2,775 research outputs found

    Blue horizontal branch stars in the Sloan Digital Sky Survey: II. Kinematics of the Galactic halo

    Full text link
    We carry out a maximum-likelihood kinematic analysis of a sample of 1170 blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey presented in Sirko et al. (2003) (Paper I). Monte Carlo simulations and resampling show that the results are robust to distance and velocity errors at least as large as the estimated errors from Paper I. The best-fit velocities of the Sun (circular) and halo (rotational) are 245.9 +/- 13.5 km/s and 23.8 +/- 20.1 km/s but are strongly covariant, so that v_0 - v_halo = 222.1 +/- 7.7 km/s. If one adopts standard values for the local standard of rest and solar motion, then the halo scarcely rotates. The velocity ellipsoid inferred for our sample is much more isotropic [(sigma_r,sigma_theta,sigma_phi) = (101.4 +/- 2.8, 97.7 +/- 16.4, 107.4 +/- 16.6) km/s] than that of halo stars in the solar neighborhood, in agreement with a recent study of the distant halo by Sommer-Larsen et al. (1997). The line-of-sight velocity distribution of the entire sample, corrected for the Sun's motion, is accurately gaussian with a dispersion of 101.6 +/- 3.0 km/s.Comment: 23 pages including 4 figures, 1 color; submitted to A

    Rods Near Curved Surfaces and in Curved Boxes

    Full text link
    We consider an ideal gas of infinitely rigid rods near a perfectly repulsive wall, and show that the interfacial tension of a surface with rods on one side is lower when the surface bends towards the rods. Surprisingly we find that rods on both sides of surfaces also lower the energy when the surface bends. We compute the partition functions of rods confined to spherical and cylindrical open shells, and conclude that spherical shells repel rods, whereas cylindrical shells (for thickness of the shell on the order of the rod-length) attract them. The role of flexibility is investigated by considering chains composed of two rigid segments.Comment: 39 pages including figures and tables. 12 eps figures. LaTeX with REVTe

    Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    Full text link
    Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uniform liner, and 3D SPH with 30 discrete plasma jets. Two dimensional slices of the pressure show that the discrete jet SPH case evolves towards a profile that is almost indistinguishable from the SPH case with a uniform liner, showing that non-uniformities due to discrete jets are smeared out by late stages of the implosion. Liner formation and implosion on vacuum was also shown to be robust to Rayleigh-Taylor instability growth. Interparticle mixing for a liner imploding on vacuum was investigated. The mixing rate was very small until after peak compression for the 30 jet simulation.Comment: 28 pages, 16 figures, submitted to Physics of Plasmas (2012

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    SPH with the multiple boundary tangent method

    Get PDF
    In this article, we present an improved solid boundary treatment formulation for the smoothed particle hydrodynamics (SPH) method. Benchmark simulations using previously reported boundary treatments can suffer from particle penetration and may produce results that numerically blow up near solid boundaries. As well, current SPH boundary approaches do not properly treat curved boundaries in complicated flow domains. These drawbacks have been remedied in a new boundary treatment method presented in this article, called the multiple boundary tangent (MBT) approach. In this article we present two important benchmark problems to validate the developed algorithm and show that the multiple boundary tangent treatment produces results that agree with known numerical and experimental solutions. The two benchmark problems chosen are the lid-driven cavity problem, and flow over a cylinder. The SPH solutions using the MBT approach and the results from literature are in very good agreement. These solutions involved solid boundaries, but the approach presented herein should be extendable to time-evolving, free-surface boundaries

    Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    Full text link
    We present an implementation of the Schwarzschild orbit superposition method which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc--bulge--halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angular momenta, covering both slow- and fast-rotator classes. We then attempt to create models of strongly barred disc galaxies, using an analytic three-component potential, and find that it is not possible to make a stable dynamically self-consistent model for this density profile. Finally, we take snapshots of two N-body simulations of barred disc galaxies embedded in nearly-spherical haloes, and construct equilibrium models using only information on the density profile of the snapshots. We demonstrate that such reconstructed models are in near-stationary state, in contrast with the original N-body simulations, one of which displayed significant secular evolution.Comment: 15 pages, 9 figures; MNRAS, 450, 2842. The software is available at http://td.lpi.ru/~eugvas/smile

    Curvature effects on the surface thickness and tension at the free interface of 4^4He systems

    Full text link
    The thickness WW and the surface energy σA\sigma_A at the free interface of superfluid 4^4He are studied. Results of calculations carried out by using density functionals for cylindrical and spherical systems are presented in a unified way, including a comparison with the behavior of planar slabs. It is found that for large species WW is independent of the geometry. The obtained values of WW are compared with prior theoretical results and experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior of σA\sigma_A and WσAW \sigma_A exhibit overshoots similar to that found previously for the central density, the trend of these observables towards their asymptotic values is examined.Comment: 35 pages, TeX, 5 figures, definitive versio

    Dynamical bunching and density peaks in expanding Coulomb clouds

    Full text link
    Expansion dynamics of single-species, non-neutral clouds, such as electron bunches used in ultrafast electron microscopy, show novel behavior due to high acceleration of particles in the cloud interior. This often leads to electron bunching and dynamical formation of a density shock in the outer regions of the bunch. We develop analytic fluid models to capture these effects, and the analytic predictions are validated by PIC and N-particle simulations. In the space-charge dominated regime, two and three dimensional systems with Gaussian initial densities show bunching and a strong shock response, while one dimensional systems do not; moreover these effects can be tuned using the initial particle density profile and velocity chirp.Comment: 16 pages, 6 figures(spread over 18 png files); No changes to the text --- however I had mis-spelled Chong-Yu Ruan's first name in the metadata. (It was originally Chung-Yu). This typo has been addresse
    corecore