448 research outputs found

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Generic Methods for Adaptive Management of Service Level Agreements in Cloud Computing

    Get PDF
    The adoption of cloud computing to build and deliver application services has been nothing less than phenomenal. Service oriented systems are being built using disparate sources composed of web services, replicable datastores, messaging, monitoring and analytics functions and more. Clouds augment these systems with advanced features such as high availability, customer affinity and autoscaling on a fair pay-per-use cost model. The challenge lies in using the utility paradigm of cloud beyond its current exploit. Major trends show that multi-domain synergies are creating added-value service propositions. This raises two questions on autonomic behaviors, which are specifically ad- dressed by this thesis. The first question deals with mechanism design that brings the customer and provider(s) together in the procurement process. The purpose is that considering customer requirements for quality of service and other non functional properties, service dependencies need to be efficiently resolved and legally stipulated. The second question deals with effective management of cloud infrastructures such that commitments to customers are fulfilled and the infrastructure is optimally operated in accordance with provider policies. This thesis finds motivation in Service Level Agreements (SLAs) to answer these questions. The role of SLAs is explored as instruments to build and maintain trust in an economy where services are increasingly interdependent. The thesis takes a wholesome approach and develops generic methods to automate SLA lifecycle management, by identifying and solving relevant research problems. The methods afford adaptiveness in changing business landscape and can be localized through policy based controls. A thematic vision that emerges from this work is that business models, services and the delivery technology are in- dependent concepts that can be finely knitted together by SLAs. Experimental evaluations support the message of this thesis, that exploiting SLAs as foundations for market innovation and infrastructure governance indeed holds win-win opportunities for both cloud customers and cloud providers

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Energy policies for data-center monolithic schedulers

    Get PDF
    Cloud computing and data centers that support this paradigm are rapidly evolving in order to satisfy new demands. These ever-growing needs represent an energy-related challenge to achieve sustainability and cost reduction. In this paper, we define an expert and intelligent system that applies various en ergy policies. These policies are employed to maximize the energy-efficiency of data-center resources by simulating a realistic environment and heterogeneous workload in a trustworthy tool. An environmental and economic impact of around 20% of energy consumption can be saved in high-utilization scenarios without exerting any noticeable impact on data-center performance if an adequate policy is applied

    Utility-based Allocation of Resources to Virtual Machines in Cloud Computing

    Get PDF
    In recent years, cloud computing has gained a wide spread use as a new computing model that offers elastic resources on demand, in a pay-as-you-go fashion. One important goal of a cloud provider is dynamic allocation of Virtual Machines (VMs) according to workload changes in order to keep application performance to Service Level Agreement (SLA) levels, while reducing resource costs. The problem is to find an adequate trade-off between the two conflicting objectives of application performance and resource costs. In this dissertation, resource allocation solutions for this trade-off are proposed by expressing application performance and resource costs in a utility function. The proposed solutions allocate VM resources at the global data center level and at the local physical machine level by optimizing the utility function. The utility function, given as the difference between performance and costs, represents the profit of the cloud provider and offers the possibility to capture in a flexible and natural way the performance-cost trade-off. For global level resource allocation, a two-tier resource management solution is developed. In the first tier, local node controllers are located that dynamically allocate resource shares to VMs, so to maximize a local node utility function. In the second tier, there is a global controller that makes VM live migration decisions in order to maximize a global utility function. Experimental results show that optimizing the global utility function by changing the number of physical nodes according to workload maintains the performance at acceptable levels while reducing costs. To allocate multiple resources at the local physical machine level, a solution based on feed-back control theory and utility function optimization is proposed. This dynamically allocates shares to multiple resources of VMs such as CPU, memory, disk and network I/O bandwidth. In addressing the complex non-linearities that exist in shared virtualized infrastructures between VM performance and resource allocations, a solution is proposed that allocates VM resources to optimize a utility function based on application performance and power modelling. An Artificial Neural Network (ANN) is used to build an on- line model of the relationships between VM resource allocations and application performance, and another one between VM resource allocations and physical machine power. To cope with large utility optimization times in the case of an increased number of VMs, a distributed resource manager is proposed. It consists of several ANNs, each responsible for modelling and resource allocation of one VM, while exchanging information with other ANNs for coordinating resource allocations. Experiments, in simulated and realistic environments, show that the distributed ANN resource manager achieves better performance-power trade-offs than a centralized version and a distributed non-coordinated resource manager. To deal with the difficulty of building an accurate online application model and long model adaptation time, a solution that offers model-free resource management based on fuzzy control is proposed. It optimizes a utility function based on a hill-climbing search heuristic implemented as fuzzy rules. To cope with long utility optimization time in the case of an increased number of VMs, a multi-agent fuzzy controller is developed where each agent, in parallel with others, optimizes its own local utility function. The fuzzy control approach eliminates the need to build a model beforehand and provides a robust solution even for noisy measurements. Experimental results show that the multi-agent fuzzy controller performs better in terms of utility value than a centralized fuzzy control version and a state-of-the-art adaptive optimal control approach, especially for an increased number of VMs. Finally, to address some of the problems of reactive VM resource allocation approaches, a proactive resource allocation solution is proposed. This approach decides on VM resource allocations based on resource demand prediction, using a machine learning technique called Support Vector Machine (SVM). To deal with interdependencies between VMs of the same multi-tier application, cross- correlation demand prediction of multiple resource usage time series of all VMs of the multi-tier application is applied. As experiments show, this results in improved prediction accuracy and application performance
    corecore