468 research outputs found

    SMART-KG: Hybrid Shipping for SPARQL Querying on the Web

    Get PDF
    While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL) querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such open, decentralized KGs is often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pattern Fragments (TPF) attempt to tackle the problem of availability by pushing query processing workload to the client side, but suffer from unnecessary transfer of irrelevant data on complex queries with large intermediate results. In this paper we present smart-KG, a novel approach to share the load between servers and clients, while significantly reducing data transfer volume, by combining TPF with shipping compressed KG partitions. Our evaluations show that outperforms state-of-the-art client-side solutions and increases server-side availability towards more cost-effective and balanced hosting of open and decentralized KGs.Series: Working Papers on Information Systems, Information Business and Operation

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    PFed: Recommending Plausible Federated SPARQL Queries

    Get PDF
    International audienceFederated SPARQL queries allow to query multiple inter-linked datasets hosted by remote SPARQL endpoints. However, finding federated queries over a growing number of datasets is challenging. In this paper, we propose PFed, an approach to recommend plausible fed-erated queries based on real query logs of different datasets. The problem is not to find similar federated queries, but plausible complementary queries over different datasets. Starting with a real SPARQL query from a given log, PFed stretches the query with real queries from different logs. To prune the research space, PFed proposes semantic summary to prune the query logs. Experimental results with real logs of DBpedia and SWDF demonstrate that PFed is able to prune drastically the logs and recommend plausible federated queries

    Sextant: Visualizing time-evolving linked geospatial data

    Get PDF
    The linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone of large scale open data publication efforts in many sectors of the economy (e.g., the public sector, the Earth Observation sector). Although there has been some work on the representation and querying of linked geospatial data that change over time, to the best of our knowledge, there is currently no tool that offers spatio-temporal visualization of such data. This is in contrast with the existence of many tools for the visualization of the temporal evolution of geospatial data in the GIS area. In this article, we present Sextant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of “temporally-enriched” thematic maps which are produced by combining different sources of such data. We present the architecture of Sextant, give examples of its use and present applications in which we have deployed it

    SMART-KG: Hybrid Shipping for SPARQL Querying on the Web

    Get PDF
    While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL) querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such open, decentralized KGs is often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pattern Fragments (TPF) attempt to tackle the problem of availability by pushing query processing workload to the client side, but suffer from unnecessary transfer of irrelevant data on complex queries with large intermediate results. In this paper we present smart-KG, a novel approach to share the load between servers and clients, while significantly reducing data transfer volume, by combining TPF with shipping compressed KG partitions. Our evaluations show that smart-KG outperforms state-of-the-art client-side solutions and increases server-side availability towards more cost-effective and balanced hosting of open and decentralized KGs

    Linked Data based Health Information Representation, Visualization and Retrieval System on the Semantic Web

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.To better facilitate health information dissemination, using flexible ways to represent, query and visualize health data becomes increasingly important. Semantic Web technologies, which provide a common framework by allowing data to be shared and reused between applications, can be applied to the management of health data. Linked open data - a new semantic web standard to publish and link heterogonous data- allows not only human, but also machine to brows data in unlimited way. Through a use case of world health organization HIV data of sub Saharan Africa - which is severely affected by HIV epidemic, this thesis built a linked data based health information representation, querying and visualization system. All the data was represented with RDF, by interlinking it with other related datasets, which are already on the cloud. Over all, the system have more than 21,000 triples with a SPARQL endpoint; where users can download and use the data and – a SPARQL query interface where users can put different type of query and retrieve the result. Additionally, It has also a visualization interface where users can visualize the SPARQL result with a tool of their preference. For users who are not familiar with SPARQL queries, they can use the linked data search engine interface to search and browse the data. From this system we can depict that current linked open data technologies have a big potential to represent heterogonous health data in a flexible and reusable manner and they can serve in intelligent queries, which can support decision-making. However, in order to get the best from these technologies, improvements are needed both at the level of triple stores performance and domain-specific ontological vocabularies

    Virtual Knowledge Graphs: An Overview of Systems and Use Cases

    Get PDF
    In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions

    Computer-language based data prefetching techniques

    Get PDF
    Data prefetching has long been used as a technique to improve access times to persistent data. It is based on retrieving data records from persistent storage to main memory before the records are needed. Data prefetching has been applied to a wide variety of persistent storage systems, from file systems to Relational Database Management Systems and NoSQL databases, with the aim of reducing access times to the data maintained by the system and thus improve the execution times of the applications using this data. However, most existing solutions to data prefetching have been based on information that can be retrieved from the storage system itself, whether in the form of heuristics based on the data schema or data access patterns detected by monitoring access to the system. There are multiple disadvantages of these approaches in terms of the rigidity of the heuristics they use, the accuracy of the predictions they make and / or the time they need to make these predictions, a process often performed while the applications are accessing the data and causing considerable overhead. In light of the above, this thesis proposes two novel approaches to data prefetching based on predictions made by analyzing the instructions and statements of the computer languages used to access persistent data. The proposed approaches take into consideration how the data is accessed by the higher-level applications, make accurate predictions and are performed without causing any additional overhead. The first of the proposed approaches aims at analyzing instructions of applications written in object-oriented languages in order to prefetch data from Persistent Object Stores. The approach is based on static code analysis that is done prior to the application execution and hence does not add any overhead. It also includes various strategies to deal with cases that require runtime information unavailable prior to the execution of the application. We integrate this analysis approach into an existing Persistent Object Store and run a series of extensive experiments to measure the improvement obtained by prefetching the objects predicted by the approach. The second approach analyzes statements and historic logs of the declarative query language SPARQL in order to prefetch data from RDF Triplestores. The approach measures two types of similarity between SPARQL queries in order to detect recurring query patterns in the historic logs. Afterwards, it uses the detected patterns to predict subsequent queries and launch them before they are requested to prefetch the data needed by them. Our evaluation of the proposed approach shows that it high-accuracy prediction and can achieve a high cache hit rate when caching the results of the predicted queries.Precargar datos ha sido una de las técnicas más comunes para mejorar los tiempos de acceso a datos persistentes. Esta técnica se basa en predecir los registros de datos que se van a acceder en el futuro y cargarlos del almacenimiento persistente a la memoria con antelación a su uso. Precargar datos ha sido aplicado en multitud de sistemas de almacenimiento persistente, desde sistemas de ficheros a bases de datos relacionales y NoSQL, con el objetivo de reducir los tiempos de acceso a los datos y por lo tanto mejorar los tiempos de ejecución de las aplicaciones que usan estos datos. Sin embargo, la mayoría de los enfoques existentes utilizan predicciones basadas en información que se encuentra dentro del mismo sistema de almacenimiento, ya sea en forma de heurísticas basadas en el esquema de los datos o patrones de acceso a los datos generados mediante la monitorización del acceso al sistema. Estos enfoques presentan varias desventajas en cuanto a la rigidez de las heurísticas usadas, la precisión de las predicciones generadas y el tiempo que necesitan para generar estas predicciones, un proceso que se realiza con frecuencia mientras las aplicaciones acceden a los datos y que puede tener efectos negativos en el tiempo de ejecución de estas aplicaciones. En vista de lo anterior, esta tesis presenta dos enfoques novedosos para precargar datos basados en predicciones generadas por el análisis de las instrucciones y sentencias del lenguaje informático usado para acceder a los datos persistentes. Los enfoques propuestos toman en consideración cómo las aplicaciones acceden a los datos, generan predicciones precisas y mejoran el rendimiento de las aplicaciones sin causar ningún efecto negativo. El primer enfoque analiza las instrucciones de applicaciones escritas en lenguajes de programación orientados a objetos con el fin de precargar datos de almacenes de objetos persistentes. El enfoque emplea análisis estático de código hecho antes de la ejecución de las aplicaciones, y por lo tanto no afecta negativamente el rendimiento de las mismas. El enfoque también incluye varias estrategias para tratar casos que requieren información de runtime no disponible antes de ejecutar las aplicaciones. Además, integramos este enfoque en un almacén de objetos persistentes y ejecutamos una serie extensa de experimentos para medir la mejora de rendimiento que se puede obtener utilizando el enfoque. Por otro lado, el segundo enfoque analiza las sentencias y logs del lenguaje declarativo de consultas SPARQL para precargar datos de triplestores de RDF. Este enfoque aplica dos medidas para calcular la similtud entre las consultas del lenguaje SPARQL con el objetivo de detectar patrones recurrentes en los logs históricos. Posteriormente, el enfoque utiliza los patrones detectados para predecir las consultas siguientes y precargar con antelación los datos que necesitan. Nuestra evaluación muestra que este enfoque produce predicciones de alta precisión y puede lograr un alto índice de aciertos cuando los resultados de las consultas predichas se guardan en el caché.Postprint (published version

    The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    Get PDF
    BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore