178 research outputs found

    Detailed Review on The Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs) and Defense Strategies

    Get PDF
    The development of Software Defined Networking (SDN) has altered the landscape of computer networking in recent years. Its scalable architecture has become a blueprint for the design of several advanced future networks. To achieve improve and efficient monitoring, control and management capabilities of the network, software defined networks differentiate or decouple the control logic from the data forwarding plane. As a result, logical control is centralized solely in the controller. Due to the centralized nature, SDNs are exposed to several vulnerabilities such as Spoofing, Flooding, and primarily Denial of Service (DoS) and Distributed Denial of Service (DDoS) among other attacks. In effect, the performance of SDN degrades based on these attacks. This paper presents a comprehensive review of several DoS and DDoS defense/mitigation strategies and classifies them into distinct classes with regards to the methodologies employed. Furthermore, suggestions were made to enhance current mitigation strategies accordingly

    A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software Defined Networks and Manufacturer Usage Descriptions

    Get PDF
    abstract: The advent of the Internet of Things (IoT) and its increasing appearances in Small Office/Home Office (SOHO) networks pose a unique issue to the availability and health of the Internet at large. Many of these devices are shipped insecurely, with poor default user and password credentials and oftentimes the general consumer does not have the technical knowledge of how they may secure their devices and networks. The many vulnerabilities of the IoT coupled with the immense number of existing devices provide opportunities for malicious actors to compromise such devices and use them in large scale distributed denial of service attacks, preventing legitimate users from using services and degrading the health of the Internet in general. This thesis presents an approach that leverages the benefits of an Internet Engineering Task Force (IETF) proposed standard named Manufacturer Usage Descriptions, that is used in conjunction with the concept of Software Defined Networks (SDN) in order to detect malicious traffic generated from IoT devices suspected of being utilized in coordinated flooding attacks. The approach then works towards the ability to detect these attacks at their sources through periodic monitoring of preemptively permitted flow rules and determining which of the flows within the permitted set are misbehaving by using an acceptable traffic range using Exponentially Weighted Moving Averages (EWMA).Dissertation/ThesisMasters Thesis Computer Science 201

    Renforcement de la sécurité à travers les réseaux programmables

    Full text link
    La conception originale d’Internet n’a pas pris en compte les aspects de sécurité du réseau; l’objectif prioritaire était de faciliter le processus de communication. Par conséquent, de nombreux protocoles de l’infrastructure Internet exposent un ensemble de vulnérabilités. Ces dernières peuvent être exploitées par les attaquants afin de mener un ensemble d’attaques. Les attaques par déni de service distribué (Distributed Denial of Service ou DDoS) représentent une grande menace et l’une des attaques les plus dévastatrices causant des dommages collatéraux aux opérateurs de réseau ainsi qu’aux fournisseurs de services Internet. Les réseaux programmables, dits Software-Defined Networking (SDN), ont émergé comme un nouveau paradigme promettant de résoudre les limitations de l’architecture réseau actuelle en découplant le plan de contrôle du plan de données. D’une part, cette séparation permet un meilleur contrôle du réseau et apporte de nouvelles capacités pour mitiger les attaques par déni de service distribué. D’autre part, cette séparation introduit de nouveaux défis en matière de sécurité du plan de contrôle. L’enjeu de cette thèse est double. D’une part, étudier et explorer l’apport de SDN à la sécurité afin de concevoir des solutions efficaces qui vont mitiger plusieurs vecteurs d’attaques. D’autre part, protéger SDN contre ces attaques. À travers ce travail de recherche, nous contribuons à la mitigation des attaques par déni de service distribué sur deux niveaux (intra-domaine et inter-domaine), et nous contribuons au renforcement de l’aspect sécurité dans les réseaux programmables.The original design of Internet did not take into consideration security aspects of the network; the priority was to facilitate the process of communication. Therefore, many of the protocols that are part of the Internet infrastructure expose a set of vulnerabilities that can be exploited by attackers to carry out a set of attacks. Distributed Denial-of-Service (DDoS) represents a big threat and one of the most devastating and destructive attacks plaguing network operators and Internet service providers (ISPs) in a stealthy way. Software defined networks (SDN), an emerging technology, promise to solve the limitations of the conventional network architecture by decoupling the control plane from the data plane. On one hand, the separation of the control plane from the data plane allows for more control over the network and brings new capabilities to deal with DDoS attacks. On the other hand, this separation introduces new challenges regarding the security of the control plane. This thesis aims to deal with various types of attacks including DDoS attacks while protecting the resources of the control plane. In this thesis, we contribute to the mitigation of both intra-domain and inter-domain DDoS attacks, and to the reinforcement of security aspects in SDN

    Methods and Techniques for Dynamic Deployability of Software-Defined Security Services

    Get PDF
    With the recent trend of “network softwarisation”, enabled by emerging technologies such as Software-Defined Networking and Network Function Virtualisation, system administrators of data centres and enterprise networks have started replacing dedicated hardware-based middleboxes with virtualised network functions running on servers and end hosts. This radical change has facilitated the provisioning of advanced and flexible network services, ultimately helping system administrators and network operators to cope with the rapid changes in service requirements and networking workloads. This thesis investigates the challenges of provisioning network security services in “softwarised” networks, where the security of residential and business users can be provided by means of sets of software-based network functions running on high performance servers or on commodity devices. The study is approached from the perspective of the telecom operator, whose goal is to protect the customers from network threats and, at the same time, maximize the number of provisioned services, and thereby revenue. Specifically, the overall aim of the research presented in this thesis is proposing novel techniques for optimising the resource usage of software-based security services, hence for increasing the chances for the operator to accommodate more service requests while respecting the desired level of network security of its customers. In this direction, the contributions of this thesis are the following: (i) a solution for the dynamic provisioning of security services that minimises the utilisation of computing and network resources, and (ii) novel methods based on Deep Learning and Linux kernel technologies for reducing the CPU usage of software-based security network functions, with specific focus on the defence against Distributed Denial of Service (DDoS) attacks. The experimental results reported in this thesis demonstrate that the proposed solutions for service provisioning and DDoS defence require fewer computing resources, compared to similar approaches available in the scientific literature or adopted in production networks

    An intelligent, distributed and collaborative DDoS defense system

    Get PDF
    The Distributed Denial-of-Service (DDoS) attack is known as one of the most destructive attacks on the Internet. With the advent of new computing paradigms, such as Cloud and Mobile computing, and the emergence of pervasive technology, such as the Internet of Things, on one hand, these revolutionized technologies enable the availability of services and applications to everyone. On the other hand, these techniques also benefit attackers to exploit the vulnerabilities and deploy attacks in more efficient ways. Latest network security reports have shown that distributed Denial of Service (DDoS) attacks have been growing dramatically in volume, frequency, sophistication and impact, making it one of the most challenging threats in the Internet. An unfortunate state of affairs is that the remediation strategies have fallen behind attackers. The severe impact caused by recent DDoS attacks strongly indicates the need for an effective DDoS defense system. We study the current existing solution space, and summarize three fundamental requirements for an effective DDoS defense system: 1) an accurate detection with minimal false alarms; 2) an effective inline inspection and instant mitigation, and 3) a dynamic, distributed and collaborative defense infrastructure. This thesis aims at providing such a defense system that fulfills all the requirements. In this thesis, we explore and address the problem from three directions: 1) we strive to understand the existing detection strategies and provide a survey of an empirical analysis of machine learning based detection techniques; 2) we develop a novel hybrid detection model which ensembles a deep learning model for a practical flow by flow detection and a classic machine learning model that is aware of the network status, and 3) we present the design and implementation of an intelligent, distributed and collaborative DDoS defense system that effectively mitigate the impact of DDoS attacks. The performance evaluation results show that our proposed defense system is capable of effectively mitigating DDoS attacks impacts and maintaining a limited disturbing for legitimate services

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN

    Get PDF
    Distributed Denial of Service (DDoS) is one of the most rampant attacks in the modern Internet of Things (IoT) network infrastructures. Security plays a very vital role for an ever-growing heterogeneous network of IoT nodes, which are directly connected to each other. Due to the preliminary stage of Software Defined Networking (SDN), in the IoT network, sampling based measurement approaches currently results in low-accuracy, higher memory consumption, higher-overhead in processing and network, and low attack-detection. To deal with these aforementioned issues, this paper proposes sFlow and adaptive polling based sampling with Snort Intrusion Detection System (IDS) and deep learning based model, which helps to lower down the various types of prevalent DDoS attacks inside the IoT network. The flexible decoupling property of SDN enables us to program network devices for required parameters without utilizing third-party propriety based hardware or software. Firstly, in data-plane, to lower down processing and network overhead of switches, we deployed sFlow and adaptive polling based sampling individually. Secondly, in control-plane, to optimize detection accuracy, we deployed Snort IDS collaboratively with Stacked Autoencoders (SAE) deep learning model. Furthermore, after applying performance metrics on collected traffic streams, we quantitatively investigate trade off among attack detection accuracy and resources overhead. The evaluation of the proposed system demonstrates higher detection accuracy with 95% of True Positive rate with less than4% of False Positive rate within sFlow based implementation compared to adaptive polling
    • …
    corecore