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Abstract 

 

Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms 

of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has 

three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as 

their accuracy in predicting helix and coil are high, however significantly low in the beta.  The 

objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all 

three SS components. We proposed a novel approach to solve this problem by combining a genetic 

algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) 

to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor 

was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% 

overall accuracy on both test datasets.  
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1. Introduction 

 

1.1 Introduction 

In the modern scientific world bioinformatics has attained a very crucial position as a research 

discipline, promising the potential of benefitting human endeavor to understand and analyze 

biological phenomena. It is a multidisciplinary field where computer scientists can provide 

biologists critical tools to study genomics, proteomics, medicine and many more. Proteomics, as a 

discipline, studies the function and structure of proteins and requires the processing and analysis 

of enormous amounts of data. The number of different structures and functions of proteins in a 

single organism is staggering [1]. Considering either from a quantitative or a functional 

perspective, proteins are arguably the most important macromolecules in all living organisms. 

They make possible all of the chemical reactions in living cells [1]. More than half of the dry 

weight of cells are constituted by proteins of various shapes and sizes and they play a significant 

role in the functions of cells. Chemical organization of proteins is relatively simple. They are linear 

chains of amino acids connected through covalent bonds commonly known as peptide bonds [2]. 

The main constituents of proteins, amino acids, are small molecules with a common backbone 

consisting of several C, H, O, and N atoms and a side chain with up to 30 more atoms. This 

apparently simple linear chain of amino acids adopts a specific folded three-dimensional (3D) 

shape, which enables proteins to perform various tasks. This 3D shape of a particular protein may 

not remain fixed, rather, the protein may explore a wide array of kinetically accessible 

conformations. The spatial arrangement of atoms in a protein macromolecule is called its 

conformation. Sets of possible conformations of a protein include any structural state that can be 

formed without breaking covalent bonds. However, all points in the protein’s conformational space 
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are not equally probable. The conformation that exists under a given set of conditions is usually 

the one that is thermodynamically most stable and has the lowest Gibbs free energy. This structural 

dynamism also yields additional functionality to proteins. Some examples of tasks carried out by 

proteins are transportation of small molecules such as haemoglobin that transports oxygen in the 

bloodstream, storage, as done by ferritin for iron storage and release, catalyzing biological 

functions, providing structure to collagen and skin, controlling sense, regulating hormones, 

processing emotion, etc. [3]. Without the catalyzing effect of proteins, many chemical reactions in 

the cell of living organism would happen in a rate which can be deemed as negligible [1]. 

Knowledge about the structure of a protein reveals important information about the location of 

probable functional or interaction sites, distantly related protein identification, and detection of the 

important regions of the protein sequence which are crucial in maintaining the structure of the 

protein, and so on [4]. A widely accepted fundamental principle in protein science is that protein 

structure leads to protein function [5]. For these reasons, prediction of protein structure and 

function has become one of the most important problems in molecular biology. The first successful 

discovery of protein structure is credited to Max Perutz and John Kendrew of Cambridge 

University [6]. Perutz and John Kendrew discovered the high resolution structure of myoglobin 

and hemoglobin respectively through X-ray crystallography. Since then, X-ray crystallography has 

been the most widely used experimental method to determine protein structure. Over 80% of the 

three-dimensional macromolecular structure data in the Protein Data Bank (PDB) were obtained 

by X-ray crystallography [7]. Nuclear magnetic resonance (NMR) spectroscopy is the second most 

widely used experimental method for obtaining three dimensional structure of proteins at atomic 

level resolution [8]. More than 10,000 structures, about 16% of the total structures in PDB,  have 

been solved by NMR [7]. However experimental methods for protein structure determination are 
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very time consuming as well as expensive. For example, one experiment cost around $250,000 in 

2000 and $65,000 in 2008 [9]. One structure determination through such experimental methods 

may take months or even years [10]. The drawbacks of experimental methods are not limited to 

time and cost only. For some proteins it is not possible to apply such experimental methods. For 

example, X-ray crystallography is extraordinarily difficult for membrane protein structure 

determination. Protein molecules with highly hydrophobic portions generally cannot be 

crystallized [11]. NMR techniques cannot be applied for larger proteins of size more than 100 

KDa. On the other hand, computational approaches have the potential to overcome the previously 

mentioned difficulties or disadvantages associated with the experimental approaches by utilizing 

the correlation between the primary sequence information and the final 3D structure. During the 

last several decades the amount of biological data has rapidly increased. Genome sequences of a 

number of species, including human, have been completely mapped thanks to the world-wide 

genome sequencing project. The gap between the number of known sequence and the number of 

known structures is widening rapidly [12].  A detailed understanding of the biological role of the 

majority of proteins is not possible through  genome sequencing alone, rather we need structural 

and functional information for that [13]. With increasing research to discover new biological 

processes and to master existing known processes, the development of well performing and new 

computational tools becomes increasingly necessary and useful.  If the path of protein folding from 

sequence to 3D structure can be properly modeled, it will bring about radical benefits in combating 

many diseases by solving either fully or partially various currently existing crucial medical, 

agricultural and biotechnological bottlenecks. Therefore, high throughput computational models 

for the prediction of protein structure from sequence is an immediate need. For this reason 

prediction of protein structure and function from sequences has been referred to as the second half 



4 
 

of genetics [14]. The principle of Anfinsen asserts that all information required to specify the 

structure of a protein is encoded in its amino acid sequence [15, 16]. However this task of 

predicting the 3D structure of protein from sequence information is not straight forward as how to 

read this information off of the sequence so as to reconstruct 3D structure remains unclear [17]. 

Mostly because proteins exhibit some general patterns and a degree of regularity in their folding, 

it is possible to apply computational techniques to investigate this challenging problem. Although 

prediction of protein 3D structures is the ultimate target, the structure yet cannot be accurately 

predicted directly from sequences [12]. However this final 3D structure prediction problem is 

usually approached by solving course-grained intermediate problems such as secondary structure 

prediction (SSP) [12, 18, 19]. Secondary structure (SS) refers to the local spatial organization of a 

polypeptide backbone atoms of a protein [20]. It may be deemed as a notion of residue-level local 

sub-structure. Secondary structures are determined by examining the pattern of hydrogen bonds 

between side chains and amino acid residues in a protein. As proposed by Pauling and his 

colleagues, there are mainly two types of secondary structure- alpha helix (α) or helix (H) and beta 

(β) strand  or beta sheet (E) [21]. These are all regular polypeptide folding patterns. Dominant 

hydrogen bonding patterns are turn and bridge. Repeated turns give rise to helixes while repeated 

bridges generate strands [22]. However another type, turn or coil (C), is also considered as a kind 

of secondary structure. The third type is generally referred to the structure of those residues which 

are neither helix nor beta sheet. Prediction of SS greatly simplifies the ultimate 3D structure 

prediction problem [12]. 

 From a machine learning point of view, SSP is a classification problem, where based on 

relevant features we have to decide on each amino acid in a protein belongs to protein secondary 

structures, namely helix, beta or coil. More specifically it is a three class classification problem. 
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SSP problem has been approached using various machine learning algorithms including neural 

networks (NN), hidden Markov model (HMM), support vector machine (SVM), etc. Such machine 

learning approaches used so far for SSP vary in basic algorithm used, and/or in feature sets 

employed. Despite numerous effort the accuracy of SSP stuck at around 80% for last five decades. 

This accuracy is also very much dataset dependent. Needless to say, the increase in accuracy of 

SSP, is crucial for biological and medical development.  

In this thesis, we have employed SVM with a radial basis function (RBF) kernel, along 

with several novel features such as disorder probability, bigram and monogram. SVM is a well 

performing algorithm in biological application compared with other machine learning algorithms 

as they are effective in controlling the classifier’s capacity and the associated potential for over 

fitting ensuring maximum margin of the decision boundary separating two classes [18].  Instead 

of directly trying three class classification, we have employed three binary classifiers viz- H/~H, 

E/~E and C/~C separately and then to combine. This provides us the opportunity to efficiently 

attack the problem in simpler form and then to optimally combine them. We consolidated the 

predictions from these three binary classifiers to come up with a final three class prediction with 

optimal weighting using heuristics obtained from a genetic algorithm. We also developed a meta-

predictor by combining the prediction of our combined SVM predictor and SPINE X [23], a state-

of-the-art secondary structure predictor. Our meta-predictor comes up with a highly balanced 

overall prediction as well as the prediction of three secondary structure components with higher 

accuracy and improving the accuracy of beta structure prediction significantly in particular.  

1.2 Motivation 

Since the 3D structure of protein is a pivotal clue to the study of a protein’s function, a good 

number of prominent researchers have devoted a significant amount of effort to find methods to 
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predict protein 3D structure. Despite numerous experimental and analytical endeavors, protein 3D 

structure prediction is still an unresolved problem. This issue is commonly known as the protein 

folding problem. Notable pioneers, Pauling and Corey devoted decades to find way to predict the 

accurate structure of amino acids, peptides and other substances that construct the structure of 

protein. They suggested that interatomic distances, bond angles and other configurational 

parameters might aid such prediction [21]. They used such information to develop models of two 

different hydrogen bonded helical conformations, keeping in mind that such things are likely to 

develop significant part of the structure of both globular and fibrous proteins. With thorough 

analysis of different bond length, hydrogen bond distances and neighboring atoms’ influences, 

they proposed the idea of helices with different non-integer number of residues per helix. They 

also proposed the idea of a planar peptide bond that drastically simplifies the study and the 

understanding of protein structure. This successful prediction of alpha helix is a significant 

contribution of Linus Pauling. He achieved it due to his assumptions of planar peptide bonds, 

equivalency of amino acids with respect to backbone conformation and hydrogen bonds between 

amide protein and the O atom of adjacent residue with an N–O bond distance of 2.72 Å [24]. In 

this regard, a significant contribution is Anfinsen’s work [25, 26].  

Anfinsen and his colleagues established the “Thermodynamic hypothesis” that the three 

dimensional structure of a protein in its native environment is the one that minimizes Gibbs free 

energy of the whole system. This notion ultimately translates into that the native structure is 

determined by inter atomic interaction, hence by the sequence of amino acids of protein. This 

finding brought Anfinsen Nobel prize in 1972. Guzzo in 1965 suggested significant influence of 

amino acid sequence on the location of helical and non-helical part of a protein structure based on 

known sequences and structures of myoglobin, and alpha and beta hemoglobin [27]. Guzzo also 
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emphasized on the notion that without considering other components of the cell, the enzymatically 

active secondary and tertiary structure of protein may be resolved solely from the interaction 

between and amino acids and solvent in a solution.  For instance, Guzzo said that presence of 

proline, aspartic acid, glutamic acid, or histidine are important to form a helical disruption.  

Further, the famously known Levinthal Paradox suggests that proteins fold into their 

specific 3D conformations in a time-span way [28] shorter than it would be possible for protein 

molecules to actually search the entire conformational space for the lowest energy state. Therefore, 

hierarchical approaches are very suitable for this critical problem solving. Secondary structure 

prediction is a critical building block towards protein fold recognition. One reason is that 

secondary structure gives local structural preferences which limits the possible number of 

configurations to each part of a polypeptide chain. In the amino and carboxyl termini of alpha 

helices, often very strong sequence-structure correlations are observed [29]. Therefore, secondary 

structure information significantly reduces the conformational search space for fold recognition. 

Accurately computing protein structure is also important for crucial biological applications such 

as virtual ligand screening [9, 30], structure based protein function prediction [31] and structure 

based drug design [32]. Therefore, every single advancement towards solving the protein folding 

problem is vitally important for human kind. For all these reasons we have taken the challenge to 

enhance the accuracy of SSP problem. 

  

 

 



8 
 

2. Background and Related Works 

 

2.1 Fundamentals of Protein  

Proteins are the most versatile macromolecules in living organisms and play significant roles 

essentially in all biological processes [33]. Proteins are large biological polymers composed of 

single or multiple chain of amino acid residues. An amino acid is an organic compound that has a 

central carbon atom, usually known as alpha carbon (Cα) or chiral carbon that uses its four valences 

to create bond with a carboxylic group, an amino group, a hydrogen atom and a side chain.  A 

simple amino acid molecule along with its ionic condition is shown in the Figure 1.   

 

 

Figure 1: (a) An amino acid with its bonds, (b) An amino acid at pH 7.0. 

 

 

Side chains are unique features of amino acids. Side chains distinguish one amino acid from other 

amino acids. Their interaction in protein with the surroundings depends on this side chain. 

Depending on the nature of this side chain, the properties of different amino acids also vary. They 

can be hydrophilic, hydrophobic, acidic or basic, etc. The simplest side chain may be a hydrogen 

atom (H). In general 20 different amino acids are found in protein molecules.  These amino acids 

are monomeric building block of protein. Protein length is usually expressed in terms of amino 

acids in its structure. A protein structure may contain different number of amino acids ranging 
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from fewer than 20 to more than 5000, however on an average a protein has 350 amino acid 

residues. The possible space for variation of protein could be as large as 204500 or 105850
 [1]. Protein 

structure and function are mainly determined by the sequence of amino acids in a particular 

polymer. Two adjacent amino acids are connected through linear peptide bond. Peptide bonds, a 

type of covalent bond, are created through a condensation reaction between the carboxylic group 

of one amino acids and the amino group of another adjacent amino acid. The general reaction that 

forms the peptide bond backbone of proteins is shown in Figure 2 below: 

 

 

Figure 2: Condensation reaction that forms protein chain by developing peptide bond between two amino 

acids. Here R1 and R2 stand for side chains.  

 

Compound created through peptide bonds are known as polypeptide. In this sense proteins are also 

polypeptides, however only short chains of amino acids are usually known as polypeptides. The 

polypeptide chain begins with the amino group and ends with the carboxyl group. Terminal with 

amino groups is also known as N- terminus while the terminal with carboxyl group is known as 

C- terminus. Every protein has a unique amino acid sequence. This sequence is based on the codons 

in the encoding gene [34]. Three nucleotides constitute a codon which determines the particular 

amino acid to be added in a particular position of the protein chain. There exist 64 different codons 

to specify the set of possible 20 amino acids.  
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From chemical point of view, proteins are one of the most complex and functionally important 

molecules [35]. Important properties that enable proteins for a wide variety of functions [33] are 

discussed below: 

 Polymer type: Proteins are made up of only 20 different amino acids, the 

combination of those amino acids greatly varies. Such variation of combining 

amino acids make possible formation of myriad number of different proteins with 

different functionalities.  

 Functional groups: Protein molecules may contain a wide variety of functional 

groups such as alcohols, thiols, thioethers, carboxylic acids, carboxamides, etc. 

These functional groups are oriented in protein molecules in numerous fashion, 

which give rise to a broad spectrum of protein functionality. They also interact in 

such a way that the chemical reactivity of amino acid side chains enhances [35].    

 Formation of complex assembles: Proteins are capable of interacting with one 

another and with other biological macromolecules. Such interactions enable 

proteins to form complex assemblies. These assemblies may act as macro-

molecular machines which are capable of precisely replicating DNA, transmitting 

signals within cells, and also helping in many other essential biological processes. 

 Mix of structural rigidity and flexibility: Some parts of the protein structure may be 

very rigid which may act as the skeleton of the macro-molecule while other parts 

may be flexible. These flexible parts with their limited flexibility may work as 

hinges, springs, and levers and may assist in assembling of proteins with one 

another and with other molecules into complex units, and in transmitting 

information within and between cells.  
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 Diversity in size, shape and chemical properties: Protein size varies; as we have 

noted earlier that the number of amino acid residues in a protein may vary from 

only 20 to many thousands. Protein may be hydrophobic, hydrophilic, fibrous, 

globular etc. Proteins may also have affinity to binding to a variety of different 

compounds, atoms or molecules commonly known as prosthetic groups [1]. 

Prosthetic groups may be organic such as vitamin or inorganic such as metal ions 

that may bind to a specific site of a protein and are important for different 

functionality of proteins.  All these different features add to the spectrum of diverse 

functionality of protein. A well-known example of prosthetic group is heme which 

binds oxygen to protein hemoglobin.  

2.2 Structure of a Protein  

A fundamental principle in protein science is that the protein structure leads to protein function 

[5]. If we want to know how proteins function, we must know the structure of the proteins 

accurately. Therefore, the study of protein function is inseparable from the study of protein 

structure.   

It has been though for a long time that proteins are random colloids of structures until it 

was shown by Bernal and Crowfoot that if a crystal of pepsin yields a discrete  diffraction pattern 

if placed in a beam of X-ray [36]. This finding is a pioneering evidence that protein structures are 

not random colloid rather a large structured molecule consists of ordered array of atoms. Now 

through studies on a large number of proteins it has been established that protein shows significant 

degree of structural regularities in terms of repetitive structural patterns, which may be classified 

into distinct categories [20].  
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Following discussion focuses on the levels of structure of protein. Protein structures are usually 

categorized into the following four levels’ of complexities: 

 Primary structure 

 Secondary structure 

 Tertiary structure and 

 Quaternary structure  

2.2.1 Primary structure  

Primary structure is defined as the linear sequence of amino acids. Sequence of amino acids in a 

particular protein is not random, rather fixed which was first discovered by Frederick Sanger [37]. 

He established this idea for protein insulin and for the first time determining the complete amino 

acid sequence of a protein, the B chain of insulin. B chain is one of the two polypeptide chains that 

form the insulin.  Before this discovery, the predominant notion was that the proteins are random 

molecules with a kind of center of gravity as well as with appreciable micro-heterogeneity  [38].  

Therefore, this work of Sanger brought about paradigm shift in the knowledge of scientists in this 

field.  

Although proteins are linear sequence of amino acids, detail and specific mapping of its 

structure from the sequence is not straightforward, rather it has remained as a widely studied yet 

to solve critical problem of molecular biology. 

2.2.2 Secondary structure  

Secondary structure (SS) refers to the local spatial organization of a polypeptide’s backbone atoms 

of a protein [20]. Secondary structures are determined by examining the pattern of hydrogen bonds 

between side chains and amino acid residues in a protein.  It may be deemed as a notion of local 

sub-structure. As proposed by Pauling and his colleagues, there are mainly two types of secondary 
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structure- alpha helix (α) or helix (H) and beta (β) strand  or beta sheet (E) [21]. These are all 

regular polypeptide folding patterns. Dominant hydrogen bonding patterns are turn and bridge. 

Repeated turns give rise to helixes while repeated bridges generate strands [22]. However another 

type, turn or coil (C), is also considered as a kind of secondary structure. The third type is generally 

referred to the structure of those residues which are neither helix nor beta sheet. In Figure 3 a 

protein 3D structure with secondary components is shown. To classify the secondary structure, we 

investigate the geometric properties of peptides to verify their formations.  

 

 

Figure 3: Tertiary structure of protein with secondary structure component [39].   

 

However, when the structure or, the geometric properties are not yet discovered, we rely on 

prediction from the primary sequences alone. The task of secondary structure prediction basically 

is to predict to which of these three types of structures (α, β or turn) each residue in a particular 

sequence belongs. For example, if we consider 

LLATGCLLKNKGKSEHTFTIKKLGIDVVVESG…. – a primary sequence of a protein, a 

secondary structure prediction method may suggest, say, from first L to the first K  are in helix,  

after that from G to first V are in beta sheet, and the rest are in turns and so on. However this 
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secondary structure prediction does not give the complete 3D structure of a protein, which is the 

famous folding problem. While complete understanding of protein folding is excruciatingly 

complicated, however, the problem is usually tried through simpler steps and secondary structure 

prediction is one such very prominent step [40]. Predicting secondary structure is also important 

because there is a strong coupling between secondary and tertiary structure of proteins [41]. 

Accurate prediction of SS is urgent, since predicted SS is an essential input feature for other 

important predictors such as tertiary protein structure predictor, disorder predictor, binding and 

non-binding predictor, statistical energy function, etc. Successful SSP can also help us to step 

forward to answer the reasons behind many critical diseases such as Cancer, Cardiovascular 

diseases, Alzheimer's disease, type two diabetes, Parkinson's disease and many more. 

2.2.3 Tertiary structure  

Tertiary structure refers to the folding of its secondary structure element by specifying the position 

of each atom in the protein in a three dimensional structure.  Scope of secondary structure is within 

the spatial arrangement of adjacent amino acid residues. On the other hand, tertiary structure 

encompasses longer-aspects of amino acid sequence by capturing the interactions of amino acids 

in the polypeptide sequence that are far apart and belongs to different types of secondary structures. 

These distant amino acids with respect to their positions in the primary sequence may come closer 

when the protein folds and interacts within the completely folded structure of a protein. Therefore, 

we might say that while secondary structure is all about local sub-structure patterns, tertiary 

structure is defined as the global structural conformation of proteins. Although it is well established 

that the sequence of amino acids determines the three dimensional structure of proteins, precise 

mapping of three dimensional structure and amino acid sequence remains a big challenge [1]. 

Moreover, protein three dimensional structure is not always fixed, rather it may move and flex 
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within certain geometric constraints. These different three dimensional structures of same protein 

are known as conformations. This conformational variability, however difficult to capture, is very 

important for protein functioning [1, 42, 43].  

 

 

Figure 4: Tertiary structure of protein. This is a cartoon image of a protein (PDB ID: 1AV5) generated by 

Jmol, an open source Java based viewer for chemical structures. 
 

 

2.2.4 Quaternary structure 

We know that proteins are polypeptide chains. In some instances, two or more polypeptide chains 

known as subunits may combine and form a structure different from regular tertiary structures, 

whereas in contrast the tertiary structure  consist of a single polypeptide chain. Spatial arrangement 

of these subunits is known as protein quaternary structure [20]. The subunits may be identical or 

different. The simplest type of quaternary structure consists two identical subunits. This type of 

structure is known as homo-dimer [44]. An example structure of homo-dimer is shown in Figure 

5.   In a quaternary structure, there may exist more than 2 subunits as well. Two or more subunits 

may bind together by means of hydrogen bonds, disulfide bonds or salt bridges. 
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Figure 5: A simple example of protein quaternary structure is the structure of Quinone reductase. This is a 

cartoon image collected from PDB (PDB ID: 1QRD) generated by Jmol, an open source Java based viewer 

for chemical structures. 

 

Quaternary structures are sometimes crucial for some important functions. Interactions among 

subunits in quaternary structure play a vital role in biochemical reaction regulation and catalysis 

[45]. For example, the quaternary structure of quinone reductase contains enzyme that catalyzes 

the reaction of reducing  obligatory NAD(P)H-dependent two-electron from quinones and protects 

cells against the toxic and neoplastic effects of free radicals and reactive oxygen species that arise 

from one electron reduction [46]. Such reduction of two-electron helps the process of reductive 

bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. 

2.3 Functions of Proteins  

We already have discussed the reasons for which proteins are involved in a wide array of 

functionality. Here we discuss major functions of proteins: 
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 Antibody: Some specialized proteins participate in the defense mechanism of the living 

body to identify and defend the attack of bacteria, viruses, and other foreign intruders. 

These proteins travel through the blood stream and helps the white blood cells to destroy 

antigens.   

 Movement: Some proteins help in cell movement and muscle contraction. Example of such 

proteins are actin and myosin [47]. Myosin acts as a molecular motor which converts the 

chemical energy to mechanical energy and thus generates force and movement. 

 Enzyme: A very important and fundamental task of protein is that it acts as enzyme. 

Enzyme proteins are catalyst that significantly increase the chemical reactions within a cell. 

These enzyme proteins are important because they catalyze most of the biological reactions 

[47]. Lactase and pepsin are the two important examples of enzyme protein. Lactase helps 

to break down the sugar lactose of milk while pepsin helps in digestion of proteins in food.  

 Transportation: Proteins are important agents in various transportations within living 

organisms. Protein like hemoglobin transports oxygen in the blood [48]. Cytochrome bc 

complexes help in electron transportation as well as proton translocation across the 

membranes of bacteria, mitochondria, and chloroplasts [49]. 

 Hormonal functions: Some proteins known as hormones coordinate different function in 

the body. For example, insulin is responsible for regulating glucose metabolism by 

controlling the blood-sugar concentration. Somatotropin is well known as growth hormone 

[50] which stimulates protein production in muscle cells. 

 Structural support: Some proteins, usually fibrous give structural support. For example, 

Keratine is one of the widely known structural protein [51]. It strengthen the covering part 

of the body such as hair, feather, horn, beak, etc. 

http://biology.about.com/od/cellanatomy/ss/prokaryotes.htm
http://biology.about.com/od/virology/ss/viruses.htm
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 Storage: Some proteins help in storing amino acids. For example, ovalbumin is found in 

the white part of egg. Amino acids stored by proteins help in the embryonic development 

of animals or plants.    

2.4 Approaches to Secondary Structure Prediction 

Protein secondary structure prediction (SSP) approaches may be categorized into two broad areas: 

 Experimental approach 

 Computational  approach 

2.4.1 Experimental approach 

Two most widely used experimental approaches for protein secondary structure prediction are X-

ray crystallography and Nuclear Magnetic Resonance (NMR) [52]. The other experimental 

methods used are: fiber diffraction, electron microscopy, and so on [53]. Most  structural solution 

at atomic level resolution is solved either by X-ray crystallography or NMR [54]. 

2.4.1.1 X-ray crystallography: 

In 1895, Wolhelm Röntgen discovered X-ray [55], an epoch-making event in the history of 

science. The first successful deployment of X-ray crystallography in determining protein structure 

is the credit of two Cambridge scientists, Max Perutz and John Kendrew because of their discovery 

of the structures of hemoglobin and myoglobin respectively [6]. Since then, X-ray crystallography 

is widely used for protein structure determination. Over 80% of the three-dimensional 

macromolecular structure data in the Protein Data Bank (PDB) were obtained by X-ray 

crystallography [7]. In the Figure 6, we can see the growth of structures in PDB solved by X-ray 

crystallography. This graph also affirms that the method is very widely used., However, the  

method requires long and careful steps for crystallization and then to go through very tedious and 

complex computational to retrieve true structural image from the orthogonal image generated by 
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X-ray [53]. In the following paragraph, a brief discussion of how X-ray crystallography works in 

determining macromolecular structure of protein is presented.  

 

 

Figure 6: Yearly growth of X-ray crystallographic structure.  Source: PDB [36, 37] 

 

X-ray crystallography in protein is basically a form of very high resolution microscopy, which 

facilitates us to visualize atomic level protein structure. It works on the principle of well-known 

optical phenomena- interference and diffraction. Superimposed light waves from any source 

enhanced each other in one direction, while destruct each other in another direction. The 

enhancement process is known as constructive interference while the later one is called destructive 

interference. After agitating a surface with light of certain wave-length, we may visualize its 

structure by analyzing the diffraction or interference pattern of the light waves diffracted from that 

surface. To simulate the atomic structure, the wave-length of the incident light has to be of the 

order of magnitude of inter atomic distances of the substance under investigation. Binding 
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distances between atoms of a protein vary between 1-3 Å(approx.). X-ray may be found with 

wavelength range of 0.05-100 Å. If X-ray beam of proper wave-length is imposed on a particular 

protein crystal, which is actually a regularly spaced molecules and atoms, it will create certain 

diffraction pattern specific to that particular protein [6]. Such diffraction pattern was first described 

by Bragg in 1913 [56]. However, we have to keep it in mind that diffraction signal from a single 

protein molecule is very weak. Therefore, to have suitable diffraction pattern, we have to use 

ordered three- dimensional array of protein molecules, which we call crystal [57]. If the molecules 

are not properly ordered in the crystal, the diffraction pattern will not yield an adequately high 

resolution structure with subtle detail. A crystal of similar protein may be considered as a 3D 

diffraction grating as unit cells of highly similar structural motifs are repeated through the entire 

crystal in a periodic style. The larger unit cells, the more diffraction pattern may be observed 

obtaining, thereby, a more discernable signal [53]. Therefore, more specifically, if a crystal of 

particular protein is exposed to X-rays, a diffraction pattern is found consisting of a series of 

reflected light rays with varying intensities because of the scattering of X-rays by the electrons of 

atoms in the crystal. If we know the geometry or symmetry of the crystal well, we may obtain the 

diffraction spots for every ordered atom in the molecule by rotating the crystal through some 

defined angle as determined by its symmetry. Each diffraction spot actually represents the 

diffracted beam which is defined by three well known parameters- amplitude, wavelength and 

phase. We must know all of these three parameters to correctly obtain the location of each atom in 

three dimensional space. Amplitude can easily be determined from the intensity of the spot. 

Wavelength is actually dependent on the selection of used X-ray. Phase is the most critical 

parameter among these three as it is lost during X-ray measurement.  Therefore, it remains as an 

important challenge to reasonably estimate the phases for all diffracted beams using indirect 
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methods. Many different methods exist for determining phases in protein crystallography. Most of 

them typically start with an initial approximate electron-density distribution in crystal which is 

iteratively improved until a reliable model is attained [53]. This is very important to keep in mind 

that when the crystal of protein is exposed to X-ray, diffraction occurs simultaneously from all the 

molecules in the crystal lattice. Intensities of reflections by any single atom is influenced by the 

reflections of many other atoms in the same crystal. Therefore, partial derivation of structure of 

any part of the crystal is not possible without modeling the whole [53]. This factor is taken into 

account as the final three dimensional structure is obtained through a time-average of all the 

pictures of entire lattice [43].  

Although X-ray crystallography has widely been used by scientific community to obtain 

3D structure of protein, the method is not completely flawless, owing particularly to the limited 

resolution and un-precise phase information, among many other reasons. There is no hard and fast 

methodology for it, rather is subject to experience, individual preference and expectations. 

Therefore, errors in X-ray crystallography is almost unavoidable [58]. DePristo, Bakker and 

Blundell found some errors in several structures obtained through X-ray crystallography [42]. 

They also opined that accuracy of X-ray crystal structures has been widely overstated and that the 

analyses depending on small changes in atom position may be flawed.  In the following discussion, 

some loop-holes of X-ray crystallography will be discussed.  

To determine a precise structure of a protein through X-ray crystallography, first we need 

a proper crystal to be formed which will produce quality diffraction.  In practical situation, having 

the crystal with desired accuracy/quality is not always an easy task [59]. For new proteins, the 

right way of making the crystal may not be known. If the crystal obtained for crystallography is 

found to be not up to the mark, we may not always find the next right course of action. Even we 
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may never be sure whether a suitable crystal may be obtained or not.  Therefore, although, rapid 

invention of modern computer software and algorithm, development of high quality X-ray sources 

and synchrotron radiation [60]  have eased the challenges of crystallography, finding the right 

crystal remains as a major bottle-neck for this method. However, still it takes month or even year 

to find a single structure of protein from this method [10] . 

Proteins are dynamic and heterogeneous macro molecules [52, 61, 62]. Dynamic in a sense 

that structure of protein molecules are actually not stationary rather they evolve among different 

possible conformation. This concept also refers to the translation and rotation of the entire protein 

molecule, domain reorientation, conformation exchange, side chain rotation, bond vibration, etc. 

[63]. Scientists also found that proteins show individual anisotropic motion as well as collective 

large-scale motion over time [61]. Because of the complex energy issues of protein, they show 

large population of significantly different conformations distinguished by high energy differences 

[64-66]. However these dynamism and heterogeneity are largely responsible for different functions 

of proteins [65, 67]. In X-ray crystallography this molecular dynamics is restrained, whereas it 

reports larger expected uncertainties of around 0.5 Å which yields less accurate structure compared 

to that obtained through theoretical calculations  [68, 69].  

We have seen from the above discussion that for X-ray crystallography, protein molecule 

have to be crystallized. However, some regions of the protein in crystalline form may have highly 

different conformation of structure than the structure of that region in solution or native 

environment [70]. Because in reality proteins are not crystalline, rather they work in a highly 

concentrated aqueous environment, widely known as native environment of protein.  For this 

reason, the obtained structure from crystal may not represent the native situation structure. This 

may sometimes be misleading for the analysis of functions of the protein if the crystal is not formed 
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maintaining all required characteristics such as purity, singularity (not stuck with one or more other 

proteins), etc. [71].  

Since large amount of solution (around 30-70%) is present in protein crystals, these are 

highly likely to damage if exposed to X-ray. Such event may disorder the molecules within the 

crystal lattice [43]. This event is known as radiation damage, which occurs mainly because of the 

primary interactions between the molecules that forms the crystal and the X-ray beam [72]. Such 

reaction generates heat leading to vibration of the molecules and also provides sufficient energy 

to break the bonds between atoms in a molecule. This is another limitation of X-ray 

crystallography. Radiation damage may be reduced if data is collected at liquid nitrogen 

temperature. This technique of using liquid nitrogen temperature has become common practice.  

2.4.1.2 Nuclear magnetic resonance: 

Nuclear magnetic resonance (NMR) spectroscopy is the second available method for obtaining 

three dimensional structure of protein in atomic level resolution [8]. Data that we obtain through 

NMR is complementary to X-ray crystallography in many aspects. The works of Adelinda et. al. 

found that X-ray crystallography and NMR have different advantages and disadvantages in terms 

of sample preparation, data collection and analysis. They showed a comparison of 263 unique 

proteins screened by both NMR spectroscopy and X-ray crystallography in their structural 

proteomics pipeline. They found only 21 targets (8%) were deemed amenable to structure 

determination by both methods. However, when applied both methods in their pipeline the 

amenable target increased to 107, where only 43 were amenable to NMR and 43 were amenable 

to X-ray crystallographic methods [73].  Therefore, NMR creates opportunities to further delve 

into the structure and function of a greater varieties of proteins.  So far more than 10,000 structures, 
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about 16% of the total structures in PDB,  are solved by NMR [7]. The growth of NMR resolved 

structure in PDB is shown in the Figure 7 below: 

 

 

Figure 7: Yearly growth of NMR structure. Source: PDB [36]. 

 

In 1957, the first NMR spectrum for a protein (ribonuclease) was reported [74, 75].  Importance 

of NMR is immense in this field, because its output includes not only structural data but also 

important information of molecular dynamics, conformational equilibriums as well as intra or 

intermolecular interactions [76-78]. Instead of producing a direct image of protein, NMR produces 

huge amount of indirect data, from which we may find the three dimensional structure of 

macromolecules after complex computation, such as Fourier transformation and analysis [54].  

        NMR is based on the a quantum mechanical property of nucleus known as spin [54]. Spin 

refers to a small atomic level magnetic dipole with two different states – up and down. These two 
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states are separated by a small energy barrier. Jump from one state to another is accompanied by 

a small electromagnetic radiation or absorption. Two main components of a NMR experiment are:  

 a strong field of super conductive magnet capable of producing highly homogeneous strong 

static magnetic field 

 a console which can produce electromagnetic waves in an expected combination 

A concentrated solution of molecule of interest is kept in a bore of the super conductive magnet in 

room temperature. A slight imbalance in the nuclear magnetic moment oriented parallel and anti-

parallel creates small polarization of the nuclear spin in the sample. This magnetization can be 

manipulated to the desired level of the analyzer applying suitable electromagnetic irradiation [54, 

79, 80]. This electromagnetic radiation provides the required energy to shift the spin from one 

phase to another [33]. Every nuclei in NMR spectrum is detected by its characteristic resonance 

frequency as different nuclei’s resonance frequencies widely varies [54]. For example, resonance 

frequency of a proton (1H) is 4 times higher than that of a carbon (13C) nucleus. Although the 

resonance frequencies of the nuclei of same atoms are usually within a very narrow range, the 

frequencies vary at different locations of a molecule for various local interactions among nuclei.  

NMR signals are observed after disturbing the spin equilibrium with suitable radio frequencies. 

The system usually returns to equilibrium within 100 miliseconds through free induction decay 

(FID). Meanwhile, the FID and NMR signals are recorded.  Afterwards, NMR frequency spectrum 

is measured through Fourier transformation of these data. Detail of the protein spectra is analyzed 

based on bond and space correlation. Bond correlations group individual spins into overall spin 

system to analyze the spectra while space correlations form the basis for geometric information 

which ultimately determines the final three dimensional structure of macro-molecule within 

conformational constraint.   
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A unique feature of NMR spectroscopy is that it can be conducted in highly concentrated solution 

to obtain atomic resolution structure [8, 33] whereas X-ray crystallography is done on crystal of 

protein. Therefore NMR environment better mimics the native environment of protein compared 

to that X-ray crystallography does as in general protein remains in concentrated aqueous solution.  

Structure obtained through NMR can capture the  dynamic nature of protein structure by producing 

not a single structure but an ensemble of different conformation [81]. Because of this ensemble 

derivation NMR has been a popular method for the structural studies of disordered protein where 

a definite single structure is very unlikely [82]. Because of the feasibility of NMR in solution, it 

may also be conducted in real living cell [63, 83]. We know that protein functions in solution and 

the concentration of the solution can reach as high as 400 g/l [63]. Therefore, we can say that NMR 

is conducted in an experimental environment which is more like native environment for protein 

functionality, because most biological reaction occurs in a concentrated solution environment [84]. 

However, most NMR experiments are done in a single protein solution with a concentration much 

lower than that in cell [85, 86] because it is a big challenge to keep protein mono-dispersed in a 

solution having concentration higher than 0.5mM [87].  Although NMR spectroscopy is uniquely 

identified for its capacity to determine structure of protein in solution of atomic level resolution 

[8], NMR can be conducted in solid state as well [88] which is suitable for determining the 

structures of insoluble macro-molecules. In PDB there are 38 unique protein structure determined 

through solid state NMR as on 19 May 2014 [89].  

From the above discussion, it is clear that NMR has been playing a vital role in the research 

of obtaining protein 3D structure. However, the method has some significant limitations as well, 

which are briefly discussed in the following paragraphs.  
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A pivotal element in NMR spectroscopy is the energy difference between two spin states, which 

when irradiated with suitable radiation, emits or absorbs certain nuclei specific electromagnetic 

radiation. However, the emission depends mainly on the net number of parallel or anti-parallel 

spins, which is usually very small in room temperature to generate a good NMR signal [54]. For 

example difference of the number of spins oriented parallel or anti-parallel for 1H is only 60 per 

million in room temperature and in the maximum magnetic field strengths available for NMR. For 

this reason, NMR is usually considered as an insensitive technique.  

Structure from NMR is estimated by analyzing the NMR spectrum generated by individual 

active atom nuclei. However, this analysis becomes almost impossible with reasonable accuracy 

when the protein size is very large, especially when molecular weights of protein exceeds 50-60 

KDa (kilo-Dalton)   [54, 90]. This limitation of size is mainly because of two factors: first, larger 

molecules exhibits shorter NMR signal relaxation time and slower tumbling rate. Second, 

increased number of active nuclei in larger molecules increases the local interaction and 

complexity of NMR spectrum [91]. There have been significant advancement of the NMR 

technology during past few decades [92]. Because of this progress, the size limit of protein 

molecule that can be studied with NMR has been reported as high as 100 KDa with the same detail 

that was found for smaller proteins previously [93].   

However, insightful, this multiple structure derivations, known as the ensemble,  from 

NMR has a short coming in homology modelling, where we have to select one single structure 

[81]. Because in the ensembles all possible structures derived under structural constraints can 

differ widely.  In such case, protein crystallography is a better choice.  

Experimental methods such as X-ray crystallography and NMR have so far helped 

determine the three dimensional structure of a large number of proteins. However, one common 
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limitations of both the methods is that those are highly time consuming and expensive task [9]. 

Therefore, development and advancement of computational methods is a significant requirement 

in this field, given the higher and increasing volume of genome sequence data becoming available 

and waiting to be analyzed for 3D structure to know its function.  

2.4.2 Computational Approaches  

To analyze the massive amount of protein sequences generated by genome project highly efficient 

theoretical methods for predicting SS is of immense importance as experimental methods are 

highly time consuming, costly and in some cases inefficient [9, 23]. Scientists have been 

attempting to solve SSP problem with a wide variety of computational models for last five decades, 

however the accuracy stuck around 80%. Scientist have been attempting to solve SSP problem 

applying a wide variety of theoretical models or machine learning approaches such as artificial 

neural network (ANN), hidden Markov model (HMM), support vector machine (SVM), etc. In this 

chapter we will briefly discuss the theory and applications of these machine learning approaches.  

2.4.2.1 Hidden Markov Model: 

Concept of Hidden Markov Model (HMM) stemmed from the concept of Markov process. 

Therefore, for the sake of clarity, after a short discussion of Markov process we will ultimately 

focus on HMM.  A Markov process is a stochastic process that satisfies Markov property and 

Markov property is defined as the property that in any stochastic process the next state depends 

only the present state with some conditional probability but not on the state or series of states 

preceding the present one. We can express this relation as: 

 P(𝑞𝑡 =  𝑠𝑖)  =  P(𝑞𝑡 =  𝑠𝑖  | 𝑞𝑡−1 =  𝑠𝑗)  (1) 

where, si and sj are two consecutive states in a given sequence, i and j may or may not be the same 

and  qt stands for any state at position t >0. 
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Since the next state depends only on the present state and not on any past states, Markov property 

is also called memorylessness of a stochastic process. A stochastic process is said to satisfy Markov 

property, therefore, is qualified to be a Markov process, if the prediction of a discrete state at any 

point of time or position in the process using only the immediate preceding state information is 

identical to the prediction of that state using the full information of the process. We may express 

this relation by extending (1) as: 

  P(𝑞𝑡 = 𝑠𝑖) =  P(𝑞𝑡 =  𝑠𝑖 | 𝑞𝑡−1 =  𝑠𝑗) =  P(𝑞𝑡 =  𝑠𝑖 |𝑞𝑡−1 =  𝑠𝑗, 𝑞𝑡−2 = 𝑠𝑘 , … 𝑞0 =  𝑠𝑥 ) (2) 

where, s subscripted with i, j, k… x indicates any possible state.  

This means, that any discrete state in Markov process depends only on the previous state 

information and is independent of any other observation prior to the previous one [94]. More 

specifically, this type of Markov process is known as first order Markov process. Markov  process 

can be of any order [95], however, to introduce Markov process here we will confine ourselves 

within first order Markov process only. A Markov process with finite number of states is known 

as Markov chain. In a Markov chain, transition from one state to another is governed by a transition 

probability matrix. It is to be noted that, a state may allow self-transition as well, i.e., the next state 

may be the same as the present one in a Markov process or chain. So far we have not focused on 

the probability of finding any state at the beginning of the sequence. This phenomena is governed 

by another set of probabilities. Therefore, a Markov chain is a single stochastic process which can 

fully be defined with: 

 a set of states 

 a set of probabilities that indicates the probability of finding any possible state at the 

beginning of the sequence 

 a transition probability matrix that contains the probability of transitioning form one state 

to another  
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If we have all of these three set of information mentioned above, we may estimate how probable 

a given sequence of states is using Bayesian formula given the Markov process. We may also 

stochastically develop different possible sequence of states using this Markov process.   

Let us consider a situation, where we have a sequence of stochastic observations or 

outcomes. Each observation is generated from one of a set of states according to some 

probabilities. We do not know the specific state that has generated any particular observation in 

the sequence. Therefore, the states of the observation sequence are hidden. However, we know the 

corresponding probabilities of generating all of the observations by all of the states.  We may go 

from one hidden state to another or to itself according to another set of probabilities known to us.  

Now we have to estimate the sequence of hidden states that might have generated the given 

stochastic sequence of observations. This sequence of hidden state is usually known as path. We 

may apply HMM to solve this problem.  

An HMM is an extension of Markov process consisting of finite number of hidden states 

which are capable of self-transitioning as well as transitioning to other states according to some 

probabilities, and from each state we may observe a visible outcome from a possible set of 

outcomes according to another set of probabilities. Therefore, unlike a Markov chain which has a 

single stochastic process of state transition, HMM is “a doubly embedded stochastic process that 

is not observable (hidden), but can only be observed through another set of stochastic processes 

that produce the sequence of observations” [96]. The set of visible outcomes may be represented 

by a set of symbols. For example, in the context of our secondary structure prediction, 20 different 

amino acids are the visible outcomes, where each amino acid is represented by a unique letter, the 

symbol.  
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From now on, we will also refer to visible outcome or observation from any state as emission of 

symbol as a generalized expression. However in secondary structure context emission of symbols 

and emission of amino acids are equivalent. Therefore, in the context of secondary structure, the 

emission of amino acids and the emission of symbols or observations may interchangeably be 

used. Here in the secondary structure prediction context, state means different type of secondary 

structures: helix, turn or sheet. In HMM, the state, from where the symbol is emitted, remains 

invisible or hidden [97] similar to a given protein sequence of unknown structure where we do not 

know the secondary structure to which every amino acid belongs. The secondary structure 

information of every amino acid in a protein sequence remains unknown or hidden until and unless 

the structure is revealed through experiments such as X-ray crystallography, NMR or through 

computational approaches. If we model protein sequences with necessary parameters required to 

define a HMM, the secondary structures will represent the hidden states, whereas the set of letters 

that represents corresponding set of amino acids will represent the visible set of symbols. Every 

state will have a set of probabilities to emit any of the 20 different symbols representing 20 

different amino acids or residues.  Transition between connected states is governed by another set 

of probabilities, known as transition probabilities. For example, probability of finding the next 

symbol in helix after a sheet structure in a protein sequence is the transition probability of sheet 

state to go to a helix state. Using the HMM we can predict the path, the sequence of states, for a 

given observation sequence of symbols when all the parameters necessary to fully describe a HMM 

is available.    

An HMM can fully be described using the following factors [96]:  

 A set of hidden states, S = {s1, s2, s3….. sn}, where n = number of hidden states in the HMM  
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 A transition probability matrix A, for transitioning from one state to another. Here any 

element of A, aij = P(qt = sj| qt-1 = si ), 1 ≤ i ≤ n , 1 ≤ j ≤ n  and qt represents any state at 

position t of a sequence.   

 A set of emitted symbols, O = {o1, o2, o3……. om } where, m = number of symbols required 

to represent all the possible visible outcomes.  

 An emission probability matrix E, that represents the probability of emitting any possible 

symbol from any state. Here any element of E, eij =  P(oj|si ), 1 ≤ i ≤ n and 1 ≤ j ≤ m, oj ϵ O, 

and si ϵ S 

 A set of probabilities that represents the probability of finding any state at the beginning, 

B = {b1, b2, b3…….. bn}, where any element bi = P(qt=0 = si), 1 ≤ i ≤ n  

In Figure 8, an example of a simple HMM with 3 states and m symbols is shown. Every arrow that 

shows state-transition is associated with a probability value in the transition probability matrix A 

and every arrow that shows emission of symbol is associated with a probability value in the 

emission probability matrix E. Every Arrow from start state is associated with a probability value 

in the beginning probability matrix B.   Here we see that every state is self-connected as well as 

both way connected to all other states and every state may emit all possible symbols. In reality it 

may or may not be the case. If it is not possible to transit from one state to another, probability of 

such transition will be 0. If it is not possible for any state to emit any of the symbols, associated 

emission probability will be 0. In other words, any impossible transition or emission has an 

associated probability of 0 in corresponding matrix.     
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o1 o2 o3 om
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Figure 8: A hidden Markov model with 3 hidden states– s1, s2, and s3 and m number of observations denoted 

by oi that may be emitted from any of these states. Here, 1 ≤ i ≤ m. We also see a start state here. This start 

state is actually a pseudo state which emits no symbol, rather just indicates the start of the sequence. Here 

the arrows from one state to another or to itself represent the transitions from one state to another or self-

transition, whereas the arrows from states to symbols represent the emission of symbols from corresponding 

states.   

 

At any given position t > 0 of a sequence, the probability of finding any symbol om (m ≥1) from 

any state qt = sj depends on the probability of transitioning from state qt-1 = si to qt = sj and the 

probability of emitting the symbol om from the state sj. If t = 0, which indicates the beginning of 

the sequence, the probability of finding any symbol om from any state sj depends on the probability 

of finding sj at the beginning and the probability of emitting om from the state sj. Therefore, if we 

have all the five information - S, A, O, E and B, we may find the sequence of hidden states for any 

related query sequence of symbols using Bayesian formula. Finding the hidden path is known as 

decoding [98]. For any query sequence, only S and O sets are known.  A, E and B are called HMM 

parameters. We can estimate these parameters by training our HMM with a large number of 

training sequences for which we know some relevant attributes and the hidden paths. Among 

different available criteria for training HMM and estimating HMM parameters, mostly applied one 
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is the Maximum Likelihood Estimation (MLE) [99]. It maximizes the probability of training sample 

with respect to the model. Once the HMM is trained, i.e., the parameters are estimated, we can 

stochastically estimate the unknown path of states for any query sequence of nature similar to the 

training sequences. However there could be as high as nl different paths for a sequence of length l 

with n number of possible hidden states, given all states are connected to each other.  Therefore, 

finding the most likely path is important. Recursive Viterbi algorithm is the mostly used one to 

find the path with maximum probability [98]. This algorithm offers an effective means to find the 

most likely state sequences of a finite state discrete time Markov process in terms of maximum 

posteriori probability.  

HMM may be a good choice for sequence analysis because of two reasons mainly. First, 

the model is based on mathematical structure, therefore theoretically sound for a wide range of 

application. Second, it works very well in several practical applications, such as speech 

recognition, temperature measurement, biological sequence analysis and similar application [96]. 

The protein secondary structure prediction process is a biological sequence analysis problem, and 

the solution is to assign a right label of structure on every residue or amino acid of the sequence 

[97]. The labels are usually helix, sheet or turn, to indicate the structure of each amino acid. We 

can easily obtain the transition and emission probability matrixes from a large number of training 

sequences of known structure. We may also obtain the initial state probabilities for every state. 

Therefore, we may estimate the unknown sequence of hidden states (the secondary structures) for 

a query sequence of protein utilizing HMM.  

Asai, Hayamizu and Handa implemented HMM based protein secondary structure 

prediction model for the first time [100, 101]. They trained only four HMMs for helix, sheet, turn 

and others. Each HMM is capable of predicting one of these four types of structure only. Once a 
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test sequence is passed, each HMM gives a path of structure. The HMM that gives the highest 

probability is accepted as the predicted structure. They used only 120 sequence from Brookhaven 

PDB for training and testing purpose [100] and their accuracy was not very good. They achieved 

a Q3 score of 54.7%.  

Further, using HMM, noticeable improvement of secondary structure prediction accuracy 

was done by Bystroff, Thorsson and Baker [102]. Their secondary structure prediction accuracy 

(Q3 score) was 74.3% using homologous sequence information. They proposed a novel HMM, 

HMMSTR based on I-sites library of sequence-structure motifs. I-sites are short sequence-

structure motifs that show strong correlation with local three dimensional structural elements of 

proteins. They obtained the I-sites library through exhaustive clustering of sequence segments of 

a non-redundant database of known structure. Their model applied highly branched topology 

discovered from the clustering process and captured recurrent local features of protein sequences 

and structures that are not confined within a particular protein family. In their HMM every I-sites 

motif was presented as a chain of Markov states each of which contained information about the 

sequence and structure attributes of a single position in the motif. Merging of these I-site motifs 

based on sequence and structural similarity created a network of states, in other words the it formed 

Markov process with hidden states, i.e., HMM. Each state is associated with four probability 

distributions such as probability of observing a particular amino acid, probability of being in a 

particular secondary structure, backbone angle region and structural context descriptor. Structural 

context descriptor describes the context of the residue; for example, it distinguishes beta strand in 

the middle of a sheet from one that at the end of a sheet. They developed three different models by 

clustering the I-sites motifs and using observed adjacencies in the database. First model was trained 

with sequence and secondary structure data. Second model was trained with sequence and 
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structural context data. Third model was produced based on hierarchical pairwise alignments and 

trained with sequence and backbone angel data. Collective name of these three models is 

HMMSTR. They used some heuristic criteria to delete or add hidden states and came up with a 

fairly complex model where protein 3D structure was modeled through the succession of I-site 

motifs [103].  

Martin, Gibrat and Rodolphe [103] introduced a new type of HMM without prior 

knowledge. They chose the model from a collections of models based on the Q3 achieved in 

prediction, the Bayesian Information Criterion (BIC) value of the model and the statistical distance 

between models. Their model for secondary structure prediction referred to as Optimal Secondary 

Structure prediction Hidden Markov Model (OSS-HMM).  Their final model has 36 hidden states, 

distributed as: 15 of them model α-helices, 12 of them model coil and 9 of them model β-strands. 

Organization of protein structures into secondary structure segments was reflected by the 

connection between hidden states and emission probabilities of their model. They used two main 

strategies for developing models: first, start building models from smallest size and gradually 

increase the size, i.e., the number of hidden states; second, start from a large model and gradually 

reduce size based on Q3 achieved in prediction, the Bayesian Information Criterion (BIC) value 

of the model and the statistical distance between models. In the first strategy they applied genetic 

algorithm (GA) for DNA sequence analysis [104, 105]. They applied four types of mutation such 

as addition of one hidden state, deletion of one hidden state, addition of one transition and deletion 

of one transition. They also applied cross-over, which involves exchanging several states between 

two HMMs. In order to automatically select an HMM topology, they applied a systematic approach 

in which when a new state is introduced all transitions between hidden states were initially allowed. 

Then the system was allowed to evolve. A big problem of applying GA to HMM topology is the 
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over fitting of the model towards learning data [104, 105]. To monitor and avoid this loop-hole, 

they used an independent set of structures which is never used in the cross-validation procedure. 

The model’s Q3 score was 68.8% for single sequence and 75.5% for multiple sequence alignment. 

With a view to decreasing the complexity of manual generation of HMM.  

Another approach of HMM capitalizing on GA was proposed by Won et. el. [101] to 

predict protein secondary structures. In their GA procedure, they developed models of HMMs 

consist of biologically meaningful building blocks. That is why they named their model as Block-

HMM. Each block was labeled corresponding to one of the three secondary structures. Mutation 

and crossover were applied to these building blocks. They crossed over blocks not arbitrary 

number of states, which ultimately translated into exchange of different number of states. Mutation 

was an intra-block phenomenon. They applied another form of mutation called type-mutation 

which changes the secondary structure label of mutated block and consequently randomly 

generates new transition probabilities for that block. Baum-Welch algorithm was used after every 

step of GA to update the model parameters. Baum-Welch is a standard algorithm for HMM 

parameter estimation. It is an iterative or recursive algorithm that updates a given model closer to 

the optimal one by increasing a proxy of the log-likelihood after each iteration. However, the 

algorithm does not guarantee finding the optimal model. The finally accepted HMM captures 

several structural and sequence related properties of protein. It also calculates the probabilities 

associated with the prediction. Prediction was done by deducing the values of the hidden states a 

particular amino acid sequence belongs to and examining the secondary labels of the blocks that 

states are in. In order to enhance the accuracy of prediction further they used a 3-layer perceptron 

consisting of 3 input nodes, 3 hidden nodes and 3 output nodes. A very good aspect of their model 

is that it is capable of randomly generating sequences which matches natural situation. They 
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generated 1662 (equal to the number of training sequences) random sequences from the evolved 

HMM. In the generated sequences the overall secondary structure contents were 35.5% helices, 

23.5% β-strands, and 44.5% coils whereas the training sequences had 35.3% helices, 22.8% β-

strands, and 41.9% coils. They compared performance of their best HMM topology trained on all 

the 1662 training sequences with other leading predictors such as PSIPRED [106] under both 

single and multiple sequence using data common to the training of both models as well as data 

uncommon to both models. For single sequence prediction their accuracy was 68.6% and 69% 

with uncommon and common data respectively while the figures for PSIPRED were 67.3% and 

67.6% respectively. On the other hand, for multiple sequence, their accuracy was 74.5% and 75% 

with uncommon and common data respectively while the figures for PSIPRED were 78.9% and 

79.5% respectively. Therefore, we may loosely conclude that their prediction outperformed 

PSIPRED for single sequence but underperformed PSIPRED for multiple sequence, however no 

statistical significance of the differences in the performances were reported.  

2.4.2.2 Artificial Neural Network: 

Another well adopted approach of solving critical problem is the divide and conquer rule. This 

approach requires that we decompose a complex system into relatively simpler small elements, 

solve them, and then integrate the small solutions effectively to deduce the ultimate solution of the 

main problem. Networks are widely accepted tools to do so. However, networks may be of great 

varieties, all of them share some common attributes: a set of nodes and links or connections 

between those nodes. These nodes may be treated as small parts of the complex problem and the 

connections define how the solution of these small problems should be integrated. Nodes may be 

deemed as computational units which take certain input, process that input and yield some output. 

Artificial neural network (ANN) or simply neural network (NN) is a modern computational model 
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that stemmed from the scientific endeavor to mimic the brain which is a network of millions of 

unit cells, known as neuron.  In brain, neurons receive signals from the synapses located on the 

dendrites or membrane of the neuron. When the signals are stronger than certain threshold, the 

receptor neuron is activated which then generates a signal through axon. This signal go to another 

neuron. This way the brain controls the functions of the body. The concept of real neuron is 

emulated in ANN. ANN can be consisted of layers, where each layer has single or multiple nodes 

and the nodes are connected through some weighed path. Here we may envision, nodes as neurons, 

the inputs to these nodes as synapses and weights of the connections as strength of signal. In each 

node the input information is processed by an appropriate mathematical function, known as 

activation function, and an output is generated, which may be the input for the other nodes when 

there are multiple layers of nodes in the NN.    

 In Figure 9 a single node of a NN is shown. Here we see that a single node is fed with 

multiple inputs and their associated weights. The activation function fsig will process these inputs 

and yield an output. This output may be fed to another node with certain weights.   

 

 

Figure 9: A single neuron or node of an ANN. fsig is the activation function which determines the output. 

Here xi are the features used, where n = number of feature and i = 1, 2, 3, …n.  X0 is known as bias term.  
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An ANN is usually a combination multiple nodes like this one shown in Figure 9.  Numerous 

variants of NNs have been developed since the development of first NN by McCulloch and Pitts 

[107].  The differences between different variants of NNs may be in the activation functions used, 

topology of the network, algorithm employed for training, etc. In depth discussion of different 

types of NNs may be found in Haykin [108]. For SSP the most popular and widely used model is 

the feed-forward NN [ref?]. Feed-forward NN is made up of layers such as input layer, output 

layer and zero or more hidden layer(s) in between. Each layer consists of single or multiple nodes 

as shown in Figure 9.  A multi-layer feed-forward NN is shown in Figure 10.     

 

Figure 10: Schematic diagram of a single hidden layer feed-forward neural network with k different output. 

The units in the middle of the networks are known as hidden nodes. Each node has a derived feature Zm 

computed form the input of the preceding layer nodes.  Here maximum value of m is the number of hidden 

nodes in a particular hidden layer.  
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ANN for SSP was first employed in 1988 by Qian and Sejnowski [109] with a view to leveraging 

on the information form the database of known protein sequences to predict SS. They developed 

a three layer (input, hidden and output) feed-forward multilayer perceptron ANN for SSP. Their 

network had 40 hidden nodes and three nodes in the output layer. They fed their ANN information 

with a window of size 13 residue where the target residue for predicting SS is the one in the center 

of the window. They chose a representative dataset of 106 sequences with limited identity. They 

also took special care while choosing sequences to ensure balanced combination of helix, sheet 

and coil in their data set. Their overall accuracy on a test set non-homologous to the training set 

was 64.3%.  

Rost and Sander established new standard of SSP method introducing PHD method in 1993 

[110]. They applied a set of feed forward neural networks trained by back-propagation algorithm 

[111] with non-redundant data set of 130 protein chains. Most important aspect of their method 

was that they used multiple sequence alignment (MSA) as evolutionary information instead of 

single sequences. They employed three level neural networks. First level predicts structure from 

sequence. In this level helices may be found with length less than 3 residue, which is too short as 

helices should be at least 3 residue long [22]. Second level refines the first level prediction further, 

for example, by converting the predicted helices that are too short into loops or by extending the 

helices with more adjacent residues to make the length 3. They introduced a reliability index (RI), 

which may have a normalized value between 0 - 9. If any residue within helices with length less 

than three has RI ≥ 4, they added additional residue(s) to make the length 3, otherwise converted 

the helices to loop.  Finally the third level, also named as jury level, averages the output from 

previous levels and finally decides the SS.  Accuracy of PHD method was reported as 70.8%. If 
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larger data set is used along with PSI-BLAST [112], accuracy of PHD method may increase to 

75% [113]. 

Another notably successful NN based SSP method is PSIPRED [106]. Instead of applying 

MSA, they used intermediate PSI-BLAST profiles as a direct input to their SSP model. This multi-

stage prediction method consists of three stages: generating sequence profile, predicting initial SS, 

and finally filtering the predicted structure. PSIPRED achieved an overall accuracy between 76.5 

to 78.3%. PSIPRED and PHD shared similar network topology. The improvement in PSIPRED 

over PHD may be attributed to the better alignment fed to the NN because of the filtering strategy 

applied by PSIPRED to exclude unrelated proteins and also in part to the increase in the size of 

database [114]. This is important to note that, although PSI-BALST is very sensitive to biases in 

the sequence data banks, because of its iterative nature and it may erroneously include repetitive 

sequences with low complexity that have biologically insignificant similarity  into the intermediate 

profiles  resulting in completely random sequences being matched with high confidence [106]. 

 An important high accuracy recent work on SSP is SPINE-X by Faraggi et al. [23]. They 

employed a multi-step NN algorithm by combining SSP with prediction of real value residue 

solvent accessibility (RSA) and backbone torsion angles in an iterative manner. Their process 

started with generation of PSSM by running PSI-BLAST. They also collected seven physical 

parameters (PP) of the amino acids residues which includes hydrophobicity, polarizability, 

volume, iso-electric points, and so on for each residue. There are total 6 steps in their prediction 

process. In the first, fourth and last steps they predicted secondary structure, in the second step 

they predicted RSA and in the third and fifth steps, they predicted backbone torsion angles. They 

attempted to boost up the accuracy of any subsequent prediction step utilizing previous steps’ 

predicted information as input features. They tested their accuracy on multiple set of data sets and 
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their overall accuracy ranges from 81.3 to 82% when DSSP assignment is used. However they also 

reported an accuracy of 83.8% if modified version of consensus based assignment method, SKSP 

[115], is used. In their paper, they also reported a detail comparative analysis of performance with 

respect to another high accuracy SSP method, PSIPRED [106]. They claimed that SPINE-X 

consistently makes 6% more accurate prediction in helical residues without over prediction while 

PSIPRED makes 3-5% more accurate prediction in coil residues, however PSIPRED over predicts 

coils by 7%. In SPINE-X paper, it is stated that the superior prediction result of their model may 

be attributed to the better prediction of real value torsion angles and multiple step training and 

prediction of SS.  

 Although NN based predictors reported the best accuracy for SSP problem, the maximum 

overall accuracy achieved is still around 80%.On the other hand theoretical limit of SSP is 88% 

[116]. Another important issue is that the accuracies of predicting beta structure of the best 

performing methods such as SPINE-X or PSIPRED are around 75%. Therefore, we say that there 

is scope for further improvement of the overall secondary structure prediction accuracy by 

improving only beta structure prediction accuracy.    

2.4.2.3 Support Vector Machine:  

Support Vector Machine (SVM) is a discriminative classifier that analyzes data and separates them 

into different classes by generating a separating hyper plane. It is a supervised machine learning 

approach first invented by Vapnik [117] in at Bell AT&T laboratories. To describe SVM, we may 

start with a simple binary classification problem. Let’s say we have an input space  𝑋 ⊆ ℝ𝑛, where 

𝑛 ∈  ℕ, an ouput space 𝑌 = {+1, −1}, and a training set T where 𝑇 =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … … . . (𝑥𝑛, 𝑦𝑛)}  ∈ (𝑋 × 𝑌).  Now the job of SVM is to derive a 

function that maps each element of X in to Y. In more formal language of classification problem, 
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we may state this problem as to find a decision rule that classifies each 𝑥 ∈ X into any one of the 

classes +1 or -1. Now we may build up a linear binary classification function f:𝑋 ⊆ ℝ𝑛  →  ℝ  in 

such a way that if  𝑓(𝑥) ≥ 0 , x belongs to class +1 or else, x belongs to class -1. In linear situation 

we may write:  

 𝑓(𝑥) = (𝑤. 𝑥) + 𝑏 (3) 

where, 𝑤 ∈ ℝ𝑛.  

 

Figure 11: A simplified two class classification problem is shown here. The circular and diamond shaped 

data points belong to two different classes. The classes may be separated by many different decision 

boundaries as shown by the solid lines.  

 

This function is known as discriminant function as it discriminates the class to which any 𝑥 ∈ X 

belongs. From geometric point of view of this problem, f represents all possible hyper planes that 

are capable of correctly classifying the input data. Modeling of this hyper plane depends on the 

value of w and b parameters, which are learned by the SVM algorithm from the training data set. 

A suitable separation is attained by the hyper plane that has the largest distance to the nearest 

training data points of any class. In general the higher the margin the lower the generalization error 

of the classifier. These nearest data points are generally known as Support Vectors and are very 
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important as they are the only ones that determines the final solution of the problem. SVM 

algorithm defines the optimal separation hyper-plane as the one that maximize the area between 

these Support Vectors of the two classes.  

We may envision the problem through the simplified picture of Figure 12. Here we see two 

different types of points, one is circular and the one is diamond shape representing two different 

classes. Now the data points may be separated into two different classes through many different 

linear hyper plane indicated by solid lines. However SVM chooses the hyper plane which 

maximizes the boundary between these two classes as we see in Figure 12. This way SVM ensures 

the maximum distance between two classes.   

 

Figure 12: Support vector classifier. The solid line represents the decision boundary while the dashed lines 

are the boundaries of maximal margin area, shown as shaded area. Data points on the dashed lines are the 

support vectors.  The 1 or -1 values on the right hand side of the equations of the margin boundaries 

represent the scaled distance from the decision line of the nearest points that belong to +1 and -1 class 

respectively.   

 

However, not in every cases, all data points of different classes may be separated. In that case 

SVM still tends to maximize the margin allowing some points to be misclassified and assigning a 
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penalty for that.  In other words, if there exists no hyper plane that is capable to classify the given 

all data points into two classes, a soft margin binary classifier may be used to create a hyper plane 

that partitions the data with maximum accuracy. When data is linear, a separating hyper plane may 

be used to divide the data. However it is more often the case than not that the data is far away from 

linearity and the datasets are inseparable. To solve such problem, we can make the procedure more 

flexible by enlarging the feature space applying basis expansions such as polynomials or splines 

[118]. In general linear boundaries in the enlarged space yield better training-class separation, and 

translate to nonlinear boundaries in the original space. The support vector machine classifier, 

empowered by kernel function, is a more flourished form of this technique where the dimension 

of the enlarged space is allowed to expand greatly. Once the data is expanded in higher dimensional 

space properly, often the classification by generating a maximal margin or optimal linear 

separating hyper plane becomes a trivial problem [119]. There are different kinds of kernel 

functions used in SVM, such as linear kernel, polynomial kernel and radial basis function (RBF) 

kernel or Gaussian kernel. The benefit of using RBF kernel is that it can automatically expand the 

feature space into as high as infinite dimension. 

Although SVM is regarded as one of the most robust classifier in machine learning by 

many [120], it has not been widely used in SSP problem. Earliest work in this regard was done by 

Hua and Sun [19]. They used an RBF kernel based SVM classifier to predict three different 

secondary structures of protein. They developed six different binary classifier for this purpose, (H 

/~ H, E/~ E, C/~ C, H/~ E, E/~ C and C/ ~ H). They developed another classifier to combine the 

output of these six classifiers using voting mechanism to come up with the final prediction. They 

used only evolutionary information or PSSM and amino acid residue information as feature (total 

of 21 feature) in their prediction. They also used sliding window of 21 size. Their overall accuracy 
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was 73.5%. Later Guo and his colleagues bring about little changes to the predictor of Hua and 

Sun by using another layer of SVM that further rectifies the prediction using minimum sequence 

length criteria for each type of SS [121]. For example, a helix contains at least 4 consecutive 

residue pattern, and a sheet contains at least 3 consecutive residue pattern. Doing this further 

rectification they achieved an overall accuracy of 75.2%.  

Wang et al. [4] proposed another SVM based SS predictor using RBF kernel and a sliding 

window of 15. They used propensity of any amino acid to be in H, E or C structure at a particular 

position in a protein and the hydrophobicity of the amino acids as features. They reported an 

overall accuracy of 78.44%.  

 Another notable SVM based SSP effort was from Ward and his colleagues [122]. They 

also trained binary SVMs to discriminate between two structural classes. The binary classifiers 

were then combined in several ways to predict multi-class secondary structure. They reported 

average three-state prediction accuracy of 77.07%. They also used PSSM or evolutionary 

information only as their feature. Their window size was 15 and they used 2 degree polynomial 

kernel instead of RBF kernel for feature space expansion. They also reported that their method 

was not very efficient in predicting beta strands.  
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3. Methodology 

 

3.1 Prediction Method 

We have discussed in chapter 2 that many different machine learning algorithms such as ANN, 

SVM, HMM, etc. have so far been applied to tackle the SSP problem. We have used binary 

SVMs in our investigation coupled with genetic algorithm. Details of the method is discussed in 

the following sections.  

3.1.1 Classification Algorithm 

We have trained three binary SVMs, E versus non-E (i.e., E/~E), C/~C and H/~H.. A description 

of SVM is given in literature review part. These three SVMs provide us the probability of each 

residue belongs to beta, coil and helix structure respectively. Combining these three predictors 

results into final three class prediction is a crucial challenge. We combine optimally these three 

binary predictors using a genetic algorithm (GA) to form final three class prediction. GA finds 

separate real value paramter for each class as an additive factor for each class probability given by 

three binary SVMs. For example if the probabilities that a particular residue belongs to E, C or H 

class are p1, p2 and p3 respectively, GA founds three real values v2, v2 and v3 and the revised class 

probabilities become (p1+v1), (p2+v2) and (p3+v3) for E, C or H class respectively. Finally 

the class, for which this revised probability is highest, is accpeted as the predicted class for that 

particular residue. We refer to our combined SVM predictor as cSVM.  
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3.1.2 Meta Predictor  

In addition to the cSVM predictor, we also developed a meta predictor. Our meta predictor 

combines the 3 class prediction of our cSVM with the prediction from SPINE X. We combined 

these two predictors in the manner shwon in Figure 13. 

 

 1. Generate secondary structure probabilities and classes by cSVM. 

2. IF cSVM’s output class is E THEN 

3a.ACCEPT E as the output of MetaSSPred 

    ELSE 

  3b. ACCEPT SPINE X’s output as the output of MetaSSpred 

    ENDIF. 

 

 

Figure 13: Algorithm for combining cSVM and SPINE X. 

 

We refer to this meta secondary structure predictor as MetaSSPred which is our final predictor.  

3.1.3 Genetetic Algorithm for Combining Binary SVMs 

GA is  an  evolutionary learning based heuristic algorithm  which  maintains  a  population  of  

individuals for each iteration. Each individual in the population, comonly known as chromosome, 

represents a potential solution to the problem to be solved. Each chromosome in the population is 

assessed on the basis of some fitness function. In our case, the fitness function was overall accuracy 

of three class prediction (Q3). We call the value of the fitness function for a particular chromosome 

as the the fitness of that chromosome. Each chromosome in a population is assigned a probability 

to be survived in the next generation based on this fitness. The higher the fitness, the more likely 

the chromosome will survive in the next generation or participate in mutation or crossover. 

Crossover and mutation mechanism will be discussed soon in this section. We call this fitness 

based probability as survival probability. In the first iteration the population was generated 
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randomly where each chromosome is a 36 bit long binary number, which essentially contains the 

three additive factors, each 12 bit long. In the next iteration, a new generation of population is 

created from the previous generation after some evolutionary transformation. The evolutionary 

transformation contains three mehanisms – elite preservation, crossover and mutation. Certain 

percentage of chromosomes are preserved and included in the next generation based on higher 

fitness. These preserved chromosomes are elites. This way top solutions from previous generation 

are always preserved. In crossover technique, pair of chromosoms are selected based on survival 

probabilities of the chromosomes. Then a site for crossover is randomly selected. Finally, each 

crossover produces 2 new chromosomes. The crossover mechanism is demonstrated in Figure 14. 

 

 

Figure 14: This figure demonstrate a cross over operation. C1, and C2 are survival probability based 

selections as crossover candidates. nC1, and nC2 are two new chromosomes created after crossover. The 

green highlighted bit in C1 and C2 indicate the randomly selected crossover site. Similar color curly braces 

show the origin of the part in new chromosome.  
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Mutation selects a mutation candidate based on survival probability from the previous generation 

and then randomly selects a mutation site and flips the bit value. This way a new generation of 

chromosomes is created and again the fitness for each chromosome is calculated until some 

targeted fitness is achieved or the predefined number of iteration ends or the improvement of 

fitness becomes stagnant. The pseudo code for genetic algorithm is shown in Figure 15. 

 

1. Randomly form the initial population 

2. Compute the fitness to evaluate each chromosome  

3. Select pairs to mate from best-ranked individuals and replenish the new generation 

by  

a. Preserving elites 

b. Applying crossover operator  

c. Applying mutation operator  

4. Check for termination criteria, else go to step #2 

Figure 15: Pseudo code for GA. 

 

3.2 Data Collection 

A very important component of protemoic research, specially of protein structure prediction 

methods, is the data set used. Quality of the research highly depends on the data purity, resolution, 

degree of similarity between test and training data sets, etc.  Here steps towards obtaining the 

training and test data sets are described. 
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3.2.1 Training Data Set Preparation 

We collected protein sequences from PDB [123] and culling server [124] with the following 

specifications: 

 sequence length ≥ 50  

 x-ray resolution ≥2.5 Å 

 sequence identity ≤ 30% 

 method- refinement R factor: 0 to 0.25 

We got 6521 protein sequences after this search in PDB. Usually direct culling from PDB doesn’t 

satisfy all such criterion mentioned above. Therefore, we also ran BLASTclust [125]  to ensure 

that the identity cut-off criterion is met. BLASTClust is a software to cluster protein or nucleotide 

sequences. The program starts with pairwise matches and places a sequence in a cluster if the 

sequence matches at least one sequence already present in the cluster. Before running BLASTclust, 

sequences with same ID however different in case were manually removed to avoid error. User 

may specify the degree of seqeunce identity cut-off to develop different clusters. We have used 

25% identity cut-off. One seqeunce from each cluster was finally kept aside for further processing. 

After all these filtering, we had 2150 sequences left. Our SS assignment method was DSSP. 

  

Table 1: A summary of the secondary structure composition of T552 test dataset 

Secondary Structure Residue Count Percentage 

Beta 27,229 18.2% 

Coil 76,959 51.6% 

Helix 44,905 30.2% 

Total 149,093 100.0% 
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Therefore, we then ran DSSP [22] to collect secondary structure assignment for each residue using  

the collected dataset. We discarded the seqeunces for which DSSP failed to fully assign secondary 

structure. We also discarded seqeunces where we found mismatch between the length of sequence 

as given by DSSP assignment and the that of PDB fasta format data. We refined this data set further 

to discard the protein sequences that contain un-known amino acids labelled as “X” and the 

sequences which contain amino acids of unknown coordinates. After all these refinements, we 

obtained 554 sequences (T554). Finally, we discarded 2 more sequences for which one of our used 

features, torsion angles fluctuation cannot be predicted. Therefore, our final training data set 

consists of 552 sequences with no more than 25% identity among themselves. From now on we 

will call these dataset as T552. A summary of the secondary structure composition of T552 is given 

in Table 1. 

3.2.2 Test Data Set Preparation 

We have two different test datasets. First, we have collected CB513 dataset [126] for testing 

purpose. Then we ran BLASTclust at 25% identity cut-off on T552 and CB513 to ensure that this 

dataset is independent of our training dataset. Here we extracted 475 seqeunces (CB475) from 

CB513 at 25% identity cut-off with respect to T552. After further refinement based on failure to 

generate angle fluctuations or ASA for some sequences, we had 471 seqeunces as our first  test set 

(CB471). A summary of the secondary structure composition of CB471 is given in Table 2.  

Table 2: A summary of the secondary structure composition of CB471 test dataset. 

Secondary Structure Residue Count Percentage 

Beta 17,037 22.8% 

Coil 31,908 42.7% 

Helix 25,843 34.5% 

Total 74,788 100.0% 
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We collected another comparatively new independent dataset with 25% identity cut-off criteria, 

prepared in 2014. This dataset consists of 295 seqeunces. From now on we will call these dataset 

as N295. N295 dataset was used to further confirm the robustness of our predictors. A summary 

of the secondary structure composition of N295 is given in Table 3.  

 

Table 3: A summary of the secondary structure composition of N295 test dataset. 

Secondary Structure Residue Count Percentage 

Beta 16,052 26.2% 

Coil 25,199 41.2% 

Helix 19,913 32.6% 

Total 61,164 100.0% 

 

3.3 Features  

A crucial factor for classification problem is feature set. We collected a comprehensive and 

independent set of residue level features which may sufficinetly capture sequence information, 

evolutionary information as well as structural information of the amino acids in the protein 

seqeunces. A brief discussion on each category of feature is given below: 

Amino acid: this is simple the the information about the particular amino acid on certain position 

of a protein seqeunce. Twenty different amino acids are marked by distinct integers 1 through 20.  

Physiochemical properties: Each amino acid has 7 unique properties, combinedly named as 

physiochemical properties. They are steric parameter, polarizability, hydrophobicity, isoelectric 

point, helix probability and sheet probability [127]. These parameters influence possible structure 

of an amino acid residue in a protein sequence. For example, a hydrophobic residue is more likely 

to be inside the core of a globular protein.  
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Position specific scoring matrix: Position-sspecific scoring matrix (PSSM) is a kind of scoring 

matrix used in protein BLAST [128] searches in which amino acid substitution scores are given 

separately for each position in a protein multiple sequence alignment. This score captures  

similarities between protein query sequences and all sequences in one or more protein databases. 

Therefore, PSSM represents valuable evolutionary information at each position of the protein 

seqeunce. PSSM was generated by running PSIBLAST [112].  

Monogram and bigram: These matrices were proposed by Sharma and his colleagues [129]. 

Monogram and bigram are derived from PSSM score to infer structural information from sequence 

level evolutionary information.  

Disorder probability: It gives the probability of amino acid residue being disordered, i.e., having 

no well defined three dimensional structure. Disorder probabilities (DPs) were calculated from 

DisPredict [130]. 

Accessible surfae area: Accessible surface area (ASA) is the surface area of a biomolecule that is 

accessible to the solvent in which the molecule is dissolved. Conformational dynamics of proteins 

which is crucial for their diverse functionalities, is strongly correlated with the ASA of each of the 

residue of a protein [131, 132].  ASA is directly related to the protein-protein interactions [133, 

134] and is also an important factor in beta pair formation [135]. Therefore, we used a very recently 

developed high accuracy ASA predictor, REGAd3p [136], to predict ASA in our work. REGAd3p 

uses regularized exact regression with 3rd degree polynomial kernel and also applied GA to 

optimize the weights computed by regularized regression. 

Torsion angle (φ, ψ) fluctuations: Torsion angle fluctuations (AF) represent the flexibility of 

protein backbone as derived from the ensembles of NMR structure. These are two very important 

http://www.ncbi.nlm.nih.gov/BLAST
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features as only two torsion angles- φ, ψ  are sufficient for a nearly complete description of the 

backbone of a protein structure [137]. 

Terminal indocator: First five and last five residues in any sequence are considered as terminal 

residues. For the first or last one we assigned -1 and 1 respectively as terminal information and 

then gradually increased or increased the value by 0.2 as we moved forward from the starting 

terminal or move back-ward from the end terminal. For example, the second and the penultimate 

residue gets -0.8 and 0.8 respectively as terminal information value. All other intermediate residues 

have 0 terminal value. A complete list of features is shown in Table 4. 

 

Table 4: A list of all features used in this research. 

Category Feature count 

Amino acid (AA) 1 

Physiochemical properties (PP) 7 

Position specific scoring matrix (PSSM) 20 

Monogram (MG) 1 

Bigram (BG) 20 

Disorder probability (DP) 1 

Accessible surfae area (ASA) 1 

Torsion angles (φ, ψ) fluctuation (AF) 2 

Terminal indocator (TI) 1 

 

We used these features in a variety of combinations in our search to come up with an optimal 

feature set. Some features were kept in all models, whereas some were excluded in some models 

to gauge the impact of the excluded features in our prediction. Different sets of features we used 

in our model search are listed in the Table 5.  
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Table 5: Description of the feature sets used. 

Name of the feature 

set 

# features  Details of the features (feature count)  

f29 29 AA(1), PP (7), PSSM(20), and TI(1) 

f31 31 AA(1), PP (7), PSSM(20), DP(1), ASA(1) and TI(1) 

f33 33 AA(1), PP (7), PSSM(20), DP(1), ASA(1), AF(2) and 

TI(1) 

f51 51 AA(1), PP (7), PSSM(20), MG(1), BG(20), DP(1) and 

TI(1) 

 

3.4 Performance Evaluation 

To compare and evaluate the performance of each predictors we used 4 performance criteria: 

accuracy, precision, recall and overprediction rate. To measure these matrices we need to know 

the definition of true positive (TP), false positive (FP), true negative (TN) and false negative (FN).  

 

Table 6: Evaluation criteria. 

Measure Formula Evaluation Focus 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Overall effectiveness of a classifier 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Agreement on class of the data labels with the 

positive labels given by the classifier 

Recall 

(Sensitivity) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Effectiveness of a classifier in identifying positive 

labels 

Over 

predicton  

#𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

#𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
 

Measures whether higher accuracy for particular 

class is due to over prediction or not 

Overall 

Precision* 

∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐
𝑛
𝑐=1

𝑛
 

 

Average agreement on class of the data labels with 

the positive n labels given by the classifier 

Overall 

Recall* 

∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑐
𝑛
𝑐=1

𝑛
 

Avergae effectiveness of a classifier in identifying 

positive n labels 

* This definition is usually known as macro measure.  
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TP is the number instances that are labelled as positive and are actually positive. FP is the 

number instances that are labelled as positive and are actually negative. TN is the number 

instances that are labelled as negative and are actually negative. FN is the number instances that 

are labelled as negative and are actually positive. Calculations of these measures along with their 

evaluation focus are presented in Table 6.   

3.5 In Search of an Appropriate Model 

Although SVM may be directly used for three class classification, we choose to use three binary 

SVMs so that we may attain a balanced accuracy in all three classes. Another reason for using 

binar SVMs is that SVM was built for binary classification problem and performance may degrade 

if used for multi class classification problem. We carried out experiment to compare the 

performance of prediction using f29 and f51 as feature sets. Again we trained the model with 90% 

of the 554 training data and tested on hold out 10% dataset. Then we also tested on CB513 dataset. 

The reults are shown in Table 7. Here we see that f51 feature predicts slighly better than f29 in all 

three classes for both test data set of CB513 and 10% hold out from 554, with one exception only: 

f29feature based C/~C model performed slightly better on CB513.  

 

Table 7: Comparison of performance of models trained with f29 and f51 feature sets. 

Model Feature Set Accuracy on CB513 Accuracy on 10% Hold out of T554 

E/~E f29 81.84% 82.99% 

E/~E f51 83.10% 83.44% 

C/~C f29 73.04% 63.41% 

C/~C f51 72.57% 63.83% 

H/~H f29 80.91% 74.82% 

H/~H f51 82.51% 75.07% 
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To further justify the superior performance of f51 feature over f29, we went for 10 fold cross 

validation (FCV) for both feature set based models along with optimization using RBF kernel. The 

result of this investigation is shown in Table 8. Here we see that, though initially on a small hold 

out test set, f51 feature was predicting better than f29 feature, on an average using f51 has no 

advantage over using f29. Only in case of E/~E, f51 based model performed slightly better than f29 

based model.  This eventually establishes that bigram or monogram are not very useful features 

for SSP as including them does not improve accuracy, rather in some cases accuracy decreased.  

Moreover, using f51 feature is costlier as well. Therefore, we decided not to use f51 feafture set, 

particularly bigram and monograms, in any further investigation.  

 

Table 8: Comparison of the performance of using f29 and f51 features sets. CB475 dataset was extracted 

from CB513 dataset to ensure that the test set is no more than 25% similar to training set to ensure more 

robust comparison. 

Model Feature Set 10 FCV Accuracy on 554 Dataset Accuracy on CB475 Test Dataset 

E/~E f29 82.64% 81.96% 

E/~E f51 82.58% 82.46% 

C/~C f29 63.54% 74.06% 

C/~C f51 61.81% 73.03% 

H/~H f29 73.81% 78.66% 

H/~H f51 73.66% 78.12% 

 

We also investigated the efficacy of f31 feature set. The outcomes are compared with f29 based 

models’ results. Result of this investigation is presented in Table 9. In this comparision we see that 

f31 underperfroms in predicting E or C, but significantly overperforms in predicting H class, when 

compared with those of f29 feature based predictions. Using only 2 more features is not that costly 

as well. Therefore, we decided not to discard f31 at this point. It is to be noted that f31 contains all 

the features used in f29. In addition f31 contains two more features – DP and ASA.   
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 Table 9: Comparison of the performance of using f29 and f31 features sets. CB475 dataset was extracted 

from CB513 dataset to ensure that the test set is no more than 25% similar to training set to ensure more 

robust comparison. 

Model Feature set Accuracy on CB475 Test Dataset 

E/~E f29 81.96% 

E/~E f31 81.49% 

C/~C f29 74.06% 

C/~C f31 72.92% 

H/~H f29 78.66% 

H/~H f31 83.76% 

 

Finally, we also investigated the efficacy of using f33 feature sets by comparing the outcomes of 

the models trained by f33 with those of f29 and f31 based models.  

 

 

Figure 16: Binary class accuracies on CB475 dataset for different feature set based models. 
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Figure 17: Accuracy of E/~E SVM predictor at different window size. 

 

We also tried with various window size to obtain an optimal window for our predictor. For this we 

only used E/~E SVM as we priritized the enhancement of accuracy of E class prediction over other 

classes. Figure 17. shows the performance of using different window size. Based on this analysis 

we choose a wndow size of 15 for our final model.   
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4. Results and Discussion 

 

Our final test datasets were CB471, extracted from CB513, and N295, collected by ourselves. In 

order to assess the perfromance of each predictors, we calculated the overall accuracy (Q3) of each 

predictors as well as accuracy for beta, coil and helix class (QE, QC and QH respectively) along 

with precision and recall. We also calculated the over prediction rate for each class to investigate 

whether any higher measure is due to overprediction.  In the following sub sections comparative 

perfromance of cSVM, SPINE X and MetaSSPred is discussed in light of accuracy, precision, 

recall and over prediction measures for two different test datasets.   

4.1 Performance on CB471 Test Dataset 

Accuracies on CB471 dataset are presented in Table 10. To facilitate comparison, in Figure 18, 

accuracies as well as overprediction rates of each predictors for each class is presented in bar chart. 

In Figure 18 we see that QE of MetaSSPred is significantly higher than those of other predictors. 

More specifically, QE of MetaSSPred is 20.9% improvement over than that of SPINE X. Further, 

MetaSSPred does not heavily under or over predicts beta compared to other two methods. 

Therefore, MetaSSPred is certainly a better predictor for the beta class. Poor performanceLower 

QE of SPINE X here may be attributed to the very high under prediction rate (24.6%).   

 

Table 10: Accuracy of secondary structure prediction on CB471 test dataset. 

 Accuracy Standard Deviation of Class Wise 

Accuracies Model QE QC QH Q3 

 cSVM  63.7% 80.6% 75.7% 75.1% 8.7% 

 SPINE X  59.3% 81.4% 81.9% 76.5% 12.9% 

 MetaSSPred  71.7% 76.0% 80.1% 76.4% 4.2% 
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In case of QC, SPINE X gives the highest score (81.4%), cSVM is just after SPINE X (with a QC 

of  80.6%)  and MetaSSPred’s QC is 76.0% only. If we look at the over prediction rates of this 

class, we find that both cSVM and SPINE X highly over predict coil class (13.4% and 14.5% 

respectively). On the other hand, MetSSPred’s over prediction rate is very low, only 1.9%. This is 

a strong reason why the QCs of cSVM and SPINE X are higher than that of MetaSSPred.  

 

 

Figure 18: Comparison of accuracy along with over prediction rate on CB471 dataset. 

 

SPINE X comes up with the highest QH (81.90%) and MetaSSPred closely follows SPINE X with 

80.10%. cSVM is the worst performer in this case. The reason for low QH of cSVM may be 

attributed to the fact that it under prediction predicts of helix by 10.3%. In Q3 measure, 
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MetaSSPred and SPINE X are almost equal with a 0.1% gap in favor of SPINE X. cSVM is also 

not far behind. Overall, comparatively MetaSSPred appears as a very balanced predictor yielding 

good accuracies for all three classes separately as well as in Q3.However, it seems that it is very 

difficult to find the best model based on this accuracy measure only as no single predictor has 

highest score in all four measures here. Therefore, we will now focus on precision and recall. 

Precision and recall measures for CB471 datset are presented in Table 11.   

  

Table 11: Precision and recall of secondary structure prediction on CB471 test dataset. 

Model Measure Beta (E) Coil (C) Helix (H) Overall 

 cSVM  Precision 70.3% 71.0% 84.5% 75.3% 

 SPINE X  Precision 78.7% 71.1% 83.3% 77.7% 

 MetaSSPred  Precision 68.9% 74.6% 84.3% 75.9% 

 cSVM  Recall 63.7% 80.6% 75.7% 73.3% 

 SPINE X  Recall 59.3% 81.4% 81.9% 74.2% 

 MetaSSPred  Recall 71.7% 76.0% 80.1% 75.9% 

 

In Figure 19 precision and recall values are plotted grouping by class for all predictors to facilitate 

visual perception. Here in Figure 18, we see that SPINE X has the highest precision while theand 

lowest recall value for beta class is the lowest. Gap between the precision and recall score of SPINE 

X for beta class is 7%. This suggests that overall SPINE X gives lower false positives, however it 

gives a very high false negatives in case of beta prediction. Therefore, for any application, where 

the cost of failure to detect beta residue is high, SPINE X may not be suitable. MetaSSPred 

provides relatively high balanced precision and recall value for beta prediction with a gap of only 

2.8% between recall and precision. The proposed MetaSSPred provides the highest recall value 

for beta class among the three predictors discussed. Therefore, applications where detecting betas 

are very important, MetaSSPred would perform well.  cSVM has a recall value 7.4% higher than 
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that of SPINE X, however, on the other hand, cSVM achieves 10.7% lower precision compared to 

SPINE X. Therefore, if cost of failure to identify beta is higher, we should prefer cSVM to SPINE 

X. 

 

 

Figure 19: Precision and recall on CB471 dataset obtained for different predictors. 

 

In coil prediction, MetaSSPred provides balanced precision and recall score with a gap of 1.4% 

only, and its precision is the highest among all predictors. SPINE X and cSVM provides 7.1% 

and 6.0% higher recall score than that of MetaSSPred. However, MetaSSPred provided 4.9% and 

5.1% improvement in precision score than those of SPINE X and cSVM respectively. The reason 

behind this phenomenon is that both cSVM and SPINE X highly over predict coil class which 

are 13.4% and 14.5% higher prediction rate respectively. 
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In helix prediction, precisions of each class are very close. Although cSVM provides the highest 

precision for helix, it gives the lowest recall. Therefore, if failure to detect helix is very costly, we 

should prefer other predictors to cSVM. SPINE X and MetaSSPred are close competitors for helix 

prediction accuracies. Both of them have good and balanced precision and recall score in this case.       

 Overall, both precision and recall for MetaSSPred are equal and at the higher end. On the 

other hand Precision and recall for SPINE X widely varies due to high over or underprediction 

rates across classes. cSVM gives lowest precision and recall.  

4.2 Performance on N295 Test Dataset 

We will start our analysis of the performances of our predictors on N295 dataset with accuracy 

measure. Table 12 shows the accuracy of different predictors.  

 

Table 12: Accuracy of secondary structure prediction on N295 test dataset. 

 Accuracy Standard Deviation of Class Wise 

Accuracies Methods QE QC QH Q3 

 cSVM  65.7% 82.7% 74.3% 75.5% 8.5% 

 SPINE X  62.5% 82.2% 80.6% 76.5% 10.9% 

 MetaSSPred 74.4% 77.5% 79.0% 77.2% 2.3% 

 

To have a more comprehensive view, these accuracies and overprediction rates are shown in Figure 

20. Both SPINE X and cSVM give very poorcomparatively lower QE score and both of them highly 

under predict beta (22.5% and 15.0% under prediction respectively). On the other hand 

MetaSSPred gives the highest QE almost without over or under prediction of beta class. Here 

improvement in QE achieved by MetaSSPred over SPINE X is 19.0%.  Therefore, MetaSSPred is 

clearly the best predictor for beta class for this N295 dataset. 
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Figure 20: Comparison of accuracy along with over prediction rate on N295 dataset. 

 

In coil prediction, cSVM and SPINE X give almost similar accuracy with a gap of 0.5% in favor 

of cSVM. On the other hand, QC of MetaSSPred is the lowest among all. QC of SPINE X is 6.1% 

higher than that of MetaSSPred.  If we look at the over prediction rates, we see that both cSVM 

and SPINE X highly over predicts coil, by 17.7% and 19.2% respectively. MetaSSPred also over 

predicts coil, however by only 5.1%. Therefore, the higher QC of cSVM and SPINE X than that 

of MetaSSPred may be because of over predictions by the first two methods mainly.  

Highest QH is obtained from SPINE X, and MetaSSPred is closely following SPINE X by 

a gap of 1.6%. QH score of cSVM is significantly lower than those of two others. If we look at the 
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over prediction rate, we see that cSVM under predicts helix by 12.2%. This may be a strong reason 

why cSVM gives so poor QH. Other two methods, SPINE X and MetaSSPred also under predict 

helix. Interestingly, slightly lower QH of MetaSSPred results from its around 3% of higher under 

prediction rate compared to that of SPINE X. Overall, MetaSSPred provides the highest Q3 score 

for N295 dataset. To further gauge the performnaces of our predictors on N295 dataset, now we 

will focus on the precision and recall scores. Precision and recall scores of all three predictors on 

N295 dataset are presented in Table 13. Class-wise grouped precision and recall values for all 

predictors are also shown in a bar chart in Figure 21 to ease the comparison.  

    

Table 13: Precision and recall of secondary structure prediction on N295 test dataset. 

Methods Measure Beta (E) Coil (C) Helix (H) Overall 

 cSVM  Precision 77.3% 69.4% 84.6% 77.1% 

 SPINE X  Precision 80.7% 69.8% 84.1% 78.2% 

 MetaSSPred Precision 73.9% 73.7% 84.9% 77.5% 

 cSVM  Recall 65.7% 82.7% 74.3% 74.2% 

 SPINE X  Recall 62.5% 82.2% 80.6% 75.1% 

 MetaSSPred Recall 74.4% 77.5% 79.0% 77.0% 

 

We see in Figure 21 that SPINE X gives the highest precision and lowest recall in beta prediction. 

The reason behind such imbalance prediction is that SPINE X highly under predicts (by 22.5%) 

beta residues.  Second highest precision is given by cSVM and again it also has a recall score 

comparatively much lower than that of MetaSSPred. Main reason is again under prediction. cSVM 

under predicts beta residues by 15%. On the other hand, MetaSSPred gives a very balanced 

precision and recall and it has the highest recall score for beta prediction. Over prediction rate of 

MetaSSPred is only 0.7% for beta residues. Therefore, false positive rate of MetaSSPred is also 

very low. 
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In case of coil prediction, precision scores of SPINE X and cSVM are comparatively lower than 

that of MetaSSPred. On the other hand, recall score of MetaSSPred is lower than that of both 

cSVM and SPINE X in coil prediction. The reason is again that cSVM and SPINE X over predicts 

coils by 19.2% and 17.7% respectively. MetaSSPred also over predicts coil, however by only 

5.1%. Therefore, false positive rates of SPINE X and cSVM are higher than that of MetaSSPred. 

MetaSSPred gives the highest precision for helix prediction. Other predictors are also very close. 

Highest recall is given by SPINE X and MetaSSPred closely follows it. If we look at the over 

prediction rate, we see that all three methods under predict helix, however under prediction rate is 

lowest for SPINE X. Considering precision, recall and over prediction rate, it seems that SPINE X 

is the best method for helix prediction and then comes MetaSSPred. 

 

 

Figure 21: Precision and recall on N295 dataset obtained for different predictors. 
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Overall precision scores of all three methods are very close. Highest precision score is given by 

SPINE X, and highest recall score is given by MetaSSPred. However the gap between precision 

and recall scores of SPINE X is comparatively wide (3.1%). 

On the other hand, precision and recall scores of MetaSSPred are close (0.5% apart), which 

indicates that MetaSSPred is comparatively more balanced predictor with low rate of over or under 

prediction.   

4.3 Overall Ranking of the Predictors 

In this section, we will try to summarize the performance of each predictor by ranking them with 

respect to Q3, QE, QC, QH, overall and class wise precision recall and absolute over/under 

prediction rate prediction rate for each test dataset. Higher absolute over/under prediction rate  

 

Table 14: Rank of all predictors across different performance measure on CB471 test data set. 

 Rank (higher point better) 

Measure cSVM SPINE X MetaSSPred 

Q3 1 3 2 

QE 2 1 3 

QC 2 3 1 

QH 1 3 2 

Precision (E) 2 3 1 

Precision (C) 1 2 3 

Precision (H) 3 1 2 

Overall precision 1 3 2 

Recall (E) 2 1 3 

Recall (C) 2 3 1 

Recall (H) 1 3 2 

Overall recall 1 2 3 

Absolute over prediction (E) 2 1 3 

Absolute over prediction (C) 2 1 3 

Absolute over prediction (H) 1 3 2 

Total 24 33 33 
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yields lower ranking, while higher scores for all other measures result in higher ranking. Absolute 

value of over prediction is taken assuming that both over and under prediction are equally bad. 

Best scorer in any measure gets 3 point, second best 2 and the third gets 1. The ranks of testing 

CB471 and N295 are presented in Table 14 and Table 15 respectively.  

We see in Table 14 that SPINE X and MetaSSPred performed equally on CB471 test 

dataset. One the other hand performance ranking of cSVM is comparatively much lower. 

However in many parameters, cSVM is better than SPINE X. For example, recall of E or 

precision of H is better in cSVM compared to those of SPINE X. Therefore, our test result on 

CB471 justifies the development of meta predictor.  

 

Table 15: Rank of all predictors across different performance measure on N295 test data set. 

 Rank (higher point better) 

Measure cSVM SPINE X MetaSSPred 

Q3 1 2 3 

QE 2 1 3 

QC 3 2 1 

QH 1 3 2 

Precision(E) 2 3 1 

Precision(C) 1 2 3 

Precision(H) 2 1 3 

Overall precision 1 3 2 

Recall(E) 2 1 3 

Recall(C) 3 2 1 

Recall(H) 1 3 2 

Overall recall 1 2 3 

Absolute over prediction(E) 2 1 3 

Absolute over prediction (C) 1 2 3 

Absolute over prediction (H) 1 3 2 

Total 24 31 35 
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We see in Table 15 that performance of MetaSSPred is the best on N295 test dataset, whereas 

SPINE X ranked second. Therefore, overall we may conclude that MetaSSPred is the best predictor 

among the three discussed here across different dataset. In other words, MetaSSPred is a more 

generalized predictor with balanced accuracy across all secondary structure class.  
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5. Conclusion 

 

In this section, the outcomes of our investigation is briefly summarized and some future directions 

for further improvement are also suggested.  

5.1 Summary of Outcomes 

Comparing the performance of different classifier in multiclass classification is a complex task as 

assigning cost of missclassification in multiclass classification is not a straight forward. Overall 

accuracy of multiclass classification alone is not a good measure to decide on the performance of 

such a classifier. Becasue overall accuracy may be higher even when the classifier fails to correctly 

classify any member of a minority class in an imbalanced dataset. Therefore, we also have 

calculated the precision and recall measures for each class as well as for overall classfication. We 

have tested three different models here on two different datasets independent of our training 

dataset. Our basic model was a combined version of the three binary class SVMs, which were 

optimally combined into a multiclass classifier (cSVM) using GA. We compared the performance 

measures of our classifier with those of SPINE X, which is the state-of-the-art secondary structure 

predictor in terms of reported accuracy. We have found that, although SPINE X claimed Q3 score 

higher than 80% in their own prepared dataset, in none of the test datasets those we used prepared, 

SPINE X did achieve such 80% Q3 score . Q3 score of SPINE X was 76.5% on both CB471 and 

N295 datasets in our investigation. For our cSVM, we obtained 75.5% and 74.2% Q3 score based 

on CB471 and N295 datasets respectively. However, we observed that QE scores of SPINE X were 

comparatively lower for both CB471 and N295 datasets and which were found to 59.3% and 62.5% 

respectively to be exact. On the other hand, our cSVM provided better QE scores than SPINE X 
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on both datasets which and the scores were were 63.7% and 65.7% respectively. We also have 

observed that SPINE X highly under predicted helix by 24.6% and 22.5% for dataset CB471 and 

dataset N295 respectively. QC score of cSVM and SPINE X for both datasets were close. For 

example, QC of cSVM were 80.6% and 82.7% and those of SPINE X were 81.4% and 82.2% for 

dataset CB471 and dataset N295 respectively. On CB471, SPINE X gave higher accuracy in coil 

than cSVM. However, the difference was by only 0.8%. On the other hand, cSVM gave higher 

coil accuracy on N295 dataset and the gap was again just only 0.5% only.  In helix prediction, 

SPINE X performed better than cSVM on both the test datasets. Gaps in QH of SPINE X and 

cSVM were 6.2% and 1% based on dataset CB471 and N295 respectively.       

In a nutshell, SPINE X was better for helix prediction. On the other hand cSVM was better 

for beta prediction. In coil prediction, both are alomost equally accurate. Therefore, we found an 

opportunity to combine cSVM and SPINE X to achieve better accuracy in all three classes and 

developed our meta predictor, MetaSSPred, combining the result of cSVM and SPINE X. The 

outcome is found to be very promising.  

MetaSSPred significantly increases QE for both datasets. QE score of MetaSSPred on 

CB471 and N295 were 71.7% and 74.4% respectively. This is 20.9% and 19.0% improvement 

over the QE scores given by SPINE X on CB471 and N295 datasets respectively. Improvements 

of QE scores by MetaSSPred over those of cSVM were also significant- 12.6% and 13.3% on 

CB471 and N295 datasets respectively. However this improvement in QE brought some cost for 

coil prediction mainly. For example QC scores of MetaSSpred were 5.4% and 4.7% lower in 

absolute value than those of SPINE X on CB471 and N295 datasets respectively. Average drop of 

QH score in MetaSSPred over SPINE X was 2.1%. Overall accuracy of MetaSSPred, decreased by 

0.1% in absolute value on CB471 dataset, however increased by 0.9% in absolute value on N295 
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dataset compared to those of SPINE X. MetaSSPred also decreased the volatility of accuracies 

across thre secondary structure classes. For example, standard deviations of accuracies across three 

classes were 12.9% and 10.9% on CB471 and N295 test sets respectively for SPINE X as shown 

in Table 10 and Table 12 respectively. . On the other hand for the same data sets standard 

deviations of three class accuracies were 4.2% and 2.3% respectively for MetaSSPred as seen in 

Table 10 and Table 12 respectively Precision and recall gap volatility also decreased in 

MetaSSPred.  For example, standard deviations of the gaps between respective precision and recall 

scores across three secondary structure class are 10.0%, 15.0% and 3.7% for cSVM, SPINE X and 

MetaSSPred respectively on CB471 dataset. Same volatility reduction in the gaps between 

precision and recall was observed for N295 dataset. Standard deviations of such gaps for cSVM, 

SPINE X and MetaSSPred on N295 dataset are 14.0%, 15.3% and 4.9% respectively. Therefore, 

we may conclude that MetaSSPred is a more balanced secondary structure predictor compared to 

SPINE X.   

5.2 Scope for Further Improvement 

We have observed that though our MetaSSPred gives more balanced SSP accuracies across three 

secondary structure classes, overall accuracies of MetaSSPred on different datasets were not 

significantly different from those of SPINE X. We suggest following measures to improve further 

the over all accuracy of SSP without compromising the balance achieved here: 

 Use of boosting while training the SVMs. Boosting is simply testing the training set on 

the model and finding the data points, where the model fails to predict correctly and then 

adding those data points repeatedly to the training set and retraining the model. This 

process continues untill the test error becomes constant or does not reduce further.  
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 Using consensus secondary structure instead of DSSP assignment. Since different 

assigning methods assign SS based on differenrt factors, overall error in assignment 

should be lower. Some notable SS assignment methods are KAKSI [138], STRIDE [139], 

P-SEA [140], etc.  

  It is also a good idea to further investigate the efficacy of the feature sets bigram and 

monograms utilizing the power of boosting together.  
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