formulae or by backprop nets, the direct relations together make 

up a quantitative model of the studied subject, which is the kind of theory that Virtual Scientist 

procedures extract from the observational data.  Among the central contributions of such a theory 

are (i) derivation of explanatorily useful concepts of influential hidden factors, (ii) explanation of 

the behaviors of the observed variables from behaviors of other such variables and the 

conceptualized hidden factors, and (iii) elucidation of the functional organization of the studied 

dynamical system. 

The web of inferential relations shown in Figure 9 is an example of such a theory, 

developed by Virtual Scientist procedures from the observational data described in Figure 1.  

These data were generated by a mathematical model of a well-known dynamical system, the 
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Kitchen Sink.  Sinks encountered at various times and in different kitchens can be viewed as a 

single dynamical device – the Sink – that varies its configuration (i.e., how pipes and valves are 

arranged) in different kitchens and varies its state (i.e., how much water is flowing and its 

temperature) at different times.  To simplify matters, the mathematical model describes sinks that 

all receive water from two pipes and are controlled by the following five variables:  HC indicates 

which of the two pipes carries hot/cold water (0 – the left pipe is hot and the right pipe is cold, 1 

– vice versa), DIRL and DIRR are the directions in which the left and the right knobs should be 

turned to open the pipes (0 – clockwise, 1 – counterclockwise), and KPL and KPR are the radial 

positions of the two knobs.  Sinks in different kitchens can have different DIRL, DIRR, and HC; 

KPL and KPR can vary in the same sink.   

These variables determine the flows of water through the two pipes: 

2/)21( LLLLL KPDIRKPDIRF ⋅⋅+−−=      and  (15) 

2/)21( RRRRR KPDIRKPDIRF ⋅⋅+−−= .   (16) 

 

 In turn, the flows of water through the two pipes determine the total water outflow from 

the faucet and its temperature: 

RLT FFF +=     and      (17) 

)/())1(( RLRL FFFHCFHCt +⋅+⋅−=o

.   (18) 

 

Collection of observational data was envisioned to involve observing a random sequence 

to “snapshots” of sinks in various configurations of pipes and valves, and with various knob 
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ariables V1… V7, analyzed by Virtual 

1 = FT, V2 = t°, V3 = HC, V4 = DIRL, V5 = KPL, V6 = DIRR, V7 = KPR.   

 

an important 

ctor: 

n faucet 

form any other prediction that can be performed using Equations 15-18. 

 

positions and the resulting water outputs.  The observed v

Scientist procedures, had the following identities:  

V

Importantly, two sink variables of central significance for sink functional organization 

were not observed, turning them into hidden factors.  These variables are FL and FR, the flows of 

water in the left and right pipes, respectively.  Although hidden, these factors were, nevertheless, 

discovered by SINBAD cells and labeled as V8 (=FL) and V9 (=FR).  Interestingly, SINBAD cells 

also discovered an additional, unanticipated, hidden factor, V10.  My analysis of its behavior 

reveals that V10 is a ratio:  V10 = FL/FT.  Upon some consideration, V10 is, in fact, 

fa it determines, together with HC, the water temperature, t° (see Equation 18). 

 Following the discoveries of hidden factors FL, FR, and V10, Virtual Scientist procedures 

learned how FL and FR are determined by knob positions (V5 = KPL, V7 = KPR) and directions to 

open the valves (V4 = DIRL, V6 = DIRR), and how FL and FR, in turn, determine the total water 

outflow FT and its temperature t° (see Figure 9).  Overall, the web of inferential relations in 

Figure 9, generated by the Virtual Scientist, does reflect accurately and efficiently the functional 

organization of kitchen sinks (actually, to be precise, the organization of the designated 

mathematical model of sinks).  The web is an inferential model of sinks and, as such, it can be 

used to predict, for example, how knobs should be positioned in a given sink in order to produce 

desired water flow and temperature, or to deduce the knob positions from the know

output, or to per
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g V1, V8, V9 represents Equation 

rom the observed data the prominently nonlinear mathematical model that generated those data.  

 

In another demonstration of the close correspondence between the true mathematical 

description of the studied dynamical system (i.e., Equations 15-18) and the Virtual Scientist 

model of it, the hubs in Figure 9 representation of the direct relations actually correspond to the 

equations that govern the system.  Specifically, the hub linking V4, V5, V8 represents Equation 15, 

the hub linking V6, V7, V9 represents Equation 16, the hub linkin

17, while two hubs linking V2, V3, V8, V9 represent Equation 18. 

 Thus, in conclusion, Virtual Scientist procedures were fully successful in reconstructing 

f

  

 



SVMS FOR VIRTUAL SCIENTIST PROCEDURES 

 

Support Vector Machines (SVMs) (Vapnik 1995, 1998) have been shown to be very powerful 

tools for both linear and nonlinear classification and regression problems in the field of machine 

learning.  Both the attractiveness of their underlying theory, due to its intuitiveness and 

simplicity, and their success in solving difficult pattern recognition problems have resulted in a 

fast growing interest in SVMs.  Among the problems SVMs have performed well, text-

categorization, face detection and recognition, and gene selection may be listed.   

SVMs’ origin traces back to 1909 when James Mercer developed the theory of Kernel, 

which is one of the fundamental concepts of SVMs.  Kernel Hilbert space, which is a subfield of 

Hilbert Space theory was developed by Aronszajn in 1940s.  In 1964, Aizerman, Braverman and 

Rozoner introduced the concept of interpreting kernels as inner products in a feature space, using 

Mercer's theorem.  In 1979, Vladimir Vapnik et al finally developed the theoretical foundation 

for SVMs based on previous works.  SVMs are now as widely applied and studied as neural 

networks.  There are several major advantages of SVMs over neural networks.  These advantages 

are of significant interest for most efficient implementations of the Virtual Scientist procedures 

that are originally put into practice using neural networks for the SINBAD cell.  As the 

advantages of SVMs over neural networks have become well established; I would, naturally, like 

to take advantage of SVMs as learning modules in SINBAD architecture.   
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Advantages of SVMs over Neural Networks 

In this section, I will provide a brief look at the underlying principles of SVM learning to 

appreciate its capabilities and to motivate its use in Virtual Scientist procedures.  The most 

striking property of SVM learning that has been widely drawn attention to in the literature is that 

they have better generalization ability, and thus, less likelihood of over-fitting.  It has been also 

shown that SVMs are robust to high input dimensionality and they require less training samples.  

Moreover, SVM learning involves smaller number of hyper-parameters that needs to be 

experimented for a given learning task; in this regard, there are techniques proposed for 

automated hyper-parameter optimization for SVMs.   

For the sake of simplicity, I will talk about SVMs for classification problems in 

supervised learning context.  The principles can be easily generalized to the case of regression 

with SVMs.  In a classification problem, we are given a set of l training examples {xi,yi}, where 

xi is the input vector and yi is the output (class code), defined by the classification function 

f(xi)=yi.  The task of learning is to find a “good” hypothesis function h(x) that approximates f(x).  

In classification problems, it can be assumed that y only takes values of ±1.  Since we cannot try 

all possible hypothesis functions, it is easier to restrict h(x) to lie inside a hypothesis space H, 

such as polynomial functions.  Even then, however, it is possible to find several hypotheses that 

classify the training set correctly.  To avoid over-fitting it is necessary to choose the simplest one 

− a principle known as Occam’s razor.  Based on this principle, Vapnik-Chervonenkis statistical 

learning theory (VC) (Vapnik 1995, 1998) shows that it is essential to restrict the class of 

functions that f is chosen such that its capacity is suitable for the amount of available training 
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data.  Without such a restriction, a function that performs well on the training set need not 

generalize well to unseen examples (test set).  Hence, only minimizing the training error 

(empirical risk) does not imply a small test error (risk).  Neural networks, for example, are based 

on empirical risk minimization, thus, well known to over-fit the training data and fail on test data 

as a result.   

In order to minimize risk, it is necessary to find the optimal combination of both the 

empirical risk and the capacity of the function class.  This principle is known as structural risk 

minimization.  The best-known capacity concept of VC theory is the VC dimension, defined as 

the largest number of points that can be separated in all possible ways using functions of the 

given class.  In other words, VC dimension is equal to the maximal number d of training 

examples that can be split into two sets in all 2d ways using functions from the hypothesis space.   

In order to restrict the expressiveness of the hypothesis space, the SVM searches for the 

simplest solution that classifies the data correctly.  This is equivalent to maximising the distance, 

normal to the hyperplane, between the convex hulls of the two classes; this distance is called the 

margin.  Note that among all hyperplanes separating the data, there exists a unique one yielding 

the maximum margin of separation between the classes; and the capacity of the hypothesis 

decreases with increasing margin.   

A linear classifier may not be the most suitable hypothesis for the two classes.  The SVM 

can be used to learn non-linear decision functions by first mapping the data to some higher 

dimensional feature space and constructing a separating hyperplane in this space.  Thus, SVM 

approach to learning is based on taking advantage of pair-wise similarity of training samples that 

is measured by a kernel function.  As a result, high input dimensionality is not a limiting factor 
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for SVM learning.  On the other hand, for neural networks, to accommodate a large input vector 

the size of the input and the hidden layer should be extended, which results in a big and powerful 

network that is able to over-fit.  Even though, keeping the number of hidden units minimal and 

applying weight decay techniques have been proposed, the bigger the network is the search 

becomes much more difficult and involves spurious local minima.   

SVMs, on the other hand, avoid over-fitting by choosing a specific hyperplane among the 

many that can separate the data in the feature space.  This hyperplane is called the maximum 

margin hyperplane, which maximizes the minimum distance from the hyperplane to the closest 

training point.  The maximum margin hyperplane can be represented as a linear combination of 

training points.  Support vector machines can locate a separating hyperplane in the feature space 

and classify points in that space without ever representing the space explicitly, simply by 

defining a function, called a kernel function, which avoids the computational burden of explicitly 

representing the feature vectors.  The optimisation is now a convex quadratic programming (QP) 

problem 
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This problem has a global optimum; thus the problem of many local optima in the case of 

training e.g. a neural network is avoided.  This has the advantage that parameters in a QP solver 

will affect only the training time, and not the quality of the solution.   
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Thus, the SVM learns the optimal separating hyperplane in some feature space, subject to 

ignoring certain points which become training misclassifications.  The learnt hyperplane is an 

expansion on a subset of the training data known as the support vectors.  By use of an 

appropriate kernel function the SVM can learn a wide range of classifiers including a large set of 

RBF networks and neural networks.  The flexibility of the kernels does not lead to over-fitting 

since the space of hyperplanes separating the data with large margin has much lower capacity 

than the space of all implementable hyperplanes. 

The selection of an appropriate kernel function is important, since the kernel function 

defines the feature space in which the training set examples will be classified.  As long as the 

kernel function is legitimate, an SVM will operate correctly even if the designer does not know 

exactly what features of the training data are being used in the kernel-induced feature space.  The 

definition of a legitimate kernel function is given by Mercer’s theorem (Vapnik, 1998): the 

function must be continuous and positive definite.  Human experts often find it easier to specify 

a kernel function than to specify explicitly the training set features that should be used by the 

classifier.  The kernel expresses prior knowledge about the phenomenon being modeled, encoded 

as a similarity measure between two vectors.   

In experimental sciences, it is very common case that the number of training samples is 

small, whereas the number of variables measured is numerous.  Therefore, for many neural 

network based approaches, including the original SINBAD design utilizing the backprop nets, it 

would be inescapable to over-fit complex functions on the training data.  In summary, based on 

the structural risk minimization principle from statistical learning theory, SVMs provide maybe 

the most intuitive way of learning from examples, simply corresponding to a linear method in a 
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high dimensional feature space that is nonlinearly related to the input space through the use of 

kernels.  SVMs, thus, scale well to very many inputs and avoid the computations in the high 

dimensional nonlinear feature spaces and keep all the computations performed in the input space.  

SVMs perform very well, without over-fitting, on a set of limited number of training samples.  

However, it should be kept in mind that it has been proven that neural networks can approximate 

any arbitrarily complex function and therefore they may be helpful when the SVM learning does 

not seem to work under certain conditions.   

Novelty of SVMs in Unsupervised Learning 

While some researchers show the practicality of this promising learning tool in application to 

real-life problems, many others have put efforts in different versions of SVMs for better and/or 

faster generalization ability.  There have been quite a number of versions of SVMs and some 

issues regarding to online versus batch learning, variable selection, and tuning hyperparameters 

are explored.  However, most of these efforts relate to supervised learning (Vapnik 1995).  There 

are a few interesting approaches for unsupervised (nonlinear) factor analysis with SVMs, such as 

kernel-PCA.  However, these methods are closely linked with comparable neural network based 

approaches, for example, kernel-PCA performs nonlinear principle components of Kramer 

(1991).  Thus, it would not be far off to say none is proposed for SVMs use in unsupervised 

learning.   

On the contrary, neural networks’ intuitive applicability to unsupervised learning by auto-

association has lead many researchers in the field of (nonlinear) factor analysis to search for 
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the ways of forcing the hidden units to tune to true hidden (causal) factors.  Using weight decay 

during learning or applying independent component analysis (ICA) on the functions learned by 

the hidden units can be given as examples of methods applied in auto-associative neural 

networks in the hope of discovering interesting factors.   

As a severe consequence of the fact that, for quite long time, the task of unsupervised 

learning has been considered to be transforming high dimensional data into a low dimensional 

nonlinear space such that empirical risk is minimized, many traditional approaches in 

unsupervised learning are built on data compression.  However, as discussed earlier, the 

compactness of a representation does not guarantee that the descriptors will turn out to 

correspond to true, inferentially useful hidden factors.   

Even though, SVMs have come out with great advantages over neural network models, 

unfortunately, they do not provide as obvious means of compression as, for example, many 

varieties of bottleneck-layered neural networks do.  Hence, we do not see SVMs being used for 

unsupervised learning.  It is evident that in the field of machine learning and factor analysis, the 

approach to unsupervised learning is merely about data compression.  Fortunately, a 

fundamentally different approach to unsupervised learning – based on the principle of 

maximization of mutual information (Imax) among non-overlapping sources of information – 

can be readily implemented using SVMs.   

Using this approach, just as before with error backpropagation networks in SINBAD 

implementation, hidden factors can be discovered through a search for different, but nevertheless 

highly correlated functions of any kind over disjoint subsets of the observed variables.  Such 

correlated functions must have a reason for their statistical interdependence, a causal source in 
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the domain of the data.  Thus, a pair of SVMs, set up to use each other’s output as their own 

training signal, can teach each other higher-order features of the data that reveal hidden causal 

factors controlling the observed phenomena.  Hidden variables discovered by this method form a 

graph that reveals the functional organization of the studied subject.  

Virtual Scientist Procedures with SVMs 

I used a simple implementation of SVM regressor (approximator).  This SVM regressor 

works in batch mode.  Other versions of SVMs for regression, as well as any other supervised 

learning algorithms, can be used instead.  Given below is the pseudo-code algorithm for a single 

SINBAD cell using two SVMs by simply calling “Train SVM” to run the regressor.  Auto-scale 

is the technical name of normalization to zero-mean and unit standard deviation.  Correlation 

coefficient, ρ, between two signals xi and yi is a well-known measure of how highly two signals 

correlate, which is computed as follows:  
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where N stands for the number of observations.  
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Pseudo-code Algorithm of SINBAD cell training:  
Randomly initialize Output-1(xi) 
Randomly initialize Output-2(xi) 
Repeat  

Auto-scale Output-1 
Auto-scale Output-2 
Train SVM-1 to regress Output-2 
Train SVM-2 to regress Output-1 
Re-compute Output-1 from SVM-1 
Re-compute Output-2 from SVM-2 
Compute correlation coefficient ρd between Output-1 and Output-2 

Until ρd does not improve (convergence) 
End SINBAD cell training 
 

 

The update equations of the original version of the backprop-version of SINBAD were 

very complex including some artificial factors, α, β, mainly to force the cell to expand the 

dynamic range of the learnt features.  This force had some side effects such as forcing the cell to 

be always active (highly activated), which is not realistic as the preferred hidden variable may 

simply have near zero values at times.  Moreover, compared to SVM-SINBAD, Backprop-

SINBAD has more hyper-parameters to optimize such as initial weights, learning rate, number of 

hidden units etc.   
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Pseudo-code Algorithm of Hidden Variable Discovery: 
 Choose a target variable T among the observed variables  

SVM-1 is given all observed variables except T 
SVM-2 is given only T 
Train SINBAD cell using SVM-1 against SVM-2 
Compute Output-1 from SVM-1 
Compute Output-2 from SVM-2 
Measure the coefficient of correlation (ρ) between Output-1 and Output-2 
For each variable V connected to SVM-1 

Remove V from SVM-1 
Train SVM-1 to regress Output-2 
Re-compute Output-1 from SVM-1 
Measure ρnew between Output-1 and Output-2 
If ρnew << ρ  Then Connect V back to SVM-1 

 End For 
 Minimal Set ← {variables connected to SVM-1} ∪ {T} 
 For each bi-partition of Minimal Set 
  Connect variables in one partition to SVM-1 

Connect variables in the other partition to SVM-2 
Train SINBAD cell using SVM-1 against SVM-2 
Measure ρcandidate 

If ρcandidate ≈ ρ  Then Functions computed by SVMs are hidden variables 
End For 

End Hidden Variable Discovery  
 

 

For a first comparison of the capabilities of the two SINBAD implementations (SVM-

SINBAD and Backprop-SINBAD), both versions are applied to the dataset of four images 

presented earlier, this time using a different hidden image for the sake of variety − i.e. not to 

repeat the same image display over and over again.   

 For finding minimal sets, SVMs’ use can be very effective as they are robust to high 

input dimensionality.  That is because finding minimal set of related variables involves 

predicting a target variable from all the other variables.  It is very likely for the neural networks 

to stuck in a local minima or over-fit to the training data, especially given small number of 
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training examples.  For an illustration, consider some truly random variables (called r1, r2, r3, 

etc...) are among the observed variables in our demonstrative dataset of four images.  In reality, 

these random variables can as well be some meaningful variables that are irrelevant to the target 

variable we would like to predict.  In their effect, these irrelevant variables make the learning 

task harder as shown in Figure 10, where the number of samples required for accurate prediction 

(ρ2>0.9) of the target variable IM1 is shown for both Backprop-SINBAD and SVM-SINBAD 

and plotted as a function of the number of irrelevant variables.   

To further explicate the capabilities of the learning modules, I limited the number of 

training samples to 100.  When SVM-SINBAD is given {IM1, IM2} versus {IM3, IM4} (Figure 

11) connected to its learning modules SVM-1 and SVM-2, respectively, it converges very 

quickly within 10 updates (10 complete passes over the training set) and learns the underlying 

image 5 perfectly from (compare Figures 12 and 13).  Whereas, in Backprop-SINBAD, 

backprop-1 and backprop-2 take more than 500 updates to accomplish only a close 

approximation to image 5 (Figure 14).   
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Figure 10:  The number of training samples required for predicting IM1 with ρ2>0.9 from other 
observed variables as a function of the number of irrelevant (random) observed variables. 
 

 

 

Figure 11:  The four images which characterize a hidden image shown in Figure 12.  
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Figure 12:  The hidden image: image 5.   
 

 

Figure 15 shows the mean-squared-error (MSE) of both approaches as a function of 

training updates.  Note that Backprop-SVM could not perfectly converge to the hidden image 5, 

which is clearly seen in its output image.  On the other hand, SVM-SINBAD learned the hidden 

variable perfectly, see Figure 16 for a comparison of these approximations.   

Even though a parallel algorithm can take the same time-complexity to accomplish 

minimal set search exhaustively, the proposed algorithm is heuristic, saving space complexity 

and total amount of computation needed.  However, it is inescapable for a heuristic algorithm to 

make errors.  Thus, it is probable that some unrelated variables will be let in the minimal sets.  

These variables will be present in the partitions to be tested for hidden variables.  However, 

presence of unrelated variables in partitions will only confuse the learning modules.  Recall 
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that neural networks are more prone to get stuck in a local minimum in high dimensional input 

space.   

 

 

 

Figure 13:  The approximation of SVM-SINBAD to the hidden image 5. 
 

 

For an illustration, consider some of the random variables (r1, r2, r3, etc...) are, 

accidentally, in our minimal set {IM1, IM2, IM3, IM4} to be partitioned.  For the sake of 

simplicity, I will consider partitions with equal number of random variables in both partitions, 

such as {IM1, IM2, r1} versus {IM3, IM4, r2}.  Applied on the various training set of 100 

examples (pixels) from four images, if these partitions are given to Backprop-SINBAD, it fails to 
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find the hidden image 5.  However, SVM-SINBAD could handle up to six random variables in 

each partition.   

 

 

 

Figure 14:  Backprop-SINBAD discovers only a close approximation to the hidden image 5. 
 

 

Finally, on the kitchen sink example presented in previous sections, SVM-SINBAD 

performed very well and the relations learnt with this new implementation exactly matched the 

relations learnt with Backprop-SINBAD.  However, as expected, the accuracies of the learnt 

relations show that SVMs outperform backprops, once again, for SINBAD learning (Table 5).   
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Figure 15:  The mean-squared-error of SVM-SINBAD and Backprop-SINBAD on the test image 
as a function of training updates. 
 

 

Comparison to my previous work demonstrated in previous sections, in which this 

approach was implemented with backprop nets, shows that unsupervised learning with SVMs is, 

in fact, more robust to high input dimensionality and requires much smaller number of training 

samples and iterations.  This improvement is promising for practical applications of Virtual 

Scientist to real-world problems especially experimental sciences such as bioinformatics, where 

the number of training samples is small but the number of observed variables is plentiful.   
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Figure 16:  Approximations of SVM-SINBAD and Backprop-SINBAD to the hidden image 5. 
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Table 5 

Comparison of SINBAD implementations on the most direct inferential relations among the 
seven observed variables and the three derived variables.  Different implementations of 
SINBAD, in this specific problem, did not change the learnt relations but their accuracies differ.  
The relations are extracted more accurately with SVM-SINBAD compared to the original 
SINBAD implemented with backprop nets (Backprop-SINBAD). 
 

Backprop-
SINBAD SVM-SINBAD 

Computed 
Variable Predictive 

Set ρ2 Predictive 
Set ρ2

V1 V8 V9 .998 V8 V9 .998 
V2 V3 V10 .966 V3 V10 .975 
V3 V2 V10 .868 V2 V10 .947 
V4 V5 V8 .947 V5 V8 .988 
V5 V4 V8 .997 V4 V8 .998 
V6 V7 V9 .949 V7 V9 .987 
V7 V6 V9 .997 V6 V9 .998 

average 2.00 inputs .960 2.00 inputs .984 
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VIRTUAL SCIENTIST APPLICATION TO METABOLOMICS 

What is Metabolomics? 

Virtual Scientist has been developed for use on scientific problems that involve systems of 

nonlinear multivariable relations, and in which data are collected in snapshot observations of the 

state of the studied subject.  This kind of problems is especially characteristic of genomics and 

related fields.  One of these related fields is Metabolomics (Nicholson et al. 2002).  It concerns 

metabolic – chemical – reactions taking place in the cells of the various tissues and organs of a 

living organism.  These reactions involve metabolites (small molecular size chemical 

compounds), their concentrations, and rates of conversion of metabolites into other metabolites: 

 

,
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where Ma, Mb, Mc, Md are different metabolites and r1 and r-1 are rates of forward and backward 

chemical reactions, typically controlled by specific protein enzymes. 

One of the basic experimental techniques used in Metabolomics is Nuclear Magnetic 

Resonance, or NMR (Reo 2002, Griffin 2003).  NMR can be applied to biofluids extracted from 

specific cells, tissues, organs, or it can be applied to blood plasma or urine, with the latter being 

particularly popular because of noninvasiveness of sample collection.  NMR measures 
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concentrations of various metabolites in the studied biofluids, which reflect chemical reactions 

taking place in the body. 

Thus, a single NMR measurement of a biofluids sample produces information about 

hundreds metabolites present in the sample.  NMR spectral data are used for diagnostic purposes 

– to detect various abnormalities in the functioning of the organism due to toxins, infections, or 

other causes.  NMR spectral data are also used in elucidation of metabolic pathways, 

interactions, processes of basic scientific interest for understanding physiological functioning of 

the body under different conditions. 

Current Analytical Methods  

NMR spectra are conventionally analyzed using methods of principal component analysis 

(PCA), linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), 

soft independent modeling of class analogies (SIMCA), among others (Otto 1999).  The standard 

approach is to do PCA first to reduce dimensionality of the data.  Graphic display of the first 

Principal Component plotted against the second Principal Component can reveal a tendency of 

data to cluster in two or more different regions of the plot, indicative of the presence of multiple 

metabolically distinct classes (“phenotypes”) among the studied subjects. If NMR analysis is 

performed to compare two or more different groups of subjects, or phenotypes, such as for 

example normal subjects vs. those with a particular disease, then supervised learning technique 

of LDA is used to identify the best linear discrimination of phenotypes on the basis of their NMR 

spectra. 
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Analysis of loading parameters, a measure of involvement of metabolites in the PCA 

dimensions, is used to identify those metabolites that are most involved in a given phenotype. 

These metabolites are biomarkers; the knowledge of their identities is highly useful for 

understanding the underlying nature of a given phenotype (e.g., the causes or consequences of a 

given pathology) and for diagnosis purposes. 

While the currently used analytical approaches have yielded many important findings, 

their fundamental limitation is that they are linear and therefore incapable of taking advantage of 

richer, nonlinear regularities in the NMR data.  That is, these methods do not utilize NMR 

method effectively; they do not make full use of information carried by NMR spectra. To extract 

and make use of such information requires nonlinear analytical techniques. 

Analysis of NMR Spectra by Virtual Scientist 

Virtual Scientist is well suited for extracting deep information from NMR spectra and finding 

connections among metabolites in normal and pathological states.  To illustrate how Virtual 

Scientist can be applied to NMR-based Metabolomics, we will make use of data collected in an 

experimental study by Dr. Jeffrey Macdonald at University of North Carolina in Chapel Hill. 

To give a brief description of the data and its preprocessing, urine samples were collected 

from normal healthy mice (controls with liver score = 0; a total of 17 samples in this category), 

as well as from mice with varying stages of liver cancer (liver score ranging from 1 to 3 where a 

score of 0 means no cancer and liver score = 3 is max; a total of 8 samples in this category).  The 

urine samples were analyzed on a 600 MHz INOVA NMR spectrometer.  The raw 
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measurements were converted into frequency domain using Fourier transform, thus producing an 

NMR spectrum for each subject.  An example of a healthy phenotype spectrum and a cancerous 

phenotype spectrum are shown in Figure 17. 

 

 

 

Figure 17:  Exemplary NMR spectra. 
 

 

To compensate for translational jitter across different NMR readings, all spectra were 

aligned on the rightmost spike, generated by TSP chemical compound. To remove such global 

factors of no physiological significance as NMR spectrometer calibration variations and urine 

concentration variations across animals, the spectra were normalized by their total integrated 

area. 

The spectra were found to contain 221 spikes of magnitudes significantly above the 

background (Figure 18).  Each such spike reflects the presence in the urine of one of the 

metabolites.  Metabolic identities of some of the spikes are known, others are not.  The 

magnitude of a spike is proportional to the metabolite’s concentration in the urine sample. 
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Figure 18:  Plot of 221 spikes from one of the NMR spectra, with names of some of spikes 
marked on the plot. 

 

        

The standard analysis of NMR spectra involves PCA for dimension reduction (Figure 

19).  Figure 19 plots the first principal component (PC1) versus the second principal component 

(PC2) for 25 urine samples from mice with varying stages of cancer, revealing no tendency for 

clustering that would reflect the presence or the stage of cancer in the subject. 
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Figure 19:  Plot of PC-1 vs. PC-2.  Different phenotypes are shown with different symbols. 
 

 

Next, we can perform linear regression analysis on the data using a Support Vector 

Machine, SVM, with a linear kernel. Using the leave-one-out approach to testing, the SVM was 

trained on 24 out of 25 data samples and then tested on the left-out sample. The SVM was 

trained 25 times, each time leaving a different sample out. Figure 20 plots SVM predictions on 

the test samples as a function of the actual liver scores. It reveals that linear regression fails to 

detect the relationship between the presence/stage of liver cancer and the urine NMR spectrum 

(the coefficient of determination – i.e. the correlation coefficient squared, expressing how much 

of SVM output variation can be accounted for by the liver score – was an insignificant 20%). 
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Figure 20:  Linear regression of liver score.   
 

 

Next, nonlinear regression analysis was performed using an SVM with a nonlinear, 

second-degree polynomial kernel. Figure 21 plots predictions of this SVM against the actual 

liver scores in the leave-one-out testing. This plot shows that nonlinear regression is much more 

powerful – its coefficient of determination was as high as 70%.  

The nonlinear SVM computed its predictions from the magnitudes of only 8 spikes in the 

NMR spectrum. Locations of these spikes are indicated in Figure 22 by vertical tick marks, 

identifying these metabolites as potentially useful biomarkers (when considered together) of liver 

cancer.  
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Figure 21:  Nonlinear regression of liver score.   
 

 

 

Figure 22:  An exemplary minimal set of spikes required for regression of liver score by SVM. 
 

 

As a conclusion, it should be pointed out that even the nonlinear SVM was not fully 

successful in predicting liver cancer from urine spectra. One reason is a very limited data sample 

– only 25 spectra were used, 17 of which were from healthy animals. Another possibility is 
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that the relationship between the urine NMR spectrum and liver cancer might be too complex for 

an SVM to be able to learn it fully.  If that is the case, then higher-order features of urine spectra 

(and not simply the spectral bins) should be explored as inputs to the SVM, because they might 

reduce the complexity of the sought relationship.  Such higher-order features can be discovered 

by applying SINBAD to the data, treating each spike in the NMR spectrum as one of the 

observed variables.  The cancer score (0 – 3) is also treated as one of the observed variables. 

To give a quick example of such higher-order features, or hidden factors, we can make 

use of the set of 8 spikes, which were used by the SVM above to predict the cancer score from 

NMR spectra.  In the Virtual Scientist terminology adopted in the first chapter, the cancer score 

is a Target Variable, whereas the 8 spikes make its Predictive Set.  Together, the cancer score 

and the 8 spikes constitute a Minimal Set of Related Variables.  To extract a Hidden Factor from 

this Minimal Set, we can test all possible partitions of this set on a SINBAD cell.  One of the 

successful partitions is: spikes 1 and 4 vs. cancer score and the other six spikes in the minimal set 

(spikes 29, 69, 72, 74, 115, and 164).  With this partition the two dendrites of the SINBAD cell 

were able to maximally correlate their outputs.  So, what is the hidden factor discovered and 

computed by the dendrites?  Its mathematical form can be appreciated by plotting the output of 

dendrite 1 as a function of spikes 1 and 4 (Figure 23). This higher-order feature of NMR spectra 

– although at this point we do not know its physiological identity – identifies apparently an 

important factor involved in liver pathology. 
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Figure 23:  A 3-D plot of the hidden factor discovered by Virtual Scientist procedures. 
 

 

A more systematic approach to discovery of higher-order features in NMR spectra of 

urine is that of Virtual Scientist, as described in previous chapters.  To review this approach 

briefly, in its specific application to urine NMR-based data, minimal sets should be found for 

each spike by using each spike in turn as target.  A given target spike and its predictive set 

constitute one Minimal Set of related spikes.  Even though the number of spikes is high, it is very 

likely that many minimal sets will be identical as described earlier.  As a result of such 

rediscoveries of the same Minimal Sets, the number of distinct Minimal Sets identified is likely 

to be smaller than the number of the observed variables.  

Once the Minimal Sets of related spikes are identified, each of them should be partitioned 

in all possible ways and each partition should be tested for biomarkers (hidden factors).  Hidden 

factors discovered by SINBAD cells in the NMR spectral data will extend, as derived variables, 
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the list of variables (i.e., bins in NMR spectra) with which we can characterize the metabolic 

state of an organism. This extended set of variables will be used as inputs to SVMs, training 

them again to recognize the different phenotypes present in the study, and using the same 

dimensionality-reduction approaches described above.   

The next task is to identify, quantify and express in a comprehensive way, the 

interdependencies among all the available – observed and derived – variables (spikes, 

biomarkers, diseases).  To accomplish this goal, we need to identify the most direct relations 

among variables; these are the relations that involve minimal numbers of variables.  Once such 

relations are known in sufficient numbers to form a more or less complete web, a single 

functional entity to represent learned inferential relations, then interdependencies among all the 

available variables can be traced through chains of these direct relations.   

The use of higher-order features of NMR spectra as inputs to SVMs is expected to 

substantially enhance the ability of SVMs to discriminate among the different phenotypes. A yet 

another round of enhancements is possible by discovering hidden factors among the first layer of 

the already discovered factors (that is, by training SINBAD cells on the first layer of discovered 

factors). Once diagnostically useful hidden factors are identified as valuable biomarkers, their 

computational nature will be made explicit (i.e., which metabolites contribute to a given factor 

and what is the mathematical expression of the function being computed from them) with an 

intention of elucidating their underlying metabolic nature. 

Among the central contributions of such an analysis, that can be performed by a thorough 

application of Virtual Scientist procedures, are (i) derivation of explanatorily powerful 

biomarkers for describing the state of the metabolism, (ii) explanation of the behaviors of the 
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metabolites based on states of other metabolites and the biomarkers, and (iii) elucidation of the 

functional organization of the metabolism.   

To summarize, metabolism is a system of a large number of interconverting chemicals, 

controlled through enzyme-catalyzed biochemical reactions.  It is a complex web of molecular 

interactions that requires a thorough analysis using state of the art factor analysis and theory 

building techniques.  The questions we believe that we can answer through a comprehensive 

metabonomics study using Virtual Scientist procedures are: topological organization of 

individual chemical reactions into metabolic network, the principles that govern the functional 

use of different reactions under different physiological conditions, such as exercise, rest, stress, 

various diseases, etc., and interplay between the underlying topology of the metabolic network 

and its functional organization and operation.  
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CONCLUSIONS 

 

The set of Virtual Scientist procedures described in this work automates the method of inductive 

inference to produce a theory of a studied subject that can explain and relate the observed 

phenomena.  The theory emerges in a form of a quantitative model of the subject capable of 

performing elaborate deductive inferences.  

Developing an understanding of a new research subject commonly involves creation of 

new, subject-specific concepts that reveal deeper relations, interdependencies among the 

subject’s observed phenomena.  One central function of concepts is to express hidden causal 

factors, which – once recognized – serve to reduce complexity of the observed relations.  As an 

example, in the kitchen sink study described above, flows of water in the two pipes, FL and FR, 

were two centrally important, but hidden factors.  Despite lack of knowledge of FL and FR, 

relations among the observed variables could still be defined, because FL and FR were implicit in 

the states of the observed variables.  However, such relations would be more complex.  For 

example, compare the following relation, which uses only the observed variables to express t°, 

with Equation 18, which uses hidden factors FL and FR: 
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The more complex the inferential relations, the more difficult it will be to learn them; at 

some degree of complexity, learning will become impossible (Clark and Thornton 1997; Favorov 

and Ryder 2004).  Thus, when dealing with complex subjects, generation of hidden factor 
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concepts is absolutely necessary, if one were to learn interdependencies that otherwise would be 

too complex to be picked up directly from observations. 

 This insight is not a new one.  Many different methods have been developed aimed at 

discovery of hidden factors, such as linear methods of correlation analysis, principal component 

analysis (PCA), belief networks and graphical models, independent component analysis (ICA), 

or nonlinear methods such as IMAX, nonlinear PCA, and nonlinear ICA (see, for example, 

Boyen et al. 1999, Hyvarinen et al. 2001, Ilin and Valpola 2003, Jutten and Karhunen 2003, 

Jordan 2004).  Most of the methods based on graphical models use a costly structural search over 

all possible models or assume a fixed number of hidden variables with particular topologies etc; 

thus, finding hidden nodes in belief networks are known to be a notoriously difficult task (Boyen 

et al. 1999).   

Linear factor analysis methods (Hyvarinen et al. 2001) are well advanced, but they are 

only of limited use, as most of the real-world problems tend to be nonlinear.  Among nonlinear 

methods, our IMAX-based (Becker and Hinton 1992) SINBAD method is fundamentally 

different from most other approaches, which are based on the idea of data compression.  Data 

compression based approaches transform raw input information into compact representations that 

utilize high-level data descriptors; however, the compactness of a representation does not 

guarantee that the descriptors will turn out to correspond to real, inferentially useful hidden 

factors.  Rather, the search for descriptors by compression of the observed data is most likely to 

produce artificial descriptors that do not reflect the true causal factors operating in the system 

(see Figure 4 for an illustration).  Unlike SINBAD-generated variables, such artificial descriptors 

are not designed to simplify relations among the observed variables and, as a result, they are not 
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well suited for learning relations and for extracting information, making predictions from partial 

knowledge of the system’s state.   

To illustrate, I compared the inferential performance of the hidden factors V8, V9, V10 with 

the inferential performance of five variables derived by the Bayesian Ensemble Learning 

algorithm for nonlinear factor analysis (Lappalainen and Honkela 2000; Valpola et al. 2001).  As 

shown in Table 6, even though Ensemble Learning discovered 5 variables (labeled E1 to E5) that 

can encode the information content of the seven observed variables, many of these variables are 

needed together for most of the inferences in the observed system and their inferential 

performance is inferior to that of SINBAD-generated variables.  The reason for this difference is 

that the method loaded the derived variables with maximal information content (backbone of 

compression-based approaches) instead of picking single hidden factors.   

In contrast to data-compression approaches, SINBAD belongs to the class of 

unsupervised learning algorithms that are based on the IMAX principle of identifying the sources 

of mutual information among disjoint sources of information, which yields functionally 

important features in the data reflecting the underlying causal structure of the system.  The 

current implementation of my approach scales well (quadratic in time and linear in space) to 

larger systems; and parallel implementations might be able to perform even in linear time.  The 

current version of the SINBAD method makes use of error-backpropagation neural network 

architecture to implement its learning modules.  However, there are no restrictions on the type of 

learning modules that can be used (neural network or otherwise) as will be elaborated in later 

sections.   
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Table 6 

The most direct inferential relations among the seven observed variables and either the three 
hidden variables derived by SINBAD method or, in comparison, the five variables derived by 
Bayesian Ensemble Learning. 

 

SINBAD Method Ensemble Learning 
Computed 
Variable Predictive 

Set ρ2 Predictive 
Set ρ2

V1 V8 V9 .998 E1 E3 E4 E5 .811 
V2 V3 V10 .975 E1 E2 E3 E4 .919 
V3 V2 V10 .947 V5E1E3E4E5 .752 
V4 V5 V8 .988 E1 E3 .999 
V5 V4 V8 .998 E2 E3 E4 E5 .957 
V6 V7 V9 .987 E1 E3 .999 
V7 V6 V9 .998 E2 E3 E4 E5 .988 

average 2.00 inputs .984 3.57 inputs .918 
 

 

 SINBAD discovery of influential hidden factors is one of the cornerstones of the Virtual 

Scientist approach.  Another cornerstone of the Virtual Scientist approach is its focus on learning 

those relations among the observed and derived variables that predict the state of one variable 

from the states of other variables.  The aim is to learn as many ways to infer each variable from 

the others as can be found.  By pursuing this simpleminded strategy of expressing each variable 

in many different ways in terms of other variables, which in turn are expressed in terms of yet 

other variables, etc., Virtual Scientist automatically acquires a rich web of inferential relations.  

In the ideal case, this web (which is grounded in the orderly structure of the studied dynamical 

system) would link each variable either directly or via intermediaries to every other variable.   
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In this web, all the discovered inferential relations are tied together into a single 

functional entity – an inferential model – revealing the causal organization of the studied subject 

(Ryder 2004).  This type of insightful inference is very crucial especially in case of missing 

information.  Apart from my approach, most learning algorithms are based on mapping of a set 

of input channels to some output.  These algorithms do not evaluate the significance of the input 

channels and which ones are truly necessary for a specific mapping task.  There are feature 

selection algorithms proposed for preprocessing tasks; however, these approaches are of limited 

contribution for building inferential model of the observed system as their use are limited to an 

initial, one-time-only feature selection.  Therefore, given partial input, other approaches will fail 

to make valid inferences because their mapping requires that all variables to be supplied into the 

black-box input/output mapper.  The reason I use the term “black-box” is that we have no idea 

how this mapping is done and how does the computation merge (integrate) different variables for 

the computations.  Another disadvantage of the black-box approach is that given partial input 

may be sufficient or insufficient for the computations; but a black-box approach will fail to 

recognize that they failed.  However, using the method presented in this work, we can determine, 

following the inferential chains, which target variables we can correctly infer.  In this respect, 

SINBAD is a self-aware system − it knows that it is designed for making the most reliable 

inferences.   

 A theory constructed by Virtual Scientist can be developed further.  Knowledge of the 

presence of a particular hidden factor, its connections to the observed variables, knowledge of its 

behavior under various conditions can all be used as clues for discovering its physical identity 

(as Mendel’s inference of the existence of “hereditary factors,” for example, led eventually to 
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discovery of genes).  Once the physical identities of factors are established, the ways might be 

devised to measure them directly (thus changing them into observed variables).  Direct 

monitoring of such factors will result in an improved, more efficient and informative data 

collection, which might lead to discoveries of more deeply hidden factors and development of 

more insightful updates of the theory.  On another tack, the background knowledge of the studied 

subject, the nature of sensors and their particular locations in the studied system (i.e., information 

about the subject that is not carried by the observed variables) can also be used to link the Virtual 

Scientist theory with the larger body of knowledge, fitting it in the context of the overall science.   

In conclusion, I believe that the set of Virtual Scientist procedures offers a powerful 

analytical tool for use in research of complex scientific subjects rich in multivariate and 

nonlinear relations.   
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FUTURE WORK 

 

As modern science turns to progressively more complex and challenging subjects across many 

fields, the growing size and complexity of collected data demand progressively more 

sophisticated analytical and theory-building methods, methods that can process large amounts of 

raw data and extract intricate, deeply hidden order.  The set of computational procedures that I 

developed and called Virtual Scientist can automate analysis and theory-building process for 

these particularly difficult research problems modern science faces.   

My approach to unsupervised learning is based on explaining interrelations among 

observed variables through chains of discovered hidden variables.  Therefore, it has links to 

reasoning algorithms in regard to deciding how to trace the web (the represented knowledge of 

the underlying observed system) for the best possible computational paths for a given particular 

problem.  This issue will be addressed in near future.  I have already experimented with Virtual 

Scientist on natural images, face detection and recognition, NMR-based metabolomics, stock-

market, and some artificial problems and it has shown great success, which will be the subjects 

of my subsequent publications.   

The current version of the Virtual Scientist approach described here does not take 

temporal information into account, as it was intended for problems in which temporal 

information is not available.  The Virtual Scientist strategy, however, is flexible and can readily 

be adopted for exploration of temporal order as well.  Such an extension of Virtual Scientist 

procedures can be experimented on speech recognition and video processing.   
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