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Zusammenfassung

In den letzten Jahren hat Cloud Computing eine hohe Popularitit als neues
Informationsverarbeitungsmodell erreicht, in dem Ressourcen elastisch nach
Bedarf in einem pay-as-you-go Modus genutzt werden konnen. Ein wichtiges
Ziel eines Cloud-Anbieters ist die dynamische Zuweisung von Ressourcen zu
Virtuellen Maschinen (VMs) aufgrund der aktuellen Auslastung, um die Per-
formanz von Anwendungen auf einem vereinbarten Service-Level-Agreement
(SLA) Niveau zu halten, bei gleichzeitiger Reduktion der Kosten von Ressourcen.
Das Problem besteht darin, einen adaquaten Kompromiss zwischen den beiden
gegensitzlichen Zielen der Performanz von Anwendungen und den Kosten von
Ressourcen zu finden. In dieser Dissertation werden Ansétze fiir die Erzielung
eines solchen Kompromisses vorgestellt, die auf der Verwendung einer Nutzen-
funktion fiir Performanz und Kosten basieren. Die vorgeschlagenen Losungen
allokieren Ressourcen zu VMs auf globaler Ebene eines Rechenzentrums und
der lokalen Ebene realer Maschinen anhand der Optimierung der Nutzenfunk-
tion. Die Nutzenfunktion, gegeben als Differenz zwischen Performanz und
Kosten, repréasentiert den Profit des Cloud-Anbieters und bietet die Méglichkeit,
den Performanz-Kosten Kompromiss in einer flexiblen und natiirlichen Weise
auszudriicken.

Fiir die globale Ebene wird eine zweistufige Zuteilungsstrategie der Ressourcen
vorgestellt. In der ersten Stufe weisen Steuerungsinstanzen in den lokalen Rech-
nern dynamisch Ressourcen-Anteile an die VMs zu, um eine lokale Nutzenfunk-
tion zu maximieren. In der zweiten Stufe gibt es eine globale Steuerungsin-
stanz, die VM Live-Migration zur Optimierung einer globalen Nutzenfunk-
tion durchfithrt. Experimentelle Ergebnisse zeigen, dass die Optimierung der
globalen Nutzenfunktion durch Anderung der Anzahl der realen Rechner auf-
grund der Auslastung die Performanz von Anwendungen auf einem akzeptablen
Niveau halt, bei gleichzeitiger Senkung der Kosten von Ressourcen.

Um mehrere Ressourcen auf lokaler Ebene zuzuteilen, wird ein Ansatz auf
Grundlage der Riickkopplungssteuerungstheorie und der Optimierung der Nut-
zenfunktion vorgeschlagen. Hierdurch werden Anteile von mehreren Ressourcen,
wie CPU, Speicher, Festplatte und Netzwerk 1/O-Bandbreite, dynamisch an
VMs zugewiesen. Zur Bewaltigung der komplexen Nicht-Linearitaten, die in
gemeinsam genutzten virtualisierten Infrastrukturen zwischen VM-Performanz
und Ressourcenzuteilung existieren, wird eine Losung vorgeschlagen, die Res-
sourcen zu VMs anhand einer Nutzenfunktion basierend auf Performanz und
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Energieverbrauch zuteilt. Ein kiinstliches neuronales Netzwerk (KNN) wird ver-
wendet, um ein Online-Modell der Beziehung zwischen VM-Ressourcenzuteilung
und Anwendungsperformanz und ein weiteres Online-Modell der Beziehung
zwischen VM-Ressourcenzuteilung und Energieverbrauch zu erstellen. Um hohe
Optimierungszeiten im Falle einer erhhten Anzahl von VMs zu vermeiden, wird
ein verteilter Ressourcen-Manager vorgeschlagen. Dieser besteht aus mehreren
KNNs, die jeweils fiir die Modellierung und Ressourcenzuweisung einer VM
verantwortlich sind, aber Informationen mit anderen KNNs fr die Koordina-
tion der Ressourcenzuteilungen austauschen. Experimentelle Ergebnisse in
simulierten und realistischen Umgebungen zeigen, dass die verteilten KNN
Ressourcen-Manager bessere Performanz-Kosten Kompromisse erzielen als eine
zentralisierte Version und eine verteilte unkoordinierte Version des Ressourcen-
Managers.

Um die Problematik des Erstellens eines akkuraten Online-Anwendungsmodells
verbunden mit langen Modelladaptionszeiten zu behandeln, wird ein Ansatz auf
der Grundlage der Fuzzy-Steuerung vorgeschlagen. Er optimiert eine Nutzen-
funktion basierend auf einer Hill Climbling Heuristik, die als Fuzzy-Regeln
implementiert ist. Zur Vermeidung langer Optimierungszeiten im Fall einer
erhohten Anzahl von VMs wird ein Multi-Agenten Fuzzy-Regler entwickelt, bei
dem jeder Agent, parallel zu anderen Agenten, seine eigene lokale Nutzenfunk-
tion optimiert. Der Fuzzy-Steuerungsansatz eliminiert die Notwendigkeit, ein
Modell vorab aufbauen und bietet eine robuste Losung auch fiir verrauschte
Messungen. Experimentelle Ergebnisse zeigen, dass die Multi-Agenten Fuzzy-
Regler die Nutzenfunktion besser optimieren als eine zentrale Version eines
Fuzzy-Reglers und ein aktueller adaptiver optimaler Steuerungsansatz, ins-
besondere bei einer erhohten Anzahl von VMs.

Um einige der Probleme reaktiver VM-Ressourcenzuteilunsansatze zu behan-
deln, wird eine proaktive Ressourcenallokationslosung vorgeschlagen. Dieser
Ansatz entscheidet iiber VM-Ressourcenzuweisungen basierend auf der Vorher-
sage des Ressourcenbedarfs mittels der maschinellen Lernmethode der Support
Vector Machine (SVM). Um die Abhéngigkeiten zwischen VMs der gleichen
Multi-Tier-Anwendung zu modellieren, wird die Bedarfsprognose mehrerer kreuz-
korrelierter Ressourcennutzungszeitreihen aller VMs einer mehrschichtigen An-
wendung durchgefithrt. Wie Experimente zeigen, fithrt dies zu einer verbesserten
Vorhersagegenauigkeit und Anwendungsperformanz.



Abstract

In recent years, cloud computing has gained a wide spread use as a new com-
puting model that offers elastic resources on demand, in a pay-as-you-go fash-
ion. One important goal of a cloud provider is dynamic allocation of Virtual
Machines (VMs) according to workload changes in order to keep application
performance to Service Level Agreement (SLA) levels, while reducing resource
costs. The problem is to find an adequate trade-off between the two conflicting
objectives of application performance and resource costs. In this dissertation,
resource allocation solutions for this trade-off are proposed by expressing ap-
plication performance and resource costs in a utility function. The proposed
solutions allocate VM resources at the global data center level and at the local
physical machine level by optimizing the utility function. The utility function,
given as the difference between performance and costs, represents the profit of
the cloud provider and offers the possibility to capture in a flexible and natural
way the performance-cost trade-off.

For global level resource allocation, a two-tier resource management solution is
developed. In the first tier, local node controllers are located that dynamically
allocate resource shares to VMs, so to maximize a local node utility function.
In the second tier, there is a global controller that makes VM live migration
decisions in order to maximize a global utility function. Experimental results
show that optimizing the global utility function by changing the number of
physical nodes according to workload maintains the performance at acceptable
levels while reducing costs.

To allocate multiple resources at the local physical machine level, a solution
based on feed-back control theory and utility function optimization is pro-
posed. This dynamically allocates shares to multiple resources of VMs such
as CPU, memory, disk and network I/O bandwidth. In addressing the com-
plex non-linearities that exist in shared virtualized infrastructures between VM
performance and resource allocations, a solution is proposed that allocates VM
resources to optimize a utility function based on application performance and
power modelling. An Artificial Neural Network (ANN) is used to build an on-
line model of the relationships between VM resource allocations and application
performance, and another one between VM resource allocations and physical
machine power. To cope with large utility optimization times in the case of
an increased number of VMs, a distributed resource manager is proposed. It
consists of several ANNs, each responsible for modelling and resource allocation
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of one VM, while exchanging information with other ANNs for coordinating re-
source allocations. Experiments, in simulated and realistic environments, show
that the distributed ANN resource manager achieves better performance-power
trade-offs than a centralized version and a distributed non-coordinated resource
manager.

To deal with the difficulty of building an accurate online application model and
long model adaptation time, a solution that offers model-free resource man-
agement based on fuzzy control is proposed. It optimizes a utility function
based on a hill-climbing search heuristic implemented as fuzzy rules. To cope
with long utility optimization time in the case of an increased number of VMs,
a multi-agent fuzzy controller is developed where each agent, in parallel with
others, optimizes its own local utility function. The fuzzy control approach
eliminates the need to build a model beforehand and provides a robust solution
even for noisy measurements. Experimental results show that the multi-agent
fuzzy controller performs better in terms of utility value than a centralized
fuzzy control version and a state-of-the-art adaptive optimal control approach,
especially for an increased number of VMs.

Finally, to address some of the problems of reactive VM resource allocation
approaches, a proactive resource allocation solution is proposed. This approach
decides on VM resource allocations based on resource demand prediction, using
a machine learning technique called Support Vector Machine (SVM). To deal
with interdependencies between VMs of the same multi-tier application, cross-
correlation demand prediction of multiple resource usage time series of all VMs
of the multi-tier application is applied. As experiments show, this results in
improved prediction accuracy and application performance.
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Introduction

1.1 Motivation

In recent years, cloud computing has gained a wide spread use and attention
from both academia and commercial IT enterprises. This is a new computing
paradigm that delivers on demand computing resources, from a shared pool
of resources, by supporting the pay-as-you-go model. In this paradigm, cloud
consumers can lease compute resource (e.g CPU) or storage (e.g disk space) as
much as they need. On demand, they can later increase or decrease this amount
and pay only for the amount of resources they consume. This paradigm is sim-
ilar to the power grids that offer electricity as a utility and the payment is
based only on the consumed amount. The resource can be offered in different
layers of abstractions. The cloud is composed of three different models, (1)
Software-as-a-Service (SaaS) that offers resources as software abstraction, (2)
Platform-as-a-Service (PaaS) that offers resources as operating system services
or programming frameworks and, (3) Infrastructure-as-a-Service (IaaS) that of-
fers resources as raw computing power or storage. Among these three models,
the most important and widely used is the IaaS. [aaS, with its most representa-
tive example Amazon Elastic Compute Cloud (EC2) [4], will also be the focus
of this work. Ome of the main benefits of the IaaS is the reduced Total Cost
of Ownership (TCO) for the cloud consumer. He does not need to make big
investments in setting up a physical infrastructure but can rent the necessary
resources from the cloud and if needed in the future, increase them. Moreover,
the customer does not incur any expenses on managing the physical machines.

One of the enabling technologies of IaaS clouds is virtualization, provided by
KVM [65], Xen [8] or VMware [112]. A virtualization technology offers the pos-
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sibility to encapsulate all software, from the operating system to applications,
in a container called a Virtual Machine (VM). Moreover, a software layer called
Virtual Machine Monitor (VMM) (Hypervisor in Xen terminology), which man-
ages resources to VMs, makes it possible to run several VMs on the same phys-
ical machine. The VMM plays for VMs the same role as an operating system
kernel plays for application processes. VMM offers security and fault isolation
between VMs running on top of it. Thus, VM technology makes it easier for
TaaS to offer compute resources as VMs of different sizes which can be added
or removed on demand.
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Figure 1.1: Average CPU utilization of more than 5000 servers during a period
of six months (source: The Case for Energy-Proportional Computing [10]).

Besides its benefits to cloud consumers, virtualization technology also brings
benefits to cloud providers. Due to the workload nature of Internet application
servers, most are underutilized with an estimation of resource utilization of 15
to 20 percent [115]. Figure 1.1 shows the average CPU utilization of more than
5,000 servers at Google, during a six-month period. When inspected over longer
time frames, the utilization tends to fluctuate between 10 and 50 percent [115].
The usual practice nowadays in data centers is over-provisioning of resources for
the peak demand, in order to have acceptable performance even on high load.
But since there is a big difference in resource utilization, between low and high
load demand, most of the time there will be a waste of resources and high power
costs. The static allocation of resources also increases the risk of application
performance violations, especially when there is a burst in workload demand, as
in the case of seasonal on-line offers or unexpected news events. This is also a
non-efficient practice, as it gives some applications more resources than needed
while letting some others starve for it.

On the other hand, virtualization technology offers the possibility to adjust re-
sources according to the workload through two mechanism: a) VM live migra-
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tion, and b) dynamic resource share allocation. VM live migration [22] makes
it possible to transfer a running VM from one physical machine to another,
with minimal interruption and down time. Dynamic resource sharing alloca-
tion makes it possible to give a certain resource share (e.g. CPU share) to a
VM and change it later at run time. These mechanisms open up the possibility
for VMs, with low server utilization and variable workload, to be consolidated
at run time to fewer physical machines and dynamically adapt their resources
according to the workload. This increases overall utilization, as well as reduces
power, cooling and management costs of the cloud provider data center. Given
that today’s big data centers consist of hundreds, even thousands of servers,
applying the above mechanism will result in huge savings in power and oper-
ating costs. Also, cloud consumers will benefit from virtualization technology
mechanisms, since they will get the performance required with reduced costs.
As a result, they will need to pay only for the minimum needed resources for
the actual application workload demand.

On the other side, because of the huge management complexity of driving this
mechanism at run time, it is impossible for a human administrator to deal with
them. Thus, the need emerges to have automatic, high level decision-making
techniques that manage VM resource allocation at run time, requiring little
human intervention. These techniques must be able to allocate VM resources
in a way as to keep application performance according to SLA levels, while
increasing utilization, reducing power and operating costs of the cloud provider
infrastructure. The focus of this work is devising automatic VM resource allo-
cation techniques to manage the application performance and operating cost in
cloud computing infrastructures.

1.2 Research Challenges

There are several challenges related to IaaS automatic VM resource allocation,
which it is divided into two groups. In the first group, challenges relate to
resource allocation at the global data center level through VM live migration,
while in the second, they relate to dynamic resource allocation at the local
physical machine level.

e Global level VM resource allocation challenges. VM live migration
is used as a resource allocation mechanism for dynamically consolidating
low utilization VMs on few physical machines. It can also be used for
load balancing, in an overloaded situation, to spread the VMs on other
physical machines in order to avoid performance level violations.

There are several questions that need to be addressed here, such as: When
to migrate a VM? Which VM to migrate? To what destination physical
machine has to migrate to? In other terms, this is the general problem of
finding the mapping between VMs to physical machines and dynamically
changing it, as the workload changes at run time, in order to lower the
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number of physical machines and keep application performance to SLA
levels. This can be seen as an instance of the bin-packing problem for
packing VMs of different sizes into the smallest numbers of bins (physical
machines). There are some proposals [122, 63, 70] that treat it as a bin-
packing problem where the sizes of items to be packed are VM resource
utilizations (e.g. CPU utilization) and the sizes of bins are resource ca-
pacities of physical machines. Since, in general, the bin-packing problem
is NP-hard, these works use heuristic algorithms to find approximate solu-
tions to the problem. The problem with these approaches is that they use
low-level metrics, such as resource utilization, to decide when and which
VM to migrate. But making migration decisions only on utilization met-
rics fails to provide an assurance on high-level performance metrics. This
is firstly because the mapping between resource utilization and perfor-
mance is not clear and changes with the workload, and secondly, because
the performance interference the migrating VM can have with other VMs
on the destination physical machine is unknown. What complicates things
more is the fact of having multiple resources that makes it a multi-size
bin-packing problem. Also, a data center can have heterogeneous physical
machines of different resource capacities, so the bins are of different sizes.
The degree of complication increases because as the workload changes, the
sizes of VMs change, and thus the problem becomes multi-size bin packing
with items to be packed elastically in size. This requires a combination of
local VM resource allocation with global resource allocation through VM
live migration. This combination is not yet adequately incorporated into
existing state-of-art techniques.

These proposals are based on a rigid policy implemented on heuristic or-
dering algorithms, such as First-Fit-Decreasing (FFD), of only packing
VMs to as few physical machines as possible which can be problematic,
as a data center later may need to follow a load balancing policy of us-
ing as much physical machines as possible. This policy change requires
completely changing the algorithm. What is required is a more flexible
approach that can change according to data center policy changes. Exist-
ing heuristic algorithms also have difficulties simultaneously taking into
account multiple conflicting criteria such as power consumption, perfor-
mance metrics, cache interference, VM communication dependencies etc.
An approach that makes live migration decisions based on higher-level
metrics, such application performance or utility values, will be a more
preferable and flexible choice. Basing VM resource allocations and live
migration decisions on the optimization of a utility function would offer
the required multiple criteria optimization and flexible allocation policy
changes.

Another problem with existing approaches using linear and constraint
programming optimization techniques is the long optimization time. This
makes them impractical for real time resource allocation. What is required
is a simple, lightweight and low overhead approach for utility function
optimization.
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Another issue is that heuristic algorithms should not find a mapping of
VMs to physical machines that result in a complete rearrangement com-
pared to the previous configuration. Even if the new mapping could be
optimal, in terms of the number of physical machines, it may require a
lot of VMs live migrations taking place at the same time. This can cause
a long reconfiguration time and a big overhead for the network and the
VM performance.

The last issue is the problem that can arise when live migration decisions
are taken according the load. In the case when the load changes fast in the
inverse directions, it can make a VM migrate forth and back continuously
in ping-pong way. Thus the decision-making technique should take into
consideration also this kind of stability issue.

Local level VM resource allocation challenges. One approach to
VM resource allocation in a physical machine is to set shares according
to resource utilisation. For example, there are works [118, 49, 90] that
use feed-back control theory approaches to keep resource utilisation to a
certain level in order to keep performance to an acceptable level. They
suppose that a certain utilisation level corresponds to a certain perfor-
mance level. The problem here is that the mapping between a certain
resource utilisation level and performance is hard to find. The mapping
changes over time and is different for different workload intensities and
workload mixes.

A better approach should be to find a direct mapping or model between
resource allocation shares and performance levels, which would create the
possibility to directly manage performance and keep it according to SLA
levels. There are works [130, 90] that adopt the control-theory approach
to directly control the performance to a certain level. The problem with
these approaches is that they use linear models of resource allocation per-
formance mappings that do not work well in practice. This is because in
general the performance is a non-linear function of resource allocations
[67, 118]. The linear models capture the relationship between resources
and performance only around the operating point, which can be approx-
imated as linear, but if the workload changes to another operating point
the model is no longer valid. There are some approaches that somehow
cope with this by building adaptive linear models such as ARMA [89].
In this case, the model parameters are continuously updated on-line, but
again, this remains a linear model and the adaptation time to the new
operating point is very long.

Another issue with control-theory approaches is the difficulty to simulta-
neously control different conflicting objectives, such as power and perfor-
mance. A more flexible solution, also mentioned in the global resource
allocations research challenges, is the use of utility functions that offers a
natural way of optimizing across different objectives. One consequence of
using optimization techniques for resource allocation is that, since it de-
pends on the number of resource allocation combinations, increasing the
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number of VMs increases the optimization time as well. A promising ap-
proach is a distributed resource management solution where optimization
is done for each VM separately therefore reducing time complexity. On
the other side, this approach raises the need for coordination between dif-
ferent VM resource allocations in order to eliminate conflicting decisions,
especially between different VMs of the same application.

Other works [28, 14, 75] make use of queuing theory to model non-linear
resource performance relationships. However, they are very simple math-
ematical models unable to capture complex relationships between perfor-
mance and resource allocation in shared virtualized environments. There
are several reasons for this complexity but the most notable one is perfor-
mance interference between VMs running on the same physical machine.
This means that the performance of a VM does not depend only on the
resource allocation given to it but also on the workload of other VMs
and the resource allocation given to them. This interference comes as a
result of several reasons. Virtualization technology in general offers fault
and security isolation between VMs, but it does not provide performance
isolation [66]. Although some resources can be partitioned (CPU and
memory), other ones (shared caches and disk I/O bandwidth) cannot do
so. The VMs will have contention for these resources resulting in unpre-
dictable performance interference between them. In some virtualization
technologies, such as Xen, a special VM called Dom0 responsible for doing
I/0O operations on behalf of other VMs exists. Even the Dom0 VM can be
a source of contention [43] because an I/O intensive VM can deprive other
VMs of using Dom0 for doing their I/O work. Another issue that increases
the complexity of resource-performance relationships is the dependence of
application performance on the ability to access at the same time multiple
type of resources and the complex interdependencies between resources
usages. This also places the need to have resource allocation techniques
that take into account resource dependencies by allocating multiple re-
sources simultaneously. The complex relationship between resources and
performance makes it nearly impossible to built accurate mathematical
models. Moreover, it makes it even more difficult to build off-line empir-
ical models, due to the difficulty of creating all situations and workloads
that can happen in a real environment.

One option that has the potential to create more robust and accurate
models is to build on-line empirical models, using machine-learning tech-
niques. However, this approach is not free of challenges. Firstly, since
the model is trained on-line during application runtime, the training con-
figuration samples applied should be representative of a wide range of
values in order to build an accurate model. On the other hand, they
should not violate application performance. This is related to the well-
known trade-off between exploitation and exploration, where exploitation
actions are taken from the learned policy or model and exploration ac-
tions are random to explore unknown regions. In order to reduce perfor-
mance violations, the training time should also be low. Moreover, since
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the performance-resource relationship can change over time, the model
should also have a low online adaptation time. A second challenge lies
in the fact that some measured metrics, such as VM performance, are
very noisy and can create difficulty to build accurate online models. To
reduce the noise one should increase the control interval between training
samples. However, doing so will increase online training time, which re-
sults in another trade-off needed to be taken into consideration. A third
issue is that of delayed effects of resource allocation on application perfor-
mance, where effects on the performance of a resource configuration are
only shown after several control intervals. These delayed effects create
difficulties in building accurate performance models.

Another issue is that resource allocation is usually done in a reactive way,
meaning that the amount of resources allocated for the next interval is
based on previous, already happened events. This implies that allocation
decisions are often taken when SLA performance violations have already
occurred. A better approach would be a proactive resource allocation
that predicts resource utilization and allocates resources before it reaches
a certain level, eliminating performance SLA violations. Usually, existing
proactive resource allocation approaches make predictions of utilization
time series separately for each resource. This has the drawback of not
taking into account cross-correlation between time series of different re-
sources. The latter is especially true in IaaS cloud environments running
multi-tier applications, where there are interdependencies between VMs
of the same application. A new approach that takes into account cross-
correlation between resource of multiple VMs of the same application is
needed. This would result in better prediction accuracy and resource
allocation decisions.

1.3 Research Contributions

The main contributions of this dissertation are several approaches to automati-
cally allocate VM resources that manage application performance and operating
costs of an IaaS cloud. These approaches range from global optimization at the
data center level (by VM live migration), to the physical machine level (by
dynamic resource share allocation.):

e Utility-based Virtual Machine Consolidation and Load Balanc-
ing

An approach for VM consolidation and load balancing based on opti-
mizing a utility function that allows finding the right trade-off between
performances and operating costs is presented. This approach combines
control-theory based dynamic resource allocation at the physical machine
level and a heuristic driven VM live migration at the cluster level. The
first one maximizes a local utility function, while the second optimizes a
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global utility function. Local and global utility functions represent the
profit derived from one physical machine and that from the entire cluster.
Most of the works base their live migration decisions on fixed heuristics
driven by VM utilization and threshold values. The novelty of this ap-
proach is the combination of local and global resource allocations as well
as making migration decisions based on a higher-level metric, such as util-
ity value. This is more important for the cloud provider as it represents
its profit. The utility function is expressed as the difference between the
utility of VMs and the cost of cloud provider infrastructure. The utility
of a VM represents the monetary value the cloud consumer pays to the
cloud provider for consuming a certain amount of resources. The cost
represents the sum of the operating costs for every physical machine of
the infrastructure. The SLA contract in this case charges based on the
resources consumed and tries to guarantee them by maximizing the util-
ity function. Compared to existing works this approach also offers more
flexibility in changing the allocation policy. By doing so it makes it more
aggressive in consolidating or balancing the load, by only changing the
weight coefficients of VMs utilities or costs functions, as will be explained
more deeply in Chapter 3. This approach also takes measures to reduce
stability problems that can occur with VM live migrations.

e Allocation of Multiple Types of Resources to Virtual Machines
Using Control Theory

The next contribution is the development of a dynamic VM resource al-
location technique on the local physical machine level. It addresses the
allocation problem of multiple types of resource to VMs in order to op-
timize a utility function that represents the cloud provider’s profit from
one physical machine. The approach is based on applying feed-back con-
trol theory to control multiple resources such as CPU, memory, disk and
network I/0O. This keeps their utilizations to certain levels and the per-
formance according to SLAs. It also gives different priorities to different
VMs and in the case of contention, for any resource, it applies an algo-
rithm that resolves it by allocating resources in such a way as to maximise
a utility function. The utility function is expressed as the difference be-
tween the utility of VMs and the operating cost of one physical machine.
The utility of a VM represents the monetary value the consumer pays to
the provider for consuming a certain amount of resources and getting a
certain performance level. The SLA contract, in this case, has the form
of a utility function that charges on resource consumption and provided
performance levels. The contract tries to guarantee both of them by ap-
plying feed-back control and utility function maximization. Since most
of the works focus on allocating one or two resources, the novelty of this
approach is considering multiple types of resources and developing a new
form of SLA contract that takes into consideration both resources con-
sumed and performance levels.
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e Virtual Machine Resource Allocation via Multi-Agent Fuzzy
Control

A VM resource allocation approach that allocates CPU and memory re-
sources of a physical machine through the optimization of a utility func-
tion is presented. The utility function expresses two conflicting objec-
tives of performance and resource costs, and represents the provider’s
profit deriving from one physical machine. Utility function optimization is
achieved through a fuzzy-controller, by using a hill-climbing search heuris-
tic implemented through fuzzy-rules. Compared to other approaches,
heuristic based fuzzy-control allocation does not require building before-
hand an analytical or statistical model of the relationship between re-
source allocation and performance metrics. What is needed is just the
specification of some fuzzy-rules for the hill-climbing algorithm. Another
advantage of the fuzzy-control approach is that the amount of allocation
that a VM resource can be increased is not a fixed step value, but can
be adapted at run time according to the amount of utility change. The
fuzziness also makes it possible to make adequate decisions even in the
presence of noisy utility value measurements. To cope with long utility op-
timization time, as a result of an increased number of VMs, a multi-agent
fuzzy controller is developed, where the global utility function is divided
into local utility functions. The fuzzy-controller is divided into multi-
ple agents, each responsible for resource allocation of one VM through
optimization of its own local utility function.

e Distributed Resource Allocation to Virtual Machines via Arti-
ficial Neural Networks

This approach allocates resources at local physical machine level. It opti-
mizes a utility function expressing the trade off between the application
performance and power consumption of the physical machine. The utility
function represents the profit that the provider derives from one physical
machine. The function depends on performance levels of VMs and power
consumption of the physical machine. This means that we have a SLA
contract model stating the application performance levels that should be
kept by the cloud provider. The optimization is done by using an Artifi-
cial Neural Network (ANN) based model of the relationships between VM
resource allocations, performance and power consumption of the physical
machine. The inputs to the ANN model are VM resource allocations and
the outputs are the performance and power levels of VMs. Firstly, this
avoids dealing with low-level resource utilizations by managing directly
the application performance. Secondly, since ANN are known for their
good approximations of non-linear functions, it addresses the problem of
capturing non-linear relationships, between performance and resource al-
locations, in virtualized environments. The ANN models are built on-line,
avoiding the need to build an analytical model beforehand, thus making
the approach independent of any specific application.

There are two developed versions of the resource manager. In the cen-
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tralized resource manager, two Multiple-Input Multiple-Output (MIMO)
ANN based models are being used. The first model captures the rela-
tionship between resource allocations and performance metrics, and the
other captures the relationship between resource allocations and physical
machine power consumption. To cope with the increased number of VMs,
which can result in an increased utility optimization time, a distributed
version of resource manager is developed. The centralized manager is di-
vided into several managers each responsible for resource allocation of one
VM through optimization of its own local utility function.

e Cross-Correlation Prediction for Virtual Machine Resource Al-
location Using Support Vector Machines

An approach called Automatic Proactive Resource Allocation (APRA) is
presented, which pro-actively allocates resources to VMs of multi-tier ap-
plications running across several physical machines of a cloud-computing
infrastructure. This is achieved using a supervised machine learning tech-
nique for time series forecasting, namely Support Vector Machine (SVM),
which predicts resource usage demand. Based on this prediction, VMs
receive the minimum allocations to satisfy their demands, thus reducing
resource costs. Given the interdependencies between VMs of a multi-tier
application and correlated resource usage between multiple VMs of the
same application, cross-correlation prediction is applied by simultaneously
making predictions of multiple resources of the multi-tier application.
This increases the prediction accuracy of resource usage and therefore
improves the resource allocation to VMs, making it possible to mitigate
SLA performance violations. Another advantage of this approach is that
it is non-intrusive, since it makes allocation decisions based only on re-
source usage metrics measured outside VMs.

1.4 Publications

Several research papers have been published during the course of this research:

1. Dorian Minarolli and Bernd Freisleben. Utility-based Resource Allocation
for Virtual Machines in Cloud Computing. In Proceedings of 16th IEEE
Symposium on Computers and Communications, ISCC 2011, pp. 410-417,
IEEE press, 2011.

2. Dorian Minarolli and Bernd Freisleben. Utility-driven Allocation of Mul-
tiple Types of Resources to Virtual Machines in Clouds. In Proceedings
of 13th IEEE Conference on Commerce and Enterprise Computing, CEC
2011, pp. 137-144, IEEE press, 2011. (Best Paper Award)

3. Dorian Minarolli and Bernd Freisleben. Virtual Machine Resource Alloca-
tion in Cloud Computing via Multi-Agent Fuzzy Control. In Proceedings
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of 8rd International Conference on Cloud and Green Computing, CGC
2013, pp. 188-194, IEEE press, 2013.

4. Dorian Minarolli and Bernd Freisleben. Distributed Resource Allocation
to Virtual Machines via Artificial Neural Networks. In Proceedings of
22nd FEuromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2014, pp. 490-499, IEEE press, 2014.

5. Dorian Minarolli and Bernd Freisleben. Cross-Correlation Prediction of
Resource Demand for Virtual Machine Resource Allocation in Clouds.
In Proceedings of the 6th International Conference on Computational In-
telligence, Communication Systems and Networks, CICSYN 2014, pp.
119-124 | IEEE press, 2014.

1.5 Organization of this Dissertation

This dissertation is organized as follows:

Chapter 2 introduces topics that lay out the fundamentals for this work. This
includes cloud computing, virtualization, supervised machine learning, feed-
back control systems, fuzzy-control systems and utility function optimization.
This chapter closes with an overview of related work in the area of VM resource
allocation in cloud computing.

Chapter 3 introduces the proposed resource allocation approach at the global
data center level, based on VM live migration and utility function optimization.
In this chapter the design, implementation and experimental evaluation of this
approach are presented.

Chapter 4 presents the proposed resource allocation approach of multiple type
resources at local the physical machine level, based on control-theory and util-
ity optimization. Its design, implementation and experimental evaluation are
presented.

Chapter 5 presents the proposed resource allocation approach at the local phys-
ical machine level, based on multi-agent fuzzy control, which allocates resources
based on utility optimization using a hill-climbing search heuristic. Its design,
implementation and experimental evaluation are introduced.

Chapter 6 presents the proposed resource allocation approach at the local physi-
cal machine level, optimizing a utility function using an ANN based performance
and power modelling. A distributed resource management design including its
implementation, simulated and realistic experimental set-up and evaluation are
presented.

Chapter 7 presents the proposed proactive resource allocation approach at
the global data center level called Automatic Proactive Resource Allocation
(APRA). It is based on VM resource usage prediction, using support vector
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machines for time series forecasting. Its design, implementation, experimental
set-up and evaluation are introduced.

Finally, Chapter 8 concludes the dissertation and discusses future work.



Fundamentals

2.1 Introduction

This chapter is divided into two parts and presents the background and defi-
nitions on which the developed VM resource allocation approaches are based.
In the first part, the concepts of cloud computing, virtualization, supervised
machine learning, feed-back control systems, fuzzy-control systems and util-
ity function optimization are explained. For each concept, its main features,
drawbacks, advantages and representative technological solutions are described.

In the second part of this chapter, work related to VM resource allocation ap-
proaches is presented. The related work is grouped in different sections, based
on the main VM resource allocation mechanism used, such as VM live migra-
tion, vertical scaling VM resource allocation, horizontal scaling VM resource
allocation, proactive VM resource allocation.

2.2 Definitions

This section gives the fundamental definitions and technological solutions this
work is based upon. It starts in Subsection 2.2.1 with the concept of cloud com-
puting. Then, it continues in Subsection 2.2.2 with virtualization technology,
the underlying technology of cloud computing. In Subsection 2.2.3, two su-
pervised machine learning techniques are introduced, namely Artificial Neural
Networks and Support Vector Machines. In Subsection 2.2.4, feed-back control
systems, their properties and how they can be designed to control computing
systems, are presented. In Subsection 2.2.5, fuzzy-control systems together with



14

Chapter 2. Fundamentals

their main design properties are introduced. Subsection 2.2.6 describes the con-
cept of utility function optimization together with deterministic and heuristic
algorithms for achieving it.

2.2.1 Cloud Computing

2.2.1.1 Historical View of Cloud Computing

Cloud computing, as a new computing model that offers several advantages
compared to existing distributed models, has gained a wide spread use in re-
cent years. Its advantages are: flexible resource management, reduced costs
and economies of scale, easy fault management etc. Although a relatively re-
cent computing paradigm, the idea behind cloud computing (in the form of
utility computing) dates back to 1961 when John McCarthy, a computer scien-
tist who influenced the early development of Artificial Intelligence, stated: ”If
computers of the kind I have advocated become the computers of the future, then
computing may someday be organized as a public utility just as the telephone
system is a public utility. The computer utility could become the basis of a new
and important industry”. In essence, offering computing resources as a service
to consumers in the same way as the electricity company offers electricity, is the
idea cloud computing implements. In this utility computing model, the con-
sumer gets a computing service, on demand, on a pay-as-you-go fashion. This
means that the consumer gets only the required demand of computing service
and pays only for the service he has used.

It took a long time down the road of computing history for the vision of cloud to
become a reality. In 1970s, through a powerful computer, mainframes offered
shared computing resources in a centralized way, where users could connect
through their dump terminals. Then came the area of small PC computers
connected to local area networks, with the service offered through dedicated
servers, isolated from each other. Later, this network based computing model
was grown by the advent of the Internet, which made it possible to connect
different networks into a world wide global network, where any user and in any
part of the network could access the service. The Internet and the development
of higher bandwidth network technologies allowed some early forms of utility
computing such as email and search engine services.

Small and big Internet service providers started to offer hosting services for web-
sites, removing the burden for maintaining the site for a leasing fee. Some early
companies offering these remote services through Internet were Salesforce.com
[101] and Amazon.com [3]. The term cloud computing emerged around 2006
through the advent of commercial offerings such as Amazons Elastic Compute
Cloud (EC2) [4] and later Google App Engine [41]. As this new model of com-
puting advanced, new forms of applications such as web2.0 based social media
(e.g Facebook), service oriented workflows and new programming paradigms
such as MapReduce [25] emerged. However, with the spread of the cloud new
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challenges seemed to arise. Among the most important issues that could be
mentioned are: more complex system to be managed, problems of consumer
lock-ins, security and privacy problems. Since cloud computing is very dy-
namic and rapidly changing, it is difficult to predict what its future will be.
Certainly, in order to be a sustainable and successful technology, it will need
the convergence of other fields such as service-oriented computing, autonomic
computing, virtualization etc.

2.2.1.2 Definition and Advantages of Cloud Computing

The main question sailing in the vast discourse and marketing hype associated

with the term cloud computing, is what exactly is cloud computing? There
are many definitions of the cloud computing concept and no unique standard
definition, which has occasionally created confusion within the IT industry. For
example, Gartner [38], a research and advisory company in US has given the
following definition:

7A style of computing in which scalable and elastic IT-enabled capabilities are
delivered as a service to external customers using Internet technologies”.

This definition emphasizes the scalable and elastic nature of cloud computing.
Elastic, in this context, means that computing resources offered to consumers
can shrink and expand according to the workload demand. Forrester Research
[37] gives the following definition:

"A standardized IT capability (services, software, or infrastructure) delivered
via Internet technologies in a pay-per-use, self-service way.”

One of the definitions that is taking more and more acceptance from IT industry
is that of National Institute of Standards and Technology (NIST) [86]:

?Cloud computing is a model for enabling convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”.

Yet, another definition that captures all characteristic features of cloud com-
puting is given in the following:

”Clouds are a large pool of easily usable and accessible virtualized resource (such
as hardware, development platforms and/or services). These resources can be
dynamically re-configured to adjust to a variable load (scale), allowing also for
an optimum resource utilization. This pool of resources is typically exploited
by a pay-per-use model in which guarantees are offered by the Infrastructure
Provider by means of customized SLAs”. [110]

Some of the unique features and advantages of cloud computing over existing
computing models can be listed as follows:
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Platform as a Service
Programing Frameworks and
Environments

Infrastructure as a Service
Virtualized Computing and Data Storage Servers

Figure 2.1: Abstraction layers of cloud computing

e Up-front reduction of infrastructure investment costs for new companies.
To fulfill their early stage needs, companies do not need to invest on hard-
ware resources but can lease virtualized resources from cloud providers.

e The availability of virtually infinite resources that can be provided on-
demand in an elastic way. What this means is that resources can be
requested and released as needed according to the workload variability.
This eliminates wasted resources associated with over-provisioning and
performance violations associated with under-provisioning as a result flash
crowds.

e Pay-as-you-go billing model where cloud consumers are charged only for
the cloud resources used in a fine-grained way, resulting in a more eco-
nomically efficient way of using resources.

e Shifted operational costs, risks and infrastructure management complexi-
ties from cloud consumer to the cloud provider. This makes it possible for
companies to focus on innovative Internet services and business models,
rather than on infrastructures supporting them.

e Reduced power and operating costs for the cloud provider because of
more efficient utilization of infrastructure resources as a result of shared
multiplexing of virtual resources of different cloud consumers. This also
results in lower cost offerings for could consumers.

2.2.1.3 Architecture of Cloud Computing

According to the layer of abstraction that computing service is offered, three
types of delivery model in cloud computing can be identified: a) Software as
a Service (SaaS), b) Platform as a Service (PaaS) and, ¢) Infrastructure as a
Service (TaaS). This layered architecture is shown schematically in Figure 2.1
where each layer uses the service of the layer below.

e Software as a Service offers application software to the consumers over
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the Internet. The application software runs at the cloud provider severs
and is accessed through some user interface that is usually a web browser.
The consumer does not have any control on the software running platform
or the amount of resources allocated to it. It only has control to just a
few software customizations. Such a model is exemplified by providers
such as Salesforce.com [101].

e Platform as a Service offers a platform and programming environment
such as API framework and libraries, to develop application software. In
this case, the platform together with the application run on cloud provider
servers. The consumer does not have any control on the platform itself,
but only on the application it is developing. Such a model is exemplified
by providers such as Google App Engine [41] or Microsoft Windows Azure
[79].

o Infrastructure as a Service offers raw computing resources such as com-
pute and storage servers, situated in a cloud provider’s data center, in the
form of VMs over the Internet. The consumers can request these resources
on demand by renting them for a limited period of time. In this model,
the consumer has control over the platform and customization of the op-
erating system, but does not have control over the physical hardware and
amount of resources allocated to its VMs. A well-known example of an
IaaS provider is Amazon EC2 [4].

In IaaS clouds, the following entities can be identified, as shown in Figure 2.2.

e Cloud provider: the entity that offers compute resources in the form of
VMs, running on its own data center physical machines.

e Cloud consumer: the entity that leases resources in the form of VMs
to host his own application services (e.g. web site) and pays the cloud
provider for the usage of VMs or the performance levels it receives.

e FEnd user: the entity that usually interacts through a web interface to
application services owned by cloud consumer.

o Service Level Agreement (SLA) contract: is a contract between cloud
provider and cloud consumer that states the levels of resources or per-
formance metrics that should be guaranteed, the amount of charges for
guaranteeing them and any monetary penalties for violating them.

Most of the current IaaS implementations apply an SLA contract that guar-
antees and charges only for consumed VM resources. The other form of SLA
contract is the one that charges only for the performance levels achieved. In this
dissertation both forms of contracts are used. However, since it offers the best
solution for both cloud consumer and cloud provider [85], in this work mostly
a contract that guarantees and charges only for application performance levels
is used.
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Figure 2.2: TaaS cloud

TaaS cloud computing systems can be divided according to the deployment
model supported. In the public cloud model, virtualized resources are offered
on demand, in a pay-as-you-go fashion, to the general public consumers. In this
case, the cloud provider is in charge of infrastructure operating costs while the
cloud consumer pays only for the resources used. In the private cloud model, the
virtualized resources are run on a private organization infrastructure and used
for its own needs for better flexibility, reliability and resource usage efficiency.
The hybrid cloud model combines the features of both the public and private
cloud. In this model, an organization runs its own private cloud infrastructure
but it is also connected and can lease additional resources from a public cloud,
when additional capacity is needed to fulfill increased workload. This offers
control over critical data and services without the need for capital investment
on additional hardware resources.

2.2.2 Virtualization

One of the key enabling ingredients of the cloud computing model is the virtual-
ization technology. This technology allows virtualizing and sharing computing
resources in the form of VMs between different cloud consumer applications.
Moreover, it provides the key advantageous features of cloud computing over
other computing models such as elastic resource provisioning, efficient resources
usage, performance and security isolation etc.

2.2.2.1 Virtualization Technologies

Virtualization is a general concept and can be applied in different software stack
abstraction levels. For instance, the operating system offers a virtual machine in
the form of API system calls to application programs. It virtualizes resources
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Virtual Machine Monitor

Figure 2.3: HostOS-based virtualization

such as CPU or memory and gives each process the illusion that it has the
whole CPU or memory for itself. Another kind of virtualization is the so-called
operating system level virtualization. This virtualization can encapsulate an
operating environment in a container with its own root account and it can
run several of them on top of the operating system kernel. Some examples of
OS level virtualization are FreeBSDs chroot jails [62], Linux VServer [95] and
OpenVZ [23].

Another important type of virtualization is the so-called machine virtualiza-
tion. In this case, the whole operating system and its applications are encap-
sulated in a virtual machine that offers the illusion of a real physical machine.
Some examples of this kind of virtualization are Kernel Virtual Machine (KVM)
[65], Microsoft Virtual Server [77], Windows Virtual PC [78], User Mode Linux
(UML) [27], VMware Workstation [114], VMware ESX server [113] and Xen
Hypervisor [8]. Machine virtualization can be further divided into different
kinds depending on how the virtualization is achieved:

o HostOS-based: Here, different VMs containing the whole operating sys-
tem run on top of a virtualization layer called Virtual Machine Monitor
(VMM) or Hypervisor, which (as shown in Figure 2.3) itself runs on top
of an existing operating system called Host OS. A representative example
of this approach is VMWare Workstation [114]. The VMM multiplexes
VMs and controls the access of VMs to resources by relying on the Host
OS, which provides some functionalities such as I/O device handling. One
of the advantageous features of HostOS-based virtualization is an easy in-
stallation of VMM as a normal application and support for diverse types
of I/O devices through the use of existing HostOS device drivers. The
main disadvantage is the high performance overhead of I/O device data
transfers since all I/O operations have to go through the HostOS layer.

e Kernel-based: In this approach, the operating system takes the role of

19



20

Chapter 2. Fundamentals

App | |App

Operating System Kernel (Hypervisor)

Figure 2.4: Kernel-based virtualization

Hypervisor to multiplex VMs that run as user space processes. This
architecture is shown in Figure 2.4. Some of representative examples of
this virtualization technology are UML [27] and KVM [65].

e Hypervisor-based: This is one of the main approaches of machine virtual-
ization, where several VMs run on top of a software layer called a Virtual
Machine Monitor (VMM) or Hypervisor, which itself runs directly on top
of the hardware as shown in Figure 2.5. The VMM multiplexes VMs
on physical resources by offering them a virtual hardware similar to the
physical one. Some representative examples of this kind of virtualization
are VMWare ESX server [113] and Xen [8]. These are called bare-metal
Hypervisors since they run directly on hardware. One of the advantages
of this approach is that it provides strong security and performance isola-
tion between VMs and better reliability as a result of a small Hypervisor,
which is only responsible for the main resource management tasks.

2.2.2.2 Hypervisor-based Virtualization

Since Hypervisor-based virtualization technology is the most used virtualization
approach in IaaS clouds and the one this work is based upon, a more detailed
analysis of this approach is presented starting with its initial historical roots.

2.2.2.3 Brief History of Virtual Machines Monitors

Virtual machine technology is not a new approach. It has been developed
around the end of the 1960s by IBM, with the VM /370 Virtual Machine Moni-
tor that permitted to run several VM operating systems on top of the physical
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Virtual Machine Monitor

Figure 2.5: Hypervisor-based virtualization

hardware. The main motivation of using virtualization those days was efficient
use of expensive mainframe computers where each user could get a portion of
the physical hardware through its own VM. With the advent of the PC and
low cost computers, where each user could afford to buy one, the need for
virtualization-based sharing of expensive computers decreased. As a result,
virtualization technology disappeared until the beginning of 1990s where re-
searchers at Standford University started to show interest on virtualization as
a solution to the problem of running existing operating systems on complex
parallel machines. This was also the starting motivation when the VMware
[112] company started to develop virtualization solutions for everyday PC com-
puters. Since then, the industry and academia were showing more and more
interest in virtualization as a solution to new emerging problems. Some of these
problems are as the following: First, the proliferation of server machines often
underutilized results in high power and management costs. Here, the virtual-
ization offers the possibility to consolidate multiple servers in the form of VMs
on fewer physical machines, lowering power and management costs. Second,
operating systems are becoming more and more complex resulting in reliability
and security problems for applications running on them. Here, virtualization
offers the possibility to isolate VMs of different users where the crash or security
break of one OS does not influence the other VMs or the entire system.

2.2.2.4 Approaches to Hypervisor-based Virtualization

The basic idea of Hypervisor-based Virtualization, at least with respect to CPU
virtualization, is the following. The VM holding the operating system and
application software is run in unprivileged CPU mode, while the Hypervisor is
run in privileged CPU mode. Normally, the VM runs unprivileged instructions
directly on the CPU, creating the illusion that the whole CPU is belonging to
the VM. When the VM tries to run a privileged instruction, it is trapped at the
Hypervisor that takes control and emulates the functionality of this instruction.
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In this way, the Hypervisor can control hardware resources and isolate VMs
from each other. This requires a virtualizable CPU, meaning it should support
two execution modes and provide the possibility to trap to the Hypervisor.
Popek and Goldberg [94] more formally defined when a CPU architecture is
virtualizable. First, they divided the instruction set into two main groups:

e Privileged instructions are instructions that can be executed only in priv-

ileged CPU mode.

e Sensitive instructions are instructions that can change resource config-
uration information of VMs or that their behavior depends on resource
configuration information.

They concluded with the condition that the CPU’s sensitive instructions should
be a subset of the privileged instructions in order for the CPU to be virtualiz-
able. In other words, all sensitive instructions executed by some VM that try to
change the resource state of another VM should be trapped to the Hypervisor.
Only in this way the Hypervisor can have and retain control over the physical
machine.

Unfortunately, recent CPU architectures such as Intel x86, do not obey to this
condition and therefore are not virtualizable. This is because they have a set
of instructions, especially those related to memory configuration, that do not
trap if they run in unprivileged mode. For this reason, several solutions have
been developed to enable virtualization technology on Intel x86 CPUs:

o Full virtualization: a technique developed by VMware, based on dynamic
binary translation in which all virtualizable instructions are run directly
on the CPU while non-virtualizable ones are translated on-the-fly to a new
sequence of instructions that can be executed directly on the CPU and
provide the required functionality. To lower the overhead of the transla-
tion, the sequence of instructions that are translated for the first time is
cached and can be reused when it is required for the next translation. As
a typical example of this approach serve VMware ESX and ESXi servers
[113]. The advantage of this technique is that the operating system is not
aware that it is running on a virtualized environment and does not need
to be modified. This is because the translation is applied on the binary
code at run time. Also, the translation overhead is not big as only a small
percentage of instructions need to be translated while cached translations
speed up the process.

e Paravirtualization is another important hypervisor based approach to sup-
port virtualization on non-virtualizable CPUs. In this approach, operat-
ing system kernel source code is modified by replacing non-virtualizable
instructions with the so-called hyper-calls, made to the hypervisor. Thus,
the operating system communicates directly with the hypervisor through
the hyper-calls interface provided by it. The main representative example
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of the paravirtualization approach is the Xen open source project [123]
with its Xen hypervisor. The approach offers low virtualization over-
head through efficient hyper-calls, eliminating overheads associated with
trapping privileged instructions running in unprivileged mode. The main
drawback, however, is that the operating system is aware that is virtual-
ized and needs to be modified to be ported to the Hypervisor. This means
that legacy operating systems cannot be run on virtualized hardware.

o Hardware-assisted virtualization approach is based on new generation
CPUs such as Intel with its Virtualization Technology (VT-x) [55] and
AMD with its AMD-V [1] that offer support for virtualization. These
new CPU technologies offer a new level of privileged mode, different from
the normal privileged and non-privileged mode, where the hypervisor can
run. With these technologies, non-virtualizable instructions running out-
side this new privileged mode will trap to the hypervisor, which will em-
ulate their functionality. Operating systems can be ported unmodified
to the virtual environment although carrying with some virtualization
overhead because of the trap to the hypervisor. Several virtualization
solutions support hardware-assisted virtualization such as Xen, VMWare
ESX and KVM.

2.2.2.5 Memory and Device 1/0O Virtualization

The main idea with respect to memory virtualization for different solutions is
the following. In the same way that the VM operating system virtualizes the
memory to its own processes by keeping a page table of memory mapping be-
tween virtual and physical addresses, the Hypervisor virtualizes machine physi-
cal memory by keeping the mapping between VM physical addresses and actual
machine addresses allocated to the VM. To speed-up the address translation
process, the Hypervisor keeps a shadow page table of direct mapping between
VM process virtual addresses and the actual machine addresses, and uses Mem-
ory Management Unit (MMU) to make the translation at run time. If the VM
operating system changes its own page table, the Hypervisor notices this and
makes the corresponding change in the shadow page table in order to keep
control of physical memory allocated to VMs.

With respect to device I/O virtualization, what generally happens in most of the
virtualization solutions is that the Hypervisor provides virtual device interfaces
to the VMs to submit their I/O requests. The Hypervisor then multiplexes
different I/O requests coming from multiple VMs to the real I/O device. This
implies that the Hypervisor must have somehow access to the real I/O device.
One possible way to achieve this is employed by VMWare ESX server. In this
case, the Hypervisor contains a small number of device drivers that permits it
to directly access the real I/O devices. The drawback here is that it cannot
support the variety of 1/O devices existing today, especially on modern PC
computers, since the Hypervisor code should be kept to minimum to have a
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reliable system. Another possibility adopted by Xen and VMware Workstation
is for the Hypervisor to use device drivers, already existing on a host operating
system, in order to access the real I/O devices. Since the host operating system
is usually Windows or Linux that already have device drivers, the support for a
variety of I/O devices becomes possible with the cost of increased I/O overhead,
since another layer of indirection is introduced.

2.2.2.6 Virtual Machine Live Migration

One of the most important mechanisms used for resource allocation to VMs
in IaaS clouds is VM live migration. This is the movement of a VM from one
physical machine to another with negligible runtime interruption of running
applications. Live migration of VMs allows flexible management of IaaS clouds
firstly, by providing load-balancing capabilities by moving VMs from overloaded
physical machines to under loaded ones. Secondly, it makes it possible to dy-
namically consolidate VMs to fewer physical machines, thus reducing power
and operating costs. Since this is an important resource allocation mechanism
also used in this dissertation, a brief overview of the VM live migration process
is given. Since there are several techniques for achieving live migration, the
explanation is limited to the so-called pre-copy technique [22] of live migration,
widely used in practice through the Xen Hypervisor.

Two performance indicators of a live migration technique are downtime and
total migration time. Downtime is the time during which the operating system
and all applications running on it are suspended for the final transfer to des-
tination physical machine. Total migration time is the time from the start of
migration process until the VM is completely transferred. Pre-copy live migra-
tion technique has shown downtimes in the orders of milliseconds that cannot
be noticed by users of applications services running on the VM. The main idea
of pre-copy VM live migration technique is to transfer the memory image of
a VM from source to destination host through a number of iterations, with
a subset of memory pages transferred in each iteration. More concretely, the
technique is implemented as a number of stages as follows [22]:

e Reservation: When a request for migration from one host to another is
issued, a check whether free resources are available on the destination host
is performed and if so, a reservation for a VM container is made.

o [terative pre-copy: In the first iteration, all memory pages of the VM are
transferred from source host to destination. In the next iterations, in order
to keep memory consistency, only the pages that are changed during the
previous transfer are transferred again. To keep track of changed pages,
the shadow page tables are used in the Hypervisor, where all page address
entries are marked as read only. When a page is written, a trap is issued to
the Hypervisor setting a bit to a dirty pages bitmap indicating which page
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is updated. In each new iteration, the shadow page tables are recreated
and the dirty pages bitmap is cleared.

e Stop and copy: In this stage, the VM operating system is suspended and
the CPU together with remaining changed pages are transferred to the
destination. At the end of this stage, there are two copies of the VM
memory images, one at the source and the other at the destination host,
meaning that if a failure happens the original copy can be reused.

e Commitment: The destination host notifies the source host that it has
received the complete VM memory image. After that, the source host
replies back and finally the VM can be discarded on the source host.

e Activation: The VM on the destination host is activated and some post
migration administrative tasks such as the notification that the VM IP
address has moved to a new host, are run.

2.2.3 Supervised Machine Learning

Machine learning is a sub-field of artificial intelligence that studies how intel-
ligent agents can improve their performance by learning from past experience.
This is needed since agents cannot be programmed at design time with algo-
rithms that can predict all dynamic and changing situations and act accor-
dantly. There are different forms of learning such as unsupervised learning,
supervised learning and reinforcement learning. Since in this work we investi-
gate and apply supervised machine learning for resource allocation to VMs, we
review this kind of learning technique together with two widely used represen-
tatives, namely artificial neural networks and support vector machines.

The goal of supervised machine learning is the following. Given a set of samples
in the form of input-output (x;,y;), where x; is the input value (it can also be a
vector of several values) and y; is the output taken from an unknown function
f(z), the goal of supervised learning algorithm is to find a function f’(z) that
approximates the unknown function. The set of all samples is called the training
set and the process of finding f’ is called learning or training, while f’ itself is
called hypothesis. After the learning phase, given a new input value x; that
is taken outside of the training set, the approximate function f’ should predict
a value f’(x;) that is with sufficient accuracy near to the real value f(x;).
When the learned function f’ predicts new values with high accuracy, we say
that it generalizes well. Generally, when the output of the predicted function
takes finite discrete values we have a classification-learning problem. On the
other hand, when the output takes any continues number we have a regression
learning problem. In this dissertation, the focus is on regression learning of a
function.
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Y

Figure 2.6: Neuron

2.2.3.1 Artificial Neural Networks

In this section, we first introduce the structure of artificial neural networks
and then move on describing the learning algorithms used to train the artificial
neural network. The basic building unit of an artificial neural network is the
neuron given in Figure 2.6. It is sometimes called a perceptron and takes as
input a number of links while it has one output link. Each input value a;,
before entering the neuron unit through its corresponding link, is multiplied
by a weight w;. There exists an input value ag that has the value of 1. At
the entrance of the neuron unit, the sum of all input values multiplied by their
weights is taken as below:

n
y:Zai*wi (2.1)
i=1
Then, an activation function G is applied to get the output value of the neuron.

A=Gy) =G aixw) (2.2)
=1

The activation function can be of different types, but normally is a non-linear
function such as the sigmoid function given in Figure 2.7. The non-linear acti-
vation functions make it possible for the artificial neural network to learn and
approximate general non-linear functions.

Next, it is explained how different neurons can be connected to form a complete
structure of the artificial neural network. One type of artificial neural network,
applied in the work presented in this dissertation, is called feed-forward neural
network. This is a structure composed of several layers of neurons where the
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Figure 2.8: Feed-forward artificial neural network
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neuron outputs of one layer go through links to the neuron inputs of the next
layer. The structure of such an artificial neural network with three layers,
an input layer, one hidden layer and an output layer is shown in Figure 2.8.
This neural network structure has three inputs x, y, z connected to the input
layer composed of three neurons and two outputs F'1, F'2 that are provided by
the output layer composed of two neurons. The hidden layer is composed of
four neurons and takes inputs from the input layer and sends its outputs to
the output layer. The distinguished feature of feed-forward neural network is
that the flow of values passing through the links of the network goes only in
one direction from inputs to the outputs of the network. The artificial neural
network shown in the Figure 2.8 can be used to learn two functions Fi(z,y, 2)
and Fy(z,y, z) both depending on three input variables z, y and z. To learn a
function, the artificial neural network needs to undergo a training phase. This
is provided with a number of samples of the form (z;,y;) where z; is the input
vector and y; is the output vector of the unknown function to be learned. The
goal of the training phase is to find the values of all the neural network weights
in order to approximate, as accurately as possible, the unknown function. Since
one of the well know learning algorithms for artificial neural network training
is the back-propagation algorithm [6], it will be provided an explanation of this
algorithm in the following.

The main idea of back-propagation learning is to evaluate the error between a
desired output value and the output predicted by the artificial neural network.
Based on this, the weights are updated in such a way as to minimize this error.
Then, the error is re-evaluated and weights are updated again continuing for a
number of iterations until we get a very small error. More concretely, let p; be
the predicted output vector of an artificial neural network for sample i from a
set of n samples, and y; be the real output vector for the same sample. The
learning algorithm is based on the error function over all samples as defined
below:

1 n
E=§Zsz‘—yz‘H2 (2.3)
=1

This is a function of neural network weights because of the way the neural
network is structured by transforming the inputs to output values through link
weights and node activation functions. The goal of the learning algorithm is to
minimize the error function by finding the weights of neural network that give
minimum value to function £. The basic error function optimization method
used in back-propagation is the gradient descent applied in iterative steps. Be-
cause of the sigmoid activation function sometimes this optimization can get
stuck to local minima, which is a known drawback of artificial neural network
learning. Without going into much details, the idea is to calculate in every
iteration the error function gradient with respect to each weight and use it to
update the weights. We can define the gradient of error function F as below:
OFE OF OF ) (2.4)

..y

VE=(

Owy’ Ows’ 7 Ow,y,

The gradient g—i is the derivative of function F with respect to w;. Each weight
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Figure 2.9: Perceptron division

w; is updated by using the corresponding gradient and a learning coefficient «
which determines by what amount the weight is updated. The update rule is
given below:

OF
QTUZ) (2.5)

The learning algorithm continues for a number of iterations where in the first
iteration, the neural network weights are set to random values. The algorithm
ends when the error function reaches a small value. Each iteration can be
divided into four steps:

w; = w + Aw; = w4+ (—a

o Feed-forward step: During this step, the information flows from input
neurons to output neurons, through hidden layer. As each sample from
the training set is presented to the inputs of the network, the outputs
as well as partial derivatives of activation functions with respect to every
weight are calculated for each neuron. The last calculation is needed for
the calculation of partial derivatives of error function with respect to the
weights in the next step. Each neuron can be imagined as divided in two
parts. In the left part the partial derivatives of activation function at the
input sample considered are saved and in the right, the activation function
output for the same sample. More concretely, this division is shown in
Figure 2.9 where 01, 02 are the activation function outputs of neurons that
connect through input links to the neuron in question. G(wjo1,w202) is
the output of activation function G of the neuron in question for the inputs
wyo1 and woo9. G'(wy101) and G’ (wq02) are partial derivatives of G with
respect to the inputs w01 and wo0e. From G’ (w;0;) we can easily derive
the partial derivative with respect to weight w; as G'(w;) = 0;G’' (w;0;)
considering o; as a constant.

e Back-propagation to the output layer: The general idea of this is starting
from the error function E and going backward cumulatively calculating
partial derivatives of error function based on saved partial derivatives
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Backpropagation of error
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Figure 2.10: Back-propagation steps

(calculated in previous step) on each neuron. In Figure 2.10, it is shown
how this step proceeds for one path of the neural network, connecting one
input neuron to output neuron. This step requires the addition of another
neuron called error function neuron that calculates the error function
E = 1/2(yr)(yr) and its derivative E' = yr, where y is the predicted
output from the output neuron and r is the real output of one sample.
The calculated derivative of error function with respect to weight w; is
given as:

OFE oF

3]~ Bwn) " " 20

On the other hand, % is calculated based on multiplication of deriva-
tives saved on the neurons as we move backwards as given by the rules of
function transformation derivatives:

OF
I(wiyn)

=yl —-y)(y—r) (2.7)

Finally, we have the partial derivative or gradient with respect to w; as

follows: oF .
Bws) ~ Bwngy * Y =YL= 9 =)y (2.8)

Back-propagation to the hidden layer: In this step, the partial derivative

of error function % with respect to w; is calculated as follows:
J

OF OF
o(wy) — dwy) (29)

On the other hand, the =2£— can be calculated by applying cumulatively

o(w;y;)
the derivative rules backweytrd as the following:
OF ok
=yp(l— i(=——) = yn(1— i(y(1— — 2.10
) yn(1—yn)w (a(wiyh)) yn(1—yn)wi(y(1—y)(y —r)) (2.10)
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Finally, we can calculate %ij) as follows:
oF ok
J iYi

o Weights update step: In this step after all partial derivatives of error func-
tion with respect to every weight are calculated by the back-propagation
steps then all the weights are updated at the same time by the update
rule given in Equation 2.5.

The above steps are explained for one sample. In order to take into account all
samples from the training set, the above partial derivatives are calculated for
every sample separately and the update of each weight w; is given as the sum
of updates for all samples as follows:

Aw; = Aw)! + Aw? + ...+ Aw? (2.12)

where Awg corresponds to update value of weight i for sample j and Aw; is the
final update over all samples in the current iteration. This method of applying
the update to all weights after calculating the updates for all samples is called
batch learning. An alternative method is online learning in which the weights
are sequentially updated sample by sample. In this form of learning not all
training samples are needed at the same time but can be applied when they
come. This is suitable for situations when memory capacity is limited to hold
all the samples.

One difficulty with artificial neural networks is deciding on their structure and
number of neurons in hidden layers. The problem is that setting a higher than
needed number of neurons can create a situation known as over-fitting. In
this case, the network learns every sample providing a very specific function
that will not be able to generalize and predict accurately unseen data. There
are no golden rules in setting the number of neurons, but in practice, trying
several networks and choosing the best one is the most used approach. More
concretely, the training set is divided into a training set and a validation set.
Then, different neural network structures with different number of neurons are
trained on the training set and evaluated on the validation set. This evaluation
estimates the generalization error that is the prediction error on unseen data.
The neural network that provides the least generalization error is chosen as the
best network structure for the training set and number of inputs in question.
In practice, more advanced validation techniques exist to overcome over-fitting
such as K-fold cross-validation.

2.2.3.2 Support Vector Machine

Support Vector Machine (SVM) is a machine learning technique based on sta-
tistical learning theory, which characterizes properties of learning machines to
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enable them to generalize well to unseen data [103]. Since in this work this
technique is used for time series prediction, we give a brief overview of its main
idea. SVM can be used for regression to estimate a function of the following
form:

f(x) = (v,z) + 8 (2.13)
where x is the input vector, [ is a threshold constant, v is the weights vector and

(,) is the dot product. In the case of a non-linear function it can be represented
in the following form:

f(x) = (v, ¥(x)) + 8 (2.14)
where () is a function that maps x in the input space to a high dimension
feature space in order to make f() linear for applying linear regression. The
goal of the SVM is to generate a function f(x) that is as flat as possible by
minimizing the norm ||v||? and that has a deviation from the actual value y; for
all training samples at most €. The constant ¢ is represented by empirical risk

R.(f). Overall the goal is the minimization of what is called the regularized
risk R, (f) given below:

Ro(f) = Bel) + o] (215)

where ¢ is called regularization constant and is used to reduce over-fitting. The
empirical risk is given as:

N-1
Relf) = 5 O Claisyis f(0) (2.16)
1=0

where C' is a cost function that determine how to penalize errors, z; is the
sample input, y; is the actual value of the predicted value f(x;). One of the
most used cost functions is the e-insensitive loss function given below:

Clieiryir f () = { lvi = f(@i)l == if lvi — flw)l = € (2.17)

0 otherwise.

Minimization of R,(f) is written in slightly different form below:

n
S 1
minimize : cZC’(mi,yi, f(@) + =[] 2 (2.18)
i=1 2
where the constant ¢ includes the 1/N factor. This is an optimization problem
and assuming a convex function it can be solved using the Lagrange multipliers
method by formulating the dual optimization problem given below:

N
1
Mazximize : ~5 Z (a; — d;)(a; — dj)(xs, ;) (2.19)
ij=1
N N
—€ Z(az — di) + Z%(ai — Cii) (2.20)
i=1 i=1
N
constrain : Z(ai —di) =0:a;d; €[0,C]. (2.21)
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There are several quadratic programming optimization algorithms for solving
the above equation by finding the parameters a;. One of the most used algo-
rithms is the improved version of Sequential Minimal Optimization (SMO) [93]
also used in this work for time series prediction. By getting the solution for the
weights v based on Karush-Kuhn-Tucker conditions we have:

N

v = Z(az — az):rz (2.22)

i=1
and the function f(z) can be given as:

N

fl@) = (ai — di){zi, z) + B (2.23)

i=1

In building the function f(z), only those data points x; that have non-zero
Lagrange multipliers a; are taken, which are only a small subset of the whole
data set. These data points are called support vectors. As stated earlier, to
deal with a non-linear function f(z), the input space x; is mapped to a feature
space 1(z;) that is linear by giving the below solution for the weights:

N
v=" (a;—d;)(z;) (2.24)
i=1
and the transformed function:
N
fla) = (ai — di)(¥(x:), d(x)) + B (2.25)
i=1

The term k(z;, x) = (¢ (x;), ¥ (z)) is called the kernel function. Thus to estimate
the function f(z) it is sufficient to apply directly a kernel function without the
need to know the transformation function v (z). The kernel function should
also satisfy the Mercers conditions. There are several kernels that satisfy it, in
particular the polynomial kernel k(z;, x) = ({(x;,z) + 1)P with exponent p = 1.

2.2.4 Feed-back Control Systems

In this section, an overview will be given of feed-back control systems, their ba-
sic properties and the control theory that forms the mathematical foundation
they are based on. Recently, these systems are investigated for controlling com-
puting systems and managing resources in virtualized data centers and cloud
computing infrastructures. They are mostly used to keep a certain quality of
service metric to a desired level even in the presence of environmental changes
and disturbances, by providing more reliable and robust computing systems.
For instance, in a virtualized data center these systems are used to keep to
desired levels certain application performance metrics such as throughput, re-
sponse time, queue lengths, resource utilizations etc. As part of the resource
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Figure 2.11: Feed-back control loop

allocation technique development, some of the decision making processes are
based on feed-back control systems, thus in the following the basic theoretical
principles of these systems are explained.

The aim of a feed-back control system is to keep a certain metric value that
is the output of a controlled system to a desired reference value. It achieves
this by applying a corrective action as input to the controlled system aiming to
reduce the deviation of the output from the reference value. Schematically, a
typical feed-back control system is composed of the elements shown in Figure
2.11.

e System: is the system to be controlled by keeping its output metric to
a desired value given by output reference. Output is a metric that can
be measured from outside the system while the output reference is given
as input to the feed-back control system and can change over time. In
computing systems the output metric can have different forms such as
application response time, CPU utilization etc.

e Controller: is the feed-back controller that acts on the system through a
control input in order to influence the output. Here, it is supposed that
the system input and output signals are chosen such that the output is
affected by the input change. In this way, if the output deviates from the
reference value, it is possible to apply the input with the right amount
and direction in order to bring the output close to the reference.

e Feed-back: is a path that sends back in a loop the measured system out-
put for comparison to the output reference. This is why this feed-back
controller system is called closed loop system. In this kind of system, the
controller decides on the control input value based on the control error
that is given as input to the controller. The control error is calculated
as the difference between the output taken from the feed-back path and
output reference. Based on the way the control input depends on control
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error, a variety of controllers such as proportional, integral etc, can be
designed.

e Disturbance and Noise: Disturbance is an input signal to the system that
cannot be controlled and can change the output of the system. One of
the goals of the feed-back controller is to keep the system output to the
desired value even in the presence of disturbances. In computing systems,
disturbance can take various forms, such as administrative tasks that
consume resources, workload changes etc. Noise is some random change
of the output value coming from internal causes of the system or sensor
measurement.

Feed-back control systems for controlling computing systems normally work in
discrete time intervals. They generate control input for the next interval based
on system output and control error on current and previous time intervals. In
discrete time interval notation, any signal such as the output value is given as
y(k) or y(k — 1) representing the output in the current interval k& and previous
interval kK — 1. In this section principles of feed-back controllers for single in-
put and output systems are discussed, upon which this work is based. These
controllers called Single-Input Single-Output (SISO) systems are the most used
in practice especially for their implementation simplicity. In real world envi-
ronments, there are also systems that have multiple input and output signals
called Multiple-Input Multiple-Output (MIMO) systems. These controllers are
generally less used since they are more difficult to design and analyse.

There are certain properties, which are desirable for feed-back control systems
to have in order to operate in a satisfactory manner. There exists a whole body
of control-theory that gives theoretical grounds to help analyse and design con-
trollers that satisfy the required properties. This means that if the theoretical
assumptions are realistic enough in practice then there is the certainty that
the control system will work reliably according to specifications. The desired
properties of feed-back control systems are the following;:

e Stability: This is one of most important property of feed-back control
systems. A system is unstable if for a given input the output oscillates or
even worse increases in a boundless way going to infinity. Instability can
occur, when as the result of a controller error there can be a more than
needed corrective input, leading to a greater error in the opposite direc-
tion further leading to an even greater corrective actions and producing
oscillatory output. Obviously, stable control systems are desirable and
control theory can help to design controllers that have this property.

e Accuracy: This property has to do with how closely system output con-
verges to the desired reference value in a steady state. Also, this property
is desirable since it decides how well the controller is able to meet the
desired quality metrics. To quantify this property, generally the inverse
of it is used, which is the inaccuracy represented by the control error in
steady state.
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Figure 2.12: System output response

e Response Time: This is the time interval from the time the input changes
until the output converges to the steady state value. It is desirable for the
response time to be short in order for the system to respond quickly to
input changes. This makes it possible for the system to adapt and control
the output even in the presence of disturbances that quickly change over
time.

e Quvershoot: This is the maximum deviation of the output value from the
output value in the steady state.

In Figure 2.12, the output and the properties of a stable feed-back controlled
system after an input change is shown. After some time, the system output
converges to steady state. For this system, 7" represent the response time, Fj
is the steady state error that represent the inaccuracy of the controller and O
represent the overshoot. There are different types of feed-back controllers, but
in the following sections an overview of the most important ones is given.

2.2.4.1 Proportional Controller

This is the simplest of all controllers in which the control input generated by
the controller depends proportionally to the control error as given below:

u(k) = Kpe(k) (2.26)

where e(k) = y(k) — yres is the control error that is the difference between
measured output and desired reference. u(k) is the control input and K, > 0 is
the controller gain. The intuition behind this controller is that if the value of
error is large, then a large input action should be generated in order to bring
the output back to the reference value. One problem is that it generates a non-
zero steady state error all the time, meaning that the system output cannot
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converge exactly to the reference value. This phenomenon happens because in
order for the system to generate an output, it will usually need a non-zero input,
which will only happen when there is a non-zero control error. This means that
there should always be a non-zero steady state error in order for the system to
work and produce some output. This can be a problem in practice because the
system is not able to keep the output to the desired value.

2.2.4.2 Integral Controller

In this type of controller, the control input does no longer depend on control
error at current time interval, but on the integral of the error. In the case of
a discrete time controller, the control input depends on the accumulative error
over time as given below:

u(k) = Ki(e(k) +e(k—1)+ ...+ e(l) +¢e(0)) = K;(e(k) + Eq) (2.27)

where K is called the integral gain and FE, is cumulative error from interval
0 to interval £ — 1. The integral controller eliminates the problem of non-zero
steady state error encountered in proportional control. Even if the error e(k)
in the current time interval becomes zero, because of a non-zero accumula-
tive error, the control input remains non-zero and therefore the system output
remains non-zero and equal to desired reference value. A more widely used
controller is what is called Proportional Integral (PI) controller, which includes
a proportional term and an integral term as shown below:

u(k) = Kye(k) + K;E, (2.28)

where K, and K; are proportional and integral controller gains respectively.
2.2.4.3 Controller Design

The main goal of the feed-back controller design is to decide on the controller
structure and parameters in order to have a stable loop-back system and for the
controller properties to have desired values such as satisfactory accuracy, low
response time and overshoot. First, in the design process a model of relationship
between system output and control input is found in a process known as system
identification. In other physical systems, this model can be derived from the
first principle approach based on known physical laws that govern the system.
In computing systems, it is difficult to derive similar laws as a result the model
is mostly derived from empirical experimentation. For PI controllers, usually a
linear model of the first order of the form below is identified through a linear
regression fitting process:

y(k) =ay(k —1) + bu(k — 1) (2.29)

In this model, the system output y(k) in the current interval depends on sys-
tem output and input in the previous interval. The coefficients ¢ and b are
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Figure 2.13: Feed-back loop transfer functions

estimated from the regression data fitting process. This model assumes that
the relationship between system output and input is linear, which is not the
general case for computing systems. However, this relationship is linear only
near a small region around the operating point and the controller can be ap-
plied for this region. If the operating point changes, for example because of
an application workload change, the system model and therefore the controller
parameters should be changed to accommodate the new working regime. There
are more advance techniques to deal with this issue such as gain scheduling and
adaptive control.

One of the mathematical tools that control theory offers to make it easy to anal-
yse and design feed-back controllers is the Z-transform. This is a representation
of a signal or system model in frequency domain. Especially the Z-transform of
a system model is called the transfer function of the system and represents the
relationship between output and input in frequency domain as shown below:

(2.30)

where Y'(z) and U(z) are the z-transforms of output and input signals respec-
tively. With some transformations, for any system model given in the time
domain as shown in Equation 2.29 we can find its z-transform G(z) needed for
further analyses. For the controller design, what we are most interested is the
transfer function of the whole feed-back loop that gives the relationship between
output Y(z) and desired output reference R(z):

Y(2)

"= e

(2.31)

The transfer function of the feed-back loop can be derived from transfer func-
tions of its components by applying some function transformation rules. For
example, for the feed-back loop shown in Figure 2.13 we can find the following
transfer function:

C(2)G(z)

F&) = T emen (2.32)
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where C(z) is the transfer function of the feed-back controller and G(z) is the
transfer function of controlled system. For a PI controller with proportional
gain K, and integral gain Kj; its transfer function is given below:

(Kp+ Ki)z — K

Cle) = z—1

(2.33)

After having a feed-back loop transfer function F(z) it is important to find
and analyse its poles, which are the values of variable z where the transfer
function denominator becomes zero. The transfer function poles in general
can be complex numbers and the position of them in the complex domain
determine the behavior of the feed-back loop such as its stability, response
time, accuracy etc. For example, a pole that has an absolute value greater than
1 represents an unstable feed-back loop and a pole that has an imaginary part
gives oscillatory response. Basically, the controller design is reduced to finding
the controller gains K; and K, such as the poles of the feed-back loop transfer
function have desired properties of a stable, low response time, low overshoot
and high accuracy system. Although there are several standard methods for
achieving this, they are not going to be discussed further in this work.

2.2.5 Fuzzy Control Systems

Fuzzy control systems are based on a different control philosophy to control and
automate a given process. While classical feed-back control systems are based
on exact mathematics and laws, fuzzy control systems are based on fuzzy set
mathematics. Its development started with the seminal work of Lotfi A. Zadeh
[127] around 1960s. In the classical set theory any object can be or not be a
member of a set based on a binary membership function. In the fuzzy set theory
any object can be partially a member of a set based on a membership function
which provides different degrees of certainty for being or not being part of the
set.

Most of the real world engineering and computer system control problems are
imprecise, highly dynamic and partially defined. This makes applying classic
control theory approaches based on exact mathematics not suitable, because
of the difficulty to capture and express decision-making solutions with deter-
ministic control algorithms for problems highly partial and uncertain. The
motivating factor for using fuzzy control systems is the fact that they handle
well uncertainty and as a result offer simple and flexible solutions to highly
complex and imprecise dynamic control problems. Fuzzy control systems also
make it easier to incorporate human knowledge in the decision-making process
in the form of fuzzy rules. Such an incorporation of human intelligence makes
them intelligent and allows to reason like humans in solving partially defined
and highly complex problems, where an exact control algorithm is not applica-
ble. Another benefit of fuzzy-control systems is that for applying them usually
any mathematical or empirical model of the controlled system is not needed.
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Figure 2.14: Fuzzy control system

This provides the possibility to control very complex non-linear systems that
are very common in shared virtualized computing systems.

The general architecture of a fuzzy control system is shown in Figure 2.14.
It is composed of four components: fuzzyfication, defuzzyfication, inference
mechanism and the rule base. An explanation of each component is given in
the following sections.

2.2.5.1 Fuzzyfication

To understand the fuzzyfication process, it is important to understand what it
means for a variable x to be a member of a set. In the classical set theory, we
can say for a variable x that it can be or not be a member of a set X. In the
fuzzy set theory, a variable x can be a member of a set X only with a certain
degree as decided by a membership function 7 : = — [0,1]. For example, a
variable = can be member of a of set X with a degree given by n(z) = 0.2 and
not a member of the set with degree 0.8. A variable x can also be member of
different fuzzy sets with different degrees given by their respective membership
functions. For example na(x) = 0, np(z) = 0.75, nc(xz) = 0.4 means that x
is a member of set A with degree 0, a member of set B with degree 0.75 and
a member of set C' with degree 0.4. Membership functions can have different
forms depending on the problem at hand and for the example above can be
represented graphically as shown in Figure 2.15.

The process of converting an exact value of a variable to a fuzzy set with a cer-
tain degree through the membership function is called fuzzyfication. For a fuzzy
control system the fuzzyfication component is responsible for the fuzzyfication
of input variable values to fuzzy sets that internally are represented as linguistic
variable values. For example, a particular input variable value can correspond
with different degrees to four fuzzy sets represented by four linguistic variable
values such as small, medium, large and very large.
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Figure 2.15: Membership functions for three fuzzy sets A, B and C

2.2.5.2 Rule Base

A rule base is a collection of IF-THEN type of rules that incorporate human
knowledge on how to take decisions and control a given system. The rules are
constructed based on linguistic variables that make it easy for human experts to
describe decision-making heuristics in natural language. For the fuzzy control
system shown in Figure 2.14 which is used to keep the system output y(k) to
the reference value (k) we can have the following linguistic variables. ”Error”
which is an input to the fuzzy controller and is the given as e(k) = r(k) — y(k).
” ErrorDerivative” which is also an input to the fuzzy controller, although not
shown in figure, is given as dz(lf) and represents the rate of change of error.
?InputChange” that is the output of the fuzzy controller or control input of the
system and is given as the amount Au(k) to be added to existing input u(k),
in order to bring the output y(k) near to the reference value r(k). Each of the
above linguistic variables can take linguistic values such as ”NegativeSmall”,
?PositiveLarge”, 7 PositiveMedium” etc. For example, ”NegativeSmall” repre-
sents a value that is with a negative sign and has a small absolute value. The
linguistic values represent different fuzzy sets and each fuzzy controller input
value is assigned to different fuzzy sets with different degrees as decided by
corresponding membership functions. One of the IF-THEN rules constructed
for controlling the above system is the following:

IF Error is PositiveLarge AND ErrorDerivative is PositiveLarge

THEN InputChange is PositiveLarge
(2.34)

This rule is applicable in a situation when the system output is below reference
value, since the error is ”PositiveLarge” and it is moving rapidly away from it
since the error derivative is ”PositiveLarge”, meaning that the error is increas-
ing. In this situation, to bring the system output to the reference value, the
input should be increased with large value as decided by THEN clause. This
assumes that the output increases proportionally with the input. Similar rules
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are created for all situations of the system. The inference mechanism decides
which rules are applicable and activates them based on which fuzzy sets the in-
put values correspond to. The result of inference mechanism are input changes
to be applied to the system in the form of linguistic values as given by the
THEN clause of the relevant rules.

2.2.5.3 Defuzzyfication

Since the inference mechanism can give as output several input change values
as the result of several rules being activated, the question that remains is which
rule’s output should be the final decision of the fuzzy controller. The basic idea
is to combine the linguistic value decisions of all the activated rules and generate
one decision in the numerical form that can be applied as input to the system.
This combination is the responsibility of the defuzzyfication component. There
are several methods and formulas to make the above combination but a well
known one is the 7centre of gravity” method. According to this method, for
each activated rule the degree that the rule is applicable is found. This is the
minimum of the degree that each input value contained in the IF part of a
rule belongs to the corresponding fuzzy set. Next, the area under the function
p-i_c(z) is found as follows:

S = / i o(x) (2.35)

If we denote with p_i(x) the membership function of the fuzzy set corresponding
to the output value of rule i, then p_i_c(x) is the result of p_i(x) cut from the
top at the degree that the rule ¢ is applicable. In Figure 2.16 the darker area
shows the function p_i_c(z) as the result of the cut of p_i(z) at point 0.65. We
denote with a; the value in the centre of the p_i_c¢(z) function. The final fuzzy
controller output value Au(k) estimated by the "centre of gravity” method is
given by the following formula:

Au(k) = Zinl aSS (2.36)
=11

where a; and 5; is found for each activated rule 7.

2.2.6 Utility Function Optimization

The key element for the VM resource allocation techniques developed in this
dissertation is the utility function. The utility function provides the possibility
to express two or more conflicting goals, such as performance and resource
costs, in a single expression. Therefore, the VM resource allocation problem of
optimizing these conflicting goals is converted into utility function optimization.
Since function optimization is important for the developed resource allocation
techniques, in this section an overview of several function optimization methods
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is given. Then, the focus is shifted on two optimization methods used in this
work such as hill-climbing local search and genetic algorithms.

Function optimization problems are those that deal with finding the values
of several variables of a function, so that the corresponding function value
is optimal. Optimization here can mean maximization if the task is to find
the maximum value of a function, or minimization if the task is to find the
minimal value of it. The set of variable values that gives an optimal function
value is called the optimal solution of the optimization problem. The set of all
possible solutions to the optimization problem is called the search space, since
the optimization is seen as a search for finding the optimal solution. If variable
values should also satisfy some constraints besides being an optimal solution, the
optimization problem becomes a constrained optimization problem. Depending
on the optimization problem it can happen that the optimization function will
have several solutions that have optimal values only for nearby regions. These
are called local optima, while only one of them is called global optimum and
represents the global optimal value relative to all solutions. To illustrate the
idea, Figure 2.17 shows the function f(z) of one variable z. It has one local
maximum (optimization here is maximization of function) at point x; and one
global maximum at point z2. The existence of local optima makes it difficult

43



44

Chapter 2. Fundamentals

for an optimization algorithm to determine if a solution is a global optimum or
a local one, especially when the problem has a large search space.

For any computational problem and certainly for optimization problems we
can talk about time complexity of an algorithm that solves the problem. The
algorithmic time complexity is given by O(.) notation and gives the time needed
to find a solution as the function of problem size. In the case of function
optimization problems, the problem size is the number of function variables
n that determine search space size. This is because increasing the number of
variables increases the number of variable value combinations. An optimization
algorithm having a time complexity ©(n) for a certain problem means that the
time needed to find an optimal solution is linear with problem size n. The class
of problems that the best known deterministic algorithm has time complexity
of ©(n*) are called polynomial time problems or class P problems and their
solution time is a polynomial function of n with some constant k. Another class
of problems are NP-complete problems for which any deterministic algorithm
that finds the optimal solution in polynomial time is not yet known. These are
called "hard” problems since their solution times grow exponentially with the
search space size, becoming intractable to solve in reasonable time.

One of the obvious and most naive type of optimization algorithm is what
is called the ezhaustive search. As the name implies, this algorithm works
by trying all possible solutions of the search space and keeps the best one as
the optimal solution. Although this algorithm is guaranteed to find the global
optimum, as the complexity of search space increases the problem solution time
of the algorithm becomes very large, making it infeasible for the applicability
in practice. There are other methods to solve optimization problems and they
can be divided in two categories: a) deterministic algorithms and b) heuristic
algorithms.

2.2.6.1 Deterministic Algorithms

The basic idea of deterministic algorithms is that they search the solution space
by starting with some deterministic solution and applying a deterministic rule
to advance the solution toward the optimal one. Generally, these methods are
applied only to optimization problems that are of specific forms and satisfy
certain constraints. Most of them require optimization functions to be given
in a specific analytical form. They are guaranteed to find an exact optimal
solution if there is only one global optimum. However, they can get stuck on
local optima if there are several local optimal solutions and given the wrong
initial solution. They also provide the same solution (sometimes the wrong one)
every time they are run, because of their deterministic nature, making them
inflexible. Although there are specific cases when they are able to find the
optimal solution efficiently, in general they have exponential time complexity.
Some of the deterministic algorithms are listed in the following;:
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Greedy Local Search: in which the solution found is modified to reach
several neighbourhood solutions and the one that gives the greatest im-
provement is selected as the next solution and the search continues in
its locality area. One of the representative local search algorithms that
follow the above strategy is the hill-climbing search algorithm.

Dynamic Programming: is an algorithmic design approach that permits
to develop optimization algorithms. Algorithms based on this approach
solve the optimization problem by dividing it into smaller sub-problems
and providing the solution to the bigger problem in terms of a set of
smaller problems. It can by applied in recursive form by saving solutions
of sub-problems for later reuse, increasing the efficiency of the algorithm.

Branch and Bound: is some kind of ezhaustive search which tries different
solutions but continuously divides the search space into different parts
and eliminates those parts that do not contain the optimal solution. It
continuously reduces the search space until the optimal solution is found.

Divide and Conquer: is an approach that divides the optimization prob-
lem into sub-problems, recursively finds the solution of upper sub-problems
through merging the solutions of their sub-problems. This continues until
the solution of the main problem has been found.

Linear Programming: is a mathematical optimization method that is ap-
plied when the function to be optimized and its constraints are in a linear
form. The most used form of linear programming is the simplex algorithm.
According to this algorithm, firstly some slack variables are introduced to
convert constrained inequalities to equalities. Then, by manipulating the
so-called base variables, it goes from one basic feasible solution to another
until the optimal solution is found.

Gradient Method: which requires that the function to be optimized is de-
fined and differentiable. According to this method, the gradient VF(Xy) =
(%—I;, ..%—5, %—f) at the current solution point Xy is calculated. The gradient
gives the direction and the amount that each variable should be modified
in order to move toward the optimum value. Each variable is modified
according to the formula zg = xg+§ %—5, which is the case for the variable
x. After this modification, another solution point is reached and its gradi-
ent at this new point is calculated. This process continues until gradient

VF = 0, which means that the optimal solution is reached.

2.2.6.2 Heuristic Algorithms

Deterministic algorithms generally take exponential time to find an optimal
solution for NP-complete optimization problems. To cope with this problem,
other kind of methods, called heuristic algorithms, are used. These methods
are normally able to find an approximate solution at a lower time complexity
than deterministic algorithms. They offer a trade-off between solution quality
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and solution time and generally find good enough solutions in polynomial time.
They are also more general and flexible than deterministic algorithms and some
of them have high probability of escaping local optima.

The basic common idea of all heuristic algorithms is that they usually start
with an arbitrary solution and based on some rule, which can include random-
ness, choose the next solution that is supposed to improve the current one by
moving towards the optimal solution. The next chosen solution can be in a
neighbourhood of the current one or in some other parts of the search space,
but not too far from the best known solution. This iterative process generally
continuous until a maximum number of iterations or a good enough approxi-
mate solution is reached, and no more improvement can be achieved. At the
end, the best of all investigated solutions is provided as the optimal one. Some
of the well-known heuristic algorithms are listed below:

o Simulated Annealing: It is based on a physical process called annealing
which is the gradual cooling down of a high temperature melted mate-
rial in order to reach its minimum energy crystalline state. The essence
of the algorithm is that in every iteration step a neighbourhood solution
candidate that improves the current one is normally selected. However,
time-to-time a perturbation occurs through which a worse solution than
the current one is selected with some probability that depend on a pa-
rameter T, called the temperature, which gradually decreases with time.
This permits to escape local optima especially at the beginning of the
search and at the same time to converge the candidate solutions toward
the optimal one.

e Tabu Search: As with other heuristic algorithms, it considers neighbour-
hood region for better candidate solution. However, its distinguished
feature is that it keeps track of previously visited solutions and prohibits
considering them if encountered again in order to escape repeated cycles
and regions of search space already visited.

o Genetic Algorithm: It is an algorithm that is based on the population
evolution theory to explore the search space and find the optimal solu-
tion. Since in this dissertation this algorithm is used together with a hill
climbing searching method, they are both discussed more thoroughly in
the following sections.

2.2.6.3 Hill-Climbing Search Algorithm

The basic idea of the hill-climbing search algorithm is simple. It starts with an
initial solution, and in each iteration step it considers all candidate solutions
in the neighbourhood of the current solution, picks the best one and compares
it with the current solution. If the new solution improves the current one, the
new solution becomes the current one and the search process begins again by
considering the neighbourhood area. This iterative process continues until we
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reach the optimum and no improvements can be made to the current solution.
This process resembles that of climbing a hill in which we go always uphill
(exploring in each step better solutions) until the top of the hill is reached.

Generally, the algorithm is quite efficient even for NP-complete problems but
it has the problem that it can easily get stuck to local optima because at these
points no better solution can be found. One approach that deals with this
problem is a variant of the basic hill-climbing algorithm called random-restart
hill climbing. Basically, this variant does a number of hill-climbing searches,
each starting from a random initial solution until the optimal solution is found.

2.2.6.4 Genetic Algorithm

Genetic algorithms [51] are another popular and efficient optimization method
for NP-complete problems. They are based on natural evolution for exploring
a search space to find the solution of an optimization problem. The basic idea
of the algorithm is that it starts with a random initial population of individuals
spread throughout the search space, where each individual represents a feasi-
ble solution of the problem. Each individual, called a chromosome in genetic
algorithm terminology, encodes information, as a string of bits or real numbers
that represents a feasible solution. Each bit or real number of the chromosome
is called a gene. A genetic algorithm requires that each individual be evaluated
how good its representative solution is in relation with other population individ-
uals. This goodness value of an individual is called its fitness and is evaluated
through a predefined fitness function that depends on the optimization prob-
lem. From an initial population based on selection, crossover and mutation, a
new population is generated that is supposed to be better than the old one in
terms of the fitness function.

The selection process selects from the population two parent individuals with
high fitness values in order to insure survivable individuals with better solution
quality. There are several selection methods, but a well known one is the
roulette wheel method. In this method, each individual is assigned a partition
of the roulette proportional to its fitness. This means that during the rotation
of the roulette the individual with higher fitness has higher chance of getting
selected but not excluding the probability that other lower fitness individuals
being selected as well.

Then, with some probability called the crossover probability, a crossover op-
eration is applied where different parts of the parents are combined to create
one or two children that are supposed to improve their parents in terms of
solution quality. The crossover probability determines if a crossover operation
will happen or the children will be just exact copies of their parents. There are
several crossover methods that differ on how they combine different parts of the
parents to create the children. One of the most used and simplest one is one
point crossover. In this method a crossover point selected randomly divides the
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Figure 2.18: One point crossover operation

parent chromosomes in two parts as shown in Figure 2.18. Then, the children
chromosome is formed by taking one part form the first parent and the other
part from the second parent.

At the end, a mutation operation is applied where with a small probability each
gene of the child is altered to a random value. For a binary string chromosome
this means a change from bit zero to one or vice-versa. This mutation process
increases the variability of population individuals to consider thus increasing
the chance of avoiding local optima and reaching global optimum.

This process of selection-crossover-mutation is repeated in order to create the
number of children needed for creating the new population to replace the old
one. This is the most used population replacement technique but other tech-
niques that replace not the whole population but a certain number of individ-
uals, do exist as well. The process of creating new populations is iteratively
repeated in a loop for several generations until a stopping criteria is met and
the individual with the best fitness is the final solution of the problem. One
of the distinguishing characteristics of the genetic algorithm compared to other
heuristic methods is that it explores and improves several candidate solutions at
the same time. This offers more opportunities for finding the optimum solution
as it explores more than one solution at a time. This also has the benefit for a
parallel implementation increasing the scalability and efficiency of the method.

2.3 Related Work

In this section, an overview of research work related to dynamic resource allo-
cation to VMs in data centre and cloud computing environments is provided.
This work is grouped into four classes based on VM resource allocation mech-
anism applied and if it includes VM resource demand prediction or not. One
group mostly deals with global level resource allocation by dynamically mapping
VMs to physical machines at runtime through live migration, to consolidate or
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balance the load. Another group deals with applying horizontal scaling, by
changing the number of VM replicas allocated to an application. In the third
group are those that as their main resource allocation mechanism use vertical
scaling where the resource amount given to a VM is changed dynamically at the
physical machine level. In the last group, the works are considered that take a
proactive resource allocation approach by predicting VM resource demand and
applying any of the allocation mechanisms mentioned above. There are also
works that combine all the mentioned resource allocation mechanisms and they
are considered in one of the above groups. The focus is only on the works that
allocate resources to VMs to keep application performance according to SLAs
while reducing resource and operating cost.

2.3.1 Live Migration based VM Resource Allocation

One of the most useful and cost effective ways to allocate resources to VMs
at the global level is through VM live migration. This makes it possible to
consolidate the VMs in as few physical machines as possible by turning off the
unused ones when the workload reduces, therefore saving power and manage-
ment costs. The problem is finding and changing at run time according to
workload the optimal mapping between VMs and physical machines. Normally,
this problem requires answering four main questions such as: 1) when to start
VM live migrations, 2) which physical machines to consider as sources of VM
live migration, 3) which VMs are migrated from the selected physical machines
and, 4) which physical machines serve as destinations of VM live migrations.
This is an NP-hard optimization problem that belongs to the knapsack bin
packing problems family and different approaches are developed to address it.

There are a group of works [122, 63, 11, 70, 35] that use live migration for
dynamic load balancing and consolidation of VMs. They avoid physical machine
overloading or provide consolidation of VMs to fewer physical machines. They
decide to migrate the required number of VMs based on heuristic algorithms
such as First-Fit Decreasing or Best-Fit Decreasing. Most basic approaches use
resource utilizations to estimate VM resource demand and utilization thresholds
to signal machine overloading or under-loading for starting live migrations.

Wood et al. [122] propose an approach called Sandpiper for mitigating over-
loaded machines or hotspots through remapping VMs to physical machines.
They use two approaches for this purpose. A black-box approach that monitors
the resource data from outside the VMs that is OS and application agnostic and
a gray-box approach that uses monitoring data inside the OS to make a more
informed decision for hotspot detection and VM live migrations. Their hotspot
detection mechanism is based on monitoring and profiling resource data for pre-
dicting when the utilization will overpass the threshold. To mitigate hotspots,
they use a heuristic greedy algorithm that migrates most loaded VMs to least
loaded physical machines in an iterative process. To achieve this, they measure
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the load of virtual and physical machines with what they call a volume metric
that captures the combined load of CPU, memory and network resources.

Similarly, Khanna et al. [63] propose an approach for dynamic VM consolida-
tion that increases resource utilization and keeps performance SLA violations
to minimum. It depends on resource utilization thresholds to determine when a
VM live migration should be initiated. The basic idea of their consolidation al-
gorithm is to pack VMs to as few physical machines by rearranging the VMs in
such a way that the variance of residual resource capacity vector of all physical
machines is maximized. This is done by ordering VMs and physical machines
in non-decreasing order of their utilization and residual capacities, respectively
and migrating the least utilization VM (in order to reduce migration cost) to
the least residual capacity physical machine.

Beloglazov et al. [11] propose energy-aware heuristics for dynamic consolidation
of VMs, while taking into account the power consumption of the data centre in-
frastructure. They divide the dynamic VM resource allocation process into two
steps. In the first step, they decide when and which VMs should be migrated.
Basically, they achieve this by defining lower and upper utilization thresholds
and monitor when VMs exceed them in order to be selected for consolidation
or load-balancing. For this purpose, they developed two VM selection policies,
one that minimizes the number of migrations and the other that minimizes
the potential growth of physical machine utilization and therefore performance
SLA violations. In the second step, a modified Best-Fit Decreasing heuristic is
used. Here, the selected VMs are sorted on decreasing order of utilization and
each of them is migrated to the host that provides the least increase in power
consumption as the result of the migration.

Li et al. [70] also developed an approach for dynamic VM consolidation by
packing VMs to as few physical machines as possible. Their approach takes
into account the events of arriving and departing of VMs to decide when and
how to rearrange them through live migration. This is done through a recursive
algorithm based on first-fit and best-fit heuristics. It replaces a small workload
VM with a bigger one arrived and reinserts the small workload VM to the
pool of resources by considering it as a new arrived and then proceeding in the
same manner. In the end, the output is a list of VMs to be migrated to other
physical machines. The motivation behind this method is that small workload
VMs have a higher chance to fill the residual resource gaps therefore providing
a more compact packing of VMs.

Ferreto et al. [35] developed an approach called dynamic consolidation with
migration control. In contrast to other works, they focus more on reducing the
number of migrations by preventing migration of VMs with steady load thus
reducing their performance violation as the result of VM live migration. They
formulated the VM consolidation as linear programming problem to reduce the
number of physical servers and extended the FFD, BFD and WFD heuristics
to take into account the added constraint of not remapping VMs that do not
change their workloads.



2.3. Related Work

There are also works [39, 13, 5, 12] that use more sophisticated techniques than
just static utilization thresholds to decide when and how to migrate for dynamic
VM consolidation. For example, Gong and Gu [39] developed Pattern-driven
Application Consolidation (PAC) that applies signal-processing techniques to
extract VM workload resource usage patterns called signatures. This approach
is based on workload signatures to achieve better VM consolidation. Similar to
other works, it also uses a greedy heuristic algorithm for consolidation. How-
ever, after sorting VMs in decreasing order of their resource demand, it matches
the VM workload resource usage signatures with host residual resource capacity
signatures to find the best matching hosts to accommodate VMs.

Andreolini et al. [5] consider new techniques to identify critical hosts to migrate
VMs from and select VMs to migrate in a way suitable for infrastructures with
thousands of hosts. Their goal is to develop robust host overload detection
mechanisms providing stability in dynamic VM migration management. First,
to achieve the required stability, they identify a host as overloaded only when
there is substantial change in its load state as resulted from the CUSUM algo-
rithm. Secondly, as done in other works, they sort potential migrating VMs,
based not just on their instantaneous or average resource utilization value but
also based on a metric that captures load behavioral trends, and select for
migration those VMs that contribute the most to the total load of the host.

Beloglazov et al. [13] also consider dynamic VM consolidation throughout live
migration and propose an approach for detection of overloaded hosts to mi-
grate VMs from. The goal of their overloaded host detection algorithm is to
maximize the mean time between migrations, which as they showed analyti-
cally leads to better consolidation quality, and reduced performance violations.
In maximizing the mean time between migrations they take into account also
the QoS constrain by expressing it in a VM workload independent metric. To
solve this optimization problem under a known steady workload, state config-
uration and QoS constrain, they developed a Markov chain model for deriving
a randomized control policy. To take into account changing workloads they
applied workload estimation based on a Multi-size Sliding Window providing
an adaptive algorithm.

Beloglazov et al. [12] extended their previous work [11] on using heuristic algo-
rithms for dynamic VM consolidation by including dynamic utilization thresh-
olds for finding better trade-off of power and performance. The goal is to adapt
the utilization thresholds according to workload variations. The thresholds are
estimated based on resource utilization interval reached with 5% probability,
which is derived by analysing probability distribution of historic resource uti-
lization of a host.

The problem with all above approaches is that they base live migration deci-
sions on low level utilization thresholds, which do not adequately map to high
level metrics such as application performance or cloud provider profit. Another
drawback is that these approaches are based on fixed heuristic policies such as
First-Fit Decreasing that are not flexible and do not deal well with optimiz-
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ing conflicting objectives such as resource costs and application performance.
If the need for a policy change arises for example to make the system more
aggressive in balancing the load than consolidating it, the algorithm must be
changed completely. In contrast, the approaches presented in this dissertation
attack the above drawbacks by basing live migration decision directly on high
level metrics such as utility function value that represent the profit of the cloud
infrastructure, which providers are more interested to optimize. It also offers
the required flexibility by capturing in a natural way multiple conflicting objec-
tives in the utility function and easily changing the importance weights of one
objective over the other.

There is a group of works [109, 42, 92, 73, 68, 111, 59] that similarly to this dis-
sertation’s work represent the dynamic VM placement through live migration
as a utility function optimization problem. For example, Goudarzi et al. [42]
formulated a mixed integer non-linear programming function optimization that
would solve the problem of dynamic VM consolidation for reducing power, mi-
gration and performance SLA violation costs. They proposed a heuristic greedy
algorithm based on dynamic programming and convex optimization for finding
an initial solution. Then, they apply two local search methods to improve the
initial solution.

Similarly to the above work, Petrucci et al. [92] treat the dynamic VM con-
solidation, for minimizing power costs and keeping performance at SLA levels,
as a function optimization problem. In the function optimization, they also
include the selection of different combinations of CPU frequency and voltage.
Mathematically, they formulate the problem as a mixed integer programming.
To solve the optimization problem, they apply a branch-and-cut determinis-
tic algorithm. Through simulation experiments, they have found out that the
approach scales well by managing up to 350 physical hosts.

Liu et al. [73] also address the problem of optimizing the mapping of VMs
to physical machines for reducing power costs and keeping performance levels.
They represent the problem as optimization of a cost function, which includes
physical machine costs, migration costs and performance costs and try to op-
timize it through a heuristic search algorithm. The algorithm searches over a
graph where each node represents a placement of VMs to physical machines and
an arrow connecting two nodes represents a transition achieved through VM live
migrations. In the searching process, it keeps track of the best placement found
so far and two tables, an open one holding unexplored placements and a closed
one holding all already explored placements. The algorithm finishes when some
criteria are meet such as the open table becomes empty or the search time limit
is reached.

Van et al. [109] propose an autonomic resource controller that finds an optimal
number and sizes of VMs, by maximizing a utility function using a Constraint
Programming (CP) approach. However, the authors do not base migration
decisions on the utility value, but use the CP approach to minimize the number
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of physical machines. They also do not support dynamic fine-grained CPU
resource allocation.

Kusic et al. [68] propose a dynamic resource-provisioning framework that de-
termines the number of VMs and their CPU allocation, maximizing a utility
function by using limited look a head control. This takes into account node
switching cost and risk of provisioning. Although the authors apply VM re-
source allocation based on utility function optimization, they do not consider
VM live migration as an allocation mechanism for utility optimization.

The pMapper [111] system is similar to this dissertation’s work because it in-
cludes a power-aware application placement controller that tries to optimize a
cost-performance objective function. First, it orders the machines according
to optimal power cost, but after that it views the problem as a bin-packing
problem and uses some heuristic algorithm such as a modified version of First
Fit Decreasing (FFD) to make migration decisions. In contrast, the heuristic
algorithm presented in this dissertation directly depends on the value of the
utility function, which is more flexible and supports differentiated service.

Although the above works base VM resource allocation and live migration de-
cisions on objective function optimization, the approach presented in this dis-
sertation has a set of unique features that others do not. The main difference is
the unique combination of local fine-grained VM resource allocation based on
control-theory with VM live migrations based on global utility function opti-
mization. Some approaches solve the function optimization problem based on
constrained or non-linear integer programming that can require a large run-
ning time. This makes them not suitable for practical application. In contrast,
this dissertation presents a simple utility function optimization heuristic with
negligible running time that is more suitable to be applied in practice. Some
approaches are evaluated only based on simulated experiments making it dif-
ficult to predict how they will behave in realistic cloud environments. In this
dissertation, the evaluation is done on realistic environments showing promising
results in practice. Lastly, most approaches do not take into account instabil-
ity resulting from VM live migration going back and forth between physical
machines as the result of workload variation. In contrast, this work takes pre-
ventive measures based on workload standard deviation and filtering techniques
that take into account and mitigate the instability.

There is also a group of works [126, 128, 104] that use decentralized VM allo-
cation algorithms or take into account affinity of VMs such as communication
patterns, in VM live migration decisions. Sonnek et al. [104] present Starling, a
system that applies a distributed algorithm for affinity-aware live migration of
VMs that take into account communication patterns between VMs. By closely
placing two or more communicating VMs in the network hierarchy, the network
transfer bottleneck is avoided and performance is improved. To achieve the
above goal they developed a distributed bartering algorithm in which physical
machines negotiate with their neighbors in order to decide which VMs are go-
ing to be migrated to improve their affinity. Their approach does not offer a
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complete solution in the sense that it only optimizes dynamic VM placement
according to network traffic affinity, without considering other resources such
as CPU or memory.

Zhang et al. [128] propose a similar approach to the Starling system, but offer
a more comprehensive approach by trying to reduce the number of physical ma-
chines for power cost reduction. They apply a heuristic algorithm based on K-
means clustering to consolidate VMs in clusters with low inter-communication
traffic, while lowering the number of physical machines. The drawback of this
approach is that the dynamic placement of VMs to physical machines through
live migrations is not taken into consideration. It only considers initial con-
solidation or dynamic consolidation at the moment that new VMs enter or old
VMs leave the data centre.

Yazir et al. [126] propose a distributed approach for dynamic remapping of
VMs among physical machines through live migrations. Their distributed ar-
chitecture is composed of a set of node agents, attached to physical machines.
The decision making process for VM resource allocation is distributed among
the node agents which decide in parallel based on local information when and
which VMs to migrated. They use multiple criteria decision analysis based
on the PROMETHEE method to select which physical machine is more suit-
able to migrate the selected VMs. Although this approach does not find a
global near-optimal VMs to physical machines mapping, it is scalable and fea-
sible by requiring lower number of VM migrations then would be required by
a centralized global near-optimal approach. Their approach differs from this
dissertation’s work since it takes migration decisions based only on resource uti-
lizations without considering optimizing high-level metrics such as cloud profit
utility value. They also base their evaluations only on simulation experiments
without concluding how the approach would behave in realistic environments.

2.3.2 \Vertical Scaling VM Resource Allocation

Another mechanism usually applied for VM resource allocation is vertical scal-
ing. This is concerned with dynamically changing resource shares to VMs on
each physical machine in order to reduce resource under-utilization and costs,
while keeping performance to required SLA levels. In this section, the litera-
ture’s most important approaches to achieve VM resource allocation on physical
machine level are reviewed. It is divided into three groups. One group of re-
lated works apply control-theory based feed-back controllers for VM resource
allocation. Another group applies queuing theory model based optimization
and the last one applies machine learning for VM performance modelling and
resource allocation.

The first group [118, 130, 49, 90, 89, 61] deals with VM resource allocation on
physical machine level using control-theory feed-back controllers. Their goal
is to keep certain performance metrics to given reference values even in the
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presence of disturbances. This is achieved by using a control law derived usually
from a system model identification process.

Wang et al. [118] developed an approach based on feed-back control for web
server CPU partition sizing to lower resource waste and keep response time
to acceptable levels. They proposed an integral controller with adaptive gain
to keep CPU utilization to a reference value, and an adaptive PI controller to
keep the response time to a reference value. They identified a non-linear system
model with bimodal behavior of the relationship between CPU entitlement and
response time in the under-loaded region making it difficult to control response
time through CPU allocation in this region. In order to provide a more robust
controller by obtaining more accurate system model parameters they included
the CPU utilization measurements in the control loop. Later, they improved the
above work by proposing a better approach [130] that provides a more robust
and controllable system for keeping response time to reference value. They
achieved this by proposing a design with two nested control loops. The inner
control loop is an adaptive integral controller that keeps CPU utilization to the
reference value. The outer loop is an integral controller that continuously tunes
the CPU utilization reference value to keep the response time metric to the
desired value. Later on, they extended the approach to include also memory
allocation [49] in virtualized environments by creating joint CPU and memory
controllers in order to keep CPU and memory utilizations to reference values.

Similar to the above works, Padala et al. [90] use control-theory feed-back con-
troller to allocate CPU resource to VMs. However, in contrast to the above,
they consider the allocation of several VMs of a multi-tier application running
on different physical machines. For this purpose they developed a two-layer
controller that takes into account the interdependencies between different tiers
of the same application. The first layer is composed of adaptive integral uti-
lization controllers that keep utilization to required level and decide on CPU
allocation of every VM. The second layer is an arbiter controller that gets CPU
allocation requests from utilization controllers. Later, based on different bot-
tleneck scenarios, decides on the final CPU allocations for all VMs to provide
a certain ratio between performance metrics of different applications.

In a later work [89], Padala et al. proposed AutoControl, an adaptive feed-
back controller for resource and performance management of multi-tier VMs in
virtualized environments. They applied an Auto-Regressive-Moving-Average
(ARMA) model estimated online using the Recursive Least Squares (RLS)
method [7] to adapt the relationship between performance and resource alloca-
tion according to the workload dynamics. They developed a two-layer controller
for allocation of CPU and disk bandwidth resources to the VMs of multi-tier
applications. In the first layer, the Multiple-Input Multiple-Output (MIMO)
application controllers are located that based on the ARMA model decide on
the resource allocation to be given to multiple tiers of each application. Appli-
cation controllers apply an advance control-theory technique, more specifically
an optimal control approach, which uses a control law derived from a cost func-
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tion optimization. In the second layer, the node controllers are located that
take resource allocation requests from different application controllers and de-
cide on the final VM resource allocations. In the case of resource contention,
where the total resource requests are greater than the resource capacity, the
node controller redistributes the resource allocations in such a way as to reduce
the difference between the normalized application performance and its reference
value.

Kalyvianaki et al. [61] proposed a feed-back control approach based on the
Kalman filter [60]. A Kalman filter is a recursive data processing algorithm for
estimating the state of a linear process over the time even in the presence of
noisy measurement. The authors apply a Kalman filter to track CPU utilization
and to accordingly decide on the CPU allocation to be given to VMs. They
developed three controllers. The first is a basic Single Input Single Output
(SISO) controller to allocate CPU resources to each VM individually. The
second is a MIMO controller that allocates CPU resources simultaneously to
all VMs of a multi-tier application, by taking into account the interdependences
between VMs of the same application. This is achieved by estimating the pair-
wise covariances between VM resource utilizations. The third one is an adaptive
MIMO controller, similar to the second one, except that in order to adapt to
workload dynamics it dynamically changes the controller parameters at runtime.

Approaches that use control-theory have several drawbacks that are tackled
in this work. Primarily, they focus on allocation of one, or maximum two,
resources such as CPU and memory or CPU and disk I/O bandwidth. The
approaches presented in this dissertation consider multiple resources such as
CPU, memory, disk and network I/O bandwidth. Furthermore, control-theory
based approaches use linear models of relationship between resource allocation
and application performance, which cannot capture complex non-linear rela-
tionships and VM interferences that exist in realistic shared virtualized infras-
tructures. This can result in suboptimal control performance of VMs in realistic
environments. Instead, this work copes with this drawback and improves over
the above approaches by modelling resource performance relationships using
machine-learning techniques such as Artificial Neural Network (ANN), which
can capture non-linear relationships thanks to its universal approximation ca-
pability.

In recent years, a wide spread use for dynamic VM resource allocation has found
the application of fuzzy control and fuzzy logic [125, 98]. This has the advantage
of dealing flexibly with non-linearities and uncertainties in virtualized workload
changing environments.

Xu et al. [125] present a two-level resource manager for VM resource allocation
based on fuzzy logic modeling. In the first level, local controllers are found
that determine the resource demand of each VM application and decide on
resource allocation required to keep resource costs to minimum and satisfy SLA
performance. Local controllers base their decisions using fuzzy logic to model in
the form of fuzzy-rules the relationship between application workload (request
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rate) and resource demand utilization. The fuzzy logic model and rules are
learned and adapted online by periodic measurements, after applying filtering
and clustering on data. The global controller gets resource allocation requests
from local controllers and decides on the final allocation for all VMs based on
maximizing the total profit of the data center provider.

Rao et al. [98] present DynaQoS, a VM resource management approach based
on fuzzy control that supports multi-objective optimization and service differ-
entiation. DynaQoS is composed of two layers. In the first layer, there is a set
of Self-Tuning Fuzzy Controllers (STFC) that control certain application ob-
jectives such as QoS metric or power consumption. The STFC produce a VM
resource allocation request for the next interval based on the error of the ob-
jective metric with respect to reference value and the change of the error. The
heart of STFC are a set of fuzzy-rules expressed as high level linguistic variable
relationships that decide on the degree of changing the current resource allo-
cation for different situations of objective metric error and error change. The
STFC is complemented with a self-tuning scaling controller and an adaptive
output amplifier that dynamically change the input, output scaling factors and
amplifier output for better adaptability to changing workload. In the second
layer, there is a gain scheduler that gets resource allocation requests from dif-
ferent STFC-s with different objectives and produces a final resource allocation
as the weighted sum of individual requests. In this way, DynaQoS achieves
optimization of multiple conflicting objectives such as application performance
and power costs.

In this dissertation, an approach based on fuzzy control is presented, but in
contrast to the above works it expresses conflicting objectives in a utility func-
tion and apply fuzzy control to optimize it. Furthermore, a multi-agent version
of the fuzzy controller is developed where several agents apply fuzzy control for
local utility function optimization in parallel with other agents, resulting in a
suitable approach for large-scale multiple VM environments.

There is a group of works [28, 14, 75, 24] that apply application performance
modeling based on queuing theory and utility function optimization to allocate
resource and manage performance in non-virtualized and virtualized environ-
ments.

For instance, Doyle et al. [28] propose an approach for CPU, memory and
disk I/O allocation to web service applications based on analytical performance
modeling. They combined three queueing theory based models to estimate the
web service response time for a certain request rate and resource allocation:
a) one that predicts response time in relation to CPU allocation, b) one that
predicts memory hit ration needed for memory allocation and, c¢) one that
predicts response of disk storage in relation with bandwidth allocation. Based
on these performance models, a resource allocator finds the minimum resource
allocations to web services that satisfy the response time targets.

Bennani and Menasce [14] present an approach that applies autonomic com-
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puting principles in order to allocate compute resources to Application Envi-
ronments (AE) for satisfying their SLA performance metrics by optimizing a
global utility function. The global utility function is given as a function of AE
local utility functions. AE local utility functions depend on application perfor-
mance metric. They have developed analytic queuing network models for AE
performance metrics. Based on these AE models, they applied a combinatorial
search algorithm such as the beam search algorithm [99] to search the physical
nodes configuration space, aiming to find the configuration that optimizes the
global utility function. Later, they extended the work [75] in order to apply
it in virtualized environments by using analytical queuing models and global
utility optimization through beam-search algorithm, but in this case using CPU
shares as allocation mechanism for VMs.

Cunha et al. [24] consider allocation of resource to VMs in multi-tier applica-
tions for cloud provider revenue optimization. For this purpose, they developed
an approach that combines a pricing model with an analytical queuing model
and an optimization model. The pricing model is based on two SLA layers
that give the rewards and penalties for achieving or violating the performance
threshold for two operating modes, normal and overload. The performance
model of each application is represented as a tandem queue network, where
each VM assigned to a tier is modeled as a M/M/1 queue. The optimization
model is represented by an objective function, given as the sum of rewards and
penalties over all applications, and represents the revenue of the cloud provider.
In comparison to the author’s previous approach, which used a single-resource
queuing model, this one is more cost-effective.

The problem with the above approaches is the difficulty to build accurate an-
alytical queuing models for predicting the complex behavior of applications in
virtualized environments especially in the presence of VM performance inter-
ference. They are also specific to certain multi-tier transactional applications.
In contrast, this dissertation’s approach builds a general model during runtime
without any prior application knowledge using ANNs that can capture the
complex behavior of applications and VM interferences in shared virtualized
environments.

The last group of works are those that apply machine learning for VM perfor-
mance modelling and resource allocation. The works are divided in two groups,
one that apply supervised machine learning and the other that apply rein-
forcement learning. In the supervised machine learning case, a model is build
off-line or online after provided with training input-output samples. Based on
this model, resource allocation to virtual machines can be achieved to reach
required performance levels. In the reinforcement learning case, a resource al-
location policy is learned without any training set supervision but only with
trial-and-error actions in order to maximize a long-term reward function.

Some works apply supervised machine learning [120, 67, 119] for resource model-
ing and allocation in virtualized and no-virtualized environments. For example,
Kundu et al. [67] model application performance in virtualized environments
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for helping with VM allocation. They developed multiple control knobs model
of relationships between application performance and resource allocation and
contention. To build the model they applied Artificial Neural Network (ANN)
and Support Vector Machine (SVM) learning approaches and for increased ac-
curacy they refined the basic models through techniques such as sub-modeling
and clustering. Based on built models, they proposed a simple VM allocation
approach.

Wildstrom et al. [120] present an approach for hardware resources such as CPU
and memory reconfiguration according to workload changes. They applied a
propositional rule learner to build an off-line model for predicting application
performance given as input resource configuration and low-level system metrics.
To adapt to workload changes, the model is learned for different combinations
of workloads and resource configurations. The control agent adapts the config-
uration online using the model based on the current workload as identified by
low-level system metrics.

In a later work [119], the same authors introduced CARVE, a system that
predicts what would be the utility profit value of increasing or decreasing the
memory resource of an application for the current workload and configuration.
In this work, the utility value depends on the profit value of getting certain
application performance and the costs of provisioning the required memory
resource. They learned models to predict the utility value for increasing and
decreasing memory by one resource unit based only on low-level system metrics.
Based on these predictions, an online agent continuously makes decisions on the
worth of changing memory configuration. They trained the model for different
workload combinations and memory configurations based on M5’ trees [121]
that are decision trees with linear regression functions at the leafs. As the
authors argue, the M5’ trees showed better prediction accuracy than simple
ANNS.

Also, this dissertation’s work applies supervised machine learning techniques
such as ANNs for VM resource allocation, but most of the other proposals
train a single model offline for all workload and resource allocation combina-
tions, which is not flexible in a dynamic workload varying environment. In
contrast, this dissertation’s approach trains a model of resource-performance
relationships online using an ANN, which can be adapted according to workload
changes. Furthermore, it finds a suitable performance-power trade-off through
utility function optimization and deals with increased optimization time, as the
result of large number of VMs, by using a distributed ANN-based VM resource
allocation manager.

Another group of related work [97, 106, 124, 96] developed techniques based on
reinforcement learning for dynamic resource allocation. Reinforcement learn-
ing has the potential to achieve resource allocation without learning a system
model. Rao et al. [97] present an approach for dynamic VM resource recon-
figuration based on reinforcement learning, where an agent interacts with the
environment by trying different resource allocation actions to learn an optimal
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policy. The optimal policy gives the resource allocation action that should be
taken in each state to maximize the long-term reward function value. The state
is determined by the resource allocation configuration while the reward func-
tion value is determined by the average application performance over all VMs.
For solving the reinforcement learning problem, they applied the well-known
temporal-difference method. To cope with the problem of adaptability and scal-
ability of a large state space, resulting in long optimal policy convergence time,
they employed two supervised machine learning models. First, they learned an
ANN based model to simulate several interactions with the environment and
generate reward values for updating accumulative reward function. This grad-
ually eliminates the long interaction time with the real environment. Second,
they used an ANN based approximation of accumulative reward function which
replaces a lookup table implementation and eliminates the long updating time
of every entry in the table.

Later, the authors extended the work by developing a unified reinforcement
learning approach [124] that combines two reinforcement learning agents. The
VM-agent applies reinforcement learning for resource reconfiguration of all VMs
using the geometric mean of performance metrics over all VMs as reward func-
tion. The App-agent applies reinforcement learning for reconfiguration of appli-
cation parameters, such as MazClients, for all VMs of the multi-tier application
using the application performance metric as reward function.

The above-proposed solutions are applicable on a single physical machine, but
become problematic from a scalability point of view for cluster wide level opti-
mization with increased number of VMs running on several physical machines.
To address this issue, the same authors proposed [96] a distributed learning
approach where each reinforcement learning agent learns an optimal policy for
resource allocation of its own VM in parallel with other agents. Each agent uses
multiple resource utilizations of the VM as the environment state and imple-
ments a Q-function table based on Cerebellar Model Articulation Controller.
In order to optimize in the same time resource efficiency and application per-
formance, as reward function, they used a metric that captures both resource
utilization and application performance metric. To coordinate resource alloca-
tion and take into account the correlation between different VMs of the same
multi-tier application, the same feed-back reward function value is provided to
all VM agents of the same application.

Tesauro et al. [106] developed a hybrid reinforcement learning approach to dy-
namically allocate servers to different web applications in a data center. Initially
the system is driven by a build-in queuing model based control policy during
which the reinforcement learning module is trained offline. This eliminates the
scalability problem resulting in poor performance by the long online learning
time of the optimal policy. Later, the reinforcement learning agent takes over
by driving the system, using the new learned policy and collecting samples
for learning a better policy through batch training. They used the Sarsa(0)
learning algorithm and an ANN-based approximate utility function instead of
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a look-up table implementation. They applied a de-compositional method by
using separate reinforcement learning for each application using a function of
application performance as utility function. In this method, each application
agent sends its learned utility function to an arbiter, which decides on all server
allocations in order to optimize a global utility function. This utility function
is given as the sum of application local utility functions.

The drawback with reinforcement learning approaches is the scalability prob-
lem from large state space and long convergence time to optimal policy, making
them impractical in real cloud computing environments. In contrast, this dis-
sertation’s approach adopts VM performance modelling based on supervised
machine learning and distributed allocation to cope with scalability and con-
vergence time issues.

2.3.3 Horizontal Scaling VM Resource Allocation

In this section, the work related to horizontal scaling of VMs is reviewed, where
the dynamic resources allocation is achieved by changing the number of VM
replicas allocated to an application. This technique is more suitable for multi-
tier applications where each tier can be replicated in several VMs in order to
balance the load. The number of replica VMs can be automatically changed
according to the workload to keep the performance levels and reduce resource
costs. The related work can be divided in four groups: 1) rule-based approaches
2) queue modelling approaches 3) machine learning approaches and 4) control-
theory approaches. There are works that use a combination of techniques but
for the purpose of classification they are included in one of the groups that
mostly represents the main technique used. Since the horizontal scaling mech-
anism is not directly related to this work, but can be used as a complementary
mechanism, in the following just a few typical examples in each of the above
categories will be explained.

Several works [30, 45, 46, 56] achieve horizontal VM scaling using rule-based
techniques. The basic idea of all of them is to set-up rules in the form of:
when some performance metrics pass certain threshold values than increase or
decrease the number of VMs. The disadvantage of rule-based approaches is the
difficulty to set the right threshold values for all applications, resources and
workload dynamics. A typical example of the rule-based approach is presented
by Han et al. [45]. The authors propose a lightweight auto-scaling approach for
multi-tier applications that combines fine-grained VM resource allocation with
horizontal scaling VM-level resource allocation, to achieve cost-effective perfor-
mance optimization. Their system starts scaling up or down resources when
application response time passes above or below a certain threshold. When this
happens, it firstly applies a fine-grained resource level VM scaling algorithm to
give as many needed resources to VMs. If this does not bring the response time
to the required threshold interval, it then applies a VM level scaling algorithm
to increase or decrease the number of VMs. This algorithm does a scale up
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by detecting the bottleneck tier, based on the criteria that selects the tier with
least resources available and least resource costs increase from adding a VM.
On the other hand, it does a scale down by detecting the bottleneck tier, based
on the criteria that selects the tier with biggest resources available and biggest
resource costs decrease from removing a VM.

The other group of works [108, 129, 20, 33, 15, 58] adopt queuing theory ap-
proach to model certain performance metric and decide on the number of VMs
to scale. An application in virtualized environments can be modelled using a
single queue model where a load-balancing component distributes the requests
over all replica VMs. It can also be represented with a model of multiple queues
forming a queue network that is more appropriate for multi-tier applications.
The main problem with queuing theory-based approaches is the difficulty to
adopt accurate analytical queuing models to represent complex real world sce-
narios. A typical work that represents queuing theory based VM horizontal
scaling is presented by Urgaonkar et al. [108]. They developed an approach to
determine when to allocate additional servers and how many of them to allocate
on each tier using a combination of reactive and predictive techniques. Their
queuing network model of the multi-tier application is composed of a set of
G/G/1 queues representing servers of each tier. Using this model, and having
the peak session rate and request service time of each server, is possible to esti-
mate how many servers to allocate to each tier in order to achieve the required
response time. Although the number of servers is estimated by separately mod-
elling each tier, since this estimation is done at once and in a coordinated way
for all tiers, it achieves fast allocation time and eliminates potential bottleneck
shifts. For long-term allocation they apply a workload prediction technique,
which based on past observations and seasonal property of the request rate,
predicts the peak request rate demand for the next hours and accordingly al-
locates servers a head of time. To cope with long-term prediction errors and
unexpected workload spikes they apply a reactive allocation technique in which
the monitored request rate over the past minutes is periodically compared with
the predicted request rate. If their difference is more than a certain threshold
then allocation actions are applied to provision the multi-tier application with
the right number of servers.

Several proposals [9, 29, 17, 18] apply machine learning for VM horizontal
scaling. One of the recently applied approaches for VM horizontal scaling is
reinforcement machine learning technique. Its advantage is the potential to
learn a VM allocation policy without need for an environment model but just
by trial-and-error interaction with the environment. One of the drawbacks of
this machine leaning technique, as applied in real cloud environments, is the long
convergence time to optimal policy as stated early. Recently there have been
some proposals to cope with this problem such as the one presented by Barrett et
al. [9]. They propose a parallel reinforcement learning method where different
learning agents apply Q-learning in parallel with other agents on a common task
to learn their optimal policy @) function while exchanging ) function values
with other agents for states they have not visited. This parallel reinforcement
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learning approach speeds up the optimal policy convergence time. Each agent
maintains a local (); function learned from its own experience and a global @,
function that is the aggregated combination of @; functions of all other agents.
Agents make decisions for adding or removing VMs based on a final @) function
estimated by aggregation of local and global @) functions. During the run, if the
difference between local and global () function values for the current state is less
than certain threshold, then the local Q); function is not transmitted to other
agents since the local and global functions have converged to the same value.
The @ function is based on resource costs and application performance while
the state of each agent is defined by three variables: a) the user requests per
time interval, b) number of VMs allocated to the application and ¢) UTC time.
This state definition with limited number of variables is another contribution
to lower the state space and the optimal policy convergence time.

Lastly, there are works [2, 72, 71, 69] that apply control theory for VM horizontal
scaling. Control theory approaches offer the possibility to mathematically verify
the stability and guaranty of the controlled system, but require a lot of effort
for manual tuning of controller parameters suitable for a certain situation and
system. One typical example of applying control theory for VM horizontal
scaling of multi-tier applications in cloud infrastructures is presented by Lim
et al. [72]. The authors propose a proportional threshold policy to apply in
a classical integral feed-back controller. This policy uses a dynamic target
threshold range to keep a reference metric, such as CPU utilization, instead of
a single target threshold that is used in classical integral controllers. If the CPU
utilization goes above the range, the controller adds a VM and if it goes below it
removes a VM. As experimentally shown, having a target range eliminates the
oscillatory behavior that results from coarse-grained actuators typically used
in existing cloud provider infrastructures such as Amazon EC2 [4]. The target
threshold range is dynamic in the sense that it decreases with increasing the
accumulated actuator values. This provides a more fine-grained and resource
efficient solution.

Horizontal VM scaling approaches based on changing the number of VMs ac-
cording to the workload are complementary to this dissertation’s work. How-
ever, they have the drawback of being specific to only certain multi-tier web
applications that permit tier replication, while in the dissertation are provide
more general solutions by using VM live migration and fine-grained VM re-
source allocation mechanisms.

2.3.4 Resource Demand Prediction based VM Resource Allocation

In this section, works related to proactive VM resource allocation based on
resource demand prediction techniques are reviewed. Some works [54, 76, 16]
apply VM resource demand prediction for mapping VMs to physical machines.
Huang et al. [54] propose an approach called Migration-based Elastic Consol-
idation Scheduling (MECS) that dynamically maps VMs to physical machines
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to lower the number of physical machines and satisfy application SLA per-
formance. It makes VM allocation decisions based on VM resource demands
estimated by a time series prediction technique. They used Auto-Regressive
Integrated Moving Average (ARIMA) technique to predict CPU and memory
usage time series. MECS algorithm is divided into resource conflict prediction
phase and VM consolidation phase. The first phase, based on predicted VM re-
source demand time series, predicts the physical machines that will be overload
and decides on VMs to migrate. The second phase decides on which physical
machines the selected VMs should be live migrated in order to minimize the
number of physical machines and satisfy performance SLA-s, while taking into
account live migration overhead.

Meng et al. [76] propose an approach for consolidation of VMs on few physical
machines by joint-VM capacity estimation and by multiplexing VMs with com-
plementary resource demands therefore, offering the maximum resource saving
and efficiency. They developed an SLA performance model of relationship be-
tween performance and VM capacity. They also developed a joint-VM size
estimation algorithm, which based on the SLA performance model and a VM
workload forecasting technique, estimates the minimum aggregated capacity of
a set of VMs that can satisfy the performance SLAs of individual VMs. For
more accurate forecasting of the aggregated VM workload, each VM workload
is divided into regular and irregular components. The regular component rep-
resents trend or seasonal periodic workloads, while irregular component is what
remains from the extraction of the regular component. Then, the aggregated
workloads are forecasted separately, using time series forecasting techniques
such as ARMA and Artificial Neural Networks. Based on the above methods,
they developed a selection algorithm to identify the combination of VMs to be
consolidated jointly that will result in the maximum resource capacity savings.
A VM workload time series correlation matrix was build and those VMs that
have lower correlation coefficients were selected for multiplexing. This means to
select for multiplexing those VMs that have complementary workloads resulting
in lower resource capacity requirements.

Bobroff et al. [16] propose a dynamic VM consolidation algorithm called
Measure-Forecast-Remap (MFR) based on VM live migration. Its goal is to
lower the number of physical machines and application SLA performance vio-
lations. The algorithm executes iteratively in discrete time intervals of length
7 where in each iteration repeating three steps: a) measuring the history data,
b) forecasting the future demand and c) rearranging VMs to physical machines.
The authors presented an analytical formula to estimate the gain from dynamic
consolidation of a VM based on resource history demand and predicted resource
demand time series. This formula determines the VMs that have highly vari-
able, auto-correlated and periodic resource demand as the ones that can gain
the most from dynamic VM consolidation. They apply time series analysis [19]
on the resource demand history by expressing resource demand as the sum of
periodic components and residuals. After removing the periodic components,
the residuals are modelled using an Auto Regressive process of second order
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AR(2). Based on this model, they predicted the future demand and estimated
the prediction error distribution to be used in the gain formula mentioned above.
Lastly, they developed a VMs to physical machines placement algorithm that,
based on predicted VM resource demands and a first-fit bin packing heuristic,
places VMs to minimum number of physical machines by satisfying the con-
strain that the rate of VM resource demand over-passing capacity is less than
a certain threshold.

There also is a group of works [40, 32, 87, 57, 53] that apply vertical or horizon-
tal scaling VM resource allocation based on resource demand prediction. Gong
et al. [40] developed PRedictive Elastic reSource Scaling (PRESS) system for
dynamic fine-grained resource allocation to VMs, in order to reduce resource
costs and application SLA performance violations. It tracks resource utilization
and predicts VM resource demand in the near future, by using signal process-
ing and machine learning techniques. It uses the Fast Fourier Transform (FFT)
method to extract a repeating pattern of the resource demand called signature,
if one exists, and uses it for prediction in the next time intervals. If no signature
exists, then it applies a discrete-time Markov chain model of resource utiliza-
tion states to predict resource demand for the next interval. After getting the
prediction, it sets VM resource allocation for next interval equal to predicted re-
source demand, plus a small headroom to avoid any underestimation of demand
because of prediction errors.

Nguyen et al. [87] propose AGILE, an approach for dynamic horizontal scaling
of VMs according to the workload in IaaS clouds, in order to reduce resource
costs and performance SLA violations. It is based on a medium-term resource
demand prediction and a model of relationship between resource allocation and
SLA performance violation rate. They apply a wavelet transformation tech-
nique for resource demand prediction. This technique decomposes the resource
demand time series signal into several base wavelet signals that are predicted
separately and summed up in the end to create the complete predicted de-
mand. As the authors argue, this technique makes it possible to accurately
predict non-periodic signals and for longer future intervals (up to 2 minutes)
than other techniques. Based on online profiling and regression curve fitting,
they build a black-box model that predicts what would be the amount of re-
source allocation to get a certain performance SLA violation rate. Based on
resource demand prediction and performance model, they can predict whether
the application will be overload in the future and before this happens, trigger a
scaling operation of adding VMs. In order to reduce the VM provisioning time,
they apply pre-copy live cloning for VM replication.

Islam et al. [57] also consider the problem of proactive VM resource provision-
ing in cloud computing based on resource demand prediction. They propose
and experiment with some resource prediction techniques based on machine
learning such as linear regression and artificial neural networks, combined with
a sliding window method. Although, they argue that their techniques can help
with VM scaling they did not integrate their prediction models with any scaling
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method, but only focused on analysing the prediction accuracy. Two machine
learning methods used for their prediction model development are Error Correc-
tion Neural Network (ECNN) and linear regression. For estimating prediction
accuracy, they used the cross-validation technique and several metrics such as
Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE)
etc. They concluded that neural network approach is more accurate compared
to linear regression as resulted from prediction evaluation metrics.

Hu et al. [53] present KSWSVR, a system for fine-grained VM resource allo-
cation based on resource demand prediction. It makes prediction of the VM
resource demand multiple-steps ahead in the future, based on the combination
of an improved version of Support Vector Machine (SVM) and a Kalman filter.
Based on resource demand prediction they allocate the right amount of CPU re-
source to keep costs and SLA violations to minimum. To increase the prediction
accuracy, they applied an improvement to the basic SVM algorithm by giving
more weight to most recent time series data. To further increase the prediction
accuracy, they applied a Kalman filter for smoothing the noise of resource us-
age data but still estimating the main trend. They experimentally compared
KSwSVR with other prediction methods such as AutoRegressive (AR) model,
Back-Propagation Neural Network (BPNN) and standard SVM, showing that
their approach achieves higher prediction accuracy.

The proposed proactive VM resource allocation solutions have the drawback
that they predict demand time series of only one resource or of multiple re-
sources separately, without taking into account cross-correlation between re-
sources. This cross-correlation is especially true for multi-tier application,
where there are interdependencies between tiers of the same application. The
machine learning proactive resource allocation approach proposed in this dis-
sertation makes prediction of multiple resource demand time series simultane-
ously, taking into account cross-correlation between resources of multiple VMs
of same multi-tier application. This results in improved prediction accuracy
and resource allocation decisions.

2.4 Summary

This chapter has been divided into two large parts. The focus of the first part
is to present theoretical background on which this dissertation’s work is based
upon. Definitions and technical descriptions have been given for concepts such
as cloud computing, virtualization, supervised machine learning, artificial neu-
ral networks, support vector machines, feed-back control systems and utility
function optimization. For each concept introduced, basic algorithms and sup-
porting techniques have been described in the required detail for understanding
the rest of the dissertation. The focus of the second part is to present works
related to VM resource allocation solutions in cloud computing. The related
work has been divided into different groups depending on the VM resource
allocation mechanism used. Three VM resource allocation mechanisms have
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been considered: VM live migration, vertical scaling VM resource allocation,
and horizontal scaling VM resource allocation. Work related to proactive VM
resource allocation using resource demand prediction has been presented. For
each related work, a short description has been given, and at the end of a group
of related works, a comparison with this dissertation’s work has been given.

67






Utility-based Virtual Machine Load Balancing
and Consolidation

3.1 Introduction

Live migration of VMs offers the possibility to provide resources without inter-
rupting running services during migration, which is important for interactive
services with particular quality of service (QoS) requirements. However, this
flexibility comes with increased complexity in resource management. Conse-
quently, the main challenge is finding an adequate approach to dynamically
allocate resources to VMs while taking QoS requirements and operating costs
into account.

A promising approach to solve this cost-performance trade off is a utility func-
tion. In the field of economics, a utility is a scalar value to express the satisfac-
tion gained from a set of goods or services. In this chapter, a two-tier resource
manager that maximizes an adequate utility function to dynamically allocate
resources to VMs such that QoS constraints are satisfied and operating costs
are minimized is presented. This work explicitly focuses on the CPU as the
resource to be allocated, but the approach can straightforwardly be extended
to consider other resources such as memory and network bandwidth. The pro-
posed two-tier resource manager consists of local node controllers and a global
controller. The local node controllers dynamically allocate CPU shares to VMs
with the aim of maximizing a local node utility function by giving higher CPU
shares to VMs with higher priorities and thus with higher revenues for a cloud
provider. The global controller periodically gets the CPU requirements of every
VM from the local node controllers, and decides to migrate particular VMs to
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Figure 3.1: Resource manager architecture

other physical machines based on a heuristic algorithm that is aimed at max-
imizing a global system utility function by considering machine load criteria
for VM consolidation. Maximizing the global system utility function through
optimized local CPU share settings and global live migrations means finding a
proper trade off between cost and performance. The novelty of the proposed
approach is to consider VM live migration as an important resource allocation
mechanism and to present a new heuristic algorithm for increasing the utility
of a cloud provider. Experimental results show that the approach is beneficial
for controlling the cost-performance trade off in a virtualized environment.

First the architecture, the utility function, the algorithms of the resource man-
ager and stability issues are described. Then, implementation issues and exper-
imental results are discussed. The chapter is concluded with a summary of the
approach. The work described in this chapter has been published in [80].
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3.2 Utility-based Resource Allocation

This section presents the architecture of the utility-based resource manager, the
utility function model, the local controller, the global controller and stability
issues.

3.2.1 Resource Manager Architecture

The resource manager manages an IaaS cloud environment consisting of several
VMs running on top of physical machines. It is assumed that the physical
machines are homogeneous and the environment offers the possibility to live
migrate VMs from one physical machine to another one. The architecture of
the resource manager is shown in Figure 3.1. It is composed of local node
controllers responsible for maximizing a local node utility through dynamic
CPU share allocation and a global controller responsible for maximizing a global
system utility through live migrations.

3.2.2 Utility Function Model

In this work, an environment is considered where cloud consumers run their
applications on VMs offered by a cloud provider and pay for the virtual resources
(in this case CPU resources) they get. The cloud provider tries to maximize
the profit, i.e., the difference between the amount of money it gets from the
consumers and the operating costs of the infrastructure. A VM utility function
is defined to represent the amount of money paid by the consumer for using
the VM for a given control interval. A local node utility function is defined to
represent the profit of the cloud provider generated by a single node for a given
control interval and the global system utility function to represent the profit of
the cloud provider produced by the entire system for a given control interval.

The VM utility function is defined as a linear function of the CPU resources
the VM of a consumer gets from the cloud provider. A VM utility function
can also be a function of some performance metrics stated in Service Level
Agreements (SLAs) - a written contract signed between the consumer and the
cloud provider that formally defines service levels. Since other works [117, 21]
have shown the suitability of using linear utility functions to allocate resources
to VMs, also in this work are used linear utility functions combined with classic
control theory. More concretely, the utility function U; for V M; is given as:

U; = a; % S; (3.1)

where «; is the amount of money paid per unit of CPU resource (i.e., 1% of
CPU utilization) allocated (e.g., a; = 4$/1% of CPU), S; is the CPU resource
allocated (i.e., CPU share) to VM, for a given control interval measured in %
of CPU utilization. The rationale behind this utility function is that the more
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CPU resources a VM gets, the more money the consumer has to pay to the cloud
provider. QoS objectives are taken care of by a local feed-back controller and a
live migration mechanism that automatically determine the required resources
to be given to VMs to meet them. This model of cloud computing is different
from that of Amazon EC2 where consumers pay per-instance per hour, where
each VM instance has a fixed size chosen from the set of small, large, and extra
large sizes; in the model of Amazon EC2, there is no support for fine-grained
CPU allocation according to the load of the machines.

The local node utility function N; for node j is given as the sum of the VM
utilities hosted on the node minus node cost:

Nj :Ujl—i-Ujg—{—...—i-Ujm—Cj (3.2)

where m is number of VMs hosted on the node, Uj; is the V M; utility on node
j and Cj is the cost of the node.

The global system utility function U, is given as the sum of all local node
utilities Nj:
Ujg=Ni+No+ ...+ N, (3.3)

where n is the total number of physical nodes. Inserting equation (2) into (3),
we get another form of global system utility function

Uy=Un+Up+.)—(C1+Co+..+Cp)=U, - C (3.4)

In Equation (3.4), the global system utility function expresses the cost-performance
trade-off, where the sum of the VM utilities represent performance (i.e., more
VM utility means more resources and improved performance) and the sum of
node costs represents the total cost of the cloud provider.

The aim of the resource manager is to maximize the global system utility func-
tion through live migrations and adequate local resource allocation. In the fol-
lowing sections, the algorithms implemented by the local and global controllers
for this purpose will be discussed.

3.2.3 Local Node Controller

The local node controller is responsible for dynamically allocating CPU re-
sources to different VMs to maximize the local node utility function. Its struc-
ture is shown in Figure 3.2. It is composed of a monitoring component, a
feed-back controller and an arbitrator. The monitoring component measures
the average CPU utilization of VMs in every control interval. The control in-
terval can be set by the administrator depending on how quickly the local node
controller should react to the load. Its value also depends on the time taken
by the arbitrator (in this work it is around 1 second). The control interval
is set the to 8 seconds, which in practice provides an adequate adaptation to
the load. The feed-back controller [118] uses control theory to determine the
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local node controller
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Figure 3.2: Local node controller

required CPU allocations to be given to each VM in order to keep the CPU
utilization at a desired level to maintain QoS objectives. The arbitrator takes
CPU allocation requests for all VMs from the feed-back controller, and accord-
ing to the utility of each VM, sets the CPU shares using an algorithm described
below in order to maximize the local node utility function.

The arbitrator algorithm works as follows. If the sum of required CPU al-
locations of all VMs does not exceed the total CPU capacity of 100% (for a
single CPU), then the arbitrator sets the CPU shares for every VM equal to
its required CPU allocation. In this case, the local node utility function is
maximized because each VM gets its required allocation. If the sum of the
required CPU allocations of all VMs exceeds the total CPU capacity, then the
arbitrator maximizes the local node utility function by first satisfying requests
of VMs that offer a higher utility per unit of CPU resource and setting their
CPU shares equal to their required CPU allocation. Then, in decreasing order
of utility, other requests are satisfied. If there is not enough CPU capacity to
satisfy all requests, lower utility VMs will never get CPU resources. To solve
this problem, every VM is always given a minimum of CPU share which can
be stated in SLA contracts, in this work 5% of the CPU, despite their low
utility values. Then, the remaining CPU capacity is given to first satisfy the
requests of higher utility VMs, then lower utility VMs. Of course, some VMs
will get a CPU share that is lower than their required allocation, but here
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live migration is used to increase the global system utility by moving VMs to
some underloaded CPU. This algorithm supports differentiated-service because
higher priority VMs have a higher utility and therefore get a higher CPU share.

3.2.4 Global Controller

The global controller runs on its own node, and in each control interval queries
the local controllers for the CPU requirements and CPU shares of all VMs.
The control interval can be set by the administrator depending on how agile
the virtual infrastructure should be. Small values mean that the manager re-
acts quickly to load, and large values mean that it reacts slowly. This value
also depends on the time taken by global controller (in the implementation and
experimental setup: 2 seconds). Based on this value, the global controller in-
terval is set to 20 seconds, which provides a sufficiently agile environment. This
interval does not include live migrations or times for turning on new nodes, so
this is the minimum time the global controller waits. If there are live migrations
or new nodes turned on, the global controller waits until all live migrations are
finished and new nodes are turned on. In its general form, the problem of find-
ing the mapping of VMs to physical machines that maximizes a utility function
is a multi-knapsack problem in which items packed in knapsacks are elastic in
size. Since this problem is NP-hard, it is devised a heuristic algorithm to solve
it. This algorithm determines if the global system utility can be increased by
live migrating VMs, and if this is the case, it suggests a list of live migrations
that achieve a maximum increase of the global system utility.

There are two cases when the global system utility is increased: a) if a VM is
migrated from an overloaded node where its CPU requirements are not satisfied
to an underloaded or a newly turned on node; b) if all VMs are migrated from
an underloaded node to some other node to eliminate node cost by turning off
the node. Based on these two observations, the algorithm used by the global
controller works as follows.

First, based on CPU shares and required allocations of all VMs, the nodes are
divided into three groups: overloaded, underloaded and unstable. A node is
considered as overloaded if the total required CPU allocations of VMs exceed
the total CPU capacity for a sustained number of consecutive local controller
intervals (which is set to 3 as a default value), and there is more than one
VM running on the node. An underloaded node is one where the total required
CPU allocations of VMs does not exceed the total CPU capacity for a sustained
number of consecutive local controller intervals (which again is set to 3 as
a default value). A node is unstable if it does not satisfy any of the above
conditions, which means that the node oscillates between the overloaded and
underloaded states. To maintain the stability of the algorithm, unstable nodes
are not included in migration decisions.

Then, the algorithm checks if there are any overloaded nodes in order to improve
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the global system utility through balancing the load. If there are overloaded
nodes, for each of them the algorithm picks the lowest utility VM and simulates
a migration of it to every underloaded node and also to a newly turned on
node. The logic behind picking the lowest utility VM is to permit degraded
performance for low priority VMs during live migration. For each overloaded
node, the algorithm selects as the destination node of a migration the node that
gives the highest increase in global system utility (if there is any increase) and
marks the VM as moved. If there is no utility increase, the migration will not
be included in the list. At the end of this procedure, the algorithm will produce
a list of migrations of a VM from each overloaded node to some underloaded
one.

In case there are no overloaded nodes, the algorithm selects the under-loaded
node with the least local node utility, which intuitively will lead to the highest
increase in global system utility by migrating all its VMs and turning off the
node. A VM is selected on this node and its migration to every other under-
loaded node is simulated. As the destination of migration, the node that gives
the highest increase in global system utility is selected, and the VM is marked
as moved. This is repeated for every VM on this node. Finally, a check is
made if the global system utility is increased by all these simulated migrations
and turning off the node. If the global system utility is increased, a list of
migrations for all VMs of the under-loaded node in question to other different
under-loaded nodes will be produced. After all migrations are done for load
balancing or consolidation purposes, improving the global system utility for the
current interval, the whole algorithm is repeated in the next control interval.
If the algorithm does not produce any list of migrations, because there is no
increase in global system utility, then the global controller has nothing to do for
the current control interval and re-initiates the algorithm in the next interval.

The procedure of finding an increase of the global system utility by migrating
a VM from one node to another one is as follows. First, the utility of the
source node denoted as Sy, (S : source b : before removal) is evaluated, then the
removal of the VM from the source node is simulated and the CPU shares of
this new state are recalculated using the same algorithm used by the local node
controller, and the utility of the source node after the VM removal denoted as
Sa (a : after removal) is evaluated. Then, the algorithm evaluates the utility
of the destination node denoted as Dy (D : destination b :- before addition),
simulates the addition of the VM on the destination node, recalculates the CPU
shares of the new state and evaluates the utility of the destination node after
the addition of VM, denoted as D,. After these calculations, the increase I of
the global system utility obtained by this migration is given as:

I =(Dg— Dy) — (Sp — Sa) — [NodeCost] (3.5)

Thus, the increase of the utility of the destination node due to the addition of a
VM, denoted as (D, — Dy), should be greater than the decrease of the utility of
the source node due to a VM removal, denoted as (S, — S,), in order to get an
increase of the global system utility. The optional NodeCost term is added if
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the destination node is a newly turned on node, in which case it should be taken
into account the node cost in the utility increase, while in the calculations above
the utility of the destination node before VM addition is just the node cost. In
the consolidation case, the sum of the increases of global system utility for all
VM migrations from the node to be turned off to other nodes is evaluated. To
this sum, the cost of a node to be turned off is added, and it is tested whether
there is any increase. Thus, the value to be tested is:

I=1L+ I+ .I,.. + I, + NodeCost (3.6)

where I; is the global system utility increase for migrating V' M;, and NodeCost
is the cost of the node to be turned off.

3.2.5 Stability Issues

Since the load can change frequently, VMs might unnecessarily migrate from one
node to another node frequently. To address these problems, two approaches
are followed to balance stability with agility, as described below.

First, since the global system utility depends on the VM utilities (see Equa-
tion (3.4)), and a VM utility depends on CPU shares that change dynamically
according to the load, the global system utility also changes according to the
load. This should be taken into account when checking for an increase of global
system utility, because it is possible to see a utility increase when simulating
migrations, but this can be a ”fake increase” in the sense that is caused by load
decrease/increase in the current control interval. In the next control interval,
the load could change in reverse order, making the migrations useless and the
system unstable, forcing again to perform migrations to put VMs back in their
initial locations. To eliminate this instability, in each control is estimated the
standard deviation of the last 5 values of the global system utility and migration
decisions are made only if the increase of the global system utility is greater
than the standard deviation. This means that migrations are performed only
if the increase of the global system utility is really caused by migrations and
not caused by load changes. Thus, in the global controller algorithm, all state-
ments about an increase of global system utility in fact mean an increase of
global system utility greater than the standard deviation.

Second, there could be spikes of increased or decreased load in the form of noise
just for a few seconds. In this case, it is not preferable to perform migrations in
order to eliminate the overhead of unnecessary migrations. Since the VMs’ CPU
requirements can also have spikes for short periods, their values are smoothed
by passing them through a stability filter [64] before giving them to the global
controller. In this case, any spikes of load changes are filtered out, and the
global controller makes migration decisions based on a smoothed view of the
load. This makes the system resistant to short spikes, and it reacts only if the
changed load persists for a longer period. Thus, unnecessary migrations due to
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frequent changes of the utility value are eliminated. A thorough formal analysis
of the stability of the method is an interesting area of future research.

3.3 Implementation

The local controller is implemented as a two-threaded application in Python
running in Dom0 of the Xen system. The first thread listens for requests from
the global controller and sends CPU resource consumption and requirement
values. The second thread implements the monitoring component, the feed-back
controller and the arbitrator. Since it is used Xen, the monitoring component is
based on the XenMon tool [43]. The arbitrator uses the Pyxen binding library
to interface the Xen scheduler for changing CPU shares. In total, the local
controller implementation consists of 800 lines of Python code. The overhead
of the local controller is comparable to that of XenMon, adding only 1% of CPU
utilization for DomO.

The global controller is also implemented as a Python application consisting of
530 lines of code, and it initiates live migrations using the libvirt interface to the
Xen platform. To simply evaluate the functionality of the global controller, new
physical machines are not really turned off/on . Instead, the global controller
waits some time to simulate the startup or shutdown of nodes, and the local
controllers of the supposed turned off nodes do not respond to the request of
the global controller. Since it is used Xen, there is a privileged management
VM called Dom0 that requires some CPU share. Since it serves other VMs,
its required allocation should be satisfied first; therefore, it is given the highest
utility of all VMs. Furthermore, since Dom0 does I/O work on behalf of other
DomU VMs, this is taken into account by including a part of the Dom0 share
that corresponds to a VM in the calculation of its utility function. The part
of the Dom0 share corresponding to a VM is determined using the rate of the
number of I/O pages exchanged with Dom0 and the total I/O pages exchanged.
This information is obtained from XenMon. Thus, the modified VM utility
function becomes

U, = oy * (SZ + SOZ) (37)

S0; is part of the CPU share of Dom0 corresponding to V M,. It is also used
the Xen credit scheduler in work-conserving mode to set shares given by the
arbitrator, since it has been shown that is more efficient than capped mode.

3.4 Experimental Set-up and Evaluation

The experimental setup is composed of 5 physical machines connected over a
Gigabit/s Ethernet: three physical machines run consumer VMs, one physical
machine runs the global controller and the last physical machine runs a load
generator. The physical machines have one 1.80GHz Intel Pentium 4 CPU with
512MB of RAM and 55GB of hard disk. They run Xen 3.0.3-1 and Debian/GNU
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Linux 5.0 OS with the 2.6.18-5-xen-686 kernel. The machine with the global
controller also runs an NF'S server to support live migrations based on shared
storage. Each VM has 128MB or 64MB of RAM, depending on the experiment.
Two different applications are run on the VMs to test the resource manager: one
application is an Apache 2.2.9 web server serving CPU intensive PHP scripts,
the other application is the HPL benchmark that solves dense linear systems.
Requests to the web server are generated with httperf 0.9.0 crafted in Python
scripts to generate desired request patterns.

3.4.1 Experiment 1: Improving Global System Utility

The goal of this experiment is to evaluate the approach in two cases: a) when
the global controller is disabled, and b) when it is enabled to show the resource
manager’s ability to improve the global system utility. In this experiment, five
physical machines are used, PM1, PM2, PM3, PM4, PM5. PM1, PM2, PM3
each hosts a virtual machine VM1, VM2, VM3, respectively. PM4 runs the
global controller and PM5 runs the web request generator. VM1 and VM2
each run MPT processes of the HPL benchmark. VM3 runs the Apache web
server. VM1 and VM2 have utility 4 per unit of CPU, while VM3 has utility
8 per unit of CPU and and node cost is set to a constant value of 60. At the
start of the experiment, each VM is running on its own physical machine.
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Figure 3.3(a) shows generated request patterns for the web server. In the case
when the global controller is disabled, each VM runs in its own physical ma-
chine for the whole duration of the experiment, providing maximum achievable
performance but higher operating cost because all three machines are active.
In the case when the global controller is enabled, after 55 seconds from the mo-
ment that the web server load decreased at second 145, the controller evaluates
that the global system utility can be increased by consolidating the web server
and shutting down the node, so it initiates at second 200 the live migration of
VM3 to the physical node PM2 and shuts down PM3. This is also shown in
Figure 3.3(b) where at second 200 the number of physical machines is reduced
to 2. In Figure 3.3(a), it is seen a spike of increased load for VM3 at second
280 for a short period of time in which case the controller does not initiate
any migration actions, showing the ability of the controller to resist to short
load spikes, eliminating unnecessary migration overhead. At second 450, there
is an increased load for VM3 persisting for a long period, and the controller
sees an improved global system utility by distributing the load, so it turns on
PM3 and live migrates VM2 to it. For the rest of the experiment, the load on
VM3 remains high, so all three physical machines remain active. It is evident
that there are cost savings for the global controller, because over the whole
experimental time, it uses less physical nodes, as shown in Figure 3.3(b).

As Figure 3.3(c) shows, the response time of the web server for both cases is
the same for most of the experimental time. There is only a high response time
for a duration of 40 seconds, caused by the overhead of live migration. This
result shows that in general the resource manager is able to reduce cost while
maintaining performance at an acceptable level. Figure 3.3(d) shows the global
system utility for both cases where in the case of a disabled global controller,
local controllers are enabled. It can be seen that the case when the global
controller is enabled achieves a better global system utility especially at time
interval [150:470], due to the reduced node cost resulting from shutting down
one physical machine. This shows the benefits of including live migration to
improve the global system utility.

3.4.2 Experiment 2: Controlling Cost-Performance Tradeoff

The goal of this experiment is to show the ability of the resource manager
to provide a controllable cost-performance trade-off. In this experiment, four
VMs are used to run the HPL benchmark composed of four MPI processes
running each in its own virtual machine. Three cases are considered. In the
first case, an utility of 2 per unit of CPU is given to the VMs, in the second
case an utility of 4, and in the third case an utility of 8, while again node cost
is 60. The experiment is started for all three cases by running four VMs on one
physical node and turning on new nodes as decided by the global controller.
Figure 3.4(a) shows the number of active nodes over time. In all three cases, the
global controller sees at some point in time that the global system utility can be
improved by turning on a new node and migrating a VM to it. The times when
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Figure 3.4: Experiment 2: Results

new nodes are needed and their maximum number are different for the different
cases. The utility 2 case uses less nodes over experimental time, a maximum
of 2, followed by utility 4 and utility 8. This is because when the VM utility
is low, the cost of turning on a new node cannot justify a global system utility
increase achieved by migrating the VM to it. This shows that consolidation and
load balancing aggressiveness can be controlled by changing VM utility or node
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cost. Figure 3.4(b) shows the number of problem instances solved by the HPL
benchmark for the three cases above. The utility 2 case solves about half of the
problem instances solved by the utility 4 and utility 8 cases. This is because
the utility 2 case uses less nodes to solve the problem. While the utility 4 and
utility 8 cases in general solve the same number of problems because both of
them use a maximum of 3 nodes, it is seen a small difference in this number but
it is believed it is just a random event possibly happening because in the utility
8 case, the live migration of a VM could have taken longer. These results show
the cost-performance trade-off. If the consumer of a VM has a low utility per
unit of CPU, it gets poor performance, leading to reduced resource costs. An
increased VM utility means increased performance and increased resource costs.
More importantly, this trade-off can be controlled by changing the VM utility
or cost coefficients. Figure 3.4(c) shows global system utility over time for the
three cases where in each case it is seen a global system utility improvement,
showing the resource manager’s ability to increase global system utility through
live migration and turning on an adequate number of nodes.

3.5 Summary

In this chapter, an approach for dynamically allocating CPU resources to VMs
in IaaS clouds has been presented, taking into account QoS objectives and op-
erating costs. To solve this problem in a flexible manner, a two-tier resource
manager has been developed based on local node utility functions and a global
system utility function that considers VM live migration as an important re-
source allocation mechanism. Experimental results have shown the ability of
the resource manager to adapt to changing load, to improve the global system
utility using VM live migration, and to maintain the performance at acceptable
levels while reducing costs. The experiments also have demonstrated the ability
of the resource manager to control the cost-performance tradeoff by changing
VM utilities or node costs. The method can preferably be used to manage VMs
in TaaS clouds running interactive applications (e.g., a web server), but it is
also suitable for other applications based on VMs, as indicated by the good
experimental results.

There are several areas of future work. For example, the resource manager
could be extended by considering other utility function models or by including
other factors, such as a reliability cost measured at runtime that represents the
reliability of a node. Other future work could be the inclusion of memory, disk
and network as dynamically managed resources to increase the global system
utility. Finally, it would be interesting to consider a distributed resource man-
ager for large cloud computing environments composed of hundred of nodes and
thousand of VMs, where the properties of eliminating a performance bottleneck
and a single point of failure are important factors to consider.
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Allocation of Multiple Types of Resources to
Virtual Machines Using Control Theory

Introduction

There has been a lot of research on how to dynamically allocate particular
types of resources to VMs, but approaches on how to manage multiple types of
resources are lacking. The motivation for a combined management approach is
that different types of applications or the same application in different execution
phases require different types of resources, e.g., some applications are disk I/O
bound, while other applications are CPU bound, such that the overall resource
utilization can be improved by finding a proper match between application
characteristics and resource types.

In this chapter, an approach for dynamically managing different types of re-
sources, i.e., CPU, memory, disk, and network, by maximizing a utility func-
tion, is presented. In the field of economics, utility is a scalar value to express
the satisfaction gained from a set of goods or services. In this work’s context,
a utility function is used to drive the allocation of resources to VMs such that
quality of service (QoS) requirements are satisfied and the financial profit of
the cloud infrastructure provider is maximized. This approach consists of re-
source managers situated in each physical machine of the cloud infrastructure
that dynamically manage resources of the VMs running on a physical machine.
For each type of resource to be managed, the manager contains a) a monitor-
ing component to measure resource usage, b) a feed-back controller to allocate
resource shares to each VM such that QoS requirements are met, and c¢) an
arbitrator that attempts to maximize a node utility function by considering the
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utility values of the VMs that run on it. The novelty of the proposed approach
is to consider multiple types of resources and a new arbitration algorithm try-
ing to maximize a utility function for the dynamic allocation of multiple types
of resources. Experimental results indicate that the approach is beneficial for
efficiently allocating different types of resources to VMs in Infrastructure-as-a-
Service clouds.

In the following sections, the utility function model, the architecture and the
algorithm of the resource manager are described. Then, implementation issues,
the experimental set-up and evaluations are presented. The chapter is con-
cluded with a summary of the approach. The work described in this chapter
has been published in [81].

4.2 Utility-driven Resource Manager

This section presents the utility function model, the architecture and the algo-
rithm used by resource manager for the allocation of resources.

4.2.1 Utility Function Model

In this work, an environment is considered where cloud consumers run their
applications on VMs offered by a cloud provider and pay for the performance
characteristics of the VMs they use. The cloud provider tries to maximize
the profit, i.e., the difference between the amount of money obtained from the
consumers and the operating costs of the infrastructure. A VM utility function
is defined to represent the amount of money paid by a consumer for using a VM
for a given control interval, and a node utility function to represent the profit
of the cloud provider generated by that node for a given control interval. The
profit of the cloud provider produced by the entire cloud infrastructure for a
given control interval is given by the sum of all node utilities. The VM utility
function is defined as a function of some performance metric (e.g., response
time) and the VM resources the consumer gets from the cloud provider. The
performance metric and the utility function can be stated in a Service Level
Agreement (SLA) — a signed written contract between the consumer and the
cloud provider that formally defines service levels. More concretely, the utility
function U; for V M; studied in this work is given by:

Ui (Ry resp,time) = (ai * chu + /81 * Rnet + Vi * Rdisk

. (4.1)
+w; * Rymem) * fi (resp_time)

where ; is the amount of money paid per unit of CPU resource consumed (e.g.,

a; = 48/1% of CPU), Rep, is the mean CPU resource consumed by V M; for a

given control interval measured in % of CPU consumption. [; is the amount

of money paid per unit of network bandwidth consumed and R,; is the mean

network bandwidth consumed by V M; for a given control interval measured
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Figure 4.1: Utility performance function

in Mbits/sec. ~; is the amount of money paid per unit of disk bandwidth
consumed and Ry is the mean disk bandwidth consumed by V M; for a given
control interval measured in MBytes/sec. w; is the amount of money paid per
unit of memory consumed and Ryen is the memory consumed by V M; for a
given control interval measured in MBytes. f; (resp_time) is a function of the
response time stated in the SLA. The particular function used in this work
is shown in Figure 4.1: when the response time is between zero and 200 ms,
the utility has a maximum value (i.e., a value of 1), when the response time is
between 200 ms and 500 ms, the utility is reduced in a linear fashion, and when
the response time is above 500 ms, the utility becomes zero. The rationale
behind this VM utility function is that the amount of money the consumer
has to pay depends on the QoS and the resources a consumer gets from the
cloud provider. Thus, when he gets QoS outside the boundaries specified in
the SLA, he has to pay nothing, but when there are two VM consumers that
get the same QoS inside specified boundaries, the consumer that requires more
resources to achieve this performance should pay more money. This model of the
utility function offers flexibility in giving different resources different priorities
for different applications.

A node utility function NN; for node j is given by the sum of the VM utilities
hosted on node 5 minus node cost:

Nj :Uj1+Uj2+...+Ujm—Cj (4.2)

where m is number of VMs hosted on the node, Uj; is the V M; utility on node j
and C} is the cost of the node. The aim of the resource manager is to maximize
the node utility function. This means allocating resources such that the values
of the utility functions of all VM on that node are maximized, assuming that
the node cost is constant. Maximizing the node utility functions of all nodes
means maximizing the total profit of the cloud provider.

In the following sections, a simple algorithm implemented by the resource man-
ager to achieve this is presented. This model of cloud pricing is different from
that of Amazon EC2 where consumers pay per-instance per hour, where each
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VM instance has a fixed size chosen from the set of small, large, and extra large
sizes; in the model of Amazon EC2, there is no support for fine-grained resource
allocation according to the load of the machines.

4.2.2 Resource Manager Architecture

The resource manager is local to each node, and its aim is to dynamically allo-
cate resources to different VMs in order to maximize the node utility function.
Its architecture is shown in Figure 4.2. It consists of four main components:
CPU manager, Network manager, Disk manager, Memory manager; each of
them is independent of the others and is responsible for managing a particular
type of resource. Each manager consists of a monitoring component, a feed-
back controller and an arbitrator. The monitoring component measures the
average resource consumption of VMs in every control interval. The control
interval can be set by the administrator depending on how quickly the resource
manager should react to the load. Its value also depends on the time taken by
the arbitrator (in this case it is less than 1 second). The control interval is set
to 5 seconds, which in practice provides an adequate adaptation to the load.
The feed-back controller [118] uses control theory to determine the required
resource allocations to be given to each VM in order to keep the utilization at a
desired level to maintain QoS objectives. By utilization it is meant the fraction
of the amount of resource consumed and the amount of resource allocated to
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a VM. The arbitrator receives resource allocation requests for all VMs from
the feed-back controller, and according to the utility function of each VM for
that resource sets resource shares using an algorithm described below in order
to maximize the node utility function. This architecture of independent man-
agers and corresponding arbitrators for each type of resource offers flexibility
in resource management by giving different priorities to different resources for
different applications.

As shown in other proposals [49], QoS of interactive applications such as web
servers can be satisfied by keeping CPU or memory utilization to a desired
level using feed-back control theory. To motivate the use of such a feed-back
controller for satisfying QoS of an interactive application with respect to two
other types of resources such as disk and network, are performed the following
experiments to find the relationship between application performance and its
resource utilization level. The experiments are based on an Apache web server
in a Xen virtual machine running Linux in one physical machine and load
generated with httperf installed in another physical machine connected to the
first one via a 100 Mbit/sec Ethernet.

In the first experiment, the relation between performance and network band-
width utilization is tested. To limit ingoing and outgoing network bandwidth
allocation of the web server VM, it is used the Traffic Control (tc) utility of the
iproute2 [48] collection of utilities. To create network load, a workload with
exponentially distributed inter-arrival times lasting for 60 seconds and request-
ing a 200 KB static html file is generated. Three mean request rates are used
to generate three different workload intensities (low, normal and high). For
each of them, the network bandwidth allocation is changed to provide different
utilizations and measured the response time for each utilization. The results
of this experiment are shown in Figure 4.3(a). When the utilization is below
0.8, the response time is at acceptable levels for all three workloads, and when
the utilization is increased above 0.8, the response time increases. This shows
that keeping network bandwidth utilization at a certain level through the use
of a feed-back controller provides acceptable QoS for an interactive application
such as a web server.

In the second experiment, the relation between performance and disk band-
width utilization is tested. To limit disk bandwidth allocation to the VM, the
dm-ioband I/O bandwidth controller [105] in Linux is used. To create disk
bandwidth load, requests are ran against an Apache module created for this
purpose, which for each request reads a 2 MB data block (the file pointer moves
sequentially from one request to the other) from a file larger than the memory
allocated to the VM in order to avoid file system caching. Again, workload with
exponentially distributed inter-arrival times is generated lasting for 60 seconds
using three mean request rates to generate three different workload intensities
(low, normal and high). For each of them, the disk bandwidth allocation is
changed and the response time for each utilization is measured. As shown in
Figure 4.3(b), when the utilization is below 0.75, the response time is at accept-
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Figure 4.3: Performance vs. utilization for network and disk resources

able levels, and when the utilization is above 0.75, the response time increases.
This shows again that also for the disk resource keeping utilization at certain
levels provides acceptable QoS, justifying the use of a feed-back controller that
regulates disk bandwidth utilization.

4.2.3 Resource Manager Algorithm

In this section, the algorithm used by the resource manager to allocate shares
to different types of resources in order to maximize the node utility function
is presented. The algorithm is executed by each resource arbitrator to allocate
shares for its particular type of resource. It works as follows. If the sum of the
resource requirements of all VMs as decided by the feed-back controller does not
exceed the total resource capacity, then the arbitrator sets the resource shares
for every VM equal to the resource requirements. If the sum of the resource
requirements of all VMs exceeds the total resource capacity, then the arbitrator
maximizes the local node utility function by first satisfying requests of VMs



4.3. Implementation

that offer a higher utility per unit of resource and setting their resource shares
equal to their resource requirements. Then, in decreasing order of utility, other
requests are satisfied. If there is no sufficient resource capacity to satisfy all
requests, lower utility VMs will never get resources. To solve this problem,
every VM is always given a minimum of resource share that can be stated in
SLA contracts (e.g., 5% in the case of the CPU resource), despite their low
utility values. Then, the remaining resource capacity is used to first satisfy the
requests of higher utility VMs, then lower utility VMs. This algorithm supports
differentiated-service because higher priority VMs have a higher utility per unit
of resource and therefore get a higher resource share.

The reason why this algorithm increases the node utility function is as follows.
If a resource is not overloaded, i.e., all requirements for a resource can be
satisfied, the resource consumption R; of all VMs is at its maximum, and also
the function f; (resp_time) has a maximum value of 1 because utilization is
at the required level. Therefore, according to equations (4.1) and (4.2), this
means that the node utility is at its maximum. If a resource is overloaded,
i.e., all requirements of VMs for that resource cannot be satisfied, the resource
consumption R; of the VM that offers a higher utility per unit of resource
will be higher and the corresponding f; (resp_time) function will a have higher
value because the resource is overloaded, its required allocation will be satisfied
first and its utilization will be at the required level. Therefore, according to
Equations (4.1) and (4.2), the node utility has a maximum value. This structure
of the utility function and the algorithm above offer flexibility in prioritizing
allocations not only at the application level, but at a more fine-grained resource
level by giving different resources different priorities for the same application.
This is not unusual in cloud computing where different applications use different
resources and therefore have different priorities on different resources.

Implementation

The resource manager has been implemented in the Python programming lan-
guage running in Dom0 of the Xen virtualization platform. To keep the struc-
ture of the main manager modular, the resource managers for CPU, network,
disk, and memory are programmed as separate procedures that are called one
after the other in a loop in the main procedure of the program for every control
interval. Since each manager is independent of the other mangers, they could
run as separate threads, each managing its own type of resource with its own
control interval, but to keep the implementation simple and to use the same
control interval, it is decided to implement a single thread approach where the
only requirement is that the control interval must be larger than the sum of
the execution times of all arbitrators. The main components of each resource
manager (monitoring component, feed-back controller and arbitrator) are pro-
grammed as separate procedures and called in that order by the main resource
manager procedure.
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Since Xen is used, the CPU monitoring component is based on the XenMon tool
[43]. The network, disk and memory monitoring components are based on /proc
filesystem to get resource consumption values. More concretely, the network
monitoring component gets from /proc filesystem the bandwidth consumption
of the virtual interface corresponding to the VMs to be monitored. The disk
monitoring component gets from /proc filesystem the bandwidth consumption
of the block tap (blktap) process corresponding to the VMs to be monitored.
To measure the memory consumption, a monitoring module inside a VM is
installed to get the free and used memory from /proc filesystem. It passes
this information through a socket connection to the main memory monitoring
component when requested in each control interval.

To set the allocation shares of the arbitrators to different types of resources,
the following actuators are used. For CPU allocation, the Pyxen binding li-
brary of the Xen hypervisor is used to change shares dynamically and the Xen
credit scheduler is used in work-conserving mode (which is more efficient than
in capped mode). For network allocation, the tc utility in Linux is used using
a Hierarchical Token Bucket (HTB) queueing discipline that allows to shape
network bandwidth to and from virtual network interfaces corresponding to
VMs. For disk allocation, the dm-ioband 1/O bandwidth controller is used that
allows limiting disk bandwidth allocation per process, such that it can limit the
bandwidth to the blktap process responsible for disk I/O of a VM. The weight-
iosize policy of dm-ioband is used. It distributes bandwidth proportional to the
weights given to different VMs. The weights given to VMs, which are important
when disk bandwidth is overloaded, are calculated as follows. For example, if
there is a total maximum disk throughput equal to 24 MB/sec and the arbi-
trator decides to give one VM an allocation of 16 MB/sec and another VM an
allocation of 8 MB/sec, then the weight given to the first VM is calculated as
16/24*100=66.66 and the weight for the second VM as 8/24=33.33, thus the
weights are proportional to their required allocation. For memory allocation,
the Pyxen binding library of the Xen hypervisor is used by first allocating a
maximum of 460 MB to each VM and using the Xen balloon driver capability
to change the memory allocation dynamically. In total, the resource manager
implementation consists of 1163 lines of Python code.

To generate memory and disk load, an Apache module in the C programming
language is created that can receive four different kinds of requests, three related
to memory load and one to disk load. The first request related to memory can
increase the memory of the Apache module for each request by 5 MB using
malloc, the other one can decrease memory for each request by 5 MB using free
and malloc, and the third one can access allocated memory randomly for each
request. In this way, the memory usage of every VM can change dynamically
and memory workload can be generated. To generate disk load, the fourth
request to the module is used which reads a 2 MB data block for each request
(the file pointer moves sequentially from one request to the other) from a 1
GB file which is bigger than the memory allocated to the VM in order to
avoid file system caching. To generate network load, a 200 KB html file that
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consumes some network bandwidth during transfer is requested from the web
server. Finally, to generate CPU load, requests are sent to the web server via
a PHP script that executes a loop for increasing some variable and printing it
to the web page to consume some CPU cycles.

4.4 Experimental Setup and Evaluation

To evaluate the resource manager, an experimental testbed is set up consisting
of two physical machines. The first physical machine is used to host two VMs
and has a dual core 2.4 GHz Intel(R) x86_64 CPU with 3 MB L2 cache and
2 GB of RAM. It runs the Xen 4.0.1 hypervisor as the virtualization platform
using Ubuntu 10.10 OS with 2.6.32.27 pv_ops Linux kernel in Dom0 and Ubuntu
10.10 OS with 2.6.35-25-server Linux kernel in DomU VM. The two DomU VMs
to be managed by the resource manager get two VCPU each and are pinned
to a physical core, while the Dom0 gets one VCPU and is pinned to the other
core to avoid interfering with the DomU VMs. The other physical machine
is used to generate load for the VMs and has a dual core 1.5 GHz Intel(R)
x86_.64 CPU with 2 MB L2 cache and 2 GB of RAM. It runs Ubuntu 10.10
OS with a 2.6.35-22-generic Linux kernel. Both machines are connected over
a 100 Mbit/sec Ethernet in the same Local Area Network. Each DomU VM
gets a maximum of 460 MB of RAM, but the allocation varies according to the
load. On each VM, an Apache 2.2.16 web server is run as a representative of
an interactive application to be managed. The requests to the two web server
VMs are generated by two instances of httperf-0.9.0 crafted in Python scripts
to generate the desired request patterns, each running in its own CPU core for
not interfering with each other. The dm-ioband-1.14.0.patch is used as a disk
I/O bandwidth controlling utility and the iproute2-ss100519 utility suite that
includes tc is used as a network bandwidth controlling utility.

To test the ability of the resource manager to dynamically allocate resources
according to the load, to keep QoS at acceptable levels and to increase the
node utility function value, an experiment is performed where load is generated
for the two VMs for all resources in different combinations and the results are
compared when the resource manager was enabled and when it was disabled.
For the experiment, the configuration described above is used. To synchronize
the workloads of two VMs, the experimental time is divided into two phases:
in the first phase, the resource manager is tested with load generated for CPU,
disk and network, and in the second phase, with load generated for memory. A
utility value of 4 per unit of resource is assigned for VM1 for all resources, and
a utility value of 2 per unit of resource for VM2 for all resources.

4.4.1 Experiment Phase 1: CPU, Disk and Network Load

In Figures 4.4(a), 4.4(b), 4.4(c) the load patterns as represented by the resource
consumption of the two VMs for CPU, network and disk bandwidth resources
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and the shares given by the resource manager are shown. What can be quickly
noticed from these figures is that the resource manager is able to dynamically set
shares according to the load for all types of resources, providing only resource
allocations that are needed to satisfy QoS. From time interval 0 to 50, there are
combined loads for different resources, but no resource is overloaded, meaning
that when VM1 uses a resource, VM2 uses another resource (e.g., from interval
0 to 12, VM1 has CPU load, while VM2 has disk load), while each VM gets
it required resource allocation. From interval 50 to the end of this phase, load
is generated such that every resource becomes overloaded for some period of
time. For example, from interval 50 to 70, both VMs consume CPU resources.
If the resource manager is disabled, each VM gets the same CPU allocation
independent of the utility per unit of CPU, giving VM1 less than the required
allocation, which has an impact on the node utility and the response time of
VMI1. If the resource manger is enabled, VM1 gets the required CPU allocation,
since it has more utility per unit of CPU than VM2, showing the ability of
manager to solve overload situations by trying to increase the node utility. The
same can be observed for the disk resource in time interval [130:140] and for
the network resource in time interval [80:105].

Figure 4.5 shows the response time for both VMs. Figure 4.5(a) indicates
that the response time of VM1 for "manager enabled case” is better than for
the "manager disabled” case, especially in resource overload intervals, such as
[35:45] or [55:75]. There are high spikes in response time for short periods of
time, such as in time intervals around 9, 13 or 49, but these are caused by the
load in the network resource, the reactive nature of feed-back controller and
the interference of the network controller with the CPU scheduler. A thorough
investigation of this problem is an interesting area of future research. Figure
4.5(b) demonstrates that the response time of VM2 for the "manager enabled”
case for most of the time (besides the short spikes discussed above) is the same
as for "manager disabled” case, and it is worst in overload intervals such as
[37:45] or [55:66]. This behavior is expected since the manager in overload
intervals gives more priority to allocating resources to VM1 in order to increase
the node utility and thus does not satisfy the requirements of VM2. These
results show that the manager is able to solve resource overload situations by
keeping QoS of high utility VMs at acceptable levels.

In Figure 4.6, the node utility values for the "manager enabled” and ” manager
disabled” cases are shown. Most of the time, the utility values are equal in both
cases, but the utility value for the "manager enabled” case is better in overload
intervals ([53:60] or [92:110]). There are short time intervals around 14, 21 or
78, where the utility value for the "manager enabled” case is lower than for
the "manager disabled” case, but this is caused by the spikes of high response
times for VM1 discussed above. These results show that the manager is able
to improve the node utility especially in resource overload time intervals.
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Figure 4.5: Response time of VMs for resource manager enabled and disabled
cases

4.4.2 Experiment Phase 2: Memory Load

In this phase of the experiment, the ability of the manager to manage the
memory resource is tested. Figure 4.7 shows the memory usage of the VMs
for the "manager enabled” case and their corresponding allocations as given
by the resource manager. It is evident that the manager allocates memory to
the VMs according to their memory usage. In the interval [0:15], the total
memory load is low, and each VM gets its required allocation. At around time
interval 15, the load for VM1 is increased and the load for VM2 is decreased,
but the total required allocation does not exceed the total capacity, and again
the resource manager gives each VM its required allocation. In time interval
50, it is seen an increase of the load of VM2 which creates a memory overload
situation where the required allocations of both VMs exceed the total memory
capacity. Since VM1 has a higher utility, it gets its required allocation first,
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Figure 4.7: Memory load generated to VMs for resource manager enabled case

and the rest of the memory is given to VM2. At first glance it seems strange
that in interval [15:65] VM2 consumes more memory than the given allocation,
but this can be explained by the fact that for calculating the memory used and
the memory shares, the algorithm leaves a 100 MB memory region free for the
file system cache. In a near total capacity situation, the consumption of this
reserved memory is in fact the negative difference between the VM2 memory
share and its usage. At around time interval 65, the memory load for VM1 is
decreased, which makes it possible to have more free memory, and after some
time at around time interval 92, the required allocation to VM2 to be satisfied.
These results show that the manager is able to allocate memory according to
the load and to solve overload situations by giving the required allocation to
VMs that have a higher VM utility in order to increase node utility.

Figure 4.8(a) shows the VM1 response time in this phase of the experiment
for the "manager enabled” and the "manger disabled” cases. The response
time of VM1 for the "manager enabled” case is at acceptable levels, because
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Figure 4.8: Response time of VMs for resource manager enabled and disabled
cases

its memory requirements are satisfied even in overload situations, while for the
"manager disabled” case it is very high for most of the time, because in this
case VM1 requires more memory than was statically allocated and forces it to
use swapping, thus lowering QoS. In Figure 4.8(b) the response time of VM2 for
"manager enabled” and "manager disabled” cases is shown. Most of the time,
the response time remains at acceptable levels for both cases. It is worst for
the "manager enabled” case for the memory overload period [38:71], which is
expected, since VM2 has a lower utility per memory unit and thus its required
allocation is not satisfied increasing swapping activity and lowering QoS.

Figure 4.9 shows node utility value for this phase of the experiment for the
"manager enabled” and "manager disabled” cases. The utility value is much
better for the ”manager enabled” case, demonstrating the ability of the resource
manager to improve the node utility by allocating memory first to VMs that
offer a higher VM utility.
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4.5 Summary

In this chapter, an approach is presented for dynamically allocating different
types of resources such as CPU, memory, disk, and network to virtual machines
in Infrastructure-as-a-Service clouds by maximizing a utility function, such that
QoS requirements are satisfied and the profit of the cloud provider is optimized.
The proposed approach is based on resource managers situated in each physical
machine of the cloud infrastructure that dynamically manage resources of VMs
running on that physical machine. For each type of resource to be managed, the
manager contains a) a monitoring component to measure resource usage, b) a
feed-back controller to allocate resource shares to each VM, and c) an arbitrator
that attempts to maximize the node utility function by considering the utility
values of the VMs that run on it. Experimental results have shown that the
approach allocates different types of resources to VMs in Infrastructure-as-a-
Service clouds in a satisfactory manner.

There are several areas of future work. For example, the resource manager
could be extended by considering other types of utility functions. Furthermore,
live migration of virtual machines should be considered as a resource allocation
mechanism to handle overload situations and to further increase the utility value
of a cloud provider. Finally, further investigations of the interdependencies of
multiple resource allocation would provide more insights in the best allocations
mechanisms to be used.

97






Virtual Machine Resource Allocation via
Multi-Agent Fuzzy Control

Introduction

In this chapter, an approach is presented to support the Virtual Machine Mon-
itor (VMM) in allocating resources to VMs running on a physical machine of
the cloud provider. The two conflicting goals of maintaining application per-
formance and reducing operating costs are expressed in a utility function that
represents the profit of a cloud provider. The problem to be solved is opti-
mizing the utility function, and the solution proposed in this work is based
on fuzzy control to optimize it. To provide scalability for a potentially large
number of VMs, a multi-agent version of the fuzzy controller is presented where
each agent is responsible for resource allocation of a single VM in parallel with
other agents, while an agent coordinator redistributes the maximum amount of
resources that can be used by all agent VMs.

The focus of the work is on fine-grained dynamic allocation of VM resources
locally on each physical machine of a cloud provider, considering CPU and
memory as resources to be managed. Resources are allocated through the
mechanisms offered by the used virtual machine technology for changing the
CPU share and the memory allocation at runtime. Since the used virtualiza-
tion technology does not adequately support disk I/O bandwidth allocation, it
is not considered in this work. However, the proposed approach is principally
designed to also include disk I/O bandwidth allocation. Fuzzy control is used
to maximize a global utility function (a utility function over all VMs) using a
hill-climbing heuristic implemented as fuzzy rules. In the multi-agent version,
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the global utility function is divided into local utility functions that are opti-
mized separately by each agent. The advantage of using fuzzy control is that
it does not require any mathematical model to be built beforehand to control
VM resources. The novelty of this work consists in developing a fuzzy control
approach for utility function optimization and supporting a potentially large
number of VMs by developing a multi-agent fuzzy controller.

The performance of the proposed approach is compared to an adaptive optimal
control approach developed by Magnus et al. [74] that is adapted for VM
resource allocation. It represents an advanced control theory approach and
is one of the state-of-the-art techniques used recently for virtualized resources
[89]. Experimental results show the effectiveness of the multi-agent fuzzy control
approach achieving better utility values than the approach of Magnus et al. [74]
and the centralized fuzzy controller.

First the VM resource allocation framework is described. Next, the adaptive
optimal control approach is discussed. Then, the centralized fuzzy control ap-
proach and its multi-agent version is introduced. In the end, the experimental
evaluation is described and the chapter is concluded with a summary. The work
described in this chapter has been published in [82].

5.2 Virtual Machine Resource Allocation Framework

The problem considered is how resources of a physical machine of a cloud
provider should be (re)-allocated to VMs dynamically in response to workload
changes to keep the performance according to the SLAs while reducing the op-
erating costs. An SLA is a contract between a consumer and a cloud provider,
and in this work it is represented by the utility function that describes the mon-
etary value that a consumer pays for obtaining the desired performance level.
The operating cost includes any cost from management costs to power costs of
the physical machine. In this work, the average amount of resources allocated
to all VMs as an approximation of the operating costs is used. The problem
of finding the right trade-off of performance and operating costs is solved by
optimizing the following global utility function:

Uza*(az%lvi—ﬁc) (5.1)

U represents the average profit the cloud provider gets from one physical ma-
chine during a control interval, n is number of VMs, V; is the performance utility
that represents the monetary value paid by the consumer to the cloud provider
for getting a certain performance level from V' M; during a control interval, and
C represents the operating cost of the physical machine in a control interval.
The coefficients a and (8 are used to give more priority to one objective over
the other. § is a constant to make the utility value larger than 1 for display
convenience. To measure application performance, the application heartbeat
framework [50] is used. Although, this technique is used to measure applica-
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tion performance, the approach is independent of any performance measuring
method, since it uses the normalized performance calculated by dividing the
actual performance by the desired performance level in an SLA contract. V; is
a simple linear function of normalized performance n_per f:

- nperf ifnperf <1,
Vi= { 1 if nperf >=1. (5.2)

The operating cost C' is the average of the sum of resource allocation amounts
of two resource types, CPU and memory:

S epui 4+ > mem;
2

C =

(5.3)

where cpu; and mem,; are portions of CPU and memory capacity given to
V M; expressed as numbers in the interval [0, 1], obeying the constraints that
the total sum should be less than 1, the resource capacity. The approach is
implemented as a resource manager responsible for resource allocation of VMs
running on a physical machine. Its architecture shown in Fig. 5.1 consists of
three components: 1) sensor, 2) actuator, 3) control module. Sensors gather
performance metrics in each interval, normalize them and pass them to the
main sensor in the resource manager. The actuator gets resource allocations
from the control module and applies them via the VMM. The control module
implements the resource allocation approach. In each interval, it decides which
resource allocation should be applied in the next interval.
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5.3 Adaptive Optimal Control

Adaptive optimal control is an advanced design approach to build feed-back
controllers. The method of adaptive optimal control used in this work is based
on the work of Magnus et al. [74], but it is adapted to a virtualized environment
where VM CPU and memory shares are used as controller outputs instead of
shares for scheduling requests. The architecture of the adaptive optimal con-
troller is shown in Fig. 5.2. It consists of two components: 1) model estimator
and 2) optimal controller.

The model estimator computes a linear autoregressive-moving-average Multi-
Input Multi-Output (MIMO) model of the relationship between multiple re-
source allocations and multiple application performance metrics.

Since workload dynamics can change overtime, this linear model may become
invalid and thus should be recomputed. For this purpose, a recursive least
squares (RLS) method is used to recompute the time-varying model parameters
online. The optimal controller aims to find resource allocations that minimize
a quadratic cost function from which a control law can be derived to calculate
resource allocations [74].

Algorithm 1 shows the main steps of the adaptive optimal controller. In the
algorithm, the control interval between resource allocation decisions is set to 30
seconds through sleep() which puts the control module to sleep. This value is
chosen as a trade-off between a low value with noisy measures and a high value
of slow reaction.
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Algorithm 1: Adaptive optimal controller algorithm

1 apply few predefined samples to build an initial model

2 while true do

3 sleep(30sec)

4 obtain performance measurements y(t)

5 estimate model parameters using RLS

6 calculate resource alloc u(t) through the control law

7 if sum of resource allocations greater than capacity then
8 ‘ redistribute resources in the same proportions to be lower than capacity
9 end

10 apply resource alloc u(t)

11 end

resource allocation change
da(t)

Fuzzy Controller

utility
Fuzzyfication |- Inference _,Defuzzyﬁcation u(t)
mechanism

{

Rule base

A\ 4

3
L

VM1 [VM2||VMn

VMM

changes in utility
du(t)

Figure 5.3: Fuzzy controller

5.4 Centralized Fuzzy Control

Fuzzy control [91] provides a way to design a controller based on heuristic
knowledge needed to control a dynamic process. The fuzzy controller is shown
in Fig. 5.3. The output of the VM environment is the utility value wu(t) to
be maximized. The change of the utility value du(t) between two intervals is
the input of the fuzzy controller. The output of the fuzzy controller is the
allocation change da(t+ 1) determining whether a resource should be increased
or decreased in the next interval. This is also applied as the input to the fuzzy
controller itself as the current resource allocation change da(t) to be used for
the next decision.

Based on the change of the utility and the change of allocation in the previous
interval, the controller determines the change of allocation for the next inter-
val. Since the fuzzy controller internally works with linguistic variables and
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Figure 5.4: Utility change membership function

linguistic values, the fuzzyfication module performs the conversion from nu-
meric values measured from outside the fuzzy controller to the corresponding
linguistic values (e.g., poslarge, a value that is positive and large), while the
defuzzyfication module performs the reverse conversion. In the rule base, a set
of condition-action rules is stored that implements the heuristic to optimize the
utility function. The inference mechanism based on the linguistic input values
selects the rules that apply and produces linguistic output values. The conver-
sion in the fuzzyfication and defuzzyfication modules from numeric values to
linguistic values is achieved by a membership function. This function maps a
numerical value to certainty levels, a number in the interval [0,1] (0 completely
uncertain, 1 completely certain), for different linguistic values it corresponds
to.

A Utility u(t)

du(t)=poslarge

inext alloc da(t+1)=possmall

— resource alloc a(t)
da(t)=possmall

Figure 5.5: Hill-climbing heuristic for one resource

In Fig. 5.4, the membership function that converts a numeric utility change
to linguistic values with different certainties is shown, where the x-axis repre-
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sents numeric values and the y-axis certainty values. Five linguistic values are
used to represent utility changes. The membership function for resource allo-
cation changes is not shown for space reasons, but it has almost the same form,
and for the input it is used to convert numeric resource allocation changes to
linguistic values, and for the output linguistic values to numeric resource al-
location changes. The fuzzy controller maximizes the utility value by a set of

Table 5.1: Hill-climbing heuristic rule table

du(t)
da(t+1) |[0]1]2[3][4
0o/l1(0]2[3]3
1]fo]1]2]4]4
da(t) [2][2]2]2]2]2
3/l4(3]2]0]0
4314211

rules based on a hill-climbing heuristic. Fig. 5.5 shows how the utility value
changes by changing the allocation of a resource for a VM. If we increase the
resource allocation in the current interval by a small amount and get a positive
large increase of the utility value, we are on the left side of the hill and the
slope of the curve is high. Thus, to maximize the utility, we should continue to
increase the allocation in the next interval by a small amount in order not to
overpass the top of hill. The idea of using hill-climbing to maximize the utility
is based on work of Diao et al. [26]. Similar rules are created for all situations,
as shown in Table 5.1. This rule set has been created by experimental testing,
and the results indicate that it performs quite well. The following mapping
between numbers and linguistic values is used: 0-possmall, 1-poslarge, 2-zero,
3-negsmall, 4-neglarge. These rules tell how to maximize utility for one resource
of a VM, and since utility is a function of multiple resources and multiple VMs,
the utility function is maximized by applying these rules for each resource and
each VM one by one as shown in Algorithm 2 without lines 27-29, which are
used only for multi-agent fuzzy control. The algorithm starts with minimum
resource allocations and takes a first round, in lines 3-14, of only increasing
allocations by applying fuzzy rules until it reaches the optimal utility. Then,
it takes a second round, in lines 15-26, of only decreasing allocations until a
possibly new optimal utility is reached. This repeated switching between the
two rounds allows the controller to adapt to changes in optimal utility due to
workload changes.

5.5 Multi-Agent Fuzzy Control

Since an increased number of VMs leads to an increased number of iterations
of the for loops in lines 3 and 15, the runtime of Algorithm 2 for global utility
optimization increases correspondingly. Thus, a multi-agent fuzzy controller
is developed as shown in Fig. 5.6. Each agent is responsible for the resource
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Algorithm 2: Fuzzy control algorithm

1 set resource allocations of all VMs to minimum levels
2 while true do
3 for i + 1 to numberOfV Ms do
4 for j < 1 to numberO f Resources do
5 nextalloc = possmall // increase resource
6 repeat
7 apply nextalloc to resource j of VM3
8 sleep(30sec)
9 based on utility change apply fuzzy rules and get nextalloc
10 until utility change zero or negative ;
11 apply nextalloc to resource j of VMi
12 sleep(30sec)
13 end
14 end
15 for i + 1 to numberOfV Ms do
16 for j < 1 to numberO f Resources do
17 nextalloc = negsmall // decrease resource
18 repeat
19 apply nextalloc to resource j of VM4
20 sleep(30sec)
21 based on utility change apply fuzzy rules and get nextalloc
22 until utility change zero or negative ;
23 apply nextalloc to resource j of VMi
24 sleep(30sec)
25 end
26 end
27 synchronization barrier() // only in multi-agent
28 send() to coordinator resource consumption and request
29 receive() from coordinator maximum resources allowed
30 end
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Figure 5.6: Multi-agent fuzzy controller architecture
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allocation of a single VM by optimizing its own local utility function in parallel
with other agents. Since the goal is to optimize the global utility function
given by (5.1), this function should be divided into local utility functions in
such a way that optimizing each of them separately would lead to global utility
optimization. The global utility function in (5.1) permits us to express it as the
sum of local utility functions:

U— 5(aV1 —1—7‘1/2 +.. ﬁcpul + cpus.. —|—;nem1 + memz..)
Vi cpuy + memq Vs cpus + memeo
= 6 _— — -
(a5 5 )+(a—=—F 5 ) (5.4)
Va cpu, + mems,
< (at - P L)

= 5(U1 +Us+ ...+ Un)

where Uj,Us,..U,, represent local utility functions that are assigned to each
agent. A local utility function U; depends only on resource costs (LLtmemi)
and application performance V; of the corresponding V M;, meaning that it can
be optimized separately by each agent. Since the global utility is the sum of
local utilities, optimizing each of them separately optimizes the global utility.

Resources allocated to VMs in the system should not exceed the total capacity
of the resources, but since the agents operate independently, they can allocate
resources in such a way that this condition is violated. To solve this prob-
lem, a coordinator is introduced that periodically calculates and distributes to
all agents the maximum amount of resources that can be allocated by them,
obeying to the total capacity condition.

In the beginning, the coordinator assigns the same amount of maximum re-
sources to all agents. At the time of calculation, it gets the resource consump-
tion and the maximum resource allowed for each agent. From the difference
between the two, it calculates the amount of resources that is not used by each
agent. Summing up all free resources of all agents it obtains the total amount of
free resources that can be redistributed to them. To do this, the total amount of
free resources is divided by the number of agents, and the result is added to the
resource consumption of each agent to get the maximum amount of resources
allowed for each of them. This method is applied for each resource separately.

The maximum amount of resources is redistributed after each agent has passed
two rounds of increasing and decreasing the resource allocations (see Algorithm
2). This scheme is fair by giving each agent the same number of rounds for
optimizing its local utility functions before getting its allowed maximum amount
of resources. Since agents can finish their two rounds with different speeds, they
are synchronized with each other through a synchronization barrier primitive
at the moment of requesting the maximum amount of resources.

The algorithm followed by each agent is shown in Algorithm 2. In this case, the
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fuzzy rules are applied for allocating resources to a single VM, so numberO fV M s
= 1. After two rounds of increasing and decreasing resource allocations, the
agent is synchronized with other agents through the barrier primitive. After
synchronization, it sends the actual resource consumption and the maximum
resource allocation request to the coordinator. After receiving from the coor-
dinator the maximum amount of allowed resources, it continues with the next
rounds of resource allocations.

Implementation

The resource allocation approach is implemented in the C++ programming
language. The Xen hypervisor is used as the virtualization technology. The
performance sensor runs as a daemon inside each VM and is attached to an ap-
plication through a shared memory mechanism of Linux to gather performance
metrics using the heartbeat API framework [50]. The main sensor that is part
of the resource manager requests performance metrics through the IP socket
interface from all application sensors in each control interval. The actuator sets
the CPU and memory allocation using the xm sched-credit and xm mem-set
commands of the Xen hypervisor. The multi-agent version of the fuzzy con-
troller is implemented as a multi-threaded program. The value of « is set to 2
and the value of 8 to 1 in (5.1) to give more priority to performance than to
resource costs.

5.7 Experimental Set-up and Evaluation

A physical machine is set up as a testbed to run VMs to be managed. It
has two dual-core AMD Opteron 2.4 GHz processors and 8 GB of RAM. It
runs Xen 4.1 and the Ubuntu 12.04 operating system in the Dom0 and DomU
VMs. For evaluation, the following benchmarks are used: a) cpu_bench is a CPU
intensive benchmark, created for this work, that performs a set of mathematical
calculations, such as estimating the factorial of a number; b) filebench [36]
is a file system benchmark that allows us to generate a variety of workloads
emulating a number of applications such as web, file, and database servers.

Experiments are performed with four VMs and eight VMs, where in each case
half of them run filebench with the web server profile and the other half run
cpu_bench. Four VMs are pinned in two CPU cores and eight VMs to three
CPU cores and is given each of them one VCPU while Dom0 is pinned to an-
other core. 1600 MB of memory is given to four VMs, while 3200 MB to eight
VMs. A minimum of resource allocation of 20% is set to each VM for not letting
them starve for resources. The following resource granularities are used: (neg/-
pos)small=10%, (neg/pos)large=20% for the CPU and (neg/pos)small=80 MB,
(neg/pos)large=160 MB for the memory. The experiment is run for 200 inter-
vals, and in interval 100 it is initiated a workload change. The performance
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levels of two filebench VMs and two cpu_bench VMs are changed to emulate a
workload change. The experiment was run for each approach five times and the
average results are shown. The following abbreviations are used: Fuzzy Con-
trol - FC, Fuzzy Control Multi-Agent - F-MA, and Adaptive Optimal Control
- OP-C.

In Fig. 5.7(a) and 5.8(a), the average utility over time for the three approaches
is shown for 4 and 8 VMs. It is evident that F-MA has better average utility
value during the whole experimental interval compared to the other approaches
for both cases. FC has more difficulty to reach the optimal utility value with
increasing the number of VMs from 4 to 8, as indicated by a larger difference
of the utility value to F-MA for 8 VMs. This is because the number of resource
allocations steps to reach the optimal utility increases with the number of VMs,
which is not the case for F-MA. It is also evident that FC reaches the same
final maximal utility as F-MA after the workload change in the interval from
100 to 200. This is because the resource allocation in time interval 100 changes
in a few steps to obtain the resource allocation with the optimal utility in time
interval 200, and thus this can be achieved faster by FC. To understand whether
the utility difference of F-MA to the other approaches is statistically significant,
it is performed paired t-tests over all intervals between F-MA and each of the
other approaches with a 95% confidence interval. The utility value difference
between F-MA and FC is statistically significant over only 37% of the intervals
for the 4 VM case and 50% for the 8 VM case. This is because the advantage
of F-MA can appear only with an increased number of VMs. The utility value
difference between F-MA and OP-C is statistically significant over 72% of the
intervals for 4 VMs and 67% for 8 VMs. The average performance over all VMs
was calculated for each interval, and the average of this value over five runs for
each approach is shown in Fig. 5.7(b) and 5.8(b). It is evident that FC has
difficulties to keep the performance to desired levels especially until interval 100
with a statistically significant difference with other approaches, while F-MA is
able to keep the performance near the desired level over all intervals together
with OP-C.

Fig. 5.7(c) and 5.8(c) show the average resource cost over all intervals as calcu-
lated by (5.3). It can be observed that FC and F-MA achieve comparable re-
source costs, sometimes F-MA achieves lower cost as shown in the second phase
for 8 VMs. OP-C achieves higher resource costs than the other approaches,
since OP-C does not take into account resource costs through optimization of
the utility value, but focuses only on performance. F-MA achieves almost the
same resource costs as FC but with higher average performance resulting in
higher utility values, as shown in Fig. 5.7(a) and 5.8(a). F-MA achieves the
right amount of resource costs needed to keep the performance to high levels
by finding the best performance-cost trade-off.
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Summary

In this chapter, an approach to address the performance-cost trade-off for VM
resource allocation in cloud computing has been presented. It is based on
expressing the two conflicting goals in a utility function and using fuzzy control
for optimizing it. To support an increased number of VMs, a multi-agent fuzzy
control approach has been developed.

Experiments comparing the multi-agent approach with centralized fuzzy control
and a state-of-the-art adaptive optimal control approach show the effectiveness
of the proposed multi-agent fuzzy controller. It performs better than the other
approaches, especially with an increased number of VMs.

In the future, it is planned to include power consumption and disk I/O band-
width in the utility function. Furthermore, the approach will be evaluated in a
complex environment with multiple physical machines and multi-tier applica-
tions.



Distributed Resource Allocation to Virtual
Machines via Artificial Neural Networks

Introduction

This chapter is focused on vertical resource scaling and presents an approach
to assist the Virtual Machine Monitor (VMM) of an IaaS cloud to optimize
resource allocation to VMs running on the physical machines. The proposed
approach addresses the mentioned performance-power trade-off by expressing
the two conflicting objectives of application performance and power consump-
tion in a utility function and optimizes the utility function at runtime. A
resource manager for utility function optimization is presented that is based
on an artificial neural network (ANN) to model the relationship between the
resources allocated to VMs, the performance of applications and the power
consumption of physical machine. ANNs are well known for being universal
approximators [52] to model any complex non-linear function. Another feature
of this approach is that the model is learned and adapted on-line to workload
changes, avoiding the need to build the model beforehand.

There are several versions of the proposed resource manager. In the centralized
resource manager, it is used a single Multiple-Input Multiple-Output (MIMO)
ANN based model for capturing the relationship between resource allocation to
all VMs running on a physical machine and their corresponding performance
metrics. Another similar MIMO model is used to capture the relationship be-
tween VM resource allocation and power consumption of the physical machine.
To provide support for a potentially large number of VMs, a distributed resource
manager is presented where the single MIMO model is divided into several mod-
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Figure 6.1: Resource manager architecture

els, each of them being responsible for performance and power modeling of a
single VM. Each of the distributed resource managers optimizes its own utility
function through its ANN model, but exchanges information with other re-
source managers to coordinate resource allocations. The approach is evaluated
via simulation and real experiments. The results show the effectiveness of the
decentralized resource manager over static allocation, a centralized version and
a distributed non-coordinated version.

First, the resource manager architecture, the utility function and the power
model are described. Then, the centralized resource manager approach and its
distributed version are introduced. Next, implementation issues and experi-
mental results are discussed. The chapter is concluded with a summary of the
approach. The work described in this chapter has been published in [84].

6.2 Resource Manager Architecture

The proposed resource manager architecture is shown in Fig. 6.1. It consists
of three components: sensor, actuator and decision-making module. It works
in discrete time intervals where at the end of each time interval it gathers ap-
plication performance and power metrics through the sensor module, performs
resource allocation to all VMs for the next interval through the decision-making
module and allocates the resources through the actuator.

The problem addressed is how to allocate resources to VMs running on each
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physical machine of the cloud provider in order to maintain application perfor-
mance according to SLA levels while reducing power consumption. To solve this
performance-power trade-off, both objectives are expressed in a utility function
and based on ANN modeling, the resource allocations that optimizes the utility
function are found. The utility function used is shown in Equation (6.1):

U=3§x*(

OJW — BUp(power)) (6.1)

U is the average global utility over all VMs representing the average profit the
cloud provider gets from one physical machine during a time interval, n is num-
ber of VMs, V; is the performance utility that represents the profit the provider
gets from the consumer for guaranteeing a certain performance level to VM,
during a time interval, and U, is a power utility function that represents the
power consumption costs of the physical machine in one time interval. The
coefficients @ and S are used to control the priority given to both objectives.
0 is a constant to make the utility value larger than 1 for display convenience.
The performance utility function V; used in this study is given as a function of
normalized application performance per f;, as shown in Equation (6.2). Normal-
ized performance is used to make the resource manager independent of specific
application performance metrics. Since the throughput is used as the perfor-
mance metric (the number of operations served per second), the normalized
performance is the ratio of the actual throughput to the desired throughput
stated in an SLA.

. N ) operfi itperf; <1,
Vilperfi) = { 1 if perf; >= 1. (62)

The power utility function U, (power) is a function of the power consumed by
a physical machine in a time interval. Since power consumption of a physical
machine generally depends on resource utilization, it is adopted a linear model
for CPU and disk I/O utilization [47] to approximate power consumption as
shown below:

U, Ui
power = Pygie + Pcpu% + Pdisk% (6.3)
cpu s

Py, is the maximum dynamic power consumption of the CPU at full utiliza-
tion, Ugp, is the CPU utilization as a percentage of the total CPU capacity,
Cepu is the total CPU capacity, Py is the maximum dynamic power con-
sumption of the disk at full bandwidth utilization, Uy;se is the disk utilization
as a percentage of the total disk bandwidth capacity, and Cy;sp is the total disk
bandwidth capacity. Pjg is the power consumed by a physical machine when
it is idle. These metrics are average values measured in a single time interval.
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A power utility function is used that is given as the ratio of actual dynamic
power consumption to the maximal dynamic power at full utilization:

power — Py

6.4
Pcpu + Pdisk ( )

Up(power) =

6.3 Centralized Resource Manager

The architecture of the centralized resource manager approach is shown in Fig.
6.2. It consists of three components: 1) a performance model representing
the relationship between VM resource allocation and application performance
metrics, 2) a power model representing the relationship between VM resource
allocation and physical machine power consumption 3) a utility optimizer that
uses the above models to search for resource allocations that reach maximum
utility.

6.3.1 Performance Model

In the centralized resource manager, a MIMO model of the relationship be-
tween VM resource allocation and application performance is used. For two
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VMs, its structure is shown in Fig. 6.2. It has four inputs representing resource
allocations, two inputs (CPU and memory) for each VM and two outputs repre-
senting performance metrics, one output for each VM. The model predicts the
performance of each VM if certain resource allocations are given to all VMs.
To build the model an ANN is used to approximate the possibly non-linear
function of the mentioned multi-input multi-output parameters.

An ANN is a structure of multiple layers of nodes connected through links,
as shown in Fig. 6.2. It has three types of nodes: input, hidden and output
nodes. Each link passes the output value of a node to the input of another
node. The output of a node is calculated as the weighted sum of all inputs
to the node which is then fed into a (non-linear) activation function. The
ANN learns a model in a training phase where it is exposed to a number of
(input, output) samples from a training set. Since it is difficult to decide which
training algorithm performs best for which task, one of the well known training
algorithms for ANNSs is used, namely the resilient backpropagation (RPROP)
algorithm [100]. To build the ANN, the cascade correlation algorithm [31] is
also used that starts with a minimal network, then automatically adds new
hidden nodes one by one during training, creating a structure with the number
of hidden nodes necessary for the current training set size.

6.3.2 Power Model

A MIMO model of the relationship between VM resource allocation and physical
machine power consumption is built. For two VMs, its structure is shown in
Fig. 6.2. It has four inputs representing resource allocations, two inputs (CPU
and memory) for each VM and one output representing the power. The model
predicts the power consumption of the physical machine if certain resource
allocations are given to all VMs. To model power consumption, an ANN is also
used.

6.3.3 Utility Optimizer

The goal of the utility optimizer is to find the resource allocation configuration
that maximizes the utility function given in Equation (6.1). It does this by
trying all resource configurations, predicting the performance using the perfor-
mance model and power consumption using the power model, calculating the
resulting utility and selecting the configuration that gives the maximum util-
ity value. The total number of configuration combinations to try depends on
the granularity of the resource allocations (minimum allocation change from
one configuration to another) and the number of VMs. For a larger number of
VMs, the total number of combinations to try can require considerable time,
making it impractical for an exhaustive search, and in this case a stochastic
search technique, namely a genetic algorithm [51] is used to optimize the utility
function.
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A genetic algorithm is based on natural evolution for exploring a search space
to find the solution of a problem. It starts with a random initial population
of individuals where each individual represents a feasible solution to the prob-
lem. There is a function that evaluates the fitness of an individual; the utility
function is used as the fitness function. Then, from an initial population based
on selection, crossover and mutation, a new population is generated that is
supposed to be better than the old one in terms of the fitness function. This
process is repeated for several generations until a maximum generation num-
ber is reached and individual with the best fitness found so far is the final
solution of the problem. Each individual encodes information that represents
a feasible solution. In this case, this is a resource allocation configuration in
the form of a string of real numbers that represents resource shares given to
VMs. The selection process selects from the population two parent individu-
als based on their fitness values according to a roulette wheel scheme. Then,
with some probability, a crossover operator is applied where different parts of
parents are combined to create two children such that each child takes a CPU
allocation configuration from one parent and a memory allocation configura-
tion from the other parent. At the end, a mutation operation is applied where
with a small probability each gene of the child is altered to a random value.
This process of selection-crossover-mutation is repeated to create the number
of children needed for the new population to replace the old one for the next
generation. Since population size and number of generations are two important
parameters that can influence the genetic algorithm performance, experiments
are performed to determine their influence on the utility optimization problem.
In these experiments, 16 VMs are run, managed by a centralized ANN man-
ager, for 100 control intervals, and the average utility value over all intervals
has been measured. Each parameter is given a low and high value of 1000 and
3000, respectively, creating four combinations. Values lower than 1000 were
not tested, since they already have shown acceptable search times. In Fig. 6.3,
the average utility and search time in seconds of five runs are shown for the
four combinations X_Y where X represents population size and Y the number
of generations. Increasing any of the parameters to higher than 1000 does not
have any effect on the average utility value, since their differences are statisti-
cally insignificant, as shown from an ANOVA statistical test. Since increasing
each of the above parameters affects search time, the combination 1000_.1000 is
used, which has the lowest search time for the utility optimization problem.

The steps followed by the centralized ANN resource manager are given in Algo-
rithm 3 without lines 4 to 8 and 11 to 13 which are used only in the distributed
version. It starts by applying a fixed number of samples (configurations) to
build initial models of performance and power. The initial training set is con-
structed by generating random samples to cover the whole range of resource
allocations that can be given to VMs. Then, based on the built models, it finds
an optimal configuration that is applied to the system. After a time interval of
S seconds (S=30 in this case) set by sleep, it gets performance and power met-
rics that constitute a new sample that is added to the training set. Then, the
models are trained with the new training set, and this process is repeated. This
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Figure 6.3: Utility and search time for different combinations of population size
and number of generations

repeated training makes it possible to adapt the models to workload changes.
Since the training set/time grows by adding new samples, the training set is
fixed to 50 samples, as a trade-off between prediction accuracy and training
time, and adding a new sample means removing the oldest one.

6.4 Distributed Resource Manager

In the distributed version, the resource manager is divided into several resource
managers, each responsible for resource allocation of a single VM. Its architec-
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Algorithm 3: Resource manager algorithm

1 apply few predefined samples to build an initial model
2 while true do

3 based on models find the optimal allocation

4 for j < 1to N do

5 broadcast(resource allocation of the VM)

6 receive(resource allocation of other VMs)

7 based on models find the optimal allocation

8

9

end
apply optimal allocation and sleep(S seconds)
10 get performance and power metrics
11 broadcast(resource allocation of VM)
12 receive(resource allocation of other VMs)
13 calculate_max_resource_capacity_every_M_intervals
14 add the new sample to the training set
15 train perf and power model with new training set
16 end

ture for three VMs is shown in Fig. 6.4. Each manager builds an ANN based
performance model of its own VM that has only two inputs (CPU and memory
allocation of one VM). It also builds an ANN based power model for predicting
the power consumption of the physical machine. Since the power consumption
of the physical machine depends on resource allocation to all VMs, the number
of inputs to the power model is two times the number of VMs. In the dis-
tributed resource manager, the global utility given in Equation (6.1) is divided
into local utility functions, given in Equation (6.5), one for each resource man-
ager. This function depends on the performance of the corresponding VM and
power consumption of the physical machine. Based on the performance and
power models, the utility optimizer finds resource allocations given to the VM
to optimize the local utility function.

U; = oVi(perf;) — BUp(power) (6.5)

Each resource manager controls the resource allocation of only one VM, there-
fore the number of resource allocation combinations to try for local utility op-
timization can be performed in negligible time. On the other hand, since the
power consumption depends on the resource allocation to all VMs, each resource
manager exchanges resource allocation decisions with other resource managers
through a coordination procedure organized in a number of iterations where
in each iteration a search for different resource allocation combinations to find
the optimal utility is made. For each resource allocation combination, the re-
source manager uses ANN models to predict the performance of the VM and
the power consumption of the physical machine. To predict power consump-
tion, the resource manager fixes the resource allocations to other VMs to the
values decided by other managers in the previous iteration (in the beginning,
it sets them to some random values), while changing the resource allocations
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of its VM. After this search, it selects the resource combination that has the
maximum local utility value. At the end of the iteration, the resource manager
exchanges this allocation decision with other managers to be used for the next
iteration. This process of search and exchange is repeated for a number of it-
erations N as shown in lines 4 to 8 of Algorithm 3. The intuition behind this
iterative process is that after predicting the power consumption for the current
iteration, the resource allocation decision of other VMs may have changed, and
in the next iteration after getting the new resource allocations, an improved
prediction can be made. At the end of NV iterations, the last predicted resource
allocation that has the maximal utility is applied to the system.

The steps followed by each resource manager are similar to the centralized re-
source manager shown in Algorithm 3, but they are used for allocating resources
to only one VM and there is the addition of lines 4 to 8 and 11 to 13. In order for
the resource manager to train the power model, it gets the final resource alloca-
tion decisions of other resource managers corresponding to the measured power
metric by exchanging allocation information with other managers through lines
11 and 12 in Algorithm 3.

Since resource managers act independently, they can allocate resources to VMs
that overpass the maximum physical machine resource capacity. To overcome
this problem, a maximum resource capacity is assigned to each resource man-
ager. The method, which is shown in line 13 of Algorithm 3, to calculate the
maximum resource capacity is executed by each resource manager every M
time intervals (M = 5 in our case). Through the broadcast and receive opera-
tions in lines 11 and 12 of Algorithm 3, apart from resource allocations in the
current time interval, resource managers exchange resource consumption infor-
mation. By resource consumption, an exponentially weighted moving average
of resource allocations of several time intervals in the past is meant. After
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having obtained resource consumptions of all VMs, the method proceeds as
follows. In the beginning, each resource manager has the same maximum re-
source capacity. Then, at the time of calculation, the free resource amount (i.e.,
the difference between the maximum capacity and the resource consumption)
is computed for each VM and also the total free resource amount. This total
free resource amount is divided by the number of VMs to obtain the new free
resource amount for each VM. By adding this new free resource amount to the
VM resource consumption, the new maximum resource capacity is obtained for
each VM. This method is executed by each resource manager to compute its
own maximum resource capacity and also the capacity of others needed for the
next calculation.

Implementation

A simulated environment in the C++ programming language is implemented
and two type of applications are simulated. One is a High Performance Com-
puting (HPC) application running CPU intensive calculations. Its performance,
measured as the number of calculations per second, depends linearly on the CPU
share allocated to the virtual machine. The other is a web application that has
file I/O intensive workload serving web data from the disk. Its performance
metric, the throughput, depends on both CPU and memory allocation to the
VM. The relationship between web performance and resource allocation of CPU
and memory used in these simulations is shown in Fig. 6.5. By increasing the
resource allocation, the performance is increased until some point is reached
where it is saturated, showing bimodal behavior that is typical for this kind
of application [118]. For the web application, two types of workloads called
workloadl and workload2 are simulated, that have the general form of Fig. 6.5,
but differ with respect to the slope of the performance surface and the load in-
tensity. For both applications, CPU and disk I/O utilizations the power model
depends on are also simulated. CPU utilization of the HCP application is lin-
early depending on the CPU allocation, while for the web application it shows
the same bimodal behavior as in the case of performance. Disk I/O utilization
is high with low memory allocation and is low with high memory allocation. To
the performance metric and the resource utilization generated from the mod-
els, some small random number generated from a normal distribution with zero
mean is added to simulate measurement noise and uncertainty present in real
environments.

Experiments are also performed in a realistic IaaS cloud environment based
on the Xen virtualization technology. To measure application performance,
the application heartbeat framework [50] is used that allows application code
to emit heartbeats. The number of heartbeats per second represents appli-
cation performance. The application performance sensors shown in Fig. 6.1
run as daemons inside each VM and are attached to an application through a
shared memory mechanisms to gather performance metrics using the heartbeat
framework. The main sensor that is part of the resource manager requests per-
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Figure 6.5: Web performance vs. resource allocation

formance metrics through the IP socket interface from all application sensors in
each control interval. CPU and disk utilizations are gathered using xentop and
iostat commands in Xen environment. The actuator sets the CPU and memory
allocations using the xm sched-credit and xm mem-set commands of the Xen
hypervisor.

The approach is implemented using the Fast Artificial Neural Network library
(FANN) [88] that offers multilayer artificial neural networks in the C program-
ming language. The genetic algorithm has been implemented using the GAlib
[116] C++ library. The coefficients o and 8 in Equation (6.1) are set to value
1. The following genetic algorithm parameters are set : crossover probability
to 0.85 and mutation probability to 0.01. The distributed resource manager
is implemented as a multi-threaded application where each manager is run by
one thread in parallel with other managers. After testing several values, the
parameter N of Algorithm 3 has been set to the value of 10, since increasing it
further did not lead to further improvements.

6.6 Experimental Setup and Evaluation

The simulation experiments are based on a simulated two quad-core CPU ma-
chine with a total of 800% CPU capacity and 16 GB of memory. The maximum
power of the physical machine at full utilization has been set to 288 Watt, the
power at idle state to 156 Watt and the maximum dynamic power at full uti-
lization to 132 Watt. Since the CPU is the biggest power consumer, its dynamic
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power at full utilization is set to 106 Watt and the dynamic power of the disk at
full utilization to 26 Watt. These are typical values found in real servers [107].

For the experiments in a realistic [aaS environment, a physical machine is set up
that has two dual-core AMD Opteron 2.4 GHz processors and 8 GB of RAM. It
runs Xen 4.1 and the Ubuntu 12.04 operating system in the Dom0 and DomU
VMs. The following benchmarks are used: a) cpu_bench is a CPU intensive
benchmark created for this work that performs mathematical calculations such
as computing the factorial of numbers, b) filebench [36] is a file system bench-
mark that emulates a number of applications such as web and file servers. The
maximum power of the physical machine at full utilization is set to 212 Watt,
the power at idle state to 132 Watt, the maximal dynamic power at full uti-
lization to 80 Watt, the CPU dynamic power at full utilization to 56 Watt and
the dynamic power of the disk at full utilization to 24 Watt. These values have
been derived from the power values of a simulated machine, taking into account
the fact that the physical machine has half of the CPU cores of the simulated
machine.

Simulations are performed with 4, 8 and 16 VMs where in each case half of
them run the HPC application and the other half runs the web application.
The simulations are restricted to 16 VMs, since the focus is on a single physical
machine, and running 16 VMs is reasonable and sufficient to study the behav-
ior of the different resource allocation approaches when the number of VMs is
increased. For 4 VMs, a maximum of 2 CPU cores to all VMs is assigned, for
8 VMs 4 CPU cores and for 16 VMs 8 CPU cores. For simplicity, the control
VM and its power consumption is not simulated, but this has been consid-
ered in the experiments in a realistic IaaS environment. For each of the cases
above, two workload mixes are considered : a) a steady mix and b) a periodic
mix. In the steady workload mix, the experiment is run for 200 time intervals
where from interval 0 to 100 all web applications run workloadl and from 100
to 200 they run workload2. In the periodic workload mix, the web applica-
tion workload changes between workloadl and workload2 every 24 intervals. It
is experimented with 4 resource allocation techniques abbreviated as follows:
ANN is the centralized ANN resource manager, DANN is the distributed ANN
resource manager, STATIC is an allocation where the total resource capacity is
distributed equally to all VMs, and DANNNOC is a distributed ANN resource
allocation technique without coordination between the ANNs where the power
model is based only on resource allocation to the corresponding VM. For each
combination of the allocation techniques, the number of VMs and the work-
load mixes, the experiment is repeated five times and the collected results were
exposed to ANOVA and TukeyHSD statistical tests.
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6.6.1 Simulation Experiment: Results

6.6.1.1 ANN Model Prediction Accuracy and Training Time

First, simulation experiments are performed to determine the size of the training
and the prediction accuracy of the model. In this experiment, 16 VMs are exe-
cuted with a steady workload mix in a single simulated machine. In Fig. 6.6(a),
the average performance prediction error over all VMs performance models for
DANN is shown. Three different training set sizes of 70, 50 and 30 samples
are tested. For all training set sizes, the average prediction error, excluding the
time of adaptation to new workload from 100 to 130, is less than 12%. On the
average, a slight decrease of the prediction error is evident when the training
set size is increased from 30 to 50 and to 70. Since the training time increases
when the training set size is increased, as shown in Fig. 6.6(c), a training set
size of 50 samples has been chosen as a trade-off for the rest of the experiments.
In Fig. 6.6(a), the time needed to achieve an acceptable prediction error of
the performance model after a workload change in time interval 100 can be ob-
served: it is around 30 time intervals. The power prediction error is not affected
by the training set size, and all sizes achieve an error of less than 3%. This
is because the dynamic power change is small compared to the actual power,
making it possible to build an accurate ANN power model.

6.6.1.2 Utility, Performance and Power Results

In Fig. 6.7(a), the cumulative utility is shown, which is the sum of the global
utility values for all time intervals, for each allocation technique averaged over
all numbers of VMs and workload mixes. The cumulative utility is shown as
a percentage of the STATIC allocation utility. DANN achieves a higher util-
ity than all other approaches. Although DANNNOC has a better utility than
the STATIC and ANN techniques, it is worse than DANN with statistical sig-
nificance, indicating that coordination between ANNs is important to perform
better. In Fig. 6.7(b), for each technique it is shown how the cumulative utility
changes with the number of VMs. With an increased number of VMs, DANN
becomes more effective than the other techniques.

This is because by increasing the number of VMs, the uncertainty about the
power modeling without considering all VMs increases, making the coordina-
tion between the ANNs a necessity for more accurate power modeling. In Fig.
6.7(c), it is shown how the cumulative utility changes with the workload mix.
The utility achieved for each technique with a periodic workload mix is lower
than with a steady workload mix. This is because with a periodic workload, the
accuracy of the performance and power models decreases, since they need to
adapt frequently to workload changes. In Fig. 6.8(a), the overall performance
for each technique averaged over all numbers of VMs and workload mixes is
shown. DANN has a better performance than the other techniques (with sta-
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tistical significance). Although DANN has a slightly better performance than
STATIC, it consumes less power, resulting in a higher utility. In Fig. 6.8(b), it
is shown how the performance changes with the number of VMs. The perfor-
mance of DANN is not influenced by increasing the number of VMs, which is
not the case for ANN. In Fig. 6.8(c), it is shown how the performance changes
with the workload mix. With statistical significance, the performance achieved
by DANN is only slightly reduced by changing the workload type.

In Fig. 6.9(a), for each technique the energy consumption during the experiment
time for 200 machines averaged over all numbers of VMs and workload mixes
is shown. DANN achieves energy savings compared to STATIC with statistical
significance. Although DANN consumes the same energy as DANNNOC, it
achieves a higher utility due to the higher performance than DANNNOC. The
least energy consumption is achieved by ANN, but with the price of a lower
performance. In Fig. 6.9(b), it is shown for each technique how the energy
changes with the number of VMs. The energy savings of DANN compared
to STATIC become larger with an increased number of VMs. This is because
the range of dynamic power consumption becomes larger with an increased
number of VMs, increasing the potential of the technique to influence the energy
consumption. In Fig. 6.9(c), it is shown how the energy changes with the
workload mix. The energy consumption of each technique is not influenced by
the workload mix, indicating the robustness of the techniques to keep the same
level of energy savings.

6.6.2 Realistic laaS Experiment: Results

Experiments are performed in a realistic Xen environment with 8 VMs, half
of them running cpu_bench and the other half filebench. 8 VMs are pinned
to 3 CPU cores and are given 3200 MB of memory, while Dom0 is pinned to
the remaining CPU core. To each VM is assigned one VCPU. The experiment
has been run for 185 time intervals, and in interval 80 it is triggered a work-
load change emulated by increasing the SLA performance level of 4 VMs. The
experiment has been run 5 times and the average results are shown.

Fig. 6.10(a), 6.10(b) and 6.10(c) show utility, average performance and power
consumption over time for each technique. DANN has a better utility value
than the other approaches. Although the difference with DANNNOC is not
statistically significant for most of the experimental time, there are intervals
where it has a better utility, such as in the intervals (60:80) and (170:185). Al-
though most of the time DANN achieves the same levels of average performance
as DANNNOC and STATIC, in the interval (150:185) DANN achieves better
values. This is because in the second half of the experiment, the performance
SLA levels are increased, making it more difficult for DANNNOC and STATIC
to satisfy them. With respect to power, although DANN achieves the same
power consumption as DANNNOC, it achieves much lower power levels than
STATIC in the first half of the experimental time and increases it during the
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second half. During this interval (0:80), the SLA performance levels can be
achieved with much less power consumption than using STATIC, while in the
second half the power consumption should be increased to meet the new SLA
performance level.

6.6.3 Overhead Results

The overhead of DANN comes from two factors: a) the coordination time in
lines 4-8 of Algorithm 1 and b) the models’ training times in line 15 of Algorithm
1. Running the resource manager on the physical machine with 4 CPU cores
and managing 16 VMs, it gives, on the average, 2.5 sec for the first factor and
30 sec for the second factor, showing the feasibility of the resource manager in
practice.

6.7 Summary

In this chapter, a resource management approach for VM resource allocation in
TaaS clouds has been presented. It finds an adequate performance-power trade-
off by expressing the two conflicting objectives of performance and power in
a utility function and optimizing it using ANN based performance and power
models. To cope with a potentially increased number of VMs, a distributed
resource management approach has been developed where each ANN is respon-
sible for modelling performance and power of a single VM, while exchanging
information with other ANNs to coordinate resource allocation. Simulated and
real experiments show that the distributed ANN resource manager achieves
better utility values and performance-power trade-offs than a centralized ANN
approach, a distributed non-coordinated version and a static allocation ap-
proach.

In the future, the disk and the network can be included as resources to be
allocated. It is also planned to apply the approach in more complex environ-
ments with multi-tier applications and multiple physical machines where the
coordination procedure for power modelling could be applied for coordinating
multi-tier VMs running on different physical machines.



Cross-Correlation Prediction for Virtual
Machine Resource Allocation Using Support
Vector Machines

7.1 Introduction

Many cloud providers assign resources to VMs statically according to the peak
demands. This static allocation leads to a waste of resources, higher costs and
inefficient use of computational resources, probably leaving some applications
starving for resources and others having more resources than needed. A better
way is to allocate resources in an elastic manner dynamically according to the
current demand, by just assigning the minimum amount of resources required
to satisfy application performance. However, this is a challenging task, since
resource demand is dynamic and changes quickly over time. Ideally, what is
required is a proactive resource allocation approach that predicts resource us-
age in advance and allocates resources according to the current demand in an
automatic way without human intervention.

In this chapter, an approach called Automatic Proactive Resource Allocation
(APRA) is presented that proactively allocates resources to VMs by predicting
resource usage demand using Support Vector Machine (SVM) for time series
forecasting. Since there are interdependencies between VMs of a multi-tier ap-
plication, and the resource usages of resources of multiple VMs of the same
application are correlated with each other, cross-correlation prediction is ap-
plied by making predictions for multiple resources of a multi-tier application
at the same time. The focus of the work is on two resources to be assigned
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to VMs, namely CPU and memory, since current virtualization technologies do
not offer adequate support for the allocation of other resources, such as network
or disk bandwidth. Based on predictions of resource usage for the next inter-
val, the proposed approach allocates the most adequate amount of resources to
VMs to satisfy the demand. The approach is general and non-intrusive, since its
resource allocation decisions are based on resource usage metrics monitored out-
side of the VMs, and are independent of the type of application. Experimental
results of the evaluation of a multi-tier application cloud environment testbed
running web serving benchmarks of CloudSuite [34] show better application
performance and prediction accuracy than a non-cross-correlation approach for
resource demand prediction.

First, the APRA design is described. Then, implementation issues and ex-
perimental results are presented. In the end, the chapter is concluded with a
summary of the approach. The work described in this chapter has been pub-
lished in [83].

7.2 Automatic Proactive Resource Allocation

In this section, the design of the APRA approach is presented by starting with
an overview of its architecture and its main components. Then, the application
of the SVM approach for cross-correlation prediction of resource demand is de-
scribed. Finally, it is presented how the resource allocation decision to multiple
resources is made based on resource demand prediction.

7.2.1 APRA Architectural Overview

The architecture of APRA is shown in Fig. 7.1. It is applied in an IaaS cloud
environment composed of several physical nodes on top of which several VMs
are running. Each VM is running one tier of a multi-tier application. Fig. 7.1
shows the case of three physical nodes and three two-tier applications running
in total six VMs spread randomly over the physical nodes. The components of
APRA are as follows.

In each physical node, a monitoring daemon called mond is running that is
responsible for gathering, in each time interval, resource usage metrics of all
VMs running on the corresponding physical node. Each multi-tier application
has a management module called Agent that is responsible for the resource
allocation of its own VMs. The Agent does not necessarily have to run on the
same physical machine. In each time interval, the Agent gets resource usage
metrics from the mond daemons of each physical node that its VMs are running
on. Then, it predicts the resource usage demand for the next interval for all
its VMs. Based on this prediction, it determines the resource allocations to
be assigned to them for the next interval. In each physical node, a module
called Arbiter is running that gathers resource allocation assignments from all
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Figure 7.1: APRA architecture.

Agents that have VMs on the physical node, decides the final resource allocation
assignment for all VMs, and actually applies them through the Virtual Machine
Monitor (VMM). Its main responsibility is to resolve conflicts that result from
assignments that overpass the resource capacity of the physical node.

This architectural arrangement of distributing the resource allocation decisions
on several Agents running on different physical nodes has the benefit of provid-
ing scalability of the resource management in a large scale cloud infrastructure.

7.2.2 SVM for Cross-correlation Prediction

One of the responsibilities of the Agent module is to take resource usage data
from the mond daemons, build a time series of resources of all its VMs, and
based on that predict the resource usage for the next time interval. This pre-
diction is a function of a number of past time series usage values called a time
window. This is given mathematically by:

z(t+1) = f(z(t),z(t —1),z(t —2),..,x(t — 16)) (7.1)

where z(t) is resource usage at time interval ¢, z(t+ 1) is the predicted resource
usage for the next interval and f() is the prediction function.

The prediction function is learned using a machine learning approach, i.e., in
this proposal an SVM. The motivation for using this technique are its advan-
tages over alternative techniques, as shown by other research work [102] and
summarized below:
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e Non-parametric method avoiding the need define a model structure be-
forehand.

Applicable to non-linear models and non-stationary processes.

Guaranteed to find the global optimum, unlike artificial neural networks
that can get stuck to local minima.

A small number of parameters are required to tune the algorithm.

Better generalization by avoiding over-fitting.

SVMs, as other supervised machine learning techniques, undergo a training
phase by applying past time series samples to generate a model to be used for
prediction. Before the time series data is applied to the learning algorithm, a
transformation phase is needed to make it more suitable for learning by remov-
ing the temporal ordering of input samples by creating additional inputs called
”lagged” variables. The training is performed repeatedly for each time interval
in order to adapt to changing characteristics of time series. Since there are
dependencies between tiers of a multi-tier application, the resource usage time
series of VMs belonging to the same application are cross-correlated, meaning
that the usage prediction for one resource depends on past resource usages of
other VMs of the same application. To take this cross-correlation into account,
The SVM algorithm is applied to model multiple time series simultaneously.

7.2.3 Proactive Resource Allocation

The other responsibility of the Agent is to determine the resource allocation to
be given to all resources of all VMs of the application it is responsible for. This
decision is made in discrete time intervals where in each interval, the resource
allocation to be given to each resource for the next interval is determined. This
decision is based on resource usage prediction of the next interval as a result
of the SVM algorithm. More specifically, the amount of resources allocated is
estimated as the resource usage prediction plus a small margin of 5% of the
resource capacity. This makes it possible to allocate just the needed resources
to keep the cost to a minimum and to leave room for any possible prediction
error in order to keep the performance to acceptable levels.

Due to prediction errors, it can happen that the resource amount allocated
is less than the usage demand, leading to poor performance and influencing
the future predictions. To mitigate this problem, in each control interval, if
resource starvation is encountered, meaning that the difference between the
resource allocated and resource usage is less than 5% of the resource capacity,
the resource allocation margin for the next time interval is doubled to 10% of
the resource capacity. This leaves room to satisfy the resource demand and
get realistic usage data for future predictions. If resource starvation is not
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encountered in a time interval, the normal resource allocation margin of 5% is
set for the next interval.

After determining the resource allocations for all its VMs according to the
algorithm above, the Agent submits them to the corresponding Arbiters. The
Arbiter collects, in each time interval, resource allocations from all Agents that
have VMs running on its physical machine and actually applies them through
the VMM. In case the sum of the resource allocations of all VMs running on
the physical machine is greater than the physical resource capacity, the Arbiter
redistributes resource allocations to VMs proportionally to their requirements.
Each VM gets the final resource allocation after redistribution according to the
formula:

Alloc

- m * Capaczty (72)

where A is the final allocation, Alloc is the preliminary allocation, SumAlloc is
the sum of all VMs’ preliminary allocations and Capacity is the total resource
capacity.

7.3 Implementation

All APRA components run in Dom0 of the physical nodes and are written in
Java, except for the mond monitoring daemons that are written in the C lan-
guage. The Mond daemons use the libvirt API to get CPU usage data in each
time interval. Since there is no simple way in current VM technology to measure
memory consumption of a VM outside of it, it is implemented a small daemon
called mmond running inside each VM to get memory usage data from the
/proc/meminfo file system in Linux. Arbiter sets CPU and memory allocations
through the xm sched-credit and xm mem-set commands of the Xen hyper-
visor. The agent is implemented as a two-threaded application. One thread
communicates with mond, maintains usage time series and predicts new usage
values for the next interval. The other thread makes allocation decisions and
communicates with the Arbiters. The Agents use the SVM implementation of
the WEKA [44] machine learning framework for time series cross-correlation
forecasting of resource demand. All communication between the components
of APRA is based on the IP socket interface. The time interval for sampling
resource usage data, training the forecasting model and applying resource al-
location decisions, is set to 10 seconds. The time window interval of the past
time series usage data is set to 16 samples according to the results of some
experiments and to keep the training time to a minimum.
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Figure 7.2: Workload.

7.4 Experimental Results

A testbed composed of 3 physical nodes and 3 two-tier applications (Appl,
App2, App3) is set-up as shown in Fig. 7.1. Each tier runs inside one VM
and the VMs of the same application can run on different physical machines.
CloudSuite [34] web-serving benchmark is used as a representative multi-tier
application. APRA is tested with the two-tier configurations where the first
tier is the web front-end tier that implements the olio web application and the
second is the mysql database tier that stores information about social events.
Three clients are running on the first node that generate load for the three
applications through the Faban workload generator. The physical machines are
blade servers with two Intel quad-core Xeon 2.00 GHz CPUs with a total of 8
CPU cores and 4 GB of RAM. Xen 4.1.2 Hypervisor is used as the virtualization
platform for managing VMs and used the Ubuntu 12.04 OS with 3.8.0-29-generic
Linux kernel in Dom0 and DomU VMs. The machines are connected over a 1
Gbit/sec Ethernet. In the experiments, Dom0 is pinned for all physical nodes
to 2 CPU cores and is given 2 VCPUs. Webl VM is pinned to one CPU core
and is assigned 1024 MB of RAM, dbl and web2 VMs are pinned to 1 CPU
core and are assigned 1024 MB of RAM and finally db2, web3 and db3 VMs
are pinned to 2 CPU cores and assigned 1536 MB of RAM. It is assigned to all
application VMs 1 VCPU. The workload generated by the clients for the three
applications with varying intensity lasting for about 17 minutes is shown in
Fig. 7.2. On the y-axis, the workload intensity set by the number of concurrent
users that send requests to the web application is shown. The workload starts
with 30 concurrent users at time 0 seconds and changes every 80 seconds by +
50 users.
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Figure 7.3: Actual and predicted resource usage of the web front-end VM with-
out cross-correlation.

Table 7.1: Prediction errors for 2 approaches

Resource Approach MAE RMSE MAPE
WEB CPU Cross-Correlation 2.78 3.7 0.26
No-Cross-Correlation — 4.52 5.81 0.53

WEB MEM Cross-Correlation 2.29 3.26 0.011
No-Cross-Correlation  4.37 10.95 0.026

DB CPU Cross-Correlation 0.48 0.66 0.25
No-Cross-Correlation  0.79 1.17 0.48

DB MEM Cross-Correlation 0.5 0.71 0.001
No-Cross-Correlation  9.44 52.54 0.038
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Figure 7.4: Actual and predicted resource usage of the web front-end VM with
cross-correlation.

Different aspects of two approaches are compared: a) one that applies SVM
to make predictions of usage time series of each resource separately and b) the
other one that makes predictions of multiple usage time series of the same multi-
tier application simultaneously to take cross-correlation into account. Fig. 7.3
and Fig. 7.4 show the actual and predicted CPU and memory usage of the
web front-end VM of App2 with using cross-correlation prediction and without
using it. Similar results are taken also for the CPU and memory resources of
the database VM, but these results are not shown. It is evident especially for
the CPU resource that applying cross-correlation leads to better resource usage
predictions than without it. This is because there are correlations between
resource usage time series of the same multi-tier application as the result of the
interdependencies between its VMs, thus making cross-correlation time series
predictions a necessity for getting better results.
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Figure 7.5: Actual and allocated CPU and memory resource usage of web front-
end VM with cross-correlation prediction.

To verify the prediction accuracy of the two approaches quantitatively, Table
7.1 shows the results for three widely used metrics of prediction errors for App2:
MAE, RMSE and MAPE. For each resource, smaller prediction errors are seen
with cross-correlation than without it.

To understand how proactive resource allocation based on cross-correlation pre-
diction works, Fig. 7.5 and Fig. 7.6 show the used and allocated resources
determined by APRA for the two VMs of App2. APRA allocates the mini-
mum amount of resources needed and changes it dynamically according to the
demand. This keeps resource costs to a minimum while satisfying application
performance. Fig. 7.5(a) shows that only in a few cases the allocation is equal
to the usage demand, while most of the time it is within some margin above
the demand, resulting in good application performance.
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Figure 7.6: Actual and allocated CPU and memory resource usage of database
VM with cross-correlation prediction.
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7.5. Summary

Finally, it is presented how the two proactive resource allocation approaches,
one based on cross-correlation prediction and the other one based on separate
time series predictions, affect application performance. In Table 7.2, the average
and the 90th percentile of the response time in seconds for the three applications
with cross-correlation prediction and without it is shown. Resource allocation
with cross-correlation prediction achieves lower application response times on
all applications except for the Appl application. The almost equal performance
of the two approaches for the Appl application is explained by the fact that
its performance is degraded by the interference of workload generation client
VMs running on the same physical node with its web front-end VM. The better
application performance with cross-correlation approach is explained by the fact
that it achieves better prediction accuracy and therefore better allocations.

Table 7.2: Response times of three applications for the two approaches

Appl. Approach Avg RespTime 90th% RespTime

APP1 Cross-Correlation 2.05 5.82
No-Cross-Correlation 2.43 6.25

APP2 Cross-Correlation 0.25 0.45
No-Cross-Correlation 0.4 0.87

APP3 Cross-Correlation 0.29 0.63
No-Cross-Correlation 0.4 0.95

7.5 Summary

In this chapter, Automatic Proactive Resource Allocation (APRA) based on
multiple resource demand predictions using SVM has been presented. APRA
is motivated by the interdependencies that exist between resources of multiple
VMs of the same multi-tier application. This necessitates a cross-correlation
resource demand prediction approach for better accuracy. Based on predicting
CPU and memory resource demand, APRA makes allocation decision to lower
costs and keep application performance to acceptable levels. Experimental re-
sults with the CloudSuite web serving multi-tier application benchmark have
shown that the cross-correlation prediction approach achieves better prediction
accuracy and resource allocation decisions compared to the non-correlation pre-
diction approach.

As future work, it is planned to include VM live migration as another resource
allocation mechanism to handle the case when the predicted physical machine
resource demand overpasses the total capacity. Furthermore, the inclusion of
VM replication as another resource allocation mechanism is an interesting ap-
proach for future work.
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8.1

Conclusions

This chapter summarizes the research challenges encountered in cloud comput-
ing resource management and the different VM resource allocation approaches
developed. Finally, a number of directions for future work are outlined.

Summary

Cloud computing, with its supporting technology of virtualization, is chang-
ing the computation model and the way IT infrastructures are accessed. This
new computation model is securing many benefits for the cloud consumer and
the cloud provider. For the consumer, it offers as many needed resources on
demand, in a pay-as-you-go fashion, resulting in cost-efficient solutions and
optimal performance. For the provider it offers efficient resource utilization,
resulting in reduced operational and power costs. The key element to provide
these promising features is a dynamic and autonomic resource allocation, for
consumer applications and physical machines, through the use of VM technol-

ogy.

Although progress has been made and many VM resource allocation techniques
have been developed, effective and optimal resource management still remains
an open research challenge. In the course of this work several VM resource
allocation approaches are presented to overcome some of the limitations and
drawbacks of existing solutions, operating both, at a global data center level
and a local physical machine level of a cloud computing infrastructure.

In order to reduce power and management costs of the cloud infrastructure,
dynamic VM consolidation through live migration according to workload is
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a promising technique of allocating VM resources at the global data center
level. Most of the approaches to date base their VM live migration decisions on
low-level utilization metrics and thresholds that do not capture and guarantee
high level metrics, such as application performance or cloud provider profit.
They also rearrange mapping of VMs to physical machines using fixed heuris-
tic based policies without offering the required flexibility of later changing the
policy from consolidation to load balancing and vice versa. In this dissertation,
a VM dynamic consolidation and load balancing approach based on utility
function optimization has been presented. The resource allocation approach
is composed of two tiers: (1) local utility function optimization, through VM
share allocation and, (2) global utility function optimization through VM live
migration. In this case, the global utility function value represents the profit
received by the provider from the cloud computing infrastructure. The utility
function offers a natural way to capture the trade-off between application per-
formance and infrastructural costs, by expressing two conflicting objectives in
the same function. At the heart of the approach lays a simple heuristic method
for global level utility function optimization through VM live migrations. The
novel characteristic of the approach, and what cloud providers are mostly inter-
ested in, is the VM resource allocation based directly on high-level metric, such
as cloud provider profit that is represented by utility function value. Further-
more, resource allocation based on utility optimization offers more flexibility
in changing the resource allocation policy by changing the weights of utility
function components. As experiments show, the approach can find an adequate
trade-off between application performance and cloud infrastructure costs.

Another important resource allocation mechanism for cloud computing resource
management is vertical scaling of VM resources. This mechanism holds when
shares of different resources of each VM, running on physical machines, can
be changed dynamically at run time. Most of the existing approaches apply
vertical scaling resource allocation to VMs to only one resource such as the
CPU. In this respect, a feed-back control theory approach has been developed
to allocate multiple resources to VMs such as CPU, memory, disk and network
I/0 bandwidth. Its goal is to keep resource utilizations to certain percentage
and in the case of resource contention it applies an algorithm to maximize
a utility function, by giving more resource shares to higher utility VMs. The
utility function, given as the difference between VM utilities and resource costs,
represents cloud provider’s profit for one physical machine. On the other hand,
the VM utility represents the charged monetary value of the cloud consumer
and depends on application performance and resource consumption. This is in
contrast to commercial models, such as Amazon EC2 [4], where the consumer
is charged only for the resources consumed.

Allocating VM resources by keeping utilization to certain levels does not guar-
antee application performance since the correlation between resource utiliza-
tion and performance in shared virtualized infrastructures is not clear and can
change over time. Also, feed-back control theory approaches usually apply a
linear system model to control allocation (for design simplicity and stability
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guaranties). This is not adequate and can result in suboptimal control, since
the performance and VM resource allocation is generally a non-linear relation-
ship. To overcome these difficulties, a VM vertical scaling resource allocation
approach has been developed using ANN-based modelling of application per-
formance and VM resource allocation relationship. By applying a supervised
machine learning based modelling approach (ANN), which is well known for
its universal function approximation capabilities, it is possible to capture non-
linear relationships between application performance and VM resource alloca-
tion and provide better resource allocation decisions. The approach is general
and can be applied to any application, since it builds an ANN model online
without any prior application knowledge. This is not the case for other ap-
proaches such as queuing theory based modeling approaches. The approach
finds an adequate trade-off between conflicting goals of performance and power
costs by optimizing an utility function. To cope with a large utility optimization
time, as the result of increased number of VMs, a distributed resource man-
ager has been developed. Each manager, based on the ANN model, allocates
resources to one VM through local utility optimization and exchanges resource
allocation decisions with other managers, coordinating global resource alloca-
tions. Simulated and realistic experiments, have demonstrated the superiority
of distributed resource allocation approach over a centralized and a distributed
non-coordinated version.

Modelling based VM resource allocation offers a general approach for VM per-
formance management in cloud computing, but has its own drawbacks. An
important one is the long online model adaptation time to fast changes of VM
workloads. An improvement has been made by proposing a model-free approach
based on utility optimization using fuzzy control. Also, in this approach the
utility function provides the profit for the cloud provider for one physical ma-
chine. Utility function optimization is done using a hill-climbing local search
algorithm, implemented as fuzzy rules. The main advantages of fuzzy-control,
besides not requiring to build a model beforehand, is the fuzziness of utility and
resource allocation values, resulting in an adaptive resource allocation amount
of increasing or decreasing the current allocation. The fuzziness also allows
to make appropriate resource allocation decisions by taking into account noisy
utility value measurements. To cope with long utility optimization time, as the
result of increased number of VMs, a multi-agent approach, dividing the global
utility function into local utility functions, has been developed. Each agent, in
parallel with other agents, allocates resources of one VM by optimizing through
hill-climbing fuzzy control its own local utility function. Experimental evalu-
ations show the superiority with respect to utility value of the multi-agent
approach, over the centralized version and a state-of-the-art optimal control
approach.

Most of the solutions to date do take a reactive approach for VM resource allo-
cation. They make allocation decisions based on previous time interval resource
utilizations, which can often result in SLA performance violations. These vi-
olations occur because too often the allocation decisions are taken in reactive

147



148

Chapter 8. Conclusions

manner, when the performance SLA violation has already happened. To over-
come these drawbacks, the Automatic Proactive Resource Allocation (APRA)
approach has been developed, which takes VM resource allocation decisions pro-
actively based on resource demand prediction for the next time interval. For
VM resource demand prediction, a machine learning technique is used, such as
Support Vector Machine (SVM), showing good accuracy for time series forecast-
ing. The APRA system is composed of several agents, spread over all physical
machines of the cloud infrastructure, each responsible for resource allocation
of all VMs of one multi-tier application. An arbiter, running on each physical
machine, is responsible for taking resource allocation requests from all agents
running VMs on that physical machine, resolving resource contentions and de-
ciding on the final VM resource allocations. Existing approaches to proactive
VM resource allocation base their allocation decisions on predicting utilization
time series of one resource or of multiple resources separately. Since there are
interdependencies between VMs of the same multi-tier application, their re-
source usage time series are correlated. Taking this into account, the approach
presented in this dissertation applies SVM-based cross-correlation prediction on
multiple resource usage time series of VMs of the same application. As experi-
mental results show, the cross-correlation prediction achieves better prediction
accuracy compared to prediction of each time series separately, resulting in
better VM resource allocation decisions and application performance.

8.2 Future Work

There are several directions of future work for augmenting and improving the
proposed solutions in this dissertation. Regarding global data center resource
allocation through VM live migration, an interesting direction to follow is to de-
velop a distributed resource allocation approach where on each physical machine
a resource allocation agent responsible for taking VM live migration actions for
all VMs can run. The challenge here is how agents, based only on local in-
formation, autonomously take VM live migration actions and simultaneously
coordinate with each other in order to find near optimal VM to physical ma-
chine mapping. Ideas from distributed load balancing algorithms, distributed
function optimization and multi-agent systems can be borrowed and investi-
gated further. Distributed VM live migration resource management offers a
scalable approach in large-scale IaaS cloud infrastructures. It mitigates the
drawbacks of centralized management such as single point of failure, perfor-
mance bottlenecks and long optimization times. Also, an interesting direction
to follow would be experimenting with utility functions that include other re-
sources, such as hard-disk and network bandwidth I/O, and other objectives
such as physical machine reliability metrics.

There are several challenges and improvements that can be investigated further
regarding fine-grained VM resource allocation at the physical machine level.
One of the main challenges is coordinating the resource allocations of different
VMs of the same multi-tier application, running on different physical machines.
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In this respect, each agent should allocate resources to its own VM, optimiz-
ing its local utility function, and at the same time coordinate actions with
other agents in order to optimize a global utility function defined over all VMs.
The coordination of actions in the same multi-tier application is needed, since
the optimization is done over the same performance metric and the allocation
of a single VM influences the common application metric of them all. More-
over, for coordinating resource allocation actions, techniques and methods from
multi-agent coordination and distributed utility function optimization could be
investigated. Interesting could also prove the investigation of techniques from
game theory. This can offer a rich variety of methods for agents to allocate
resources based on incentives for optimizing their goals.

Further investigation is also needed with respect to VM resource allocation
based on application performance modelling through machine learning tech-
niques. Since model training is done online, the applied training samples should
be as representative of the dynamic range of allocation values as possible. On
one hand, the samples should aim to build an accurate model, on the other
hand, they should make sure to not violate application performance SLAs. Solv-
ing this trade-off requires investigating intelligent sample selection and model
training techniques. Also, online model adaptation time to workload changes
needs improvements, since a long adaptation time, especially for very fast work-
load changes, can influence in reverse the application performance. Aiming at
eliminating the long model adaptation time, the investigation of techniques for
training and caching different models, detecting workload changes and applying
directly the model for the corresponding workload could be interesting. Another
challenge is training accurate models, in the presence of allocation actions with
delayed effects several time intervals after they are applied. Here, the integra-
tion of Markov Decision Processes (MDP) into the model training process could
help.

A promising VM resource management approach is the proactive VM resource
allocation where allocation decisions are taken on the basis of resource demand
predicted over several time intervals. It is of interest to apply resource demand
prediction for taking proactive allocation actions at different time scales and
levels such as global resource allocation and local physical machine allocation.
Here, improvements are needed to increase prediction accuracy especially for
long-term future predictions. This is useful for planning decisions far ahead
in time for allocations actions, such as VM live migration, that take long time
to complete. Also, more intelligent and robust techniques to correct allocation
actions in the presence of prediction errors are needed. Interesting is also the
investigation of combining reactive and proactive allocation approaches, to pro-
vide better resource management solutions that incorporate the advantages of
both approaches.

Finally, an important challenge is the combination and integration of multiple
resource allocation mechanisms (actions) in one complete resource management
solution that operates at different levels and time scales. More specifically, the
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combination of resource allocation actions such as VM live migration, horizontal
scaling VM replication and vertical scaling VM resource allocation is desired.
The challenge is to decide, (1) which allocation actions to make for which VM
and each workload change event and, (2) how to coordinate different actions in
different physical machines without having conflicts and negative interferences
on each other.
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