

SMART-KG:	Hybrid	Shipping	for	SPARQL	Querying	on	the	Web	

Amr	Azzam	(WU)

Javier	D.	Fernández	(WU,	Roche)

Maribel	Acosta	(KIT)	

Martin	Beno	(WU)	

Axel Polleres (WU)

Note: This is a pre-print for a paper accepted at The Web Conference 2020. Please cite as follows:

Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres. SMART-
KG: Hybrid shipping for SPARQL querying on the web. In The Web Conference 2020,
Taipei,Taiwan, 2020.

Arbeitspapiere zum Tätigkeitsfeld
Informationsverarbeitung, Informationswirtschaft und Prozessmanagement
Working Papers on Information Systems, Information Business and Operations

Nr./No. 01/2020
ISSN: 2518-6809
URL: http://epub.wu.ac.at/view/p_series/S1/

Herausgeber / Editor:
Department für Informationsverarbeitung und Prozessmanagement
Wirtschaftsuniversität Wien · Welthandelsplatz 1 · 1020 Wien
Department of Information Systems and Operations · Vienna University of
Economics and Business · Welthandelsplatz 1 · 1020 Vienna

Note: This is a pre-print for a paper accepted at The Web Conference 2020. Please cite as follows:

Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres. SMART-
KG: Hybrid shipping for SPARQL querying on the web. In The Web Conference 2020,
Taipei,Taiwan, 2020.

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web
Amr Azzam

Vienna University of Economics and
Business
Austria

amr.azzam@wu.ac.at

Javier D. Fernández
Vienna University of Economics and

Business
Austria

jfernand@wu.ac.at

Maribel Acosta
Karlsruhe Institute of Technology

Germany
maribel.acosta@kit.edu

Martin Beno
Vienna University of Economics and

Business
Austria

martin.beno@wu.ac.at

Axel Polleres
Vienna University of Economics and

Business
Austria

axel.polleres@wu.ac.at

ABSTRACT
While Linked Data (LD) provides standards for publishing (RDF)
and (SPARQL) querying Knowledge Graphs (KGs) on the Web,
serving, accessing and processing such open, decentralized KGs is
often practically impossible, as query timeouts on publicly available
SPARQL endpoints show. Alternative solutions such as Triple Pat-
tern Fragments (TPF) attempt to tackle the problem of availability
by pushing query processing workload to the client side, but su�er
from unnecessary transfer of irrelevant data on complex queries
with large intermediate results. In this paper we present smart-KG,
a novel approach to share the load between servers and clients,
while signi�cantly reducing data transfer volume, by combining
TPF with shipping compressed KG partitions. Our evaluations show
that smart-KG outperforms state-of-the-art client-side solutions
and increases server-side availability towards more cost-e�ective
and balanced hosting of open and decentralized KGs.

ACM Reference Format:
Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel
Polleres. 2020. SMART-KG: Hybrid Shipping for SPARQL Querying on
the Web. In Proceedings of The Web Conference 2020 (accepted for publica-
tion). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Knowledge Graphs (KGs) have emerged as a promising data man-
agement foundation to provide scalable knowledge models that
represent facts about entities as well as relations among these [12].
The adoption of the KG concept o�ers the potential for building
innovative products and services that create new value in terms
of commercial applications by the likes of Google, Microsoft and
Bloomberg, to name but a few. Also, speci�c domains and initiatives,
for instance, in biomedicine already make extensive use of KGs for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the integration of diverse datasets in �elds such as neurosciences,
cancer research and drug discovery [29].

Openly available examples of interlinked KGs include DBpe-
dia, Yago, and Wikidata, and indeed many openly available KGs
are published now following the Linked Data [11] principles, us-
ing the semi-structured RDF data model and supporting query
access through the SPARQL query language. However, there are
still serious barriers to consume and use open RDF KGs published
on the web. Indeed, concurrently querying highly demanded RDF
graphs [22] such as DBpedia with multiple clients still imposes a
signi�cant bottleneck: each RDF graph is, at best, exposing its own
SPARQL endpoint, but while RDF stores o�er server-side solutions
that have good performance in single queries, they are expensive to
host and hard to maintain when large KGs are served or concurrent
execution of complex queries is allowed to multiple users [15, 40].
This leads to well-known problems of Linked Data availability and
resource limits [38]. As an example, SPARQLES [42], a service mon-
itoring 565 SPARQL endpoints, shows that 64% of them are unavail-
able (as of October 2019). To mitigate the shortcoming of SPARQL
endpoints, solutions to shift the server workload to the clients have
been proposed [25, 43]. These solutions allow for cost-e�ective
hosting of large KGs by performing most of the query processing
at the client, however, at the cost of signi�cant performance degra-
dation for SPARQL queries that require the evaluation of several
operators, and potentially shipping a large number of intermediate
results that do not contribute to the �nal query answer.

In order to address these current limitations, we propose an
approach relying on – rather than querying monolithic graphs –
serving compressed partitions for KGs in a modular fashion, re-
ducing drastically the need for redundant data transfers in shared
server- and client-side query processing. In particular, we propose a
novel client-server query paradigm, smart-KG, that aims at increas-
ing server availability while achieving competitive performance. In
our approach, smart servers maintain compressed and queryable
graph partitions, that is, KG “slices” that can be shipped, cached and
be locally queried by smart clients. We propose a graph partition-
ing technique based on Characteristic Sets [21, 37], that exploits
the structure of RDF graphs to group entities described with the
same sets of predicates. Furthermore, the smart clients implement

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

query optimization and execution techniques to handle combina-
tions of KG partitions and intermediate results of triple queries
issued directly to the server, to evaluate SPARQL queries.

Our main contributions are:

• A novel paradigm, smart-KG, to distribute the evaluation of
SPARQL queries among clients and servers by leveraging
the transfer of compressed KG partitions.

• A KG partition technique designed for graphs with skewed
predicate distributions to trade-o� the number of partitions
to be maintained and transferred.

• Client-side query optimization and execution techniques
that combine KG partition retrieval and intermediate results
that ensure correct query evaluation.

• An empirical evaluation of smart-KG on synthetic and real-
world KGs and queries, signi�cantly outperforming state-of-
the art on server- and client-side SPARQL query processing.

The remainder of this paper is organized as follows. In Section 2,
we analyse the related work. Section 3 introduces preliminaries
concepts used in this work. We present our smart-KG solution in
Section 4. An empirical evaluation and results are discussed in
Section 5. In Section 6, we conclude and outline future work.

2 RELATEDWORK
The execution of SPARQL queries over remote KGs typically rely on
architectures of clients (consuming SPARQL queries) and servers
(exposing RDF graphs via SPARQL). In client-server environments,
query workload distribution has been classi�ed into three main
types of shipping strategies [20]. Query shipping consists in pro-
cessing query execution completely at the server and shipping only
results back to the client. Data shipping exploits the processing
capacity of clients (in the extreme case, meaning to simply serve
dataset dumps for download) and thereby reduce the workload
of servers. Finally, in hybrid shipping strategies, the execution of
sub-queries and operators is distributed among clients and servers
according to, e.g., the complexity of the queries and the server work-
load. In the following, we analyse existing solutions for processing
SPARQL queries based on the client-server strategy implemented.
Query Shipping: SPARQLEndpoints. RDFKGs are traditionally
exposed via SPARQL endpoints, i.e., APIs that serve SPARQL queries
over the HTTP protocol [17]. Note that SPARQL endpoints often
run on top of RDF triples stores (e.g. Virtuoso [16] or Stardog [5]).

SPARQL query processing over endpoints provides relatively
high performance under low loads. However, with concurrent
clients and query complexity, endpoints face overloads and large de-
lays that lead to well-known problems of low availability and poor
performance. Thus, most SPARQL endpoints turn into resource-
hungry services, too costly to host and maintain for many potential
data providers. Latest studies on public SPARQL endpoints [15, 38]
con�rm these issues and show that at least half of the endpoints do
not answer at all, while others impose signi�cant restrictions such
as refusing complex queries or limiting result sizes [10].
Data Shipping: Client-side SPARQL. To overcome the low avail-
ability problem of SPARQL endpoints, di�erent client-side solutions
have been proposed [25, 26]. These approaches perform query exe-
cution by traversing the KG structure, dereferencing URI-identi�ed

entities appearing within the query and assuming that these – fol-
lowing the Linked Data Principles – allow to retrieve RDF data
that can be processed locally. Unfortunately, for most non-trivial
queries (e.g. patterns only including textual literals) an evaluation
on the web is unfeasible [28]. Likewise, there are no established best
practices on which parts of an enclosing dataset should be down-
loadable by dereferencing URIs, ranging from non-dereferenceable
URIs in many datasets to having to download full KG dumps.
Hybrid Shipping. To overcome the de�ciencies of query and data
shipping, di�erent hybrid shipping approaches for SPARQL query
evaluation have been proposed.

Triple Pattern Fragment (TPF) [43] servers only supports the
evaluation of triple patterns. Then, TPF clients retrieves the interme-
diate results (typically paginated) of each triple pattern in the query
and joins them to compute the �nal query results. While experimen-
tal results [30, 43] show that TPF is able to achieve higher server
availability than traditional server-centric SPARQL endpoints, this
typically comes at the expense of a signi�cant increase in the net-
work tra�c due to considerable overheads from HTTP requests and
data transfers. In particular, non-selective queries can be penalized
by a high number of irrelevant intermediate results transferred, and
costly client-side join operations. In contrast to TPF, our proposed
approach is able to reduce the amount of data transferred from the
server to the client which, in turn, speeds up query execution.

More recently, di�erent approaches inspect a more balanced
client-server load distribution. Bindings-Restricted Triple Pattern
Fragments [27] (brTPF) gives a slight boost to the performance of
TPF by attaching intermediate results to triple pattern requests
along with distributing the join between the client and the server
using the bind join strategy. Thus, brTPF reduces the number of
HTTP requests and data received with respect to the original TPF
solution [27]. However, the number of requests is still relatively
high in addition to the attached intermediate results, combined
with the need to transfer these intermediate results verbatim.

Finally, SaGe [36] is a SPARQL query engine tailored to address
the undesirable starvation of simple queries waiting for long run-
ning queries to release the server resources. To this aim, SaGe pro-
poses a preemptive execution model. SaGe introduces a scheduling
mechanism that allocates a �xed time executing quantum. Once a
query is executed for that given time period, the query is suspended
and another query in processed. To resume queries, SaGe ships to
the client the state of the query execution. Experiments show that
the preemption mechanism enhanced average workload comple-
tion time per client. Yet, SaGe faces excessive number of requests,
query context switching and potential client-side overheads.

Our approach, smart-KG, proposes a novel hybrid strategy to pro-
vide a more balanced client/server distribution. As opposed to prior
solutions such as TPF, smart-KG does not rely solely on shipping in-
termediate results, but rather on shipping modular, query-relevant
partitions of a KG that can be directly queried locally by a client.

3 PRELIMINARIES
RDF and SPARQL. The Resource Description Framework (RDF)
[41] is a graph-based data model to represent information about
resources and their relationships in the form of triples (subject ,
predicate , object) 2 (I [B) ⇥ I ⇥ (I [B [L), where I , B, L are

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan

Query
Results

Server Response

Client Request
Query Parser

SMART-KG Client

Query Decomposer

Query Planner & Optimizer

Query Executor

Result Serializer

Server OperatorsStorage Module

Family Catalog

SMART-KG Server

Family Generator

HDT Converter

Family Grouping
Family Pruning

Partition Generator
RDF KG !

KG Partitions

!"#		 				 		!%					…				# !'		#

Cache Module

Family Catalog

KG Partitions

!(# 			 				 	!)	#

SPARQL
Query

Figure 1: Overall architecture for the smart-KG client and server.

in�nite, mutually disjoint sets of IRIs, blank nodes, and literals,
respectively [23]. A �nite set of such triples G is called an RDF
graph. RDF graphs can be queried using the SPARQL [24] query
language, which is based on graph pattern matching. The core
query atom of SPARQL is a triple pattern tp from (I [B [V) ⇥ (I [
V)⇥ (I [B[L[V)where apart from RDF terms also variables from
a setV of variables, disjoint from the aforementioned I , B and L, are
allowed. Basic Graph Patterns (BGPs), i.e. sets of triple patterns, can
also be understood as conjunctive queries overG. The evaluation
of a BGP Q over an RDF graphG , denoted JQKG = �, is de�ned as
a set of solution mappings, s.t. each � 2 � denotes a substitution
from the variables in Q (�ar (Q)) to I [B [L such that �(Q) ✓ G.
For the purposes of this paper, we focus on BGPs and leave out
other patterns, which all build on top of BGPs as SPARQL’s core
retrieval functionality [13].
Family-Based Partitioning of RDF Graphs. RDF is a semi-
structured data model which typically does not prescribe a �xed
schema. In theory, this can lead to RDF graphs, where the set of
predicates used to describe subjects and their relationships may
vary greatly. However, in real-world RDF graphs, there typically is
an inherent structure as there exist repetitions whenever subjects
of the same kind are described in the same way. For instance, pred-
icates for songs (e.g. duration, album, etc.) are di�erent than those
used to describe persons (e.g. birthday, nationality, etc.) in DBpedia,
and the same combinations of predicates are shared across many
subjects of the same type. Neumann and Moerkotte [21, 37] capture
these structures with the notion of characteristic sets, also called
predicate families [18] (or just families hereinafter). LetG be an RDF
graph, and SG , PG ,OG be the sets of subjects, predicates and objects
in G respectively. We de�ne the (predicate) family, of a subject s ,
F (s) as the set of predicates related to the subject s , that is:

F (s) = {p | 9o 2 OG : (s,p,o) 2 G} (1)

We denote as F (G), or just F , to the set of di�erent predicate
families in G, as follows:

F (G) = {F (x) | x 2 SG } (2)

For simplicity, we name the di�erent families inG as F1, F2, ..., Fm ,
wherem = |F (G)|. In this paper, we use families as a means to de�ne
a graph partition, i.e., we consider – as the basis for our approach –

a disjoint set of partitions that is a cover1 G = {G1,G2, · · · ,Gm }
of G based on its families, where each partition Gi is de�ned as:

Gi = {(s,p,o) 2 G | F (s) = Fi } (3)

Families provide structure-based means of partitioning an RDF
graph used for (i) join and cardinality estimation [21, 37] for SPARQL
optimization, (ii) RDF compression [31], and (iii) building indexes2
to speed up SPARQL queries [35]. To the best of our knowledge,
this paper is the �rst work using families in shipping strategies.
RDF HDT Compression. HDT [19] is a well-known compressed
format for RDF graphs, which permits e�cient triple pattern re-
trieval over the compressed data. HDT has three main components:
(i) the dictionary maps RDF terms to IDs, such that (ii) the triples
component encodes the resulting ID-graph (i.e. a graph of ID-triples
after replacing RDF terms by their corresponding dictionary IDs)
as a set of adjacency lists, one per di�erent subject in the graph. In
addition, (iii) the header provides descriptive metadata (publishing
information, basic statistics, etc.) about the RDF graph. Both the
HDT dictionary and triples are self-indexed to support e�cient
retrieval operations. The dictionary implements pre�x-based Front-
Coding compression [34], which allows for high compression ratios
and e�cient string-to-id and id-to-string operations. Triples are
indexed by subject (in SPO order) using bitmaps [19].

RDF graphs compressed with HDT can be queried loaded in
memory or mapped from disk without prior decompression. HDT
exhibits competitive performance for scan queries as well as triple
pattern execution when the subject is provided. In addition, HDT
compressed graphs are typically enriched with a companion HDT
index �le [33]. This additional �le includes two inverted indexes on
the ID-triples (inOPS and PSO order) to achieve high performance
for resolving all SPARQL triple patterns.

4 SMART-KG: DESIGN AND OVERVIEW
Figure 1 depicts the architecture of our approach: smart-KG de�nes
client and server operations able to combine the shipping of par-
titions based on RDF families with the shipping of the results of
evaluating triple patterns to provide an e�cient query evaluation.

Smart-KG servers generate families and corresponding partitions
of a given knowledge graph (KG). The resulting KG partitions are

1i.e, G = G1 [G2 [· · · [Gm , where 8i, j Gi \G j = ;
2Meimaris et al. [35] extended the notion of characteristic sets also to object nodes

The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

materialized (in HDT) in the storage module along with a family
catalog that contains metadata about the structure of the partitions.
In addition, smart-KG servers also support operators to execute
triple pattern queries and to transfer partitions to smart-KG clients.

Smart-KG clients are able to execute SPARQL queries by devis-
ing query plans that combine the shipping of triple pattern results
and partitions. The query decomposition, planning, and optimiza-
tion techniques implemented by the smart-KG client exploit the
structure of KG partitions to reduce query execution time.

4.1 SMART-KG Server
The smart-KG server, upon loading an RDF graph, supports access
to graph partitions and the evaluation of triple patterns using TPF.
To this end, the server implements a partition generator taking into
consideration the families from the graph plus retrieval operations.

4.1.1 Partition Generator. The smart-KG server, upon loading a
graphG , could decompose it into partitionsG1, . . .Gm per family, as
described in Eq. (3) and convert those partitions to HDT. In practice,
however, the number of partitions can be relatively large for highly
semi-structured RDF graphs. Thus, we introduce the concept of
predicate-restricted families, where some particular predicates are
not considered for the creation of families.
Predicate-restricted families. Let us consider a restricted set of
predicates, P 0G ✓ PG . The predicate-restricted family of a subject s
w.r.t. P 0G , denoted F

0(s), is de�ned as follows:

F
0(s) = {p0 2 P 0G | 9o 2 OG : (s,p0,o) 2 G} (4)

Analogously, we denote as F 0(G) = {F 01, F 02, · · · , F 0m }, or just
F
0, to the set of di�erent predicate-restricted families for G w.r.t.

PG , wherem0 = |F 0(G)|. These families correspond to a set G0 =
{G 01,G 02, . . . ,G 0m } of disjoint partitions of a subgraph ofG based on
the P 0G -restricted families, with

G
0
i = {(s,p,o) 2 G | F 0(s) = F

0
i } (5)

Note that, however G0 is no longer a complete cover of G, but
the graph G

0 =
–
G
0
i only contains the “projection” of G to P

0
G .

Serving predicate restricted families allows a smart-KG publisher
to select P 0G depending on (i) the cardinality of the predicates (i.e.
the number of occurrences in the graph) and (ii) the importance of
predicates (and combinations) in actual query workloads. We will
describe a concrete method to pick P 0G based on the cardinality of
predicates in Section 4.1.3.

4.1.2 Family Grouping. Although the use of restricted families
can control the number of generated families and avoid generating
rarely used families to some extent, the number and volume of par-
titions are still determined further by other distribution features of
the data. In practice, many RDF graphs are skewed in the sense that
there exist “dominant” families with large corresponding partitions,
as opposed to several small, very similar families of much smaller
sizes. This phenomenon arises due to the semi-structured nature of
RDF, where attributes may vary across entities of the same type.

Thus, besides using predicate-restricted families, our partition
shipping strategy further drastically bene�ts from merging (i.e.
grouping) similar families into a single partition. For instance, all dis-
joint families containing a certain set of predicates e.g. F1={foaf:name,

foaf:age, dct:title} and F2={foaf:name, foaf:age, dbp:birthdate}
can be merged into a single family F {1,2}={foaf:name, foaf:age}.
The intuition behind merging such families covering overlapping
predicates is that these overlapping predicate subsetsmay also occur
as predicate families in query patterns more commonly. Therefore,
instead of shipping the union of partitions contributing to a query,
only the partition corresponding to the smallest merged families
needs to be shipped.

Formally, for an index set I 2 2{1, · · · ,m0 } , we de�ne the merge
F
0
I of the set of families {F 0j | j 2 I } as follows3:

F
0
I =

Ÿ
i 2I F

0
i (6)

Analogously, the corresponding merged partitionG 0I =
–
i 2I G 0i

can also be de�ned as:

G
0
I = {(s,p,o) 2 G | F (s) ✓ F (I)} (7)

Following the example, if G 01 and G
0
2 are grouped into G

0
{1,2} ,

then for evaluating a query that requires the predicates foaf:name
and foaf:age, only G 0{1,2} needs to be shipped, instead of G 01 [G 02.

Following similar premises, Gubichev and Neumann [21] es-
tablish a hierarchy of characteristic sets, in each step removing
one element of the set and keeping only the one that minimizes
the query costs (i.e. cost can be understood as cardinality, in this
context). For instance, in the previous example, the approach by Gu-
bichev andNeumannwill inspect all combinations of two predicates,
F
1
{1,2}={foaf:name, foaf:age}, F 2{1,2}={foaf:name, dct:title}, etc.,

to select the one with smallest cardinality, e.g. F 2{1,2} , for query
planning. We use a similar idea, but the main di�erences with the
previous work are that (i) we do not compute all predicate subsets
of a given family (this was used to estimate join costs [21]) but
only those subsets that represent merges, corresponding to non-
empty intersections with other families, and (ii) we keep all these
intersections in a map, irrespective of their cardinality.

To create this merged families map for all potentially non-empty
intersections of sub-families, we start from F

0(G) = {F 01, . . . F 0m },
and iteratively construct a partial map µ such that, given a set of
predicates f , µ(f) returns (whenever f corresponds to a non-empty
intersection) a set of indexes of all original families that contain sub-
jects contributing to f , as shown in Alg. 1.We initialize µ with F 0(G)
(lines 2–4), and then, iteratively, until µ does not change any more
(lines 5–13), create mappings (corresponding to a merged family)
collecting all indexes, for each non-empty intersection of families
(lines 9-12). If there already is a (merged) family corresponding to
the intersection found, i.e., f [� appears already in the domain
of µ (line 9), then also the corresponding index(es) are considered
(line 10) and the mapping is updated, otherwise, a new mapping
is created (line 12). Note that, as opposed to this pseudo-code, our
actual implementation is using a hashmap for the (merged) families
and avoids revisiting the same intersections repeatedly.

Then, µ(·) is used to compute the partitions served by the smart-KG
server, denoted Gser� , where G0 is replaced with a set of partitions
obtained from the merged families:

Gser� = {G 0µ(f) | f 2 dom(µ)} (8)

3Note that we consider the identity merge, i.e. F 0{j } = F 0j

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan

Algorithm 1: Family Grouping
Input :F 0(G) = {F 01, . . . F

0
m }, the set of di�erent (restricted) families.

Output : µ(·) a partial mapping from sets of predicates to index sets I 2 2{1, ··· ,m}
1 Initialize µ with the original families:
2 foreach f 2 F 0(G) do
3 µ(F 0i) {i }
4 repeat
5 µ0(·) µ(·)
6 foreach f 2 dom(µ) do
7 foreach � 2 dom(µ) do
8 if � \ f , ; then
9 if � \ f 2 dom(µ) then
10 µ(� \ f) µ(� \ f) [µ(�) [µ(f)
11 else
12 µ(� \ f) µ(�) [µ(f)
13 until µ , µ0;
14 return µ

Note that the partitions in Gser� are no longer non-overlap-
ping. However, the advantage of serving these merged partitions is
that the client can determine a unique minimal matching partition
among Gser� to answer a query using the mapping µ.

4.1.3 Family Pruning. Note that, in practice, it might be too expen-
sive to materialise partitions for all potential merges (intersections)
of all families inG . For instance, as we will show in our evaluation,
in the DBpedia graph, a naive merge would create +600k partially
very large families, which are unfeasible to serve. To this end, we
present a family pruning strategy for restricting the number of
materialised partitions, where we (i) restrict considered predicates
in P 0G based on their cardinality, (ii) avoid creation of small families
that deviate only slightly from other overlapping, “core” families,
and (iii) avoid materialisation of families over a certain size.
(i) Restrict predicates based on cardinality. The cardinality of
predicates can play a fundamental role in the number and size
of shipped partitions: �rstly, infrequent predicates can be scat-
tered through many di�erent families but, at the same time, the
overall size is limited and a TPF call for just triples with these in-
frequent predicates can easily bring all the information related to
the predicate without the need to transfer large intermediate re-
sults; secondly, frequent predicates (e.g. dbo:wikiPageExternalLink
in DBpedia) can potentially belong to most families, and unneces-
sary overload the size of each family, if not practically queried (e.g.
dbo:wikiPageLength) or selectivity/distribution of frequent predi-
cates is low/skewed (e.g. rdf:type) which could lead to the gener-
ation and transfer of large partitions. To address these issues we
use thresholds �l ,�h with 0 �l < �h 1, to delimit the minimum
and maximum percentage of triples per predicate, and de�ne P 0G
accordingly based on these thresholds as follows:

P
0
G = {p0 2 PG | �l

|(s,p0,o) 2 G |
|G | �h } (9)

Note that publishers might still consider to include particular
heavy hitters (e.g. rdf:type) which can be frequent in queries.While
we allow for this possibility, we consider as future work the ap-
plication of di�erent techniques (e.g. clustering) to select P 0G (and
thus families), e.g. by considering query logs.
(ii) Avoid the creation of small families. In order to address
issue (ii), we aim at considering only “core” families for the partition
merging process, i.e., we select predicate combinations (i.e, families)
that are used by a proportionally large number of subjects, above a

threshold �s . That is, we de�ne these core families as

F
0
core = {F 0i 2 F 0 |

|SG0i |
|SG | � �s } (10)

with the respective index set Icore = {i | F 0i 2 F 0core } and predicate
set P 0core = {p 2 F

0
i | F 0i 2 F

0
core }. Intuitively, these core families

represent the structured parts of the graph, i.e., star-shaped sub-
graphs where entities are described with the same attributes.
(iii) Avoid the creation of large families. Finally, we avoid the
materialisation of overly large (e.g. hundreds of millions of triples
in DBpedia) merged partitions GI with size GI above a threshold
�t , which limits the size of the materialised merged partitions.

In order to only take core families into account for the creation of
partitions, and limit merged families to sizes below �t , it is su�cient
to modify Equation (8) as follows:

Gser� =
8>>><
>>>:
G
0
µ(f)

�������
f 2 dom(µ) ^

µ(f) \ Icore , ; ^’
i2µ (f)

|G0i | �t

9>>>=
>>>;
[{G {i } |F 0i 2 F 0} (11)

In Equation (11), line 2 addresses issue (ii)4 and line 3 addresses
issue (iii)5. The last part ensures that, despite pruning, the non-
merged partitions of families in F

0 remain being served.
As, due to these pruning steps, no longer all of the partitions

corresponding to families in dom(µ) will be materialised in Gser� .
In practice, we de�ne another mapping function, µG , that allows to
directly map families from dom(µ) to “minimal” sets of matching
partitions in Gser� .6 That is, we build a mapping µG : dom(µ) 7!
22

{1,,m}
that maps a family f to a set of index sets {I1, . . . Ik }

representing (lists of) materialised matching partitions, i.e. where
µG (f) = {I | G 0I 2 G�ser� (f)}.7 In this case, G�ser� (f)} is de�ned
as follows: let Gser� (f) = {G 0I 2 Gser� | f ✓ µ

�1(I)} be all
materialised partitions matching a family f , then G�ser� (f) is the
�-minimal subset of Gser� (f) with � de�ned as: G 0I1 � G

0
I2 i�

µ
�1(I1) ⇢ µ

�1(I2). That is, the intuition is to pick the partitions that
are “subset-minimal with respect to their corresponding families”.

4.1.4 Server Operators. The smart-KG server materialises all par-
titions in Gser� into HDT �les, and provides operators to ship
partitions and their metadata based on µG , or to respond to TPF
requests. Overall, the following operations8 are provided:

• TPF(tp) to retrieve the answer for a triple pattern tp, i.e., the
smart-KG server returns the triples from G that match tp.

• TPFcard(tp) to retrieve the result cardinality of a triple pat-
tern (this is a standard TPF API function).

• retrievePartition(id) to retrieve a partition by id (we use ids
corresponding to partitions in Gser�).

• retrieveIDs(f) to retrieve the IDs of �-minimal partitions
matching a given family f (i.e., µG (f)), plus metadata with
descriptive statistics per ID (e.g, number of triples).

4since SG0i \ SG0j = ; for all base families F 0i , F
0
j 2 F 0, by construction it holds that

|SG0I | =
Õ
i2I |SG0I |5since |G0I | =

Õ
i2I |G0i |

6In practice, Alg. 1 computes the partitions Gser� along with µG in one go.
7For G0µ (f) 2 Gser� , i.e., if the resp. partition is materialised, then µG (f) = {µ(f)}.
8We assume that a server handles a single graph. For multiple graphs, the id of the
graph can be added as a parameter.

The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

SELECT ∗ WHERE {
? film dbo: starring ? actress . # tp1
?film foaf :name ?filmName . # tp2
? actress dbo:wikiPageExternalLink ? link . # tp3
? actress dbo: birthPlace ? city . # tp4
? actress foaf :gender "female"@en . # tp5
? city dbo:country ?country . } # tp6

(a) Select all actresses, their movies, and
birthplace information

?film

?filmName

?actress

db
o:s
tarr
ting

foaf:name

?city
?city

?country
dbo:country

?actress

“female”@en

?link

dbo
:ex
tern
alL
ink

foaf:gender

dbo:birthPlace

(b) Star-shaped query decomposition

tp5 tp4

tp3 tp1 tp2

tp6

SmartKG Server

Triple Pattern Evaluation

KG
Partition !"#

KG
Partition !$#

(c) Shipping plan based on the decomposition

Figure 2: Example of processing a SPARQL query with the smart-KG client.

• getPartitionMetadata() to retrieve the pruning parameters
used by the server (i.e., P 0core , �l , �h , �s , and �t).

As for the retrieveIDs(f) operation, it essentially scans dom(µG)
to determine the single (cardinality-wise) smallest f 0 ◆ f indom(µG)
and retrieves IDs corresponding to the index-sets µG (f 0). Note
that f 0 is uniquely determined, which can be proven by contradic-
tion: i.e. assume two cardinality-wise smallest f 01 , f

0
2 2 dom(µG)

with f
0
1 , f

0
2 and f ⇢ f

0
1 , f ⇢ f

0
2 ; then, also f ⇢ f

0
1 \ f

0
2 ,

where (by assumption f
0
1 , f

0
2) it holds that | f 01 \ f

0
2 | < | f 01 | or

| f 01 \ f
0
2 | < | f 02 |. However, by construction of µG , this also implies

that f 01 \ f
0
2 2 dom(µG), which contradicts the assumption.

4.2 SMART-KG Client
The smart-KG client (cf. Fig. 1) implements partition and triple
pattern shipping to e�ciently execute SPARQL queries over the
smart-KG server. The smart-KG client maintains a catalog with
metadata about the families available at a smart-KG server obtained
with the server operation getPartitionMetadata(). The input of the
client is a SPARQL query, which the query parser translates into
the corresponding SPARQL algebra expressions. Then, the query
decomposer splits the BGPs within the query into star-shaped sub-
queries around the same subject. Based on this decomposition, the
query optimizer implements heuristics to determine the order of
stars and triple patterns within the stars, and the shipping strate-
gies to evaluate them. The query executor evaluates the plan and
combines the results locally by joining the data retrieved from the
server. The results produced by the engine are translated by the re-
sults serializer into the format speci�ed by the user. The partitions
downloaded from the smart-KG server during query evaluation
can be stored in the family cache and reused for subsequent query
evaluations. In the following, we will describe the main smart-KG
client components: query decomposer, optimizer, and executor.

4.2.1 �ery Decomposer. First, smart-KG splits parsed Basic Graph
Patterns (BGPs) into stars as follows: given a BGP Q , with subjects
SQ , a decomposition Q = {Qs | s 2 SQ } ofQ is a set of star-shaped
BGPs Qs such that Q =

–
s 2SQ Qs and:

Qs = {tp 2 Q | tp = (s,p,o)} (12)

Analogous to graphs, we can also associate a family to each Qs :

F (Qs) = {p | 9o : (s,p,o) 2 Qs ,p 2 I } (13)

Given the SPARQL query in Fig. 2a, the BGP is decomposed
into Q = {Q?film,Q?actress,Q?city} around the three subjects (cf.

Figure 2b). Each of the star families F (Qs) that can be mapped to ex-
isting predicate families in dom(µG) on the server has a non-empty
answer. For example, Q?film = {(?film, dbo:starring, ?actress),
(?film, foaf:name, ?filmName)} has F (Q?film) = {dbo:starring,
foaf:name}; based on the decomposition Q, the smart-KG client’s
shipping-based query optimizer next has to devise a query plan.

4.2.2 Shipping-based�ery Planner & Optimizer. The smart-KG
client query planner devises plans where both triple pattern results
(using TPF) and partitions in Gser� are transferred from the server
to resolve the sub-queries in Q. To decide whether and for which
sub-queries to use triple pattern or partition shipping, and in which
order to execute them, the optimizer implements heuristics based
on the sub-queries in Q and the server’s partition metadata.
Partition Shipping (P-S). Shipping relevant partitions to evaluate
a star Qs 2 Q needs to take into consideration the materialized
partitions at the server. Since graph partitions are generated based
on the core families (cf. Section 4.1), only stars with F (Qs) ✓ P

0
core

can be fully evaluated by served partitions. Therefore, the optimizer
�rst partitions eachQs 2 Q into the disjoint setsQ 0s andQ 00s , where
Q
0
s = {(s,p,o) 2 Qs | p 2 P 0core }, i.e., the part of the star that can be

evaluated over the served partitions, whereas the remaining triple
patterns inQ 00s = Qs \Q 0s are delegated to TPF requests.9 Then, the
optimizer implements the following additional heuristics: partition
shipping is only followed if |Q 0s | > 1, as in practice, the transfer
of graph partitions to resolve a single triple patterns usually takes
longer than delegating to a TPF request directly. In this way, only
sub-queries Q 0s that require matching several predicates over the
graph are evaluated using a partition shipping strategy.
Triple Pattern Shipping (TP-S). Triple patterns tp delegated to
TPF will be evaluated using a TPF(tp) request to the server. This
involves the triples patterns in Q

00
s and Q 0s with |Q 0s | = 1.

The query optimizer, given Q and P 0G as input, devises a query
plan �Q , based on the described sub-decomposition into P-S and
TP-S patterns. It accordingly proceeds in two phases, �rst iterating
over each star Qs 2 Q to perform the partitioning into Q

0
s and

Q
00
s , additionally collecting the cardinality for each triple pattern

tpi 2 Qs using TPFcard() server requests. Then, the optimizer
devises sub-plans, forQ 0s andQ 00s that can be e�ciently executed, by
join ordering based on these cardinalities, using the construct Plan,
that comprises a pair of a left-linearly ordered query plan, along
with a shipping strategy. Join order is determined by the cardinality
of triple patterns, where smaller triple patterns are evaluated �rst.

9Note that Q 00s also includes triple patterns with predicate variables, i.e., p 2 V .

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan

Algorithm 2: Query Executor: e�alPlan
Input: Query plan �
Output: � the result set of executing �

1 if � = Plan(�s , P-S) then
2 Qs is the sub-query associated with �s
3 G⇤ = {�etPar tit ion(id) | id 2 r etr ie�eIds(F (Qs))}
4 � {�; }
5 for tpi 2 Ps do
6 � � Z

–
Gj 2G⇤ Jtpi KGj

7 else if � = Plan(�s , TP-S) then
8 � TPF(�s)
9 else
10 � is (�l Z �r)
11 � e�alPlan(�l) Z e�alPlan(�r)
12 return �

For each sub-query Qs , the optimizer creates a shipping-based sub-
plan �s which is added to the set of current subplans .

Following the running example, Figure 2c shows the shipping
strategies determined by the optimizer for each sub-plan. For in-
stance, for the sub-queryQ?actress, the optimizer created Plan((tp5 Z
tp4), P-S). Yet, the triple pattern tp6 in S?actress is evaluated using
a triple pattern shipping strategy as the optimizer determined that
the predicate dbo:wikiPageExternalLink does not belong to P 0G .

In the second phase, the optimizer combines the sub-plans that
share variables to build the �nal plan �Q . Again, the optimizer
uses a heuristic to determine join order based on selecting the
sub-plan �i containing the overall smallest (i.e., assumed most
selective) triple pattern from subplans �rst, and so on, iteratively
joining subplans to �Q . The resulting query plan �Q comprises
sub-plans annotated with the corresponding shipping strategy, and
join operators to be evaluated locally by the client.

4.2.3 �ery Executor. The function e�alPlan evaluates the plan
�Q by traversing the tree of sub-plans (cf. Alg. 2). The shipping
strategies are implemented by calling the respective smart-KG
server operators (cf. Sec. 4.1.4). Depending on the structure of the
sub-plans, the query executor distinguishes the following cases.
Case: (P-S) Sub-plans. P-S sub-plans are evaluated (cf. Alg. 2,
lines 1–6) by determining relevant served partition IDs for Q 0s ,
through calling retrie�eIds(F (Q 0s)), and retrieving each ID from
the server (line 3). The query executor evaluates the triple patterns
tpi against each such partition and merges the results using the
SPARQL algebra union operator (line 4). The intermediate results
of each triple pattern are joined in following the plan �s (line 5–6).
Case: (TP-S) Sub-plans. TP-S sub-plans are composed of single
triple patterns, executable by calling the TPF(tp) smart-KG server
operator (cf. Alg. 2, lines 7–8).
General Case. Joins the results of two recursively evaluated sub-
plans �l and �r (cf. Alg. 2, lines 9–11).

The outcome of the query executor is the result set � of evaluat-
ing the query Q . In practice, the executor implements an iterator
model to push intermediate results of evaluating one subplan to
the next operator in the plan. This allows the smart-KG client for
streaming results incrementally as the data arrives from the server.

P���������� 1. The result of evaluating a BGP Q over an RDF
graphG with smart-KG, denoted smart-eval(Q,G), is correct w.r.t. the
semantics of the SPARQL language, i.e., smart-eval(Q,G) = JQKG .10
10The proof of is available online https://git.ai.wu.ac.at/beno/smartkg

5 EXPERIMENTAL EVALUATION
We evaluate the performance of smart-KG in comparison to state-
of-the-art SPARQL engines. All datasets, queries, and results of our
experiments using di�erent workloads are available online.11 In
the following, we describe the experimental setup.
Knowledge Graphs.We use four RDF graphs (cf. Table 1): three
synthetic datasets from theWaterloo SPARQL Diversity Benchmark
(WatDiv) [7] [9], with sizes of 10M, 100M and 1000M triples; plus,
we use the real-world DBpedia [32] dataset (v.2015A).
Queries and Workloads. For WatDiv, we consider 80 workloads
(one per client), each of themwith 154 SPARQL queries that were se-
lected uniformly at random from the WatDiv stress test queries [1].

The queries contain up to 10 joins with selectivity ranging from
very high to very low, and varying shapes (star, path, and snow�ake).
All workloads follow nearly the same distribution of query selectiv-
ities and shapes. For DBpedia, we use queries from the real-world
LSQ query log [39]; here, we are interested in highly-demanding
queries, hence, we randomly selected 12 BGP queries from those
reporting more than 1s of execution time (a total of 259 queries).
We report the average measures of three independent executions.
Compared Systems.We evaluate the following systems:
- smart-KG: We implement both client and server in Java11, ex-
tending the TPF implementations [2]. HDT indexes and data are
stored on the server’s disk, with no client-side family caching.

- Triple Pattern Fragments (TPF):We use the node.js TPF client,
recommended by the authors, plus the Java TPF server [2], as the
smart-KG TPF handler is also implemented in Java.

- Virtuoso:We run Virtuoso [16] (v7.2.5), without quotas or limits.
- SaGe:We use the Python SaGe server and the Java SaGe client
with recommended con�gurations [4].
We have con�gured Virtuoso and SaGe to run with 4 workers

which is recommended in [36]. We omit the comparison with brTPF
[27], as existing evaluations report performance results that lie
between TPF and SaGe [36], and our preliminary tests show scala-
bility problems of the brTPF server implementation [1] for queries
over the WatDiv-100M and Watdiv-1000M graphs.
Hardware Setup. Finally, we provide the technical speci�cations
of the servers, clients, and the network setup.
- Client speci�cations: Clients ran on 1, 20 10, 40 and 80 physical
machines, each with identical hardware speci�cations: Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz, 32GB of DDR4 RAM, 512GB
M.2 NVMe SSD, running Fedora 29 (Linux Kernel v 5.0.14).

- Server speci�cations: The servers run on a VM hosted on a
machine running QEMU+ KVM hypervisor with Intel(R) Xeon(R)
CPU E5-2650 v2 @ 2.60GHz, 384 GB of DDR3 RAM, running
Centos 7 (Linux Kernel v3.10.0). Compared server systems were
running on VMs con�gured with 4 CPUs and 32 GB RAM.

- Network con�guration:While clients and servers are connected
on the same 1 GBit network, for emulating more realistic band-
width internet connection from consumer internet service providers,
we limited network speed of each client to 20 MBit, using tc [8].

Metrics. Our evaluation considers the following metrics:
- Number of Timeouts: Number of queries that time out. We set
a timeout of 5 min. for WatDiv and 30 min. for DBpedia queries.

11https://git.ai.wu.ac.at/beno/smartkg

https://git.ai.wu.ac.at/beno/smartkg
https://git.ai.wu.ac.at/beno/smartkg

The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

Table 1: Characteristics of the evaluated knowledge graphs

RDF GraphG # triples |G | # subjects |SG | # predicates |PG | # objects |OG | |P 0G | |P 0core | |F 0core | |Gser� | C.Time (h)
WatDiv-10M 10,916,457 521,585 86 1,005,832 59 59 10,106 21,210 1
WatDiv-100M 108,997,714 5,212,385 86 9,753,266 59 59 22,855 37,392 7
WatDiv-1000M 1,092,155,948 52,120,385 86 92,220,397 59 59 39,046 52,885 12
DBpedia 837,257,959 113,986,155 60,264 221,623,898 218 84 35 29,965 23

Figure 3: Ablation study in DBpedia to select
the parameters in partitioning algorithm

(a) Number of timeouts (b) Average execution time

Figure 4: Performance on the WatDiv-100M workload

- Execution Time: Elapsed time spent by a client executing a
workload, measured with the time command of Linux.

- Resource Consumption: We report on CPU usage per core,
RAM usage, and network tra�c, all measured with psutil [3].

5.1 Creation of Family-based Partitions
For each graph G, Table 1 shows the number of restricted and
core predicates (|P 0G |, |P 0core |), core families, |F 0core |, and the total,
materialized partitions after grouping/pruning, |Gser� |, as well as
the total computation time (including family computation, pruning
and partition generation). These numbers are obtained �xing �l =
0.01/100 for all G, while we set �h = 0.1/100 for DBpedia, as we
empirically tested that the resultant predicate set �lters out both
infrequent and heavy hitters. Likewise, we empirically set �t = 0.05
for both datasets,�s = 0 forWatDiv, and�s = 0.01/100 for DBpedia.
Figure 3 shows an ablation study (automatically generated by the
smart-KG partition generator) in DBpedia to determine the number
of generated families with di�erent values of such parameters12.

Table 1 also shows that |F 0core |, |Gser� |, and the computation
time are sub-linearly increasing with the graph sizes. In WatDiv,
F
0
core = F

0(G), whereas in DBpedia, the initial number of P 0G -
restricted13 families |F 0(G)| is >600K: the family pruning strategy
allows smart-KG to identify |F 0core | = 35 core families, which are
merged into ⇠30K materialised partitions.

5.2 Overall Query Performance
We �rst report on query performance for the WatDiv query work-
load, at increasing number of clients and dataset size. The perfor-
mance of smart-KG always considers the family grouping/pruning
strategies mentioned in Sec.4.1.3; we also tested smart-KG with-
out grouping/merging, solely relying on retrieving base partitions,
which however did not scale, due to requiring shipping large num-
bers of small partitions with many redundant triples.

12We omit �t as this study analyzes the size of families in the graph, while the
extremely large families pruned by �t tend to be generated when merging families.
13The 218 restricted DBpedia predicates cover over 40% of the predicates occurring in
highly-demanding BGPs (>1s of execution time) in the real-world LSQ query log [39].

Increasing Number of Clients. In this part of the study, we focus
on the graph WatDiv-100M as this is in line with the size of open
KGs published in the LOD Cloud [6], with an average of 183M
RDF triples. Fig. 4 shows the results of executing the WatDiv-100M
workload on the query performance at di�erent number of concur-
rent clients (1, 10, 20, 40 and 80) in terms of (a) number of timeouts,
and (b) average workload execution time per client.

Fig. 4a shows that smart-KG produces no timeouts at such rel-
ative modest but state-of-the-art graph sizes. That is, even with
80 concurrent clients, our approach is able to successfully �nish
all queries in the workload for all concurrent clients. In contrast,
TPF was not able to answer all queries within a 5 minutes timeout,
even in the single client con�guration. The percentage of timeouts
escalates with increasing number of clients, from 10% in 1-client
workload to an average of 28% with 80 concurrent clients. These
results con�rm the scalability limitations of the system.

On WatDiv-100M, SaGe times out in less queries than TPF, but
timeouts increase signi�cantly with the number of clients, reaching
a non-negligible 15% of the queries for 80 concurrent clients.

The average workload execution time per client, in Fig. 4b, shows
superior performance and scalability of our approach, where per-
formance remains constant irrespective of the number of clients,
as smart-KG limits the server load and joins are mostly performed
on clients over shipped KG partitions. For less than 20 concurrent
clients, SaGe starts slightly ahead of smart-KG. From this point and
on, SaGe su�ers from excessive delays, and overall performance is
degrading, e.g., smart-KG is up to 3.5 times faster with 80 clients.
This is because SaGe executes SPARQL queries using a round robin
policy to avoid the convoy e�ect but, with an increasing number
of clients, the increased waiting time and server usage lead to de-
grading average completion time for queries.

In turn, TPF is signi�cantly worse – up to three times slower –
than the other systems due to the enormous number of requests
and the excessive data transfer. As we will show in the next section,
tra�c is substantially higher with larger datasets because clients
need to ask for several server responses to evaluate a single query.

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan

(a) Number of Timeouts (b) Average Workload Execution Time

Figure 5: Performance on the workloads (80 clients) at increasing KG sizes
Figure 6: Average execution time (80 clients)
with DBpedia high-demanding queries

(a) L1 (b) L2 (c) L3 (d) L4 (e) L5 (f) Complex

Figure 7: Avg. execution time per client on the standard WatDiv-100M, for simplest L queries and complex queries

To complete the comparison, we also evaluate the performance
of query shipping strategies using a Virtuoso SPARQL endpoint.
As shown in Fig. 4, Virtuoso behaves very similar to SaGe with the
di�erence that i) it shows no timeout and similar performance for
10 clients, but ii) its execution time is slightly degrading with 80
clients. Given these results and in line with previous studies [36],
in the following sections, we focus on comparing the performance
of smart-KG with the shipping strategies of TPF and SaGe only.
Increasing KG Size. Fig. 5 shows the performance of the evaluated
systems at increasing KG sizes, �xing the scenario to 80 concurrent
clients. We execute the WatDiv workloads over 10M to 1000M
triples, which constitutes, to the best of our knowledge, the largest
experiment on client-side SPARQL query approaches to date.

Fig. 5a shows again the number of query timeouts. As expected,
timeouts of TPF and SaGe signi�cantly increase with the size of the
graph. TPF is not able to scale for theWatDiv-1000M dataset, failing
to answer 75% of the queries. Although SaGe is slightly better than
TPF, it fails to answer 68% of the queries with 80 concurrent clients.
In contrast, smart-KG reports the best results at scale, timing out
only in the largest graph for 10% of the queries.

Fig. 5b presents the average workload execution time for all
systems and di�erent sizes, with 80 concurrent clients. As expected,
average workload completion time increases with the larger KGs,
while smart-KG remains the fastest in all scenarios. TPF has the
longest execution time (and signi�cantly longer in Watdiv-1000M)
while SaGe is on average 1.5 times slower than smart-KG in Watdiv-
1000M. Note also that average execution times include timeouts:
since we have shown already that we do better in numbers of
timeouts, we may assume that full execution times with unlimited
runtimes would be even more signi�cantly in our favor.
DBpedia Queries. We evaluate the performance on DBpedia to
consider real-wold data and high-demanding queries. Fig. 6 shows

the performance results on 80 clients for 12 representative queries
of the LSQ log, omitting Q11 and Q12 which time out (>30 minutes)
in all systems. The results are in line with our previous analysis:
TPF is the slowest (except Q1,Q2) and smart-KG is 2-3 levels of
magnitude faster than SaGe in all queries except for Q2, Q6, and
Q10. These are the cases where SmartKG depends heavily on TPF
shipping, while SaGE can delegate to the SPARQL server.

5.3 Evaluation of Simple & Complex Queries
While in the previous analysis, a workload consisted of queries with
mixed characteristics, we have performed a separate performance
analysis on two speci�c query categories prede�ned by theWatDiv
Basic Testing [9]: linear (L), which represents simple path queries,
and Complex (C), with more challenging queries including a com-
binations of low-selective star and path queries. WatDiv provides
L-query templates and we randomly generate 3 queries for each
subtype (L1-L5) per client. The benchmark has only three C queries
(not templates), hence, we extend it by selecting 50 complex queries
(based on low selectivity patterns and high execution time) from
the initial intensive workload, for each client.

Fig. 7 shows the performance in the simplest L-queries of the
di�erent systems on WatDiv-100M. Similar to our previous results,
smart-KG reports a stable query execution time, which ranges be-
tween 5-7 seconds. SaGe has the best performance in the L3 and L4
workloads, with average execution times of less than 2 seconds per
query. However, the SaGe execution time is a�ected by the number
of clients for L1, L2, and L5. SaGe provides better execution time
than smart-KG with up to 20 concurrent clients, while smart-KG
is more competitive for larger number of clients. Finally, TPF is the
slowest approach in L2, L4, L5 queries, while it excels in L1 and L3
up to 40 clients. TPF could not scale to 80 clients.

The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

(a) Network tra�c per client (in GB) on the
intensive workload at increasing KG sizes

(b) Avg. Server CPU Usage (in %) at increas-
ing number of clients (WatDiv-100M)

(c) Avg. Server RAM Usage (in GB) at in-
creasing number of clients (WatDiv-100M)

Figure 8: Resource consumption on the intensive workload.

Fig. 7f shows the overall execution times for the C-queries work-
load (WatDiv-100M, 80 clients, 5min timeout). TPF is again the
slowest solution, while smart-KG signi�cantly outperforms SaGe
as our partition shipping allows clients to work locally in parallel
on their queries, without long waiting times for the server response.
In contrast, SaGe preemption model introduces additional delays
at heavy workloads, due to query swapping, long waiting queues
and limited processing time per query on the server.

5.4 Resource Consumption
Server Network Load. Fig. 8a shows the average network tra�c
per client (in GB) on the intensive workload. We report the average
per client, with 80 clients running in parallel on WatDiv-100M.

TPF incurs the highest communication costs due to the number of
requests and the shipping of extensive intermediate results, which
leads to poor query execution performance, as shown before.

In contrast, SaGe produces the least data transfer among all the
systems, as it works as a SPARQL endpoint with a preemptionmodel
and no intermediate results are transferred. The only additional data
transfer overheads in SaGe are the saved plans when queries are
resumed, a relatively small cost depending on the number of calls
required to �nish each query. This factor depends on the complexity
of the queries and the number of concurrent clients.

As expected, smart-KG requires more data transfer than SaGe,
but up to 10⇥ less data than TPF. Most of the data transferred is due
to partition shipping (cf. Fig. 8a smart-KG-parts). Yet, the retrieved
partitions can be reused for queries that might require the same
partitions. Caching the partitions will execute streak queries with
minimal need to communicate to the server. A streak is a concept
de�ned in [14] as sequence of queries that appear as subsequent
modi�cations of a seed query. Further inspection of caching plus
leveraging streak queries is planned for future work.
Server CPU, RAM, and Disk Usage. Fig. 8b shows that TPF and
SaGe extensively use the server CPU. In particular, SaGe and TPF
respectively consume 80% and 60% of the CPU to execute 10 clients
in parallel, and both rapidly increase to 100% for 40 and 80 clients.
In practice, this reduces query throughput as most CPU time is
allocated to query processing while new requests are queued. In
contrast, smart-KG only uses 60% of the CPU to handle the work-
load on 80 parallel clients, which still gives room for serving ad-
ditional clients in the current hardware con�guration. smart-KG

server consumes limited CPU thanks to its mixed triple pattern and
partition shipping, which hardly requires server CPU usage.

Fig. 8c shows that TPF has the overall highest server memory
usage, while SaGe’s consumption remains constant and low, thanks
to its preemption model. smart-KG uses least memory consumption
up to 20 clients and then slightly increases at 40 and 80 clients to
0.5 GB more than SaGe (due to TPF triple evaluation on the server).
We additionally compare to the resource consumption of Virtuoso,
which shows relatively constant CPU (⇠40%) and increasing RAM
consumption, exceeding TPF for 80 clients. These values are in line
with the signi�cant timeouts reported previously (see Fig. 4).

Table 2 shows the raw data sizes (in N-Triples) of the graphs and
storage requirements for the evaluated systems. As expected, TPF
and SaGe require a single HDT �le, which highly compacts storage
needs. In contrast, the high number of HDT partitions managed by
smart-KG results in additional costs in disk space, doubling the raw
size of the WatDiv graphs (DBpedia uses less space given its more
restricted pruning). Given that disk space is relatively a�ordable
for servers, smart-KG provides a reasonable tradeo� for faster and
more balanced, SPARQL query execution.
Client CPU and RAM usage. As for client-side resources, as ex-
pected, Virtuoso excels with 80 clients in the WatDiv-100M work-
load (fully in the server, hence the clients run with 8% RAM size).
SaGe also shows reasonable (average 15%) usage of the client CPUs,
as it performs only two main operations on the client side: �rst,
resuming query execution through received saved plans from the
server; second, a subset of “light-weight” SPARQL operators such
as �lter, order by, aggregations, are o�ered. TPF performs joins of
triple pattern results all locally on the client-side which is costly,
leading to higher (55%) client average CPU usage. smart-KG �nally
also depends on the client to execute query stars as well as TPF
Join processing, so that client average CPU usage is higher, with
70% yet visible for most of the current client systems.

These percentages decrease with higher numbers of clients, be-
cause network waiting time dominates in the case of TPF and
smart-KG and the long waiting queues in the case of SaGe. Client
memory consumption remains fairly constant and low for both
SaGe and TPF. smart-KG consumes more client memory, however
still reasonable. For instance, smart-KG utilizes up to 3 GB RAM.

SMART-KG: Hybrid Shipping for SPARQL�erying on the Web The Web Conference 2020 (accepted for publication), April 2020, Taipei,Taiwan

Table 2: Comparison of storage requirements (inMB) for sys-
tems with HDT backend vs original graph size (raw)

Dataset Raw SmartKG TPF/SaGe
WatDiv-10M 1,471 2,783 112
WatDiv-100M 14,876 29,711 1,186
WatDiv-1000M 151,862 310,574 12,793
DBpedia 158,197 122,440 17,904
Virtuoso takes ⇠ 3 times the space of TPF/SaGe.

6 CONCLUSION AND FUTUREWORK
We introduced smart-KG, a hybrid approach to e�ciently query
Knowledge Graphs (KGs) on the Web, balancing the load between
servers and clients. We combine the Triple Pattern Fragment (TPF)
strategy with shipping compressed graph partitions that can be lo-
cally queried. The served partitions are based on predicate families
and di�erent pruning parameters control the sizes and numbers
of the partitions. The smart-KG client implements a query decom-
poser, planner, and executor tailored to trade o� TPF and partition
shipping. Our evaluation shows that smart-KG signi�cantly out-
performs the state of the art, especially with increasing number of
concurrent clients, and on challenging BGP queries. We also show
that, at the cost of reasonable client resources, smart-KG improves
server availability, consuming signi�cantly less CPU and RAM than
most of the evaluated systems, and reducing TPF’s network tra�c.

Future work includes the following directions. First, we argue
(and have experimentally demonstrated) that our approach using
families provides a reasonable trade-o� of shipping sizes; still com-
paring to other partitioning strategies (e.g. predicate-wise or hash
partitioning) is on our agenda. Next, we plan to exploit query logs
of KGs served on the web to generate query-driven partitions. This
includes strategies to adapt to new workloads or updated KGs. Fi-
nally, we will investigate shipping-based cost models to enhance
query performance and further reduce network tra�c.

7 ACKNOWLEDGMENTS
This work has been supported by the European Union Horizon 2020
research and innovation programme under grant 731601 (SPECIAL)
and by the Austrian Research Promotion Agency (FFG): grant no.
861213 (CitySPIN) and by the German Research Foundation (DFG)
under grant 316669855 (SoRa).

REFERENCES
[1] brTPF. http://olafhartig.de/brtpf-odbase2016/.
[2] Linked Data Fragments.http://linkeddatafragments.org/software/.
[3] psutil. https://psutil.readthedocs.io/.
[4] SaGe.https://github.com/sage-org/.
[5] Stardog. https://www.stardog.com/.
[6] The Linked Open Data Cloud.https://lod-cloud.net/.
[7] Waterloo SPARQL diversity benchmark. https://dsg.uwaterloo.ca/watdiv/.
[8] W. Almesberger et al. Linux network tra�c controlâĂŤimplementation overview,

1999.
[9] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversi�ed stress testing of rdf

data management systems. In Proc. of ISWC, pages 197–212. Springer, 2014.
[10] C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for executing federated

queries in SPARQL1.1. In Proc. of ISWC, pages 390–405, 2014.
[11] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Int. J.

Semantic Web Inf. Syst., 5(3):1–22, 2009.
[12] P. A. Bonatti, M. Cochez, S. Decker, A. Polleres, and V. Presutti, editors. Knowl-

edge Graphs: New Directions for Knowledge Representation on the Semantic Web
(Dagstuhl Seminar 18371), Schloss Dagstuhl, Germany, Sept. 2018. to appear.

[13] A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. Proceedings of the VLDB Endowment, 11(2):149–161, 2017.

[14] A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. Proc. VLDB Endow., 11(2):149–161, Oct. 2017.

[15] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL web-
querying infrastructure: Ready for action? In Proc. of ISWC, pages 277–293.
Springer, 2013.

[16] O. Erling and I. Mikhailov. RDF support in the Virtuoso DBMS. In Networked
Knowledge-Networked Media, pages 7–24. Springer, 2009.

[17] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres. SPARQL 1.1 protocol.
Recommendation, W3C, March, 2013.

[18] J. D. Fernández, M. A. Martínez-Prieto, P. de la Fuente Redondo, and C. Gutiérrez.
Characterizing RDF Datasets. Journal of Information Science, 44(2):203–229, 2018.

[19] J. D. Fernández, M. A. Martınez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias.
Binary RDF Representation for Publication and Exchange (HDT). J. Web Sem.,
19(2), 2013.

[20] M. J. Franklin, B. Thór Jónsson, and D. Kossmann. Performance tradeo�s for
client-server query processing. In Proc. of SIGMOD, pages 149–160, 1996.

[21] A. Gubichev and T. Neumann. Exploiting the query structure for e�cient join
ordering in SPARQL queries. In EDBT, volume 14, pages 439–450, 2014.

[22] C. Guéret, P. T. Groth, F. van Harmelen, and S. Schlobach. Finding the achilles
heel of the web of data: Using network analysis for link-recommendation. In
Proc. of ISWC, pages 289–304, 2010.

[23] C. Gutiérrez, C. Hurtado, A. O. Mendelzon, and J. Perez. Foundations of Semantic
Web Databases. JCSS, 77:520–541, 2011.

[24] S. Harris and A. Seaborne. SPARQL 1.1 query language, March 2013.
[25] O. Hartig. Squin: a traversal based query execution system for the web of linked

data. In Proc. of SIGMOD, pages 1081–1084. ACM, 2013.
[26] O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL queries over the web of

linked data. In Proc. of ISWC, pages 293–309, 2009.
[27] O. Hartig and C. Buil-Aranda. Bindings-restricted triple pattern fragments. In

Proc. of ODBASE, volume 10033 of LNCS, pages 762–779, 10 2016.
[28] O. Hartig and G. Pirrò. A context-based semantics for sparql property paths over

the web. In Proc. of ESWC, pages 71–87. Springer, 2015.
[29] A. Hasnain, M. R. Kamdar, P. Hasapis, D. Zeginis, C. N. Warren, H. F. Deus,

D. Ntalaperas, K. Tarabanis, M. Mehdi, and S. Decker. Linked biomedical datas-
pace: lessons learned integrating data for drug discovery. In Proc. of ISWC, pages
114–130. Springer, 2014.

[30] L. Heling, M. Acosta, M. Maleshkova, and Y. Sure-Vetter. Querying large knowl-
edge graphs over Triple Pattern Fragments: An empirical study. In Proc. of ISWC,
pages 86–102. Springer, 2018.

[31] A. Hernández-Illera, M. Martínez-Prieto, and J. Fernández. Serializing RDF in
Compressed Space. In Proc. of DCC, pages 363–372, 2015.

[32] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–
195, 2015.

[33] M. Martínez-Prieto, M. Arias, and J. Fernández. Exchange and Consumption of
Huge RDF Data. In Proc. of ESWC, pages 437–452, 2012.

[34] M. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. Practical
Compressed String Dictionaries. Information Systems, 56:73–108, 2016.

[35] M. Meimaris, G. Papastefanatos, N. Mamoulis, and I. Anagnostopoulos. Extended
characteristic sets: Graph indexing for SPARQL query optimization. In Proc. of
ICDE, pages 497–508, April 2017.

[36] T. Minier, H. Skaf-Molli, and P. Molli. Sage: Web preemption for public SPARQL
query services. pages 1268–1278, 2019.

[37] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins. In Proc. of ICDE, pages 984–994. IEEE,
2011.

[38] A. Polleres, M. R. Kamdar, J. D. Fernández, T. Tudorache, and M. A. Musen. A
more decentralized vision for linked data. In Proc. of DeSemWeb@ISWC, 2018.

[39] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. LSQ: the
linked SPARQL queries dataset. In Proc. of ISWC, pages 261–269. Springer, 2015.

[40] M. Salvadores, M. Horridge, P. Alexander, R. Fergerson, M. Musen, and N. Noy.
Using sparql to query bioportal ontologies and metadata. volume 7650, pages
180–195, 11 2012.

[41] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Working Group Note, 2014.
https://www.w3.org/TR/rdf11-primer/.

[42] P.-Y. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. Buil-Aranda. SPAR-
QLES: Monitoring public SPARQL endpoints. Semantic Web, 8(6):1049–1065,
2017.

[43] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Fragments:
a low-cost knowledge graph interface for the Web. Journal of Web Semantics,
37–38:184–206, Mar. 2016.

https://psutil.readthedocs.io/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 SMART-KG: Design and Overview
	4.1 SMART-KG Server
	4.2 SMART-KG Client

	5 Experimental Evaluation
	5.1 Creation of Family-based Partitions
	5.2 Overall Query Performance
	5.3 Evaluation of Simple & Complex Queries
	5.4 Resource Consumption

	6 Conclusion and Future work
	7 Acknowledgments
	References

