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a b s t r a c t 

Cloud computing and data centers that support this paradigm are rapidly evolving in order to satisfy 

new demands. These ever-growing needs represent an energy-related challenge to achieve sustainability 

and cost reduction. In this paper, we define an expert and intelligent system that applies various en- 

ergy policies. These policies are employed to maximize the energy-efficiency of data-center resources by 

simulating a realistic environment and heterogeneous workload in a trustworthy tool. An environmental 

and economic impact of around 20% of energy consumption can be saved in high-utilization scenarios 

without exerting any noticeable impact on data-center performance if an adequate policy is applied. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Cloud computing and large-scale web services have trans-

formed the data-center scenario and the big-data environment,

and have led to a new scenario where these infrastructures are as

energy greedy as many factories. The latest estimations claim that

data centers account for approximately 1.5% of global energy con-

sumption ( Koomey, 2011 ). 

In this new scenario, data centers are in constant evolu-

tion towards servicing multiple heterogeneous workloads on the

same hardware resources. This strategy enables higher energy-

efficiency levels to be achieved by turning off idle resources in

low-utilization periods. Decision-support systems are one of the

main applications for expert systems. This work presents an auto-

mated decision-support system aimed to make the best decisions

to improve the energy efficiency of the system through a better

management of data-center resources and jobs placement. We de-

velop, apply, and analyze various energy policies based on shutting

machines off in order to reduce data-center energy consumption

while preserving the cluster performance. 

This approach has yet to be widely applied due to various

reasons, such as: (a) Natural human behaviour and the fear of

any change that could break operational requirements ( Fernández-

Montes, Fernández-Cerero, González-Abril, Álvarez-García, & Or-

tega, 2015 ); (b) the complexity and heterogeneity of all the subsys-

tems involved; and (c) power-off policies, and (d) the fast develop-
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ent of new systems and paradigms that could break the estab-

ished standards and systems. However, keeping servers underuti-

ized or in idle state is highly inefficient from an energy-efficiency

erspective. 

On the other hand, the research community has made many

ffort s in other areas in order to achieve energy proportional-

ty ( Jakóbik, Grzonka, Kolodziej, Chis, & González-Vélez, 2017 ),

uch as: data-center operating temperature and cooling systems

 El-Sayed, Stefanovici, Amvrosiadis, Hwang, & Schroeder, 2012;

harma, Bash, Patel, Friedrich, & Chase, 2005 ), hardware energy

roportionality ( Fan, Weber, & Barroso, 2007; Miyoshi, Lefurgy,

an Hensbergen, Rajamony, & Rajkumar, 2002 ), upgrading hard-

are pieces such as HDDs to operate with non-mechanical devices

uch as SSDs ( Andersen & Swanson, 2010 ), and improving power

istribution infrastructures ( Femal & Freeh, 2005 ) that have been

ut into production in various data centers from top-tier compa-

ies such as Google, Microsoft, and Amazon. 

The paper is organized as follows. The related work is de-

cribed in Section 2 and various powering-off resources strategies

re shown in Section 3 . Section 4 presents the simulation tool

dapted and used for the experimentation environment shown in

ection 5 . 

Finally, results are shown and analyzed in Section 6 , where we

ompare energy-saving outcomes and the performance impact for

ach energy-efficiency policy. Conclusions are drawn in Section 7 . 

. Related work 

Many effort s have been made in order to increase resource and

nergy efficiency in data centers. The proposed strategies range

rom energy-aware scheduling algorithms to power-off heuristics

https://doi.org/10.1016/j.eswa.2018.06.007
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Table 1 

Related work summary. 

Ref. Title: Performance evaluation of a green scheduling algorithm for energy savings in cloud computing Savings 

Duy et al. (2010) ∼ 45% 

Strategy: Power off policy based on a neural network predictor 

Evaluation: [8–512] nodes cluster simulation 

Workload: End user homogeneous requests that follow a day/night pattern 

Ref. Title: Energy efficient utilization of resources in cloud computing systems Savings 

Lee and Zomaya (2012) [5–30]% 

Strategy: Energy-aware task consolidation heuristic based on different cost functions 

Evaluation: Simulation of a not stated size cluster 

Workload: Synthetic workload in terms of number of tasks, inter arrival time and resource usage 

Ref. Title: Dynamic energy-aware scheduling for parallel task-based application in cloud computing Savings 

Juarez et al. (2018) [20–30]% 

Strategy: Polynomial-time and multi-objective scheduling algorithm for DAG jobs 

Evaluation: Experimentation on a 64 nodes cluster 

Workload: Synthetic directed acyclic graph-based workload 

Ref. Title: Energy efficient resource management in virtualized cloud data centers Savings 

Beloglazov and Buyya (2010) ∼ 80% 

Strategy: VM allocation and migration policies + Always off policy 

Evaluation: 100 nodes cluster simulation using CloudSim 

Workload: Synthetic workload that simulates services that fulfill the capacity of the cluster 

Ref. Title: Saving energy in data center infrastructures Savings 

Ricciardi et al. (2011) [20–70]% 

Strategy: Safety margin power-off policy 

Evaluation: 100 and 5000 nodes cluster simulation 

Workload: Synthetic workload that follows a day/night pattern 

Table 2 

Summary of the pros and cons of the energy-aware scheduling algorithms in the related work. 

Duy et al. (2010) Performance evaluation of a green scheduling algorithm for energy savings in cloud computing 

Pros Deeply described neural-network-based algorithm; Empirically measured power consumption 

Cons No focus on overall performance, only in drop rate; Small data-center size ([8–512] nodes) 

Short simulation period (2 days); No evaluation of huge & heterogeneous workload (cloud computing) 

Fernández-Cerero et al. (2018) Security supportive energy aware scheduling and scaling for cloud environments 

Pros Load balancing and VM scaling techniques; Computes security constraints 

Proposal of an energy-aware Genetic Algorithm 

Cons Focused on DVFS, not on shutting-down machines; Only for Independent Batch Scheduling environment 

No evaluation of huge & heterogeneous workload (real-life cloud computing system); Tiny cluster (5 VMs) 

Juarez et al. (2018) Dynamic energy-aware scheduling for parallel task-based application in cloud computing 

Pros DAG and data-aware workload; Multi-heuristic scheduling algorithm 

Cons Small data-center size (64 nodes max.); Only evaluates the makespan and total energy consumed 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

Not focused on shutting-down machines, but in various DAG workloads 

Not clear about the cluster utilization (and the theoretical maximal energy efficiency) 

Lee and Zomaya (2012) Energy efficient utilization of resources in cloud computing systems 

Pros Large and detailed experimentation; Allows task migration 

Cons Focused on task scheduling, not on the shut-down of machines. 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

No evaluation of the performance impact of the proposed strategies 
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hat aim to minimize the number of idle nodes. A summary of

hese effort s is presented in Table 1 , and a summary of the pros

nd cons of the related work regarding energy-aware schedul-

ng algorithms, VM scaling and migration, and proposals based on

hutting-down idle nodes is presented in Tables 2 –4 , respectively. 

A substantial part of these approaches has been directed

owards energy-aware scheduling strategies that could lead

o powering off idle nodes, such as Duy, Sato, and In-

guchi (2010) , Fernández-Cerero, Jakóbik, Grzonka, Kołodziej,

ernández-Montes (2018) , Juarez, Ejarque, and Badia (2018) , and

ee and Zomaya (2012) . In Duy et al. (2010) , a Green Schedul-

ng Algorithm based on neural networks is proposed. This algo-

ithm predicts workload demand in order to apply only one power-

ff policy to idle servers. These experiments simulate a small

ata center (512 nodes as a maximum) which serves an homoge-

eous workload composed of end-user facing tasks which follow

 day/night pattern. Lee and Zomaya (2012) present two energy-

ware task consolidation heuristics. These strategies aim to max-

mize resource utilization in order to minimize the wasted en-

rgy used by idle resources. To this end, these algorithms com-
ute the total cpu time consumed by the tasks and prevent a

ask being executed alone. Juarez et al. (2018) propose an algo-

ithm that minimizes a multi-objective function which takes into

ccount the energy-consumption and execution time by combining

 set of heuristic rules and a resource allocation technique. This

lgorithm is evaluated by simulating DAG-based workloads, and

nergy-savings in the range of [20–30%] are shown. Fernández-

erero et al. (2018) propose energy-aware scheduling policies and

ethods based on Dynamic Voltage and Frequency Scaling (DVFS)

or scaling the virtual resources while performing security-aware

cheduling decisions. 

In addition, different techniques of energy conservation such

s VM consolidation and migration ( Beloglazov, Abawajy, & Buyya,

012; Beloglazov & Buyya, 2010, 2012; Sohrabi, Tang, Moser, &

leti, 2016 ) are also proposed. Beloglazov and Buyya (2010) de-

cribe a resource management system for virtualized cloud data

enters that aims to lower the energy consumption by applying

 set of VM allocation and migration policies in terms of current

PU usage. This work is extended by focusing on SLAs restric-

ions in Beloglazov et al. (2012) and by developing and compar-
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Table 3 

Summary of the pros and cons of the VM scaling and migration algorithms in the related work. 

Beloglazov and Buyya (2010) Energy efficient resource management in virtualized cloud data centers & 

Beloglazov et al. (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing 

Pros VM resizing and migration; Thermal and network considerations. 

Cons Not focused on shutting down machines, but on VM placement; Small data-center size (100 nodes) 

No evaluation of huge & heterogeneous workload (real-life cloud computing system) 

No evaluation of the performance impact of the proposed strategies (only SLA violations) 

Sohrabi et al. (2016) Adaptive virtual machine migration mechanism for energy efficiency 

Pros Machine learning for re-scheduling tasks when hosts become overloaded; Real-life workload 

Cons Not focused on shutting down machines, but in VM placement;Not large data-center size (800 machines) 

No detailed evaluation of the performance impact (only SLA violations & makespan) 

Beloglazov and Buyya (2012) Optimal online deterministic algorithms and adaptive heuristics 

for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers 

Pros Dynamic VM resizing and migration; Dynamic host overloading algorithms; Real-life workload; Extensive experimentation 

Cons Not focused on shutting down machines, but in VM placement; Not large data-center size (800 machines) 

No detailed evaluation of the performance impact (only SLA violations) 

Table 4 

Summary of the pros and cons of the proposals based on shutting-down idle nodes in the related work. 

Ricciardi et al. (2011) Saving energy in data center infrastructures 

Pros Day-night workload pattern; Two different-sized data centers (50 0 0 and 100 nodes) 

Cons Only one energy-efficiency policy based on a security margin 

No performance impact evaluation; No description of workload and simulation tool 

Amur et al. (2010) Robust and flexible power-proportional storage 

Pros Near optimal power proportionality; Various data-layout policies 

Almost no negative impact in data loss; Good experimental analysis based on standard benchmarks. 

Cons Focused only on cluster storage; Small data center (25 nodes); Read-only workload 

Kaushik and Bhandarkar (2010) Greenhdfs: towards an energy-conserving, storage-efficient, hybrid hadoop compute cluster 

Pros Cold and hot data areas; Real-life HDFS traces workload; Large Yahoo! data center (2600 nodes) 

Cons Focused only on cluster storage; Few details on the simulation tool and performance impact 

Luo et al. (2013) Superset: a non-uniform replica placement strategy towards high-performance and cost-effective 

distributed storage service 

Pros The dynamic replication may improve both energy efficiency and performance 

Extensive experimentation with a comparative with Thereska et al. (2011) 

Cons Focused only on cluster storage; Few details of the simulation tool; Small data center (240 nodes) 

Thereska et al. (2011) Sierra: practical power-proportionality for data center storage 

Pros Real-life workload presenting a day/night pattern; No extra capacity nor migration required 

Read & write workload; Network-aware; Extensive experimentation 

Cons Focused only on cluster storage; Small data center (31 nodes) 
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ing various adaptive heuristics for dynamic consolidation of VMs

in terms of resource usage in Beloglazov and Buyya (2012) . These

migration policies are evaluated by simulating a 100-node cluster.

Energy reductions up to approximately 80% are shown with low

impact on quality of service and SLAs. In Sohrabi et al. (2016) , a

Bayesian Belief Network-based algorithm that aims to allocate and

migrate VMs is presented. This algorithm uses the data gathered

during the execution of the tasks in addition to the information

provided at submission time in order to decide which of the vir-

tual machines are to be migrated when a node is overloaded. In

Ricciardi et al. (2011) , a different approach is proposed. In this

work, Ricciardi et al. present a data center energy manager that

relies on day/night workload patterns in order to aggregate traffic

during night periods and therefore turn off idle nodes. The authors

apply a power-off policy based on a safety margin in order to min-

imize the negative impact on performance. To evaluate this strat-

egy, two different data centers of 50 0 0 and 100 nodes are simu-

lated. In this kind of scenario, potential energy reductions between

approximately 20 and 70% are shown. 

The application of these techniques together presents a ma-

jor opportunity in various large-scale scenarios, such as Grid 50 0 0

( De Assuncao, Gelas, Lefevre, & Orgerie, 2012 ). 

In order to achieve energy proportionality, many effort s ( Amur

et al., 2010; Kaushik & Bhandarkar, 2010; Luo, Wang, Zhang, &

Wang, 2013; Thereska, Donnelly, & Narayanan, 2011 ) have been

made in only one subset of all the systems, since these represented

the main bottleneck when they were written. In Amur et al. (2010) ,

a power-proportional distributed file system that stores replicas

of data on non-overlapping subsets of nodes is proposed. These
ubsets of different sizes contain one replica for each file. This

artitioning strategy lets the administrator decide the number

f datasets to be kept turned on to serve incoming requests,

nd therefore it gives the administrator the opportunity to con-

rol the trade-off between energy consumption and performance.

aushik and Bhandarkar (2010) present a variant of Hadoop Dis-

ributed File System that divides the cluster in two zones in terms

f data usage pattern. The first zone, called the Hot Zone , con-

ains the subset of fresh data that is more likely to be accessed

hort term. The second zone, called the Cold Zone , contains the set

f files with low spatial or temporal popularity with few to rare

ccesses. Once the cluster is divided in these two zones, an ag-

ressive power-off policy is applied to the Cold Zone . This energy-

fficiency strategy achieves approximately 26% energy reduction

ithout notably worsening the overall performance and reliability

n a three-month simulation based on a Yahoo! cluster configura-

ion. In Thereska et al. (2011) , the cluster is partitioned in order to

reate different non-overlapping data zones. Each of these zones

ontains one replica of the cluster data. Once the cluster is par-

itioned, the system lets the administrator power off the desired

umber of zones, depending on the aggressiveness of the energy-

fficiency strategy. Luo et al. (2013) propose a non-uniform replica

lacement strategy in terms of data popularity. This strategy aims

o increase the number of available parallel replicas for data that is

ery likely to be accessed, and to lower the number of replicas of

he low-used data that is rarely accessed in order to power off the

aximum number of nodes without affecting the overall perfor-

ance. In order to evaluate this strategy, a Zipf distribution-based
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neous environments. 

1 T S is defined as the minimum time that ensures energy saving if a resource is 

switched off between two jobs ( Orgerie, Lefèvre, & Gelas, 2008 ). 
orkload and a real trace of Youku is executed in a 240-nodes sim-

lated cluster. 

This paper follows a different approach: to deeply describe the

mpact of 6 different power-off policies in terms of performance

nd energy consumption on a well-defined, rich and realistic het-

rogeneous workload that follows the trends present in Google

races by running a huge amount of experiments for centralized

onolithic scheduling frameworks. In order to better characterize

he impact of these power-off policies and unlike the presented re-

ated work, this paper does not focus on developing energy-aware

M allocation or migration policies, but the authors use a Best-

t-like VM allocation heuristic and does not apply VM migration

trategies as stated in Section 5 . In addition, these power-off poli-

ies are applied at the data center operating system / resource

anager level, not to a framework or subsystem like some of the

elated work presented. This difference makes it possible to apply

he proposed power-off policies to any framework that can run as

 VM / Linux container on the data center. 

. Power-off policies 

In this work, we have developed several deterministic and prob-

bilistic power-off decision policies. These power-off decision poli-

ies form the core of the work since they have much more impact

n data-center efficiency and performance than anything else. 

From among the deterministic policies, the following policies

ave been developed: 

• Never power off: This power-off decision policy disables the

power-off process, and therefore represents the current sce-

nario. 
• Always power off: This power-off decision policy will shut down

every machine after freeing all the resources under use, when-

ever possible. 
• Maximum load : This power-off decision policy takes into ac-

count the maximum resource pressure of the data-center load

and compares it to a given threshold μ. If the current load is

less than this given threshold μ, then the machine will be pow-

ered off. 
• Minimum free-capacity margin : This power-off decision policy

assures that at least a given percentage of resources μ is turned

on, free, and available in order to respond to peak loads. 

Regarding among the probabilistic policies, the following poli-

ies have been implemented: 

• Random : This policy switches off and randomly leaves the re-

sources idle by following a Bernoulli distribution whose param-

eter is equal to 0.5. This policy is useful to ascertain the accu-

racy of the predictions made by the following probabilistic poli-

cies. 
• Exponential : The Exponential distribution, denoted by Exp ( λ),

describes the time between events in a Poisson process, that

is, a process in which events occur continuously and indepen-

dently at a constant average rate (1/ λ). Under the hypothesis

that the arrival of new jobs follows an Exponential distribution,

this energy policy attempts to predict the arrival of new jobs

that can harm the data-center performance due to the lack of

sufficient resources for their execution. 

To compute the λ parameter, the most recent jobs are taken

into account. The size of these last jobs is denoted as Win-

dow size . Thus, every time a shut-down process is executed, the

mean time between these last jobs that could not be served at

the time of making the decision is computed, and denoted by

δ. Hence, λ = 1 /δ by using the method of maximum likelihood.

The probability of the arrival of a new job can then be com-

puted by means of the exponential cumulative density function
(cdf), as cdf ( T s ) 
1 = 1 − e −T s /δ . Therefore, given a decision thresh-

old μ value, the following conditions are imposed: {
if cdf (T s ) > = μ then leave resources Idle 
if cdf (T s ) < μ then switch resources O f f 

• Gamma : The Gamma distribution, denoted by �( α, β), is fre-

quently used as a probability model for waiting times and

presents a more general model than the Exponential distribu-

tion. Under the hypothesis that the arrival of new jobs follows

a Gamma distribution, this energy policy attempts to predict

the arrival of the amount of new jobs required to oversubscribe

the available resources. 

and takes into account the Lost factor described in the Exponen-

tial policy. are: 

– mem available : memory in Idle state. 

– cpu available : computational resources in Idle state. 

– mem mean : mean RAM used by last jobs. 

– cpu mean : mean computational resources used by last jobs. 

– δ: mean inter-arrival time of last jobs. 

– αcpu : as cpu available / cpu mean . 

– αmem 

: as mem available / mem mean . 

The parameters of the Gamma distribution are then estimated

as: α = Min (αcpu , αmem 

) and β = δ. Finally the probability of

the arrival of new jobs is computed by means of the cumulative

density function (cdf) with: 

cdf (T s ) = 

γ (α, βx ) 

�(α) 

Hence, given a decision threshold μ value, the following condi-

tions are imposed: {
if cdf (T s ) > = μ, then leave resources Idle 
if cdf (T s ) < μ, then switch resources O f f 

. Simulation tool 

In this paper, we extended the Google lightweight simu-

ator presented in Schwarzkopf, Konwinski, Abd-El-Malek, and

ilkes (2013) in order to perform energy-efficiency analysis.

his simulator lets the authors focus on the development of

nergy-efficiency policies and perform simulations of the differ-

nt scheduling frameworks and various data-center environments,

hile abstracting the details of each of them. The following energy

tates are considered : (a) On : 150 W (b) Off: 10 W (c) Idle : 70 W

d) Shutting Down : 160 W (e) Powering On : 160 W. The energy con-

umption is linearly computed in terms of the usage of each core. 

Moreover, this tool provides us with a trustworthy implemen-

ation of the monolithic scheduling processes, and results have

een contrasted to Google’s realistic simulator ( Schwarzkopf et al.,

013 ). The simulator employed can be found at https://github.com/

amianUS/cluster-scheduler-simulator . 

. Experimentation 

In order to test and measure the achieved power savings and

he consequent impact on data-center performance, a set of ex-

eriments have been run. Each of these experiments simulates a

eriod of seven days of operation, and applies various combina-

ions of the energy policies developed and described in Section 5.2 .

hese experiments are designed to simulate realistic and heteroge-

https://github.com/DamianUS/cluster-scheduler-simulator
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Fig. 1. Workload inter-arrival histogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

j  

a  

u

5

 

s  

e

 

w  

s  

i  

(  

I  

N  

c

6

 

p  

o  

a

6

 

e  

t

 

 

 

 

 

 

2 Current operation for the same data center and workload, but without applying 

energy-saving polices. 
In order to create a realistic and trustworthy testbed, realistic

Google traces ( Reiss, Wilkes, & Hellerstein, 2011, 2012b ) were cho-

sen and the interpretations carried out over these traces by the

research community ( Abdul-Rahman & Aida, 2014; Di, Kondo, &

Franck, 2013; Liu & Cho, 2012; Reiss, Tumanov, Ganger, Katz, &

Kozuch, 2012a ) were studied. 

In the following subsections, the test suite and environment de-

signed and used are presented. 

5.1. Workload 

Jobs are composed of one or more tasks: sometimes thousands

of tasks. In this work, two types of jobs are considered: 

• Batch jobs: This workload is composed of jobs which perform

a computation and then finish. These jobs have a determined

start and end. MapReduce jobs are an example of a Batch job. 
• Service jobs: This workload is composed of long-running jobs

which provide end-user operations and infrastructure services.

As opposed to Batch jobs, these jobs have no determined end.

Web servers or services, such as BigTable ( Chang et al., 2008 ),

are good examples of a Service job. 

Synthetic workloads are generated in each experiment run by

replicating the behaviour of those workloads present in typical

Google data centers. Therefore, although the workload generated

in each simulation run is unique, they follow the same model de-

sign. 

The subsequent job attributes have been covered and studied: 

• Inter-arrival time : The inter-arrival time represents the time be-

tween two consecutive Service jobs or two consecutive Batch

jobs. It also determines the amount of jobs executed in a spe-

cific time window. The inter-arrival time between two Batch

jobs is usually shorter than that between two Service jobs, as

illustrated in Fig. 1 , leading to a higher number of Batch jobs,

as illustrated in Fig. 4 . 
• Number of tasks : This parameter represents the number of tasks

that comprise a job. As illustrated in Fig. 2 , Batch jobs are com-

posed of a higher number of tasks than Service jobs. 
• Job duration : This parameter represents the time that a job con-

sumes resources in the data center. As illustrated in Fig. 3 , Batch

jobs require less time to complete than Service jobs. 
• Resource usage : Taking into account the parameters described

above, although Batch jobs and tasks constitute the vast major-

ity, the higher resource utilization and duration of Service jobs

results in our synthetic workload as illustrated in Fig. 4 . In this

figure, it can be noticed that less than 10% of jobs in the work-

load are Service jobs, while less than 3% of tasks are Service
tasks. It should be borne in mind, however, that almost 40% of

CPU and 50% of RAM resources are used by Service jobs. 

Taking into account the aforementioned environment and work-

oad scenario, the generated workload is composed of 43,050 Batch

obs, 4238 Service jobs. This represents one week of operation time,

nd reaches 57, 81% computational power and 48.33% memory in

se on average. 

.2. Experiments performed 

After simulating a wide range of values for every parameter de-

cribed in Section 3 , for comprehension purposes, the most inter-

sting and representative have been chosen: 

In order to prevent resource contention, a power-on policy

hich turns on the necessary machines whenever the workload re-

ource demands are higher than available machines, and a schedul-

ng strategy which tries to fill every machine to the maximum

90%) while maintaining some randomness ( Khaneja, 2015 ) is used.

t is worth mentioning that in the experiments that simulate the

ever power off policy, a scheduling strategy where resources are

hosen randomly is used to represent the base scenario. 

. Results 

In this section, the obtained results are illustrated through key

erformance indicators concerning a) energy savings and b) impact

ver performance. In this way, energy savings and performance are

nalyzed and compared for each energy policy. 

.1. Energy savings indicators 

The following indicators were selected in order to describe the

nergy savings and the behaviour of the powering on/off opera-

ions: 

• Energy consumed vs. current system : The overall energy used in

each experiment against the current 2 operation energy utiliza-

tion. 
• Power-off operations : The total number of shut-downs per-

formed over all the resources during the overall simulated op-

eration time. 
• KWh saved per shut-down : This represents the energy saved

against the shut-downs performed. It shows the goodness of the

power-off actions performed. 
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Fig. 2. Histogram of the number of tasks for workload. 
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Table 5 

Summary of energy savings for the best energy policies. N – Never power off. 

A – Always power off. R – Random . L – Maximum load . M – Minimum free- 

capacity margin . E – Exponential . G – Gamma . 

Energy Energy Power KWh Idle KWh Cost 

policy % vs. offs saved resources saved savings 

Current (10 3 ) Shutt. % (10 3 ) ($) 

N 100 0.00 n/a 42.21 0.00 0 

A 80.25 64.52 1.72 8.35 110.83 15,517 

R 80.73 39.16 2.76 9.18 108.15 15,141 

L 80.21 67.20 1.65 8.27 111.09 15,553 

M 82.35 9.04 10.96 11.97 99.04 13,866 

E 82.34 9.01 11.00 11.95 99.12 13,877 

G 82.7 8.98 10.82 12.56 97.12 13,597 

 

 

 

 

 

6

 

i  

f  
• Idle resources : Represents the percentage of resources in an idle

state (turned on but not in use). 

.2. Performance indicators 

The following indicators were selected as the most significant

n the description of the impact of the various energy-efficiency

olicies on data-center performance. 

• Job queue time (first scheduled) : Represents the time a job waits

in the queue until its first task is scheduled. 
• Job queue time (fully scheduled) : Represents the time a job waits

in the queue until it is totally scheduled (not finished). 
• Job think time : Represents the time needed for a schedule deci-

sion to be made. 
• Timed-out jobs : A job is marked as timed out and left without

scheduling when the scheduler completes 100 tries to schedule

the same job, or 10 0 0 tries of any task of the job. In all our

experiments, the number of timed-out jobs is always 0. 
• Scheduler occupation fraction : This represents the scheduler us-

age. 

.3. General results 

In order to analyze and compare the performance of each fam-

ly of policies, the best and exemplary energy policy from each

amily has been selected, in terms of the combination of energy-
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Table 6 

Summary of performance impact of best energy policies. B – Batch workload, S – Service 

workload. 

Energy Time first scheduled (s) Time fully scheduled (s) Sched. 

policy Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

L 0.22 0.22 0.78 0.83 0.31 0.33 0.94 0.95 15.20 

M 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

(a) Savings vs. KWh/shut-down (b) Savings vs. Idle resources

Fig. 5. Energy-saving comparison. A – Always power off. E – Exponential . G – Gamma . L – Maximum load . M – Minimum free-capacity margin . N – Never power off. R – Random . 
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saving and performance results. Table 5 shows performance key

indicators, while Table 6 shows energy related results. Fig. 5 a and

5 b summarize and illustrate these numeric results. 

From these results, several conclusions can be stated. In gen-

eral, the more shut-downs there are, the more energy is saved, or

from another point of view, the less idle the resources, the less en-

ergy wasted. Fig. 5 b shows this behaviour, since the Always power

off energy policy and other policies that tend to switch off re-

sources are always the greatest energy savers, achieving savings

of approximately 20%. This first conclusion provides evidence pre-

viously shown by Fernández-Montes, Gonzalez-Abril, Ortega, and

Lefèvre (2012) in similar environments. 

However, it should be borne in mind that the accuracy of the

employed policies depends on the distribution of the data-center

workload. The application of these policies without any previous

knowledge of the workload and its distribution may be hard and

might achieve sub-optimal results. 

Fig. 5 a shows that Exponential, Gamma and Minimum free-

capacity margin policies perform fewer shut-down operations, but

in a highly planned manner, and therefore the quantity of energy

saved per shut-down operation is approximately 6 times better

(from 2 to 12 kWh), and total savings are approximately 18%,

which is only 2% less than the policies of the highest energy sav-

ings, while performing 85% less shut-down operations compared to

those performed by Always power off and Maximum load policies. 

In terms of costs, the saved energy adds up to a total of $15 K

for 7 days, and hence, under similar conditions, this would indicate

$60 K a month or $720 k a year. 3 

In terms of performance, Fig. 6 a and 6 b show that the more

shut-downs are performed, the more probability of causing a neg-

ative impact on the performance. This is noticeable for the Always

power off and Maximum load policies. The negative impact in terms

of queue time is shown on the queue-time parameters, such as Job
3 $0.14 per KwH was considered to compute economic costs. 

m  

a  
ueue time (first scheduled) and Job queue time (fully scheduled) pa-

ameters, which suffer a mean impact of 15% and 60%, respec-

ively compared to those of the base/current scenario. The Random

olicy acts as an intermediate stage between the two previously

tated sides. The queue-time parameters, such as Job queue time

first scheduled) and Job queue time (fully scheduled) , suffer a mean

mpact of 5% and 15%, respectively. 

On the other hand, once again, Exponential, Gamma and Mar-

in energy policies do not affect negatively to the performance, but

chieve major energy savings ( ∼ 18%). 

In order to better understand the behaviour of these energy

olicies, Fig. 7 shows the evolution of the resource state for each

olicy. 

It should be borne in mind that there is a short-time period at

he beginning until each policy reaches its normal pattern. This ad-

usting period occurs due to the On state of all the resources of the

ata center at the beginning of the simulation. Two groups of poli-

ies can be determined according to their behaviour. On one hand,

he Always power off, Maximum load and Random policies suffer

rom the same problem: they try to adjust available resources to

t, as much as possible, the current workload demand, which leads

o a high number of power on/off operations. Moreover, it can be

bserved that the time needed by the Random policy to adjust to

orkload changes is double that of the Always power off policy,

ince the Random policy performs half the number of shut-down

perations compared to the Always power off policy. 

On the other hand, prediction-based policies perform much

moother adjustments to the workload, therefore leading to a

ower number of power on/off operations. 

Finally, at the end of day #1, there is a peak of machines that

re switched on for Always power off-like policies. Hence, it should

e pointed out that maintaining a set of machines as a security

argin can lead to the ability to satisfy the workload needs in a

uch more gradual way. Moreover, these workload peaks do not

ffect these prediction-based energy policies. Aggressive policies
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(a) Savings vs. Job queue time (b) Savings vs. Job think time

Fig. 6. Comparison of energy savings vs. performance. 

Fig. 7. Behaviour of energy policies. 
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olve these load bursts by switching on a large set of machines,

ven larger than actually needed for that moment. 

The presented evidences lead us to recognize that controlled

nd prediction-based polices are preferable to deterministic poli-

ies. 

.4. Exponential policy: detailed results 

Exponential power-off policies described in Section 3 show a

igh dependency on the Lost factor parameter. This parameter rep-

esents the percentage of resources that can not be used even if

hey are available because these resources are insufficient to hold

he task. For example, lets consider a workload where all tasks will

onsume 1 GB of memory and 2 CPU cores. In this scenario, even

f a machine has 900 MB of memory and 1.8 CPU cores available,

hese resources will be completely useless and should not be com-

uted as available resources. The Lost factor allows the authors to

ake into account the useful available resources instead the total

ot-used resources. 

In order to fully understand the results presented in this sec-

ion, it should be borne in mind the nature of the workload em-

loyed: a vast majority are low-resource consuming jobs compris-

ng very few tasks which are easily to serve. Due to this, the risk

f not satisfying the requirements of these tasks is very low, tend-

ng to 0. In the other hand, very few jobs are composed of an

normous number of tasks, where it is almost impossible to serve

heir requirements. This means that the risk of not satisfying the

equirements of these tasks tends towards 1. Due to this, the deci-
ion threshold μ has a lower impact in terms of performance and

nergy savings, unless a value extremely close to 0 or 1 is taken,

hereby it behaves as the Never power off or Always power off poli-

ies, respectively. 

In addition, the number of these high-demanding jobs is very

ow. This leads to a poor prediction when only a low number of

he last jobs are taken into account. Thus, the Window size values

valuated are of less impact in terms of performance and energy

avings than the Lost factor parameter. 

Fig. 8 presents the dependency on the Lost factor clearly. In

erms of kWh saved per shut-down, as shown in Fig. 8 b, the best

esults are reached when a Lost factor of 20% is considered. This

alue makes sense, because as stated in Section 5 , our environment

s designed to simulate the one presented in Lo, Cheng, Govin-

araju, Ranganathan, and Kozyrakis (2015) , which attains a level

f utilization of 90% of resources without causing any noticeable

egative impact. 

• Energy savings : In terms of energy savings, as presented in

Table 7 and in Fig. 8 a, for low Lost factor values, the Expo-

nential policy behaves similar to the Always power off policy,

and achieves the highest rates of energy savings at the expense

of a negative performance impact, as presented in Table 8 .

The higher this parameter increases, the lower the number of

power-off cycles, and approaches the Never power off policy. 
• Performance : In terms of performance, as presented in Table 8 ,

the Exponential policy follows the same trend present in the

energy savings. However, it can be observed that if 20% of

resources are taken as unusable ( lost factor ), as suggested by

the kWh saved per shut-down parameter, then a virtually non-

negative impact in terms of performance is imposed. Moreover

only ∼ 2% more of energy is consumed compared to Always

power off policy, but only ∼ 15% of the number of shut-downs

is performed. In addition this is consistent with the Minimum

free-capacity margin policy. Finally, if the Lost factor value con-

tinues to rise above ∼ 20%, it does not impact positively in

terms of performance, but negatively in terms of energy sav-

ings. 

.5. Gamma policy: detailed results 

As described for the Exponential policy, the exponential nature

f the generated workload links the Gamma policy performance

mpact and energy savings to the Lost factor parameter, whereby

he rest of the parameters, Window size and decision threshold μ,

old a minor influence. 

In terms of behaviour, the Gamma policy follows the same

rends present in the Exponential policy. However, due to the dif-

erence in the predictive model construction, the Gamma policy be-
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(a) Energy savings vs. Exponential

parametrization

(b) kWh saved per shut-down vs. Expo-

nential parametrization

(c) Queue time vs. Exponential

parametrization

Fig. 8. Energy savings and performance indicators in Exponential parametrization. 

Table 7 

Energy savings for Exponential policies. Exponential parameterization: [ Decision threshold μ, 

Window size, Lost factor ]. 

Energy policy Energy Power KWh Idle KWh Cost 

% vs. offs saved resources saved savings 

Acr. Params Current (10 3 ) Shutt. % (10 3 ) ($) 

N n/a 100 n/a n/a 42.21 n/a 0 

A n/a 80.25 64.52 1.72 8.35 110.83 15,517 

R [0.50] 80.73 39.16 2.76 9.18 108.15 15,141 

E [0.30, 25, 0.10] 80.01 64.94 1.73 7.93 112.21 15,710 

E [0.30, 25, 0.15] 80.68 19.00 5.71 9.11 108.42 15,179 

E [0.30, 25, 0.20] 82.34 9.01 11.00 11.95 99.12 13,877 

E [0.30, 25, 0.25] 85.06 8.54 9.82 16.62 83.83 11,736 

E [0.30, 25, 0.30] 88.34 8.03 8.16 22.22 65.47 9166 

Table 8 

Performance results for the Exponential energy-efficiency policy. 

Energy policy Time first scheduled (s) Time fully scheduled (s) Sched. 

Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R [0.50] 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

E [0.30, 25, 0.10] 0.22 0.22 0.77 0.84 0.30 0.32 0.92 0.95 15.15 

E [0.30, 25, 0.15] 0.19 0.20 0.65 0.69 0.20 0.21 0.68 0.69 14.45 

E [0.30, 25, 0.20] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E [0.30, 25, 0.25] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

E [0.30, 25, 0.30] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 
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Table 9 

Energy-saving results for Gamma energy policy. Gamma parameterization: [ Decision threshold 

μ, Window size, Lost factor ]. 

Energy policy Energy Power KWh Idle KWh Cost 

%vs. offs saved resources saved savings 

Acr. Params Current (10 3 ) Shutt. % (10 3 ) ($) 

N n/a 100 n/a n/a 42.21 0.00 0 

A n/a 80.25 64.52 1.72 8.35 110.83 15,517 

R [0.50] 80.73 39.16 2.76 9.18 108.15 15,141 

G [0.90, 25, 0.10] 80.28 60.21 1.84 8.40 110.67 15,494 

G [0.90, 25, 0.15] 81.03 15.08 7.06 9.71 106.45 14,902 

G [0.90, 25, 0.20] 82.7 8.98 10.82 12.56 97.12 13,597 

G [0.90, 25, 0.25] 85.36 8.49 9.67 17.13 82.14 11,500 

G [0.90, 25, 0.30] 88.44 7.99 8.12 22.40 64.89 9084 

(a) Energy savings vs Gamma

parametrization

(b) kWh saved per shutting vs Gamma

parametrization

(c) Queue time vs Gamma parametriza-

tion

Fig. 9. Energy savings and performance indicators in Gamma parametrization. 
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of energy savings. 
aves slightly less aggressively in terms of number of shut-downs

pplied. 

• Energy savings : In terms of energy savings, as presented in

Table 9 and in Fig. 9 a and stated in the Exponential policy, if

the Lost factor is too low, then the Gamma policy behaves like

the Always power off policy, in that it achieves the highest rates

of energy savings at the expense of a negative performance

impact, as presented in Table 10 . The higher this parameter

increases, the lower the number of power-off cycles, and ap-

proaches the Never power off policy. 
• Performance : In terms of performance, as presented in Table 10 ,

the Gamma policy follows the same trend present in the en-
ergy savings. However, it can be observed that if 20% of re-

sources are taken as unusable ( Lost factor ), as suggested by

the kWh saved per shut-down parameter, then a virtually non-

negative impact in terms of performance is imposed. Moreover

only ∼ 2.5% more of energy is consumed compared to Always

power off policy, but only ∼ 13% of the number of shut-downs

is performed. In addition this is consistent with the Minimum

free-capacity margin and Exponential policies. Finally, if the Lost

factor value continues to rise above ∼ 20%, then it does not im-

pact positively in terms of performance, but negatively in terms
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Table 10 

Performance results for the Gamma energy policy. 

Energy policy Time first scheduled (s) Time fully scheduled (s) Sched. 

Mean 90p. Mean 90p. occu- 

B S B S B S B S pation(%) 

N 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

A 0.22 0.22 0.78 0.84 0.30 0.32 0.92 0.95 15.18 

R [0.50] 0.20 0.21 0.72 0.80 0.25 0.27 0.80 0.84 14.79 

G [0.90, 25, 0.10] 0.21 0.22 0.77 0.83 0.29 0.31 0.89 0.94 15.09 

G [0.90, 25, 0.15] 0.19 0.20 0.65 0.68 0.20 0.20 0.66 0.69 14.40 

G [0.90, 25, 0.20] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G [0.90, 25, 0.25] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 

G [0.90, 25, 0.30] 0.19 0.19 0.63 0.67 0.19 0.19 0.63 0.67 14.30 
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7. Conclusions 

We have empirically proven that a suitable policy in data cen-

ters can save a considerable amount of energy and reduce the

pollution of CO 2 in the atmosphere. Industrial partners willing to

deploy this kind of energy-saving policies would have a direct

positive impact on their competitiveness: in addition to become

greener by minimizing the environmental impact, these policies

may notably reduce their operation costs. 

Several energy-saving policies have been explained, and their

advantages and disadvantages have been presented, which outline

which policy is more suitable for each data-center operational en-

vironment and administrator criteria. The behaviours of these en-

ergy policies are also consistent for various scheduler strategies. 

This work characterizes the impact of these power-off policies.

Unlike the presented related work, it is focused on the use of a

Best-fit-like VM allocation heuristic. In addition, these power-off

policies are applied at the data center operating system/resource

manager level, not to a framework or to a subsystem. This ap-

proach makes it possible to apply the proposed power-off policies

to any framework that can run as a VM/Linux container on the

data center. 

In this work, we go beyond the presented state of the art by

focusing on the development of realistic, empirically-driven and

production-ready energy policies that have a minor impact on

data-center performance. These policies are simulated on a real-

istic environment that has been contrasted with real-life produc-

tion systems, such as those of Google data centers. We can point

out the following strengths in our research method: (a) A clear

description of data-center utilization and workload distribution,

which follow the industry trends; (b) A detailed explanation on the

workload parameters, classification, generation and heterogeneity;

(c) A complete description of the scheduling model and algorithms

employed; and (d) A detailed explanation on the impact on both

the main goals of our system: energy-efficiency and performance.

On the other hand, the greatest weaknesses of this work include:

(a) The lack of means to contrast the provided results with a real-

life system; and (b) The lack of some real-life system aspects in

simulation, such as task inter-dependency, networking and data-

related considerations. However, we plan to overcome these limi-

tations in future steps of this research. 

The authors consider that prediction-based policies present

much better behaviour for the data center, since they perform

a much lower number of power-off cycles and save considerable

amounts of energy. Moreover, it is also shown that it is possible to

save energy by switching off machines and maintaining QoS and

SLA levels, even for data centers in great demand. 

For future work, the authors aim to focus on the following re-
search directions: 
F  

 

1. Development of energy-efficiency policies based on machine

learning, especially deep learning techniques. 

2. Utilization of no-monolithic scheduling frameworks, such as

two-level, shared state, distributed and hybrid schedulers. 

3. Development of an intelligent system that may dynamically

change the scheduling framework depending on environmental

and workload-related parameters, as well as the study of the

impact of such a system in terms of energy efficiency and per-

formance. 

4. Development of new simulation features, such as new workload

patterns, task inter-dependency, networking and data-related

considerations. 
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