
A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software

Defined Networks and Manufacturer Usage Descriptions

by

Laurence Chang

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2018 by the
Graduate Supervisory Committee:

Stephen Yau, Chair
Adam Doupé
Dijiang Huang

ARIZONA STATE UNIVERSITY

August 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/161995314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2018 Laurence Chang

All Rights Reserved

ABSTRACT

The advent of the Internet of Things (IoT) and its increasing appearances in

Small Office/Home Office (SOHO) networks pose a unique issue to the availability

and health of the Internet at large. Many of these devices are shipped insecurely, with

poor default user and password credentials and oftentimes the general consumer does

not have the technical knowledge of how they may secure their devices and networks.

The many vulnerabilities of the IoT coupled with the immense number of existing

devices provide opportunities for malicious actors to compromise such devices and

use them in large scale distributed denial of service attacks, preventing legitimate

users from using services and degrading the health of the Internet in general.

This thesis presents an approach that leverages the benefits of an Internet Engi-

neering Task Force (IETF) proposed standard named Manufacturer Usage Descrip-

tions, that is used in conjunction with the concept of Software Defined Networks

(SDN) in order to detect malicious traffic generated from IoT devices suspected of

being utilized in coordinated flooding attacks. The approach then works towards

the ability to detect these attacks at their sources through periodic monitoring of

preemptively permitted flow rules and determining which of the flows within the per-

mitted set are misbehaving by using an acceptable traffic range using Exponentially

Weighted Moving Averages (EWMA).

i

DEDICATION

To my parents and sister for all the encouragement and support

To my dog Remy, youse a good boy

ii

ACKNOWLEDGMENTS

Thank you to my adviser Dr. Stephen Yau for supporting me since my initial

step into the realm of cyber security. I will be forever grateful for the opportunity

to be a part of the CyberCorps Scholarship for Service and all the doors that have

been opened since then. I want to extend my gratitude to my committee members

Dr. Adam Doupé and Dr. Dijiang Huang. The classes I have taken with you have

allowed me to build up my foundations necessary for this work.

A very special thank you to Mudumbai “Ranga” Ranganathan, Michael Williams,

and Doug Montgomery, the opportunity you all provided to me at National Institute

of Standards and Technology (NIST) would ultimately be the very foundation of

which I was able to explore and produce a topic on. I will be forever grateful for

being allowed to take part in the SDN MUD project.

Thank you to Yaozhong Song, another student in Dr. Yau’s lab, for all the

help you have given me whether they were with questions regarding methodologies,

or possible directions I could explore. Thank you to Dr. Huang’s student, Ankur

Chowdhary, for helping me answer the questions I have had regarding networks, net-

work security, and for giving me general advice especially during the early stages of

refining my topic.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 6

2.1 Distributed Denial of Service Attacks and IoT Botnets 6

2.1.1 Flooding Attacks . 7

2.1.2 IoT Botnet . 8

2.2 Software Defined Networks. 11

2.2.1 OpenFlow . 14

2.3 Manufacturer Usage Descriptions . 15

2.3.1 Components of the MUD Architecture 18

2.3.2 Order of Operations . 28

3 RELATED WORKS . 30

3.1 Source-Based SDN Approaches . 30

3.2 Network-Based SDN Approaches . 32

3.3 Destination-based SDN Approaches . 34

3.4 SDN Defense Mechanisms Specific to the IoT 35

3.5 Points of Consideration . 38

4 APPROACH DESCRIPTION AND PROCEDURE 41

4.1 Implemented SDN Modules . 43

4.1.1 MUD Controller . 44

4.1.2 Flow Monitor . 49

iv

CHAPTER Page

4.1.2.1 Selection of Flow Features . 49

4.1.2.2 Determining Abnormality of Flows 53

4.2 Testbed Design and Network Topology . 58

4.3 Security Considerations . 62

5 EVALUATION AND RESULTS . 64

5.1 MUD Process . 64

5.2 Impact of the EWMA Tuning Parameter . 67

5.3 TCP SYN Flood Attack . 73

5.4 UDP Flood Attack . 78

6 CONCLUSION . 84

REFERENCES . 86

APPENDIX

A GENERATED MUD FILES . 90

B CONFIGURATION FILES . 96

v

LIST OF TABLES

Table Page

2.1. Mirai attack types . 9

2.2. Classes of MUD policies defined in the ietf-mud YANG module 22

4.1. Summary of unused IP flow features . 51

4.2. Summary of selected IP flow features . 52

5.1. Normal TCP Traffic False Positive Frequency Based on α 68

5.2. Match Fields of From-Device Flow Rules (Trial 1) . 74

5.3. Match Fields of To-Device Flow Rules (Trial 1). 74

5.4. TCP SYN Flood Detection Results (Attack Started at 40 Seconds) 76

5.5. TCP SYN Flood Detection Results (Attack Started at 60 Seconds) 76

5.6. TCP SYN Flood Detection Results (Larger Topology) 77

5.7. TCP SYN Flood Experiment (Removed BPS and PPS Lower Bounds) . . . 78

5.8. UDP Flood Detection Results (α = 0.10) . 80

5.9. UDP Flood Detection Results (Larger Topology, α = 0.10) 82

vi

LIST OF FIGURES

Figure Page

2.1. List of suspected devices susceptible to Mirai . 10

4.1. A pair of MUD flows (highlighted) in a switch’s flow table 48

4.2. SDN Topology in Mininet. 57

4.3. SDN Topology in Mininet. 61

5.1. MUD Controller process flow using MUD DHCP Method 66

5.2. H4: Bytes Per Second when α = 0.15 . 69

5.3. H4: Packets Per Second when α = 0.15 . 70

5.4. H4: Bytes Asymmetry when α = 0.15 . 70

5.5. H4: Packets Asymmetry when α = 0.15 . 71

5.6. H4: Bytes Per Second when α = 0.50 . 71

5.7. H4: Packets Per Second when α = 0.50 . 72

5.8. H4: Bytes Asymmetry when α = 0.50 . 72

5.9. H4: Packets Asymmetry when α = 0.50 . 73

5.10. H3 UDP Flood Wireshark Capture, Trial 16: True Negative Occurrence . . 81

vii

Chapter 1

INTRODUCTION

The Internet of Things, or IoT, is an emerging paradigm that is bringing innova-

tion in how services are provided and delivered. While there exists no firm definition

for the IoT, it is generally agreed upon that the core of the concept enables the net-

work of resource constrained devices to provide services over the traditional Internet

[1]. The emergence of Internet of Things (IoT) devices in SOHO (Small office/home

office) networks has led to unprecedented new methods of delivering these services to

consumers. These Internet connected devices such as smart light bulbs, IP cameras,

DVRs, and even baby monitors to just name a few, are becoming commonplace ob-

jects in households across the world, contributing to the exponential growth of the

network infrastructure [2]. While the IoT is increasingly finding its role in the provi-

sioning of services and operations in these types of networks, one glaring issue remains

and poses a serious threat to the health of the Internet overall, namely the inherent

insecurity of the devices themselves. There are a number of factors that contribute to

these insecurities. The first of these concerns the sheer number of devices that make

up the IoT. The number of these types resource-constrained devices are ever growing,

with companies like Gartner and Cisco estimating that by 2020, the number of IoT

devices in existence may be 26 billion [3] and 50 billion respectively [4]. Intel, on the

other hand, estimate this number to be as high as 200 billion [5]. Regardless of the

more accurate value, the common factor is that the number of Internet connected,

limited-purpose, devices are increasing far beyond their human counterparts, creating

concerns in scalability and open attack surface. When also taking into account the

1

heterogeneous nature of the variety of devices that make up the IoT, it is easy to see

that proper security configuration of the network is not a trivial task. In an industry

environment, administrators would not only need to ensure that these devices are

receiving access to their required services but also need to ensure that only legitimate

and permitted communications may reach the device itself. With different devices

speaking different protocols, speaking through different ports, and in need of access to

different applications and hosts, this job is both time consuming and difficult. Bring

this challenge into the small office and home network environment and it becomes

apparent that if the consumer lacks the technical knowledge and skill to configure

their own networks, they stand very little chance against malicious actors hoping to

take over these devices for their own gain.

In the event that unauthorized network access is achieved by an adversary, limited-

purpose IoT devices unfortunately do not make the task of hijacking them any more

difficult. Due to their resource-constrained nature, these devices lack the capability

and computing power to truly establish practical protection mechanisms. Further-

more, IoT devices suffer from the same security issues that most computing systems

suffer from, namely those caused by human factors. Developers are bound at some

point to make mistakes and this directly affects the security of devices that run these

vulnerable applications. Vulnerabilities may go undiscovered for quite awhile and

when they are discovered, it can take quite some time for patches to roll out, by

which it may be too late. Despite these known threats, reports by HP and Gartner

claim that by 2020, 60% of their predicted 26 billion devices predicted will still be

insecure and highly susceptible to exploition [6].

The consequences of IoT insecurity are already present. Evidence for the uti-

lization of so called IoT botnets have already been found in multiple incidents of

2

distributed denial-of-service attacks in the past couple years. The Mirai malware,

arguably the most well-known IoT malware, has been largely responsible for these

attacks. The Mirai botnet is known to have been comprised of IoT devices that in-

clude routers, printers, IP cameras, and webcameras, and has already been uitilized

in several occasions [7]. In one such case on September 22, 2016, the security website

KrebsOnSecurity owned by journalist Brian Krebs, was brought down for about four

days in an attack that peaked around to 620 Gbps [8]. A few days before the Krebs

attack, on September 19, 2016 the Mirai botnet was used against the French webhost

and cloud service provider OVH, an attack peaking at around 1.1 Tbps [9]. Perhaps

the most infamous use of Mirai occurred just a month later in October when the

botnet was used against the Domain Name System (DNS) provider Dyn in an attack

that reportedly peaked up to 1.2 Tbps, effectively bringing down the availability of

websites such as Twitter, Netflix, Reddit, and Github for several hours [9][10].

These incidents have given insight to how severe IoT based DDoS attacks can be

in a world encompassed by an ever increasing number of vulnerable IoT devices with

no means of protecting themselves. Since the release/leak of Mirai’s source code in

October 2016, a variety of Mirai variants have emerged, each with different capabilities

and demonstrating that the IoT is going to be utilized for malicious intentions as long

as they stay insecure. The capability of generating attacks reaching sizes of terabits

per seconds is no longer a difficult task due to the potential masses of IoT devices

that are susceptible to hijacking, and finding a solution to detect and mitigate these

attacks is crucial for the health and availability of the Internet.

This thesis seeks to provide an approach for the detection of these types of at-

tacks by utilizing a proposed Internet Engineering Task Force (IETF) specification,

Manufacturer Usage Descriptions [4][11]. Basing our work off those proposed at the

3

National Institute of Standards and Technology [12], we introduce a proof of concept

that implements the policing properties of the Manufacturer Usage Description archi-

tecture in an Software Defined Network context in order to define the predetermined

traffic flows that are associated with the limited-purpose IoT devices that would be

supported by the MUD specification, which we define as a MUD enabled device, or

MUD device. From this set of predetermined flows, we demonstrate that we can

narrow down the possible victims that potentially compromised MUD devices can

attack such that we only need to monitor the flows within the permitted set to detect

those flows behaving abnormally and indicative of flooding attacks. Furthermore, we

envision that this type of system will be deployed at the network edge and managed

by a third party with a view of all the managed IoT networks (potentially an ISP-like

entity) such that detection may be done as close to the source as possible, allowing

for the stoppage of malicious traffic directly at the gateways that are used by the

misbehaving MUD devices. Through use of the OpenFlow protocol, we are given

the capability of collecting statistics from each flow within the set of permitted flows.

We attempt to model the behaviors of each MUD flow in terms of a four-tuple of

IP flow features computed during a predetermined time interval, using a weighted

exponential moving average time-series to determine if the metrics computed for a

flow during a given interval is within the bounds of the recorded normal behavior or

if the flow is indicative of flooding attacks.

The main contributions of this work are:

• A simplified SDN implementation of the MUD controller, the policy decision

point component of the MUD architecture.

• An approach to selecting flows of interest originating from MUD IoT devices

by utilizing the assumptions provided by the Manufacturer Usage Descriptions

4

specification. We define these flows as those displaying the characteristics of

volumetric and asymmetric features common in DDoS flooding attacks.

We begin this thesis by covering the background of the problem we seek to address

(DDoS flooding attacks, particularly those generated by IoT sources), along with the

technologies that make up our proposed proof of concept, in Chapter 2. We continue

on in Chapter 3 by examining the related works for DDoS and IoT network security

using SDN. In Chapter 4, we present the components of the system and the design

of the testbed, which are described in detail. Finally, in Chapter 5, we layout our

experimentation procedure and evaluate the results.

5

Chapter 2

BACKGROUND

2.1 Distributed Denial of Service Attacks and IoT Botnets

Denial of Service (DoS) attacks are network attacks that seek to compromise the

availability of network resources such that the attempts by legitimate users to access

them are denied. A Distributed Denial of Service is a type of DoS in which the attack

traffic stem from many different sources, thus it is distributed in nature. A DDoS

attack is carried out through several phases, identified by [13] as the recruitment,

exploitation, and infection phases. The recruitment phase of a DDoS attack involves

the search for vulnerable machines that may be added to the attacker’s arsenal and

used as an attack entity. This is commonly performed through the scanning of remote

machines in order to find certain vulnerabilities the attacker can exploit. After finding

such vulnerabilities, the attacker may enact the exploitation and infection phases

by first breaking into the device by exploitation the known vulnerability, and then

running attack code such that control of the device is gained by the attacker. The

compromised devices are finally turned into agents, known as bots, that the attacker

can control. The continuous recruitment of potential victims results in a larger botnet

that the attacker can then further utilize to launch an attack on a victim or repeat

the process of scanning for new victims.

Zargar et al [14] describe the two main current methods that are used to launch

DDoS attacks on the Internet. The first method involves the attacker delivering

malformed packets to the victim with the intent of either confusing a network protocol

6

or breaking a vulnerable application the victim may be running. The second and more

common method involves the attacker attempting to exhaust either network or server

resources by launching network/transport layer flooding attacks to achieve the former,

and application layer flooding attacks to accomplish the latter.

2.1.1 Flooding Attacks

Flooding attacks can be categorized into those that target the network/transport

layer or the application layer. Network and transport layer DDoS flooding attacks

often launch TCP (Transmission Control Protocol), UDP (User Datagram Protocol),

ICMP (Internet Control Message Protocol), and DNS (Domain Name System) pro-

tocol packets with a goal of exhausting a victim’s network resources by way of four

possible methods [14]. The first is by way of delivering large volumes of spoofed or

non-spoofed packets that take up a network’s bandwidth, disrupting legitimate con-

nections from occurring. The second is through protocol exploitation flooding attacks

in whch a feature of a protocol is exploited, thus consuming resources of the victim

like in the case of a TCP SYN flood attack. The third method is through reflection

based methods, where the attackers spoof the victim and send forged requests to a

network of reflectors. In turn, a mass volume of responses that think the request

was legitimate overwhelm the victim, exhausting the bandwidth available for legiti-

mate users. Finally, the last way in which an attack can be carried out against the

network/transport layer is by way of amplification-based attacks. In these types of

attacks, the attacker exploits services that generate large responses in comparison

to a smaller request and direct these to the victim, resulting in the victim receiving

large volume of traffic.

7

Application layer attacks differ from network and transport layer attacks in that

they seek to target the services of the victim, aiming for resources such as sockets,

CPU, memory, disk/database bandwidth, and I/O bandwidth [14]. The detection

of application layer attacks is not a trivial task and is often very difficult to do

so because of the difficulty in distinguishing attack traffic from normal application

layer traffic. For example, in HTTP (Hypertext Transfer Protocol) flooding attacks,

standard HTTP protocol methods are used against the victim, such as GET and

POST, without any need of sending malformed payloads or spoofing IP addresses.

Most HTTP flooding attacks are carried out with bots that all simultaneously request

a specified resource such that legitimate requests are not responded to due to the

compromised server-side processing. The consequences of these types of attacks are

that less bandwidth is consumed by attackers and are more stealthy in behavior as

compared to their network and transport attack counterparts.

2.1.2 IoT Botnet

The IoT has increasingly become a concern for the security of modern computer

networks, especially those IoT devices that are considered to be resource-constrained

and limited-purpose. The IoT’s odd mixture of features including its ubiquity, limited

computational capabilities, sheer size, and the continuous open Internet connection

of its devices, has led to the exposure of security holes that have been exploited by

IoT malware. To get an idea of how IoT devices are recruited, exploited, and infected

for use in a DDoS attack, we examine the most well-known IoT malware, Mirai, and

how it operates as detailed by [2][9][15]. The Mirai botnet is composed of four major

components that consist of the bots themselves, the command and control server,

8

the loader responsible for selecting the right platform executables to use for infection,

and the report server which maintains a database of connected devices in the botnet.

Mirai first initializes the recruitment step by scanning for random public IP addresses

on TCP ports 23 or 2323, the ports used by the Telnet protocol. Upon finding a

host, Mirai begins a brute-force search for common preconfigured credentials (such

as admin:password) in order to break into the device itself. Upon gaining access

to a command line, device information is delivered to the report server whom the

command and control server may reach to check the statuses of potential victims and

devices already integrated into the botnet. Upon determining the hosts susceptible

to infection, a command is issued to the loader to login to the victim with the found

credentials and downloads the executable that corresponds to the architecture of the

device. After installation of the malware, the command and control server can now

communicate directly with the bots to initiate an attack from a list of 11 available

commands as shown in Table 2.1.

Table 2.1. Mirai attack types
Attack Name Type
ATK_VEC_UDP UDP Flood
ATK_VEC_VSE Valve Source Engine query Flood (Specific to the Source game engine)
ATK_VEC_DNS DNS Water Torture [16]
ATK_VEC_SYN SYN Flood
ATK_VEC_ACK ACK Flood
ATK_VEC_STOMP ACK Flood to bypass mitigation devices
ATK_VEC_GREIP GRE IP Flood
ATK_VEC_GREETH GRE Ethernet Flood
ATK_VEC_PROXY Proxy knockback connection
ATK_VEC_UDP_PLAIN Plain UDP flood optimized for speed
ATK_VEC_HTTP HTTP layer 7 flood
Source: Özçelik et al [6]

The release of Mirai’s source code has surprisingly not led to more implementa-

tions of detection and defense mechanisms to address IoT threats. In fact, a 2016 Q4

9

Figure 2.1. List of suspected devices susceptible to Mirai
Source: Krebs on Security [7]

DDoS Threat report by the security company Nexusguard has found that the number

of bot instances have actually doubled from 213,000 to 493,000 since the emergence

of Mirai variants, two months after code release [9]. A variety of other IoT malware

have also been identified since then including the first IoT botnet written in Lua

aptly named Luabot, Hajime, and Brickerbot. Variants of Mirai continue to emerge

as late as January 2018 with the identified Mirai variant Mirai Okiru that targets de-

vices running on the Argonaut RISC Core (ARC) processor [17]. More than 2 billion

products are shipped with the ARC CPU including cameras, mobile devices, utility

meters, televisions, flash drives, and automotives, giving insight as to just how large

and diverse an attack may be comprised of.

10

2.2 Software Defined Networks

Software Defined Networking (SDN) is a networking paradigm that seeks to ad-

dress the various issues that are associated with traditional IP networks such as the

difficulty of managing increasingly complex networks and the hindering of network

innovation, due to the “closed box” solutions of proprietary networking elements.

SDN serves as a promising solution for such issues due to its motivation of separat-

ing the control logic of the network from the network elements that forward traffic

based on the decisions made at the control plane. This decoupling of the control

and data plane results in abstractions of the underlying network infrastructure that

provides an operator with one of the fundamental pillars of the SDN concept, the

programmability of the network. There are three abstractions that define an SDN;

forwarding, distribution, and specification [18]. In the forwarding abstraction, details

of the underlying networking hardware are hidden away such that an operator may

be able to shape forwarding behavior as desired without needing to worry about in-

dividual device states. The distribution abstraction on the other hand is responsible

for the dynamic management of the forwarding devices as well as the collection of

network status. These efforts result in a global and centralized view of the network

that masks the distributed nature underneath. Finally, the specification abstraction

details the notion of allowing a network application to enable a desired modification of

the network behavior without requiring direct interaction with the data plane itself.

These three abstractions can be achieved through the implementation of a net-

work operating system (NOS), also known as an SDN controller. The SDN controller

is a logically centralized entity that acts as the “brains” of the network and has direct

control of the data plane via what is known as the Southbound APIs. This interface

11

grants the controller the capability of dynamically configuring the switches or routers

with the forwarding decisions made separately at the control plane. An interface

is also provided for application developers via the Northbound APIs, enabling the

communication between network applications and the SDN controller. These appli-

cations run on top of the controller and are able to program the underlying data plane

through the controller using high level instruction sets or programming languages that

are translated into the instruction sets used by the Southbound API.

SDN has emerged as a premier candidate for DDoS defense solutions. Yan et al

[19] describe five major features of SDN that make it such a promising tool to defeat

DDoS attacks.

1. Separation of control and data plane:

Through the separation of control and data plane, network security ideas can

be swiftly implemented without concern for understanding a network element’s

“black box” configurations. These abstractions that SDN provide enable rapid

innovation and deployment of large scale experiments that are configurable and

easy to take down or build up.

2. Centralized Logic and View of the Network:

The centralized capabilities of the SDN controller allow for the monitoring of all

traffic patterns within a given network. This allows the controller to quarantine

hosts that are suspected of misbehaving as well as continuously identify security

threats that have not been present previously.

3. Programmability:

SDN gives applications such as Intrusion Detection Systems (IDS) and Intrusion

Prevention Systems (IPS), the capability of programming the network based on

its determination of the data collected from the controller. Furthermore, the

12

current state of the network itself may be provided to northbound applications

to further determine how a future state might look.

4. Software-based Traffic Analysis:

Due to the controller being a software-based entity, innovation to how traffic is

collected and processed provides an edge over those traditionally implemented

on a switch. Software based tools such as databases or IDS/IPS can be utilized

to assist in the process of analyzing or detecting traffic of interest. Machine

learning algorithms have also been an area of interest to use in conjunction

with SDN.

5. Dynamic Updating of Forwarding Rules:

Mitigation can be provided by SDN through the installation of rules that drop

traffic deemed malicious by a northbound application, preventing unwanted

traffic from propagating into the network. This also provides for an opportunity

to reactively install forwarding rules that pipe flows of interest towards entities

that are capable of performing Deep Packet Inspection, or towards machine

learning applications that have the capability of generating new policies for

previously unencountered attacks.

These features and characteristics of SDN are what brings promise in answering

the two major obstacles in regards to IoT security; heterogeneity and scalability [20].

SDN provides for the possibility of being able to provide crypto, network, and traffic

based security solutions to a variety of devices by way of platform independent SDN

applications. Scalability of the network can be addressed through centralized han-

dling of security configurations that are deployed uniformly throughout the network,

without needing to worry about potential conflicts that may occur if security policies

were implemented in a distributed fashion to individual network devices, such as in

13

traditional networks. It is envisioned that in the IoT environment, the controller will

play a major role in providing these kinds of security solutions for those resource-

constrained devices who may not be able to perform security measures themselves.

2.2.1 OpenFlow

The OpenFlow protocol is an example of a Southbound API and is currently the

most popular solution for SDN implementation. The OpenFlow architecture consists

primarily of two elements, the SDN controller, which is responsible for managing

the collection of forwarding devices that make up the data plane, and the OpenFlow

enabled forwarding devices themselves. Each OpenFlow switch consists of a channel

that enables communication between controller and switch [21]. An OpenFlow switch

will consist of one or more flow tables which the controller may configure by adding

new flow entries to the table, deleting existing flow entries, or just modifying them.

Flow entries are composed of match fields that are to be matched by received packets,

such as Ethernet addresses, IP addresses, source and destination port numbers, and

switch port numbers, to name a few. Upon a match or packet hit, the specified flow

action for that match may be applied to the packet allowing for actions like packet

forwarding, packet dropping, or sending the packet up to the controller for further

processing and decision making. If there exists no flow entry for a packet to match

against, it may be sent up to the controller, which then decides to either drop it

or create a new flow rule such that any future packets that match the flow will be

handled automatically by the switch without controller intervention.

Flow entries also consist of counters that are able to provide the statistics of

a given flow. The received packets counter gives the number of packets that have

14

matched the given flow while the received bytes counter gives the number of bytes

that have matched the given flow. These counters can be polled by the controller

in order to monitor the traffic of a given switch. Applications running on top of the

controller may also poll for this data in order to provide a more complex service such

as QoS.

2.3 Manufacturer Usage Descriptions

Manufacturer Usage Descriptions (MUD) is a proposed Internet Engineering Task

Force specification written by Elliot Lear, Ralph Droms, and Dan Romascanu, that

describes a component based architecture that provides a means for limited-purpose

IoT devices to relay its intended access controls and network needs to a given net-

work. Traditionally, hosts on the Internet have primarily consisted of general purpose

computing devices such as desktops and laptops (and in more recent years, smart-

phones and tablets) that are capable of speaking various types of protocols, utilized

for a multitude of different tasks, and equipped with adequate amounts of resources

such that they are capable of performing security measures on board. However, when

we view the modern Internet in the scope of the IoT, many of these qualities are

oftentimes unavailable in IoT devices. Very often are smart Things designed to be

limited-purposed type devices, meaning they have been built by the manufacturers

with specific intentions and functionality in mind.

As a simple example, let us examine what the most likely intentions of an IP

camera should be. Given that the device is a camera, it is likely that the primary

function of this device is to survey and record a given environment, such as for

home security, and stream the captured frames to a a destination host such as a

15

local or remote server. The camera most likely will not be able to speak and process

routing protocols or allow remote access to itself other than perhaps through a service

in the form of a designated cloud service or mobile application. The camera most

likely should not have the capabilities of reaching other hosts on the Internet such as

Facebook, Google, or Netflix.

MUD can be realized through leveraging the manufacturer’s role in describing

the intent and communication patterns of their products, such as those described in

the example. In the draft, the authors mention that the term manufacturers is used

loosely to include any entity (organization or local administrator) with a notion of

an intended communication pattern for a MUD enabled IoT device. In this thesis,

we work on the premise that in general, consumers who buy these MUD enabled

devices would likely be content with the default network access recommendations by

the manufacturers and delegate the role of implementing these access controls to a

more capable entity. A controller would then be responsible to process these policies

such that the configurations may be deployed to the network elements which would

enforce the described access controls. By securing IoT devices using this whitelist

approach, several benefits become apparent.

• The surface of attack for a given device is reduced, the device is consequentially

limited to only the intended functions and actions it may perform if compro-

mised

• Network configurations for an ever increasing number of heterogeneous devices

becomes more manageable and scalable due to pre-determined polices. We can

expect that even devices that are distributed around the world, as long as they

are of the same model and from the same manufacturers, they should adhere

to the same access controls specified by the manufacturers

16

• An additional layer of protection is provided to address existing vulnerabilities

on devices in a more timely manner than it may take for manufacturer patches

to roll out, an especially important point for those devices that are no longer

supported

The MUD architecture has a couple limitations to note. The first and foremost

is that MUD was conceived with the purpose of addressing network authorization

and security issues that IoT networks face. Given a general purpose computing

devices such as a desktop, it becomes very difficult and meaningless to define the

communication patterns it may have. Unlike a smart camera, a computer may be

used for various different types of tasks. This implies that a general purpose computer

will also most likely need to speak various types of protocols whereas the camera may

only need to speak one or two. In this thesis, we utilize MUD as intended, to provide

an additional layer of security to an IoT network comprised of limited-purpose smart

devices. Another limitation imposed on MUD is that it currently lacks the capability

of examining application layer payloads. As such, MUD is not a “end-all” solution to

prevent attacks on an IoT network, but rather serves as an additional component and

layer to protect against vulnerabilities in place of patching until they are identified

and their fixes can be deployed.

The author’s of the MUD proposal state that the MUD architecture is primarily

used to address the threats to the devices rather than address the issue of the devices

as a threat themselves. However, they note that depending on how certain processes

are enacted and communicated, there may be offers of some protections against at-

tacking devices. It is apparent that MUD is inherently useful for defending against

attacks on IoT devices, however, we dedicate the majority of our discussions and this

work towards investigating how the MUD architecture can be leveraged to protect

17

the Internet infrastructure from malicious devices. We detail this work more in depth

during our discussion on design and implementation of the system. In the following

sub-sections, we describe the components that make up the MUD architecture along

the order of operations as they are defined in [11].

2.3.1 Components of the MUD Architecture

IoT Devices

In the context of the Manufacturers Usage Descriptions, the Thing or IoT device

is a resource-constrained and limited-purpose device that is produced by the man-

ufacturer with a specific intent and communication pattern in mind. The Thing is

what MUD seeks to secure by reducing the surface of attack through the deployment

of policies that define the communication patterns of the device. For the remainder of

this thesis, when we refer to the terms Thing, IoT device or device, we mean them in

the context of MUD where the IoT devices are limited-purpose, resource-constrained,

and would ideally have an associated MUD policy. This is also synonymous with a

term we coin, MUD enabled device, to define a limited-purpose IoT device with a

associated MUD policy.

MUD Controller/MUD Manager

The MUD controller is the Policy Decision Point (PDP) of the system. It is

responsible for receiving the URL describing the location of where to retrieve a MUD

device’s communication policy, known as the MUD file, and then retrieving the

18

actual file itself. Upon retrieval of the MUD file, the MUD controller is expected

to validate and parse the file such that abstractions specified in the file (such as

certain policy classes) may be resolved and mapped. The device’s access controls

and configurations are then deployed onto the network elements, including routers or

switches. These abstractions and their mappings are then maintained and updated

by the controller as needed.

MUD Universal Resource Locator (MUD URL)

The MUD URL is a Universal Resource Locator (URL) that describes where the

MUD file (policy) for a MUD device may be retrieved. It is emitted by the IoT device

and forwarded to the MUD controller through one of three described methods.

• DHCP Option: In this method, the client uses the Dynamic Host Configuration

Protocol (DHCP) with the IANA reserved DHCP option 161 that is used to

indicate to the DHCP server that it has a MUD policy that can be retrieved

at the given URL. The DHCP server may then either process the URL itself

if it is capable, or forward it to another entity such as the MUD controller

for MUD file retrieval. For the purposes of this thesis, we use this option to

implement the functionality and relaying the MUD URL to better portray and

demonstrate the process.

• X.509 Constraint: The MUD URL can also be communicated to the controller

through a certificate based approach by using a defined X.509 non-critical ex-

tension containing a single MUD URL to locate the MUD file for the device.

Signature checking is performed by validating the device’s manufacturer cer-

tificate chain and is successful if the certification chain can be validated AND

19

if the subject field of the device certificate is equal to the subject field of the

certificate used to sign the MUD file itself.

• LLDP Option: This method leverages the Link Layer Discovery Protocol in

order to advertise the identity, capabilities and neighbors of the Things. The

main intent of this method is to be able to uniformly identify the types of

MUD devices to the network in a standard fashion, without the need to discern

devices of different vendors, as LLDP is a vendor-neutral protocol.

The MUD URL must use the HTTPS scheme to ensure that the identity of the

manufacturer’s MUD file server, which hosts the MUD files, can be verified. This

also assists in assuring the MUD file’s integrity itself.

Any URL that follows the HTTPS scheme can be a MUD URL. Several examples

of what a MUD URL may look like are provided in the proposed specification [11].

• https://things.example.org/product_abc123/v5

• https://www.example.net/mudfiles/temperature_sensor/

• https://example.com/lightbulbs/colour/v1

To better ensure the legitimacy of the file that the URL points to, the URL may

be tested against web or domain reputation services after signature validation of the

MUD file.

MUD File Server

The MUD File server is simply a web server that hosts a MUD file. These are

envisioned to be hosted by the Manufacturers of the Things.

20

https://things.example.org/product_abc123/v5
 https://www.example.net/mudfiles/temperature_sensor/
https://example.com/lightbulbs/colour/v1

MUD File

The MUD file serves to describe the associated IoT device, as well as its intended

communication patterns and access controls. The file itself is a JSON file that is a

serialization of a data model instance written in YANG (Yet Another Next Genera-

tion), a data modeling language often used to define data that is sent through the

network to configure and retrieve the states of network elements. The MUD YANG

model itself consists of the use of three defined YANG modules.

• ietf-access-control-list: A YANG model defined in [22] that defines a

access control list model. MUD uses this module to describe the permitted

communication patterns in both directions that are associated with a Thing.

Each access control rule is defined as an access entry. When access entries of a

device are defined in MUD, one can assume that the only features implemented

would be those access controls that match against IPv4, IPv6, TCP, UDP, and

ICMP rules as they are defined in [22].

• ietf-mud: The ietf-mud model itself is structured into three parts. The first

component describing metadata relevant to the MUD file itself such as its MUD

version, retrieval, validity, last updates, policy names, and model names among

others. The second part of this model adds some augmentations to the pre-

viously mentioned ietf-access-control-list model that describe classes of

policies relevant to the use of MUD URLs that may be used within a local

environment. The set of classes are meant to abstract away IP addresses that

can later be instantiated into actual addresses through local configuration. We

summarize the definitions of these classes as they are presented by the au-

thors of the Manufacturer Usage Description draft in Table 2.2. Finally, the

21

third component of the ietf-mud model augments the TCP match container in

the ietf-access-control-list model so that one may be able to define and

match on the direction of initiation for a TCP connection.

• ietf-acldns: The last model used by the MUD file is the ietf-acldns, an

extension that augments the ietf-access-control-list model to allow the

ability of referencing domain names. Both IPv4 and IPv6 matches are aug-

mented with this extension. The data nodes defined in this module include the

specification of a source DNS name for inbound flows, and a destination DNS

name for outbound flows.

Table 2.2. Classes of MUD policies defined in the ietf-mud YANG module
manufacturer Class A class of devices specified by the authority component of the device’s

MUD URL.
same-manufacturer Class A class of devices identified by the same authority component of their

MUD URLs.
controller Class A class of devices that are identified by a specified controller’s URI.

The controller’s URI is expected to be registered with the MUD con-
troller such that it may maintain and update the mappings as needed.

my-controller Class A class of devices that are mapped by a given MUD URL as specified
by the MUD controller.

local Class Class of IP addresses scoped within a specified administrative bound-
ary, such as the local subnet.

We do not make extensive use of these classes for the purposes of our thesis,

but understand their importance and the scenario that if devices were wrongfully

admitted into any of these classes, it could potentially lead to the compromising of

the other devices within the class. It is because of this security consideration that we

are interested in exploring the ability to detect the devices suspected as being used as

attack vectors, despite already being within the MUD specified access controls. Upon

the MUD file’s retrieval, the MUD controller must be able to validate the signature

corresponding to it, which is signed by the MUD device’s manufacturer. The MUD

controller can retrieve the associated signature by examining the mud-signature

22

field, which specifies the URI resolving to the signature. This serves as a measure to

prevent malicious tampering of the file and ensuring the file’s integrity.

Listing 2.1 is an example of what a MUD file can look like. This particu-

lar example describes two policies that use IPv6, one for outbound traffic from

the device and one for inbound traffic to the device from a cloud server. The

outbound access control entry defines communication that is initiated by the de-

vice using the TCP protocol with the destination port 443 and destination host

service.bms.example.com. The inbound policy defines communication from the

server in response to the initiated communication from the client from source port

443, source host service.bms.example.com, and using the TCP protocol.

1 {

2 "ietf -mud:mud":{

3 "mud -version":1,

4 "mud -url":"https://lighting.example.com/lightbulb2000"

,

5 "last -update":"2018-03-02T11:20:51+01:00",

6 "cache -validity":48,

7 "is-supported":true,

8 "systeminfo":"The BMS Example Lightbulb",

9 "from -device -policy":{

10 "access -lists":{

11 "access -list":[

12 {

13 "name":"mud -76100-v6fr"

14 }

23

15]

16 }

17 },

18 "to-device -policy":{

19 "access -lists":{

20 "access -list":[

21 {

22 "name":"mud -76100-v6to"

23 }

24]

25 }

26 }

27 },

28 "ietf -access -control -list:access -lists":{

29 "acl":[

30 {

31 "name":"mud -76100-v6to",

32 "type":"ipv6-acl -type",

33 "aces":{

34 "ace":[

35 {

36 "name":"cl0-todev",

37 "matches":{

38 "ipv6":{

24

39 "ietf -acldns:src -dnsname":"test.

com",

40 "protocol":6

41 },

42 "tcp":{

43 "ietf -mud:direction -initiated":"

from -device",

44 "source -port":{

45 "operator":"eq",

46 "port":443

47 }

48 }

49 },

50 "actions":{

51 "forwarding":"accept"

52 }

53 }

54]

55 }

56 },

57 {

58 "name":"mud -76100-v6fr",

59 "type":"ipv6-acl -type",

60 "aces":{

61 "ace":[

25

62 {

63 "name":"cl0-frdev",

64 "matches":{

65 "ipv6":{

66 "ietf -acldns:dst -dnsname":"test.

com",

67 "protocol":6

68 },

69 "tcp":{

70 "ietf -mud:direction -initiated":"

from -device",

71 "destination -port":{

72 "operator":"eq",

73 "port":443

74 }

75 }

76 },

77 "actions":{

78 "forwarding":"accept"

79 }

80 }

81]

82 }

83 }

84]

26

85 }

86 }

Listing 2.1. Example of a MUD file describing permitted HTTPS communications

to and from the device at service.bms.example.com

(Source: Lear, Droms, and Romascanu [11])

27

Network Access Device

The Network Access Device is a router or switch that serves as the first hop onto

the local network and as such, serves as the means to forward the MUD URL emitted

by the Thing to the MUD controller. It is also the device that is to be configured by

the MUD controller based on the MUD policies associated with the Thing, allowing

only the type of traffic defined in the MUD file. For our approach, we use the software

switch Open vSwitch (OvS) as our NAD in order to build the system in an SDN

context. Using OvS allows for the SDN controller to configure the switch by way of

flow rules that are then pushed onto the switch’s flow tables. These flow rules then

serve as whitelists that the traffic must match before it is forwarded to the correct

port or device. If there exists no MUD flow that a flow matches with, then an alert

is generated and the suspected traffic is forwarded to the controller for further action.

2.3.2 Order of Operations

In general, the order of operations of a MUD implementation will align with the

following flow of events.

1. The Thing emits MUD URL

2. The MUD URL is forwarded to the MUD controller using one of the three

methods described previously

3. The MUD controller retrieves the MUD file and its associated signature file

as described in the file itself. Validation of the policy file is expected to be

performed at this step

28

4. The MUD controller processes the MUD file and resolves any abstractions in

the file (DNS names, same-manufacturer classes, controller access, etc.)

5. The MUD controller deploys the generated configurations onto the network

elements that the Thing has connected to

We use this as a template to define the order of operations that our proof of

concept SDN MUD implementation will follow. This process is described more in

depth in Chapter 4.

29

Chapter 3

RELATED WORKS

The use of SDN as part of DDoS defense have been explored in many works, with

several of them specific to the IoT landscape. Yan et al [19] surveyed various works

that used SDN to defend against DDoS attacks and describe the three categories in

which SDN DDoS solutions may be classified. We divide the first three sections of

this chapter into the general SDN defense approaches (not necessarily pertaining to

the IoT), categorized as source-based, then network-based, and finally destination-

based. We then reserve a section to discuss the current works in SDN DDoS defense

specifically in the IoT scope.

3.1 Source-Based SDN Approaches

To address the increasing number of network devices connected to the Internet

through SOHO networks, Feamster [23] proposed a concept in which home network

security is outsourced to a third party entity that would be more capable in securing

these networks that normally would be managed poorly, if they were managed at all.

To accomplish this, it is posed that management should be delegated to an entity

with a broad network view and allows for the networks managed by this entity to

operate in a “plug and play” fashion, relieving the burden of management from from

the end users. The central controller as it were would have access to programmable

gateways that reside in the home networks from which statistics, network state, and

network activity can be retrieved and processed. Based on the decisions made at the

30

central controller, it may program the network at large through installation of new

forwarding rules, filtering rules, or access controls configurations.

Work proposed by Medhi et al [24] carry on the approach of deploying network

security solutions at the source of traffic by enabling standardized programmablity

through SDN. In their work, it is argued that threat detection is best placed in the

home network where algorithms can run at line rates and traffic rates are low. Mean-

while, the delegation of security policies into downstream networks is also achieved

through communication of controller and programmable home gateways. To demon-

strate their hypothesis, they implement four anomaly detection algorithms faithfully

in the SDN context using the NOX controller and OpenFlow protocol. The algorithms

that were implemented were Threshold Random Walk with Credit Based Rate Lim-

iting, Rate Limiting, Maximum Entropy Detector, and NETAD (Network Anomaly

Detection), with all four following the main idea of only installing flow rules when-

ever a connection attempt succeeds. Their results show that they were able to detect

anomalies with high true positive and low false positive rates at the hpoity scoopome

network as compared to the ISP level. They primarily attribute this to the difficulty

of running anomaly detection algorithms that must service thousands of home gate-

ways. While it should be noted that when concerned with general networks, this

observation holds true, we observe that in IoT networks if we were to limit the flows

to only those that are permitted beforehand, the detection of recruit and exploitation

phases (such as occurrence of port scans) of DDoS can simply be handled by the

filters. Thus we argue that placing security at the ISP level becomes a more viable

option, where configurations are completely handled at the ISP level such that end

users can inact the “plug and play” desirability as mentioned in [23].

31

3.2 Network-Based SDN Approaches

Network-Based SDN approaches can often be implemented as SDN applications

and are generally composed of functional modules that perform flow collection, feature

extraction, anomaly detection, and a means of attack mitigation [19].

A lightweight approach is proposed by Braga et al [25] that leverages the global

visibility that SDN provides in order to monitor the switches within a SDN and classify

the traffic they handle as either benign or malicious using a artificial neural network

running on the controller. Three modules are described and implemented in their

work. The first is the Flow Collector, used to periodically request flow entries from

all flow tables of all registered switches. This is then fed into the Feature Extractor

module, which computes and produces a 6-tuple of features, each associated with

the corresponding switch that statistics were pulled from, that are to be used by the

Classifier (anomaly detector) that analyzes whether the given 6-tuple corresponds to

a DDoS flooding attack or legitimate traffic. Mitigation is performed after an attack

alert from the classifier if malicious flows are identified. Classification is done through

the use of Self Organizing Maps (SOM), an unsupervised artificial neural network that

transforms n-dimensional data into 1 or 2 dimensional map or grid. The 6 features

that make up the 6-tuple (Average of Packets per flow, Average of Bytes per flow,

Average of Duration per flow, Percentage of Pair-flows, Growth of Single-flows, and

Growth of Different Ports) are those commonly present during a DDoS occurrence.

It was demonstrated that aggregating features of interest from the flows yielded low

overhead compared to traditional approaches of preprocessing packets. The work was

also able to show high detection rates on switches within the SDN while at the same

time keeping false positives low.

32

The aggregation of features through flow statistics is again utilized in a approach

by Yang et al [26] where they demonstrate the detection of DDoS occurrence by

measuring the presence of volumetric and asymmetric features that are common dur-

ing in DDoS attacks. They argue that the overhead and bottleneck of southbound

communication during flow polling increases if networks become large and therefore

the solution is to implement lightweight detection on the switch, or data plane it-

self through the implementation of a Field-programmable gate array (FPGA) based

OpenFlow switch. This lightweight mechanism works in cooperation with a module

which they dub the Fine-grained Detection Interface that lies on the control plane to

perform controller-based detection methods such as those involved with learning and

classifications. Detection is done through a lightweight flow monitoring algorithm

that aggregates flow metrics from each flow and generates a 4-tuple (Byte Count

per Second, Packet Count per Second, Byte Count Asymmetry, Packet Count Asym-

metry) every tn seconds. The algorithm then predicts the four metrics for the flow

at time tn+1 by computing a weighted moving average (WMA) on a list of the n

most recent vectors collected for that particular flow. The predicted output is then

compared with the actual output via a ratio function. To account for the deviation

between history records and the actual vector at time tn+1, two thresholds are defined

by taking the ideal average of collected vectors and then adding and subtracting 3

times the standard deviation to obtain the upper limit and lower limit respectively.

These two values are also used as parameters to generate the upper and lower ratio

limits. Abnormal flows are detected when all four actual ratio metrics in the 4-tuple

fall out of range of the upper and lower limits. If any of these metrics fall within the

computed thresholds, then it is determined to be acceptable.

33

3.3 Destination-based SDN Approaches

Lim et al [27] demonstrate a SDN based blocking scheme for botnet-based DDoS

attacks, specifically those that target the application layer. In their system architec-

ture, the victim server resides in an SDN controlled network and install flow rules in

for communication in both directions whenever a connection is made with the victim.

An application running on top of the controller is responsible for continuously mon-

itoring the number of traffic flows on the switches while at the same time keeping a

pool of available IP addresses used to “move” the protected service in the scenario

of an attack. The server itself monitors metrics for indications of possible DDoS at-

tacks. In the event that the server has determined an attack is occurring, the SDN

application is notified and a new IP address is provided for the server to which the

server relocates to. The server then sends an HTTP message that is explicitly NOT

a HTTP 3xx message is then sent to prospective clients seeking to reach the service

that a relocation has occurred and gives information on how to reach it before closing

all the existing connections. This message is protected by a CAPTCHA in order to

prevent bots from decoding this message. In the meantime, the controller installs

instructions that allow flows towards the server with the new IP address. Clients

that continue to attempt connection with the old address are deemed bots after a

certain threshold, at which point their associated flow rules are simply modified by

the controller to be dropped.

34

3.4 SDN Defense Mechanisms Specific to the IoT

After the wake of the Mirai attacks in 2016, several works with a focus towards

addressing IoT based DDoS have emerged. Many of these approaches build on top

of those explored in the previous section, but a shared characteristic among the pro-

posals surveyed demonstrate a trend of moving security features such as monitoring,

inspection, analysis, and mitigation services, closer to the source of the traffic.

Three of these works ([6], [28], [29]) have incorporated elements of the emerging

edge computing paradigm in this transition effort to enable real-time computationally

intensive security applications right at the network edge. The use of edge computing

serves two primary purposes in these works. The first is to address the scaling prob-

lems that the IoT inherently generates due to the sheer volume of connected devices.

With edge computing, SDN capabilities can be placed at the network edge rather

than the core of networks, significantly reducing data volume that are inspected and

mitigated by providers such as those in the cloud. The second is to extend and push

cloud capabilities such as computational and storage resources towards the network

edge to further maximize the capabilities of learning applications near the sources of

traffic rather than in the network core.

Özçelik et al [6] use this concept with SDN to create a “closer-to-the-edge” de-

fense architecture that they call Edge-Centric Software-Defined IoT Defense. They

illustrate a topology in which the SDN controller resides on a edge computing node

as an extension of the cloud. Each of these edge computing nodes may service one

or more IoT networks, thus providing defense towards the endpoints of the network.

They utilize the combination of two algorithms in order to detect the occurrence of

recruitment and exploitation phases of DDoS, these two algorithms being Threshold

35

Random Walk with Credit Based Limiting (TRW-CB) and Rate Limiting (RL). The

TRW-CB algorithm leverages the observation that a benign host is more likely to

successfully complete a connection and thus the hosts that repeatedly fail connec-

tion attempts are increasingly suspected to be more likely to be an infected node.

To accomplish this, the system maintains a queue of TCP SYN messages for each

host and track the connection state of each one. Every time a three way handshake

goes uncompleted or a timeout occurs, the message is dequeued and the likelihood

of infection is increased for that particular node. The RL algorithm works off the

assumption that a malicious host will be more likely to attempt a large number of

connections than compared to a benign host. Legitimate connections made are also

more likely to be to the same destinations previously made before. In this algorithm,

two sets are maintained, one containing a list of recently contacted hosts and another

that contains the list of attempted connections called the delay queue. When a new

connection is attempted and the destination has not been recorded in the working set,

the forwarding of this traffic is delayed and the connection is sent to the delay queue.

The connection is allowed to proceed after d seconds and removed from the delay

queue. If the connection succeeds, it is then moved to the working set. However, if

the delay queue grows beyond its predetermined size n, an alarm is raised, indicating

the presence of a malicious host on the network.

Aggarwal and Srivastava [28] propose two security models that utilize SDN and

edge computing, one of which addresses the scenario in which IoT devices connect

to the Internet via network devices such as routers or switches. In this scenario,

the model described consists of three major components; OpenFlow enabled routers

and switches representing the data plane, a IoT Gateway Controller that is placed

at the network edge between IoT networks and ISP, and the Main SDN Controller

36

that resides at the ISP. The IoT Gateway Controller (GC) is the main component

that provides the security measures for its designated zone comprised of the con-

nected IoT networks. Due to its location of placement, it is capable of receiving all

inbound and outbound traffic, a feature beneficial for the deployment of applications

such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and

Deep Packet Inspection (DPI). In the scheme proposed, traffic received by the GC

is analyzed using DPI techniques or run through an IDS such as Snort in order to

determine whether the traffic is benign or malicious. In the case that a threat is

detected, the GC is capable of modifying the flow tables in the respective switches

residing in the culprit IoT network such that the traffic matching a particular flow

is dropped or re-routed. The Main SDN Controller on the other hand is responsible

for the management of each GC continuously collecting data such as traffic through-

put and bandwidth management. Packets that are cleared by a GC are forwarded

to the Main SDN Controller which may apply further actions such as transmitting

requests to the appropriate DNS servers or routing the packet to the next hop of its

destination.

Bull et al [29] continue the trend of arguing for the use of SDN gateways in playing

the security role for the connected IoT device by performing services such as packet

inspection and traffic analysis. Similar to the previous works discussed, it is argued

that moving security functionality to the network edge is critical for performance

requirements, more rapid detection and mitigation at the traffic source, and load

reduction between controller and switch communications. A method in which the

traffic patterns of IoT devices are monitored and analyzed is used by the authors n

order to determine whether they are perpetrators acting in an attack or victims on

the receiving end of an attack. A statistics manager component is used to collect and

37

store data received on the SDN gateway in order to take into account historical flow

features during analysis. Upon detection of an anomalous flow, three possible actions

are defined:

• Blocking a flow by adding a flow rule to the Blocked Flows table and applying

the DELETE OpenFlow action to the suspected flow

• Forwarding a flow to an isolated zone of the network for deeper inspection of

traffic to generate a more robust decision in regards how to handle the device

• Applying QoS to limit impact of an attack if decision is not clear or in the even

that blocking a single source is not possible

3.5 Points of Consideration

We find that while the previous works surveyed are invaluable building blocks for

the future works in DDoS defense, several characteristics related specifically to IoT

networks are not sufficiently addressed and what may work well in a traditional com-

puting environment does not necessarily translate to success over in the IoT realm.

When concerning attacks stemming from IoT sources, we believe methods such as

the one described in Section 3.3 are not appropriate. Destination-based approaches

delegate intensive defense tasks such as detection to the victim which must work in

keeping up with incoming traffic. Given the large number of devices that an IoT

botnet may consist of, this certainly results in overhead and creates a bottleneck due

the requirement of processing a large volume traffic data. Consequently, a mecha-

nism may resort to packet sampling but as shown by works in [24], this results in a

large number of false positives as well, further creating conflict when legitimate hosts

attempt to connect with a service. Network-based methods described in 3.2 serve to

38

be a better alternative towards detecting attacks from IoT sources, as traffic monitor-

ing used in conjunction with learning or statistical methods can determine whether

a particular flow is misbehaving or not. These methods however may find difficulty

scaling as the size of networks increases along with the volume of data stemming

form IoT sources that must be processed. This potentially leads to communication

overhead between controller and switch communication during polling of statistics,

leading to potential denial of service on the SDN controller itself. To alleviate this

overhead, the work by [26] demonstrate a more lightweight approach by placing detec-

tion mechanisms on a custom prototype OpenFlow switch, such that abnormal traffic

may be detected directly on the data plane before alerting applications on the control

plane for deeper analysis. However, we disagree with the use of detection mechanisms

on the data plane of the network. The reason is that we feel this approach is con-

tradictory to the fundamental concepts of Software Defined Networks which states

that logic and control should be delegated to the control plane and the data plane

serves simply as the mechanisms of forwarding the traffic based on decisions from the

control plane. To address scalability and overhead issues, we believe that utilizing

a proactive strategy in which explicit access control rules in the form of flow rules

are enforced, we can minimize the communications between switch and controller to

only those that require controller intervention. In doing so, the detection mechanisms

that were originally implemented on the dataplane can be re-delegated back to the

control plane and handled by the software controller. We discuss more on the issue

of potential vulnerabilities in SDN, and how we address them in our implementation

in Chapter 4.

As explored by works in [6], [28], and [29], the emergence of extending intelli-

gence to the edge of networks is proceeding with the requirements of reducing device

39

and controller communication overhead in mind, furthering the argument that traffic

monitoring is still best placed at the control plane level where the global view of the

network allows for detection of abnormal traffic within not just a single switch but all

that reside in a controller’s designated SDN. There are concerns with source-based

approaches being a difficult domain to enact security due to the multitude of sources

that need to be detected and filtered correctly [14]. However we argue that with

the use of global policies describing the intent of each individual device as specified

in MUD, a standardized method of determining filters and communication patterns

of every IoT devices is achievable, making the determination of whether a device is

misbehaving or acting accordingly to expected patterns more practical.

40

Chapter 4

APPROACH DESCRIPTION AND PROCEDURE

In this chapter we describe the design and implementation of our proposed ap-

proach to detect suspected attacking IoT devices using SDN and Manufacturer Usage

Descriptions. With our approach, we seek to identify those devices that are emitting

traffic which display the volumetric and asymmetric characteristics commonly present

in flooding attacks. We achieve this by leveraging Software Defined Networks to im-

plement the MUD controller where the central controller is capable of translating

the MUD file for a particular device into OpenFlow rules. The controller can then

programmatically configure the managed networks by pushing the generated MUD

flow rules to the flow tables of the network switches the IoT device to inform how

the switches should handle the permitted traffic. These sets of MUD rules essentially

act as whitelists, in which traffic received and emitted from the IoT device must be

matched with. In the case where there are no flow rules that the traffic form a device

matches with, the packet will be forwarded to the controller for further action (such

as deep packet inspection), due to the implication of unpermitted behaviors. With

the established set of expected communication patterns in the form of MUD flow

rules, we begin to continuously monitor each outbound MUD flow through another

SDN application, and build a statistical model around the averages of four flow fea-

tures which we define in Subsection 4.1.2.1. The computed averages at time tn are

then used to define a range of acceptable values which we expect to observe from the

captured flow at time tn+1. The core of our methodology can be summarized by two

main ideas:

41

1. The generation of a set of permitted MUD flow rules for the connected IoT

devices that were translated from the access control rules specified by the de-

vice’s MUD file. MUD flows are defined terms of the OpenFlow Match fields

(< Protocol, SrcIP, SrcPort, DestIP, DestPort >), which traffic to and from

the device must match with.

2. Monitoring the flow statistics from the set of MUD flows and extracting their

measurements at each interval. We use these metrics to compute the expected

or “average” behaviors of an IoT device in terms of four IP flow features. Fea-

tures that deviate greatly from a determined threshold based on the weighted

averages are considered “flows of interest” and will be handled by the controller

through either modifying a MUD rule to drop the traffic, or to forward it to

another entity for further actions such as Deep Packet Inspection.

While the MUD architecture inherently makes hijacking devices and launching

attacks more difficult for the adversary, we want to be able to take into account

the possibility that MUD devices in the network may be compromised through some

other channel.This may be possible if a MUD device is, for some reason, capable

of lying about what it is and gains additional network access by being wrongfully

admitted into a class of network accessibility, these classes being one of those that

are described in Chapter 2 in regards to the MUD architecture. Let us posit the case

in which a device is inappropriately admitted into a class of other IoT devices for one

reason or another (such as perhaps the my-controller or same-manufacturer class),

wherein the IoT devices already in this class also have access control rules stating

they may speak to an external Internet host. Then it is possible that because this

rogue device is allowed to communicate with all devices within this class, potentially

having the capability of also taking them over and use them to launch attacks. It is

42

in this scenario in which we would like to maintain the ability to determine which

MUD flow within the set of preinstalled flows are misbehaving.

We describe a flow as “misbehaving” if they adhere to the flow rules as they are

defined, but exhibiting of behavior such as the emitting of large volumes of bytes,

packets, or excessive communications that were not apparent in previously recorded

measurements. As an example, consider a rule that specifies that a IoT device may

only speak using the TCP protocol towards a host cloud.example.com that is listen-

ing on port 5555. This rule can still be abided by an adversary but abused through

the deployment of a TCP SYN attack that targets port 5555. Our goal is thus to use

the method described above to identify and filter the malicious flows within the set

that we have allowed.

We divide the remainder of this chapter into three sections to describe the method-

ology and procedures of our implementation, as well as how it addresses the concerns

stated above. In Section 4.1, we describe the two primary modules that make up

the system along with their functionalities. In Section 4.2 we describe how the SDN

environment was set up for testing and experimentation. Finally, in Section 4.3, we

describe the security concerns and vulnerabilities in regards to SDN, particularly the

centralized nature of the controller, and detail how inherent access control function-

ality of MUD alleviates them to the best of the system’s abilities.

4.1 Implemented SDN Modules

There are two primary modules that make up the proposed methodology. The

first is a simplified implementation of the MUD controller component, the policy de-

cision point of the MUD architecture, whose functionality we implement as an SDN

43

application. The MUD controller is responsible for retrieving, translating, and deploy-

ing the access control policies to the managed network devices. The second module is

another SDN application that functions as the flow monitor which periodically polls

for flow counters from each permitted flow that have been preemptively installed on

the OpenFlow switches.

4.1.1 MUD Controller

The MUD controller is an SDN application that can be viewed as the entity that

is responsible for programming the network through the installation of flow rules

derived from the MUD files. The moment an IoT device is connected to a network

and its MUD URL is received by the controller, the MUD controller will extract the

URL and retrieve the resource at the specified URL, which would be the MUD file

that is written in a JSON format. The MUD controller is then responsible for parsing

the file appropriately, translating the access controls described by the MUD file into

flow rules. As previously mentioned, the MUD file is a JSON file generated from

a YANG data model. As such, parsing a MUD file ideally would be done through

the use of a YANG validator in order to ensure that all the elements in the file

are in accordance those defined in the ietf-mud, ietf-access-control-list, and

ietf-acldns YANG models. For the purposes of this thesis, we choose to just parse

the JSON directly and assume that the elements and file itself are all valid. We

base this assumption off the fact that all MUD files used for experimentation were

generated through https://mudmaker.org/alpha/, a web application created by the

authors of the MUD draft that can be used for generating example MUD files .

Parsing of the MUD file begins upon the MUD controller receiving the resource

44

https://mudmaker.org/alpha/

located at the specified URL. Two lists are generated; one for containing the access

control entries specifying to-device, or inbound flows, and another for the associated

from-device, or outbound flows. The parser then scans through the file and for every

access control entry in the MUD file, a vector Vace is generated containing the rules

specifying how a flow should look like. Vace is defined as follows.

Definition 4.1.1. Vace =< DNSname, Protocol, SrcPort, DstPort >

The values in the vector are then used by the MUD controller to construct Open-

Flow rules from the access control policies described by the MUD file by specifying

the OpenFlow Match fields that the packet headers from the associated MUD device

must match in order to continue to be forwarded. These rules are pushed by the

controller to the flow table on the OpenFlow switch the device is connected to.

Definition 4.1.2. Inbound Flows: (Protocol, DstHost, SrcHost, SrcPort, DstPort)

Definition 4.1.3. Outbound Flows: (Protocol, SrcHost, DstHost, SrcPort, DstPort)

Access control entries that correspond to inbound traffic are resolved first. There-

fore, the DstHost field of the inbound flow should be that of the IoT device, which

we represent as the MUD device’s MAC address. Meanwhile, the SrcHost field of the

flow is set to the associated IP address of a hostname representing the entity seeking

to make a connection with the device. For purposes of this thesis, we assume that

the host associated with the DNSname element of Vrule is always an Internet host or

cloud service that is presumably in control by the manufacturer. The IP of the host

is resolved by the MUD controller through DNS resolution of the DNSname, allowing

us to specify the Match source field as the IP address of the host. The next item to

be extracted from Vrule is the value of Protocol which can be one of three values; any,

TCP, or UDP. If the value of Protocol is any this signifies that the manufacturer has

45

allowed either TCP or UDP protocol to be used in a flow. If TCP is specified, then

the flow is expected to use the TCP protocol. The same logic applies if the value is

equal to UDP. Finally, the source and destination port fields of the flow rule are set

equal to those extracted from Vrule. The result is a list that contains the permitted

inbound flows for a IoT device.

The same process is performed to generate the list of permitted outbound flows.

The only difference in this procedure is that source and destination fields are flipped,

with the DstHost flow field being set to the IP address resolved from DNSname, and

the SrcHost field being set equal to the MAC address of the device. To the best of our

knowledge, recent IoT malware, such as Mirai, do not have the feature of spoofing

hardware addresses. Thus this implementation serves as a simple measure to ensure

that any communications coming out of a specific device will be matched against

the MUD flow(s) that has been installed in association with it. What this implies is

even with IP spoofing, the increase in flow metrics will still be captured as we do not

match by IP, but by hardware address. Any divergence from the expected behaviors

of a device, such as attempting to connect to a host that is not specified, will find

no flows that it can match against in the switch’s flow table, raising an alert to the

controller where further analysis and decisions can be made for the suspected device.

To demonstrate more easily the flow of how the MUD architecture works, we opt

to use the DHCP option that was specified in Section 2.3.1, and as such we assume

that the MAC address of a device is indeed associated with that device. It should

be noted however, that there are several security considerations if an implementation

should choose to use this scenario (and the LLDP case), such as the possibility that a

device may lie to the controller about what it is and gain unauthorized or unintended

network access. It is acknowledged in a real world scenario that the implementation

46

should support the option for the X.509 certificate method to authenticate the device

and preserve integrity of the MUD file.

For every outbound flow, a 64-bit value is generated and set as the flow’s cookie, a

value assigned by the controller to a flow for identification purposes. The inbound flow

that is correspondent to the ID’d outbound flow is also assigned a 64-bit value that is

equivalent to the outbound flow’s cookie−1. At this point, the ability to identify pair

flows is now possible. We use this capability in the Flow Monitor module to compute

the asymmetry of bytes and asymmetry of packets features between pair flows as

part the detection process. Once a MUD file is parsed and the set of inbound and

outbound flow rules are constructed, the controller pushes them to the associated

datapath of the switch the IoT device has connected to. An example of a pair of

MUD flows representing inbound and outbound rules for a particular device are shown

highlighted in Figure 4.1.

47

Figure 4.1. A pair of MUD flows (highlighted) in a switch’s flow table

48

4.1.2 Flow Monitor

The Flow Monitor module is also an SDN application that is responsible for pe-

riodically collecting the Byte and Packet counters from every MUD flow that reside

on each managed OpenFlow switch. It then will compute a vector of four features for

each MUD flow, which is used to determine whether there is indication of that partic-

ular flow being abnormal. We ultimately decide for these four features to represent

the Byte count per second, Packet count per second, Byte count asymmetry, and the

Packet count asymmetry, of a given MUD flow at time tn. We begin this subsection

by detailing the justification for the selection of these four features, which are based

on the reasonings presented by the works of Braga et al [25] and Yang et al [26].

4.1.2.1 Selection of Flow Features

The idea of using IP flow features that we can generate through available statistics

in an OpenFlow switch can be attributed to the work laid down by [25]. As we had

summarized in the previous chapter, their approach is a network-based mechanism

that utilizes a Self Organizing Map in order to classify whether a 6-tuple of IP flow

features belonging to a particular switch in the network is indicative of normal traffic

or traffic belonging to that of DDoS attacks. This 6-tuple of features contain values

representing the Average of Packets per flow, Average of Bytes per flow, Average

of Duration per flow, Percentage of Pair-flows, Growth of Single-flows and Growth

of Different Ports. While the authors of this work were able to demonstrate high

quality results using these six features, we found that the benefits of said features do

not translate over well into our approach. The primary reason of this is due to the

49

goal of the original detection methodology, which was meant to work specifically in

the detection of DDoS occurrence within a network rather than detection near the

traffic sources. As such, the method seeks to identify the OpenFlow switches that are

highly indicative of DDoS traffic rather than identifying the individual flows that are

responsible for the attack, which is the goal of our approach. We argue that detection

near the source of attack traffic is preferred when concerned with IoT based DDoS.

The vast number of IoT devices and the large volume of traffic that they can generate

creates the need to be able to respond and block the sources of attack traffic before

proliferation into the network, where further resources are wasted. By moving these

defense mechanisms towards the source of traffic, we can stop this proliferation of

noise into the network.

Despite these differences, we wanted to investigate whether these features can still

be utilized for detection of abnormal traffic at the per-flow level, and if not, what were

the reasons such that they were unnecessary for our use. We find that the use of MUD

in our approach limits the benefits that these features can provide. As we defined in

Section 4.1.1, the types of access control that MUD policies enforce are those such

as specific port numbers used for connection or communication, the range of hosts a

device is allowed to communicate with, and the types of protocols a device is allowed

to speak. These limitations effectively make a majority of these features that were

originally meant for the network-based DDoS detection, not the most suited for our

use. We summarize the reasons why these features are not as effective in our scheme

in Table 4.1.

50

Table 4.1. Summary of unused IP flow features
Average of Packets per flow Intended to find the average of packets of all flows for a switch, not

on a per flow level
Average of Bytes per flow Intended to find the average of bytes of all flows for a switch, not on

a per flow level
Average of Duration per flow Intended to find the average duration of time a flow resides in a

switch’s flow table. This value is not applicable for our use by our
application due to the assumption that a flow is only generated when
the MUD controller is able to define a predetermined flow for a device.
Furthermore, the duration of this flow is to reside in the switch for as
long as the device’s connection or until it needs to be updated, making
this value inaccurate for our use

Percentage of Pair-flows Intended to verify the number of pair-flows occurring in the flow
stream during a certain interval. Because in our scheme flows are as-
sociated with devices, there will always be an inbound and outbound
pair of flows for each MUD policy described for the device. The ratio
between flows with a pair flow and flows without is thus meaningless
in our scenario

Growth of Single-flows Intended to capture beginnings of flooding attack in which number of
flows can skyrocket (such as when IP spoofing is used). We acknowl-
edge this feature as an important characteristic in detecting DDoS
due to its ability to capture the occurrence of a device generating out-
bound flows without any correlating inbound flows. However because
we predetermine these flows before hand and associate the flows with
a device’s MAC address, the occurrence of single “new” flows being
emitted from the device is not possible, as they would all match with
the MUD flows that were pre-installed. To mitigate this, we choose
to use the features Asymmetry of packets and Asymmetry of bytes to
capture this feature

Growth of Different Ports Intended to capture the growth of ports during an attack (such as
when port scans occur). In MUD, ports that a device is allowed to
speak from or to are defined explicitly and are incorporated into the
flow rules. As such, the growth of ports is a feature that is unusable
as it is prevented from occurring. If a device should deviate from
speaking through the specified ports, it is captured by the controller
and an alert would be raised

In the publication by Yang et al [26], the authors observe that there are funda-

mental differences between normal traffic and attack DDoS traffic, specifically the

presence of volumetric and asymmetric features. In a DDoS flooding attack, a large

rate of traffic is deployed in order to improve the efficacy of flooding the netim. Fur-

thermore, there is usually a large difference between the rate of traffic going towards

the victim than responses from the victim during a DDoS attack, due to the use of

IP spoofing in many attack cases. For these two observations, the authors define a

4-tuple of IP flow features that describe the Byte Count per Second, Packet Count per

51

Second, Byte Count Asymmetry, and Packet Count Asymmetry at time tn. Because

these four features are the result of aggregated statistics for each flow rather than all

flows of a switch, we argue that we are able to use these features to detect changes

at a per-flow level, enabling the capability of identifying abnormal flows from those

that are not, a capability more in line with the goals of our approach. We ultimately

decide on the use and measurements of these four features as part of the methodology.

We argue our reasons for selecting these flows in Table 4.2.

Table 4.2. Summary of selected IP flow features
Byte Count per Second at time tn Intended to measure the rate of bytes per second sent from a partic-

ular MUD flow within a given time interval. Large deviations from
the calculated weighted average of monitored bytes (+−) a defined
threshold results in an alert of suspected flooding behavior

Packet Count per Second at time tn Intended to measure the rate of packets per second sent from a par-
ticular MUD flow within a given time interval. Large deviations from
the calculated weighted average of monitored packets (+−) a defined
threshold results in an alert of suspected flooding behavior

Byte Count Asymmetry at time tn Intended to measure the asymmetry of bytes between sent messages
and responses. The closer to 0 this value is implies that more data
is being sent out to the destination than received. The closer to ∞
this value is, implies that more data is being sent to the device than
being sent to the destination. This feature is meant to capture the
asymmetric feature of flooding attacks (in conjunction with the Packet
Count Asymmetry feature), in which a balance of sent and received
data may be skewed due to occurrences of IP spoofing

Packet Count Asymmetry at time tn Intended to measure the asymmetry of packets between sent messages
and responses. The closer to 0 this value is implies that more packets
are being sent out to the destination than be replied to. The closer to
∞ this value is, implies more packets are being sent to the device than
being sent to the destination. This feature is meant to capture the
asymmetric feature of flooding attacks (in conjunction with the Byte
Count Asymmetry feature), in which a balance of sent and received
packets may be skewed due to occurrences of IP spoofing.

Flow features selected were based on the work by Yang et al [26]

52

Having selected the features we want to use for differentiating between normal and

abnormal traffic, we define the vector of features for a particular MUD flow at time

tn in Definition 4.1.4. We show how these features can be computed in Equations 4.1

to 4.4.

Definition 4.1.4. Vflow =< ByteCountPerSecond, PktCountPerSecond, ByteAsym, PktAsym >

Byte Count per Second at time tn =
ByteCounttn − ByteCounttn−1

tn − tn−1

(4.1)

Packet Count per Second at time tn =
PktCounttn − PktCounttn−1

tn − tn−1

(4.2)

Byte Count Asymmetry at time tn =
ByteCountflowin

tn − ByteCountflowin
tn

ByteCountflowout
tn − ByteCountflowout

tn

(4.3)

Packet Count Asymmetry at time tn =
PktCountflowin

tn − PktCountflowin
tn

PktCountflowout
tn − PktCountflowout

tn

(4.4)

4.1.2.2 Determining Abnormality of Flows

We define abnormal flows as the MUD rules whose behaviors, in terms of the

four flow features described, have deviated far enough from the computed range

of acceptable values determined for the specific MUD flow. These abnormal flows

are those with flow features whose values display the volumetric and asymmetric

characteristics common in DDoS flooding attacks. We model an average for the

normal traffic flow of a MUD device by way of forecasting, specifically through the

53

computation of the Exponentially Weighted Moving Average (EWMA) technique for

each of the four flow features measured at each interval. The Moving Average is

a statistical calculation that is used to summarize past data points that have been

recorded in specified periods or intervals [30]. The EWMA specifically, is a type of

Weighted Moving Average in which exponentially decreasing weights are assigned to

the set of observations. with the sum of these weights equaling a value that is very

close to 1. The rate in which the value the weights are decayed is specified with a

smoothing constant set to a value between 0 and 1. A big advantage of the EWMA

is its simplicity and low memory requirements, needing only two pieces of data for

computation, the observation of the current iteration and the previous iterations

computed EWMA. The EWMA can be computed with with the equation shown in

4.5.

Sk = αYk + (1− α)(Sk−1), 0 < α <= 1, for k = 2, ...,m (4.5)

where α is the smoothing constant used to determine the speed in which older re-

sponses are dampened, Yk is the observed value at period k, and Sk−1 is the previously

computed EWMA at period k − 1. In our implementation we initialize the value of

S1 to the average of the first 5 observations collected for each flow, which is a general

rule of thumb [30].

The following example demonstrates the formula’s exponential property which we

54

take from an excerpt in the NIST Statistics Handbook [30].

Sk = αYk + (1− α)(Sk−1)

= αYk + (1− α)[αYk−1 + (1− α)(Sk−2)]

= αYk + α(1− α)Yk−1 + (1− α)2(Sk−2)

= αYk + α(1− α)Yk−1 + (1− α)2[αYk−2 + (1− α)(Sk−3)]

= αYk + α(1− α)Yk−1 + α(1− α)2Yk−2 + (1− α)3(Sk−3)

...

As each previous EWMA equation is substituted into the formula, it can be seen

that the value of the weights are equal to the value α(1 − α)k, which decrease in a

geometric fashion as k increases. The parameter α controls the speed in which the

weights of previous observations are dampened, with a value of 1 meaning that only

the most recent observation has impact on the EWMA, and a value closer to 0 giving

more weight to the older collected data. We choose to use the EWMA as the method

of representing what the normal metrics of a MUD flow may look like, taking into

account both past and potential future deviations. An exponentially weighted moving

average is computed for each feature in the MUD flow vector, Vflow, at period k. The

computed averages are then used to determine the upper and lower bounds that the

features computed at the next period k + 1 should fall within. The method in which

the bounds are determined derive from the work of [26], where the three-sigma rule of

the Gaussian Distribution is used in order to account for changes between historical

and current measurements. Using the assumption that the four traffic features of

a benign MUD flow should fall within some degree of the computed mean (in the

manner of a normal distribution), we define the upper bound in Equation 4.6 and

lower bound in Equation 4.7 as follows.

55

Upperi = µEWMAi
+ 3 ∗ σ (4.6)

Loweri = µEWMAi
− 3 ∗ σ (4.7)

where the subscript i = 1, 2, 3, 4 and represents each element in the MUD flow vector

Vflow, µEWMAi
is the EWMA of the ith element, and stdi is the weighted standard

deviation of the i’th element. To compute stdi, we take the square root of the ex-

ponentially weighted moving variance of element i, represnted as σ2
k. We use the

equation presented by [31]:

σ2
k = (1− α)(σ2

k−1 + α(Yk −µEWMAk−1
)2) (4.8)

where σ2
k−1 is the square of the standard deviation that was computed in the previous

period k − 1, Yk is the observed value at period k, and µ2
EWMAk−1

is the EWMA com-

puted in the previous period k − 1. The initial standard deviation and variance are

computed normally using the first five observations, same as the EWMA. Assuming

that the EWMA and acceptance range was computed at period k, we take the obser-

vations made at time k + 1 and compare each element in the generated vector Vflow

with the computed bounds. If any of the values of the four elements are found to be

within their respective bounds, then we determine this traffic as normal and begin

computing the next iteration of feature values that will be used in iteration k + 2.

Otherwise, if all four elements fall out of bounds, then we determine the MUD flow

to be abnormal, to which additional action may be taken. Categorization of a flow as

abnormal is only done when all four elements fall out of bounds, thus demonstrating

that both the required volumetric characteristics (Bytes per Second, Packets per Sec-

ond) and asymmetric characteristics (Asymmetry of Bytes, Asymmetry of Packets)

56

are present. It is entirely possible in cases where slight deviations may demonstrate a

spike in traffic that resembles that of an attack. However, if the asymmetry features

are within an expected range, then we can assume that because the server is respond-

ing to the device for every request sent, the asymmetric characteristic is not present,

thus that flow is not indicative of an attack. In our implementation, we react to a

detection alert installing a flow rule such that it will drop all traffic stemming from

said device, preventing the attack traffic from propagating into the network. Another

option could possibly be the modification of the MUD rule for redirecting or forward-

ing the traffic to another entity to perform Deep Packet Inspection, furthering the

capabilities of building additional profiles for a network’s Intrusion Detection System

(IDS) or Intrusion Prevention System (IPS). The procedure of the Flow Monitor can

be summarized in the Figure 4.2 below.

Figure 4.2. SDN Topology in Mininet

57

4.2 Testbed Design and Network Topology

A custom SDN topology, pictured in Figure 4.3, was built using the network

emulation orchestration system, Mininet [32]. The virtual testbed is designed with

the scenario where the MUD architecture is deployed as a security service located near

the sources of the IoT traffic and has the capability of orchestrating and configuring

the SDN switches in the respective “private” networks. We aim to demonstrate how

MUD could fit into a plug in and forget type of design, similar to that mentioned in

the work of [23], in which end users connect their IoT devices and can assume this

third party will configure the network with the device’s given policies automatically.

It is also on this testbed where we enact our attack and defense simulations in order

to evaluate the approach.

The overall topology consists of four networks. The first network is the physical

network of our machine, or the local host, that is separated from the Mininet virtual

network. The Ryu SDN controller [33] resides on this network and has control man-

agement over the three other virtual networks in the topology. Additionally, we run

our two SDN applications, the MUD controller and the Flow Monitor, on top of the

controller. This network represents a third party entity (such as possibly an ISP)

which has network vision over the individual “private” networks managed such that

it may perform the security measures for them by way described in the MUD archi-

tecture, coupled with our approach. We also place the MUD server on this network

which we implement in Python by modifying the Python module, SimpleHTTPServer,

such that TLS is enabled for the network sockets used by the webserver. The MUD

server, as previously stated, is envisioned to be hosted by the manufacturer of the

products, so normally it is expected that they reside on the Internet at some remote

58

host. However, due to the Mininet network by default being separated from the phys-

ical LAN, we choose to simplify the setup by not introducing an additional VM to

act as a “Internet” server and just have the MUD server reside on the same network

as the controller.

The next two networks represent two private or small office IoT networks that

are comprised of virtual hosts which are meant to be portrayed as limited-purpose

IoT devices that all have MUD policies associated with it. The first IoT network is

assigned the 192.168.1.x block, and the second is assigned the 192.168.2.x block. The

hosts in each network are connected to a corresponding OpenFlow enabled software

switch that Mininet is capable of using called Open vSwitch [34]. These switches in

the IoT networks are represented as s1 and s2. We treat each virtual host created by

Mininet as a MUD enabled IoT device, in which a MUD policy has been generated

for each. To communicate the MUD URL for the MUD controller to retrieve the

policy, we modify the dhclient.conf file used by the DHCP client, dhclient [35] [36],

in order to enable the capability of sending DHCP 161 option to signify the support

for MUD that the device has.

Finally, a fourth network is assigned the 192.168.3.x block and is one we loosely

represent as the Internet. We use this network to simulate where an external host

would reside, and in our scenario, we implement a TCP echo server using the ncat

tool [37], to function as an arbitrary IoT application for the MUD IoT devices to

communicate with. This server sits on 192.168.3.2 and listens on port 1234 for data

from the “devices” in the IoT network, which it simply echos or replies back when

received. While a third software switch, s3, exists in this network and is technically

still managed by the SDN controller, for our intents and purposes, we do not push

any flow rules to the s3 switch in order to allow the node in the 192.168.3.x network

59

to act as independently as possible. In this design, the MUD controller would reside

on this network as an SDN application and through the SDN controller, have the

capabilities of managing each of the IoT networks within its zone.

To enable communication between all three networks, we add a host, r1, that is

connected to s1, s2, and s3, and effectively functions as a router to forward packets

between the networks. We assign the address 192.168.1.1 to the r1-eth0 interface

to serve IoT Network 1, and the 192.168.2.1 address is assigned to the r1-eth1to

serve IoT Network 2. Two applications run on r1, a static DHCP server that serves

addresses to IoT Network 1 and IoT Network 2, and a DNS server that resolves the

remote controller’s name residing on 192.168.3.2. We make use of the open-source

Python DHCP server implementation known as staticDHCPd [38] and the Dnsmasq

software as the DNS server [39]. The 192.168.1.1 address is set to be the default

gateway, DHCP server, and DNS server for the devices in IoT Network 1 and the

same is done for IoT Network 2 with the address 192.168.2.1.

60

Figure 4.3. SDN Topology in Mininet

61

4.3 Security Considerations

The use of Software Defined Networks in our approach means that we inherit

all the vulnerabilities and security flaw associated with SDN and the selected APIs,

specifically the OpenFlow protocol. One of the primary concerns when using SDN is

the possibility of malicious attackers committing a DDoS attack against the controller

itself. The centralized nature of the controller means that it is a point of failure for

the network as without its availability, the entire network functionality ceases to

operate [19]. Attackers can achieve this through the launching of controller plane

attacks such as Packet In Swamping in which large volumes of OpenFlow PACKET_IN

events are generated. Oftentimes in SDN networks, when a new packet is received

by a switch with no rules to match it with, this packet is sent to the controller for

processing and decision handling, generating a PACKET_IN event. Because most DDoS

attacks use IP spoofing of sorts, flooding a SDN network with spoofed addresses will

generate a large volume of rule misses, causing the switch to send the packet to the

controller. Given a large enough volume of traffic sent to the controller for processing,

the bandwidth between the controller and switch channel can be compromised, along

with the controller’s processing power. The consequence is the eventual resource

exhaustion of the controller that causes legitimate traffic to be unprocessed.

The consequences of such kinds of DDoS attacks on the SDN controller itself can

be alleviated through our proactive approach of using MUD to define the permitted

communications to and from devices. As described in the work [40], the use of

access control as a SDN security solution is low cost and feasible for networks in

which traffic is likely to go outbound and the inbound traffic is generally trusted and

well known to the network. While our use of MUD access controls is meant to be

62

specify the permitted communications to and from the MUD enabled IoT devices,

the SDN controller also inherits the benefits of the flow rule enforcement that help

in alleviating the load upon itself. For example, when a MUD device is connected to

the OpenFlow switch, inbound and outbound rules are installed in correspondence

to the permitted communications. Should a MUD device act out of the defined set

of rules, the device will be blocked with the installation of a new flow rule that is

matched to the MAC address of the device. Because we identify devices by their

MAC addresses, we are able to effectively aggregate multiple possible (permitted)

flows from a particular device to one flow rules such that even if the device is rapidly

emitting spoofed IP addresses, the flows will be matched to the device itself, and

thus match with the blocking rule that has been installed for it. This means that the

spoofed traffic is not sent to the controller for processing, alleviating the load placed

on the controller. On the other hand, should a device attempt to connect to a host

in the SDN IoT network that is unexpected, this will be dropped as well due to the

communications not matching with the expected inbound flow rules, allowing for the

aversion of inbound attack traffic that may be being sent to the SDN network from

needing to be processed by the SDN controller.

63

Chapter 5

EVALUATION AND RESULTS

5.1 MUD Process

All experiments that were conducted were run on top of the custom Mininet

topology created. Upon launching the Mininet topology, several events take place.

When the Ryu SDN controller establishes a session with an OpenFlow switch, four

default flow rules are pushed into the switch’s flow tables by the MUD controller

application; one for ARP (Address Resolution Protocol) broadcasts such that the IP

address of the default gateway may be found, one for forwarding DHCP (Dynamic

Host Configuration Protocol) client flows, one for forwarding DHCP server flows,

and finally a flow for forwarding DNS queries. Depending on which of these default

rules are hit, we apply different OpenFlow defined forwarding actions to be applied

to the matching flows. If the ARP broadcast rule is hit, we apply the OFPP_FLOOD

forwarding action that uses the normal pipeline of the switch to flood the request to

the network. If the DNS query rule is hit, then we forward it to the port in which

the DNS server is connected to (r1). When a DHCP packet from source port 68 to

destination port 67 is matched with the DHCP client flow, this packet is sent to the

controller to see if the MUD option is present, and to retrieve and process the MUD

policies if it is. Responses from the DHCP server back to the client are forwarded

normally by applying the OFPP_NORMAL forwarding action.

The Mininet hosts representing the MUD enabled IoT devices will then initiate

the DHCP protocol by running the dhclient DHCP client software. We modified the

64

configuration file used by dhclient dhclient.conf to add a custom DHCP option

representing MUD support. This option is represented with the value of 161 as

described and reserved by the authors of the MUD draft to the Internet Assigned

Numbers Authority (IANA) [11]. Since the DHCP Discover and DHCP Request will

both match with the default client flow, both packets will be sent to the controller

for processing. The controller will forward the initial DHCP Discover message as it

indicates the client broadcasting a request to find the DHCP server. After receiving

the DHCP Offer from the DHCP server residing on address 192.168.3.2, the client

will send a DHCP Request message. This message will again be sent to the controller,

however this time we inspect to see if the option 161 is present. Assuming it is, the

MUD controller will begin initiating the MUD process so that the policies for the

connecting MUD IoT device may be retrieved, then translated into flow rules. The

MUD file retrieval is begun through sending an HTTP GET request by the MUD

controller to the MUD URL that the MUD controller extracted from the DHCP

Request packet. Assuming that the MUD URL is resolvable, the MUD server that

is contacted will return the MUD file serialized in a JSON format, containing the

MUD information and access control lists for the given device. Normally the MUD

controller would also retrieve the signature file to validate the MUD file, but as stated

in the Section 4.1.1, we assumed that the MUD file is valid so we skip this part of

the MUD specification.

Upon receiving the MUD file from the MUD server, a MUD entry object is initial-

ized, containing the inbound and outbound access control lists with resolved domain

names (if any) for the connecting MUD IoT device. The inbound and outbound ac-

cess control lists are then passed to another function to be translated into OpenFlow

rules to be pushed into the corresponding OpenFlow switch or switches. The parsing

65

of the MUD file into flow rules are laid out in Chapter 4, Section 4.1.1. For every

MUD enabled device that is connected to the OpenFlow switch, there are 2x+3 flow

entries that are installed into the switch flow table. The variable x represents the

number of access control entries that a manufacturer has defined. This value is mul-

tiplied by two to accommodate for both inbound and their corresponding outbound

access control entries. Finally, three additional rules are added for each MUD device;

one for the IoT device to respond to the gateway during ARP, one for the gateway

to reach back to the IoT device during ARP, and finally a flow rule for DNS query

responses from the DNS server. Figure 5.1 summarize the flow of these events.

Figure 5.1. MUD Controller process flow using MUD DHCP Method

66

5.2 Impact of the EWMA Tuning Parameter

A series of trials were conducted to identify how the α parameter used in the

Exponentially Weighted Moving Average (EWMA) function impacted the detection

of deviating values for the four flow features computed at each monitoring interval.

We test five values for α; 0.05, 0.10, 0.15, 0.25, and 0.50. Due to the α parameter used

to determine the weights of the data used for the moving average, we hypothesized

that using a larger value of α would result in higher false positives due to the bounds

computed becoming tighter as a result of the newer data contributing more heavily to

the calculated moving average, and thus contributing more to the computed standard

deviation of the moving average. An α value of 1 can be thought of as taking only

the newest observation into consideration, and within the scope of our approach,

it can be interpreted as the expectation of every subsequent traffic flow features

observed to be the same as the last observed iteration. Depending on the type of

environment whether traffic is stable or dynamic, this value is highly variable and

application specific and we seek to find a value that is able to provide low false positive

occurrences in general.

For each α value, we ran 10 trials, each lasting 10 minutes, on the custom Mininet

topology. A simple Python program was executed by each Mininet host representing

the MUD IoT devices in order to generate periodic benign TCP traffic towards the

permitted destination as processed by the MUD controller. TCP traffic was sent

every second with random data generated to be between 2 and 512 bytes. Within the

Mininet topology, bidirectional links between the three switches and the router node

r1 is set to 15 Mbps bandwidth, 2ms delay, and 2% chance of packet loss with the

purpose to introduce a degree of variance to the observed traffic. Each trial was ran

67

for approximately 10 minutes in which the occurrences of feature values, exponentially

weighted moving averages of each features, upper/lower bounds, and false positive

occurrences were recorded at each monitoring interval, set at 3 seconds. We make

use of equation 5.1, that was used in the work by Braga et al[25] to calculate the

rate of false positive occurrences, which was found by taking the occurrences of False

Positives (FP) over the sum of False Positives and legitimate traffic or True Negatives

(TN).

FPR =
FP

TN + FP
(5.1)

As hypothesized, as α increases, the occurrence of false positives becomes greater,

with almost an 88% false positive rate over 10 trials when α = 0.50. The rate of

false positives lowers significantly to 20% as the value of the tuning parameter equals

0.25, and when α = 0.15, the false positive rate is 5% over 10 trials. This correlation

of increasing alpha value and false positive rate can be attributed to a larger alpha

value translating into a smaller sample window that make up the average. If more

weight is given to the more recent data sample, then the upper and lower bounds

calculated for the next observation are going to expect it to be strictly similar to the

previous, thus causing a false positive alert even if the deviation is in reality, quite

small. These results are summarized in Table 5.1 below.

Table 5.1. Normal TCP Traffic False Positive Frequency Based on α
α T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 FPR (%)
0.05 0 0 0 0 0 0 0 0 0 0 0.00
0.10 0 0 0 0 0 0 0 0 1 0 2.50
0.15 0 0 0 0 0 2 0 0 0 0 5.00
0.25 1 1 0 0 1 0 1 1 2 1 20.00
0.50 3 3 3 3 4 4 4 3 4 4 87.50

68

Often times the false positives occurred during small spikes or dips in traffic that

were not very significant when compared with all previously observed flow features,

but enough so such that the values fell out of bounds for the Bytes per Second, Packets

per Second, Asymmetry of Bytes and Asymmetry of Packets features. By setting a

higher α value, the upper and lower bounds are generally tighter and adjusted as

according to the newest observed data, thus leading to a higher occurrence of false

positives early on during the monitoring stages. Visualization of the differences in the

bounds computed for different α values are shown in the following eight graphs below.

These graphs represent the flow features captured for a false positive occurrence in

Trial 6 when α = 0.15 and another false positive occurrence in Trial 6 when α = 0.50.

In both of these scenarios, the Mininet host representing IoT device H4 were falsely

flagged as malicious.

Figure 5.2. H4: Bytes Per Second when α = 0.15

69

Figure 5.3. H4: Packets Per Second when α = 0.15

Figure 5.4. H4: Bytes Asymmetry when α = 0.15

70

Figure 5.5. H4: Packets Asymmetry when α = 0.15

Figure 5.6. H4: Bytes Per Second when α = 0.50

71

Figure 5.7. H4: Packets Per Second when α = 0.50

Figure 5.8. H4: Bytes Asymmetry when α = 0.50

72

Figure 5.9. H4: Packets Asymmetry when α = 0.50

5.3 TCP SYN Flood Attack

TCP SYN Flood attacks are one of the most common form of DDoS flooding

attacks and is a type of attack that the IoT malware Mirai is capable of initiating. In

this attack, exploitation of the TCP three-way handshake is performed by malicious

actors sending large volumes of TCP SYN packets, usually spoofed, towards the

victim in an attempt to use up all the server’s resources due to their allocation and

binding to the half-opened connections awaiting the client’s SYN-ACK reply. TCP

can be considered a symmetric protocol due to all data needing to be acknowledged

by each party before sending the subsequent sets of data. This means that a skew in

the ratio of traffic going out versus coming in along with the conjunction of a large

volume of packets and bytes captured per flow, will indicate that an attack is most

likely occurring.

A MUD file was generated using https://mudmaker.org/alpha/ to specify the

73

https://mudmaker.org/alpha/

communications permitted to and from the Mininet hosts representing the MUD

IoT devices. For this specific test, we specified that in addition to the default rules

described in Section 5.1, the hosts may only be allowed to send out TCP traffic to

the remote controller identified by the URL service1.example-iot-service1.com

that is running a simple echo server listening on destination port 1234. For to-device

traffic, the host was only permitted to receive TCP traffic from the remote controller

and source port 1234. As mentioned in Chapter 4, Section 4.2, this URL will resolve

to the IP address 192.168.3.2 which resides on the remote network. The resulting

flow rules that were generated by the MUD controller from the MUD file were then

pushed into the host’s corresponding OpenFlow switch, which were then capable of

enforcing these access controls.

Table 5.2. Match Fields of From-Device Flow Rules (Trial 1)
Host Ether Src IP Dst IP Proto Src Port Dst Port
H1 00:00:00:00:00:01 192.168.3.2 TCP * 1234
H2 00:00:00:00:00:02 192.168.3.2 TCP * 1234
H3 00:00:00:00:00:03 192.168.3.2 TCP * 1234
H4 00:00:00:00:00:04 192.168.3.2 TCP * 1234

Note: H1 and H2 rules reside on Switch s1 in IoT Network 1 while H3 and H4 rules reside on
Switch s2 in IoT Network 2. ’*’ indicates wildcard.

Table 5.3. Match Fields of To-Device Flow Rules (Trial 1)
Host IP Dst Ether Src IP Proto Src Port Dst Port
H1 192.168.3.2 00:00:00:00:00:01 TCP 1234 *
H2 192.168.3.2 00:00:00:00:00:02 TCP 1234 *
H3 192.168.3.2 00:00:00:00:00:03 TCP 1234 *
H4 192.168.3.2 00:00:00:00:00:04 TCP 1234 *

Note: H1 and H2 rules reside on Switch s1 in IoT Network 1 while H3 and H4 rules reside on
Switch s2 in IoT Network 2. ’*’ indicates wildcard.

The tests were ran on our the MUD SDN Mininet topology where bidirectional

links between the three SDN switches and the router (r1) were set such that band-

74

width between them was 15 Mbps, with 2ms delay and 2% probability of packet loss,

to introduce variance of the flow observations. We chose hosts H1 (192.168.1.11) and

H3 (192.168.1.21) to be the attackers in our experiments. Upon each host’s connec-

tion to the OpenFlow switch and the resolution of the MUD process, all four hosts

would begin generating normal TCP traffic. H1 and H3 were programmed to gener-

ate normal traffic for period 60 seconds upon connecting to their respective networks.

Upon the end of this period of normal traffic, H1 and H4 would then begin flooding

TCP SYN messages to the victim at 192.168.3.2 while H2 and H4 would continue

emitting normal traffic. We used the network tool hping3 [41] to perform the DDoS

attack. We conducted several experiments with varying monitoring intervals, time

of attack, and α values. Each scenario that was tested consisted of 30 trials, each

lasting 3 minutes. Along with Equation 5.1 to calculate the False Positive Rate of

our approach, we also used Equation 5.2 to compute the Detection Rate, which can

be found by taking the occurrences of True Positives (TP) over the sum of True Posi-

tive and attack traffic that was misinterpreted as legitimate, or False Negatives (FN).

Our results can be summarized in the following two tables, which show the Detection

Rate and False Positive Rate for the different combinations of α, time of attack, and

monitoring interval chosen.

DR =
TP

TP + FN
(5.2)

75

Table 5.4. TCP SYN Flood Detection Results (Attack Started at 40 Seconds)
3 Sec Interval 5 Sec Interval

DR(%) FP(%) DR(%) FP(%)
α = 0.10 98.31 3.39 100.00 0.00
α = 0.15 100.00 6.45 100.00 0.00

Table 5.5. TCP SYN Flood Detection Results (Attack Started at 60 Seconds)
3 Sec Interval 5 Sec Interval

DR(%) FP(%) DR(%) FP(%)
α = 0.10 100.00 1.64 100.00 0.00
α = 0.15 100.00 3.33 100.00 0.00

Our results show accurate Detection Rates for TCP SYN Flood attacks launched

at both 40 and 60 seconds for alpha values 0.10 and 0.15. An increase in monitoring

time provides for more accurate Detection Rate. However, the trade off in accuracy

suggests that in the worst case, the attack will be delayed by n seconds, where n is the

selected monitoring interval. However, selecting a shorter n also has the implications

of increased overhead between controller and switch communication due to the more

frequent polling of statistics from the OpenFlow switches. The false positives occur

infrequently in comparison to correct abnormal flow detection due to our use of the

four flow features and the condition that all four observed features must fall out of

bounds to constitute an alert. It is entirely possible that more data or packets is

sent outbound, going above the computed upper bound. However, if the byte and

packet symmetry is maintained by receiving the expected ratio of inbound traffic per

outbound traffic, then the alert is not generated and the EWMA and upper/lower

bounds are adjusted to match the recently observed flow features.

Another TCP SYN Flood scenario was conducted to observe any possible degra-

dation in Detection Rate in larger networks versus the smaller counterparts. In these

new topologies, we increased the size of each network from two hosts to five hosts, and

76

increased the total number of networks managed to 4 and 8. The same bidirectional

link parameters were maintained, while an α value of 0.10 was used. The detection

results of the experiments conducted on this larger network are shown in Table 5.6.

Table 5.6. TCP SYN Flood Detection Results (Larger Topology)
3 Sec Interval 5 Sec Interval 10 Sec Interval

DR(%) FP(%) DR(%) FP(%) DR(%) FP(%)
4 Networks, 20 Hosts 98.32 1.91 100.00 0.66 100.00 1.25
8 Networks, 40 Hosts 99.13 7.78 100.00 21.76 100.00 21.28

When the approach is applied to a larger network, it was observed that there is not

much degradation in regards to the Detection Rate and that these values seem to be

aligned with the smaller topology counterpart. However, a noticeable and significant

degradation in False Positive Rate can be observed, specifically when the monitoring

interval is increased to 5 and beyond that the FPR rose about 20%. In the scenario

in which we tested our approach on the topology consisting of 8 networks, it can

be seen that the FPR reached as high as approximately 22%. In this specific case,

a large majority of false positives were traffic samples that fell below the computed

average and lower bounds, in regards to the flow features of Bytes Per Second (BPS)

and Packets Per Second (PPS). We re-tested our approach on the same 8 network

topology, this time removing the lower bound limitation. We argue that a lower bound

applied to the Bytes Per Second and Packets Per Second features are not necessary

for capturing volumetric features of DDoS flooding attacks. As shown in Table 5.7,

this change allowed us to drastically reduce the FPR to about 2%, a difference of

20%.

77

Table 5.7. TCP SYN Flood Experiment (Removed BPS and PPS Lower Bounds)
3 Sec Interval 5 Sec Interval 10 Sec Interval

DR(%) FP(%) DR(%) FP(%) DR(%) FP(%)
8 Networks, 40 Hosts 99.13 0.60 100.00 1.19 100.00 1.76

5.4 UDP Flood Attack

UDP Flood attacks are another common type of DDoS flooding attack in which

malicious actors flood (usually spoofed) UDP packets targeting random destination

ports of the victim. The result is the victim being forced to send out large volumes of

ICMP Destination Unreachable messages replies to the spoofed addresses, causing the

victim to be unavailable to legitimate users. We simulated this attack again using the

program hping3, with the same link parameters in the customMininet topology shown

in Figure ??. We again conducted 30 trials for each selected scenario, with each trial

lasting 3 minutes. Another MUD file was generated to permit UDP traffic towards the

remote UDP echo server at domain service1.example-iot-service1.com using any

destination port. We chose to allow the use of any destination port to better simulate

the UDP flooding attack, allowing traffic sent to be directed towards random ports

instead of just a specific one. A correlating inbound rule was described to permit UDP

responses from service1.example-iot-service1.com back to the MUD device.

Because UDP is a connectionless protocol, the acknowledgement of data sent and

received by each party, such as in the case of TCP, is not implemented and thus

poses a problem for two of the features used, Asymmetry of Bytes and Asymmetry of

Packets. To make up for this, the generation of UDP traffic was achieved by using

a simple Python socket program where UDP packets were sent periodically every

second to the server and waited 1 second to receive a response. If no response was

78

received due to packet drops either at the sending side or receiving side, the same

data was transmitted again until a response was received from the server.

Results shown in Table 5.8 demonstrate that our approach sees a significantly

noticeable drop in detection performance during the case of UDP Flood Attacks

in comparison to our results in Section 5.3, at worst case of about 10% when the

monitoring interval is set to 3 seconds and the attack is initiated at 60 seconds. When

the attack is started at 30 seconds, we find that Detection Rate was best achieved

when the monitoring interval was shorter, such as when it was set to 3 seconds. This is

because if the monitoring interval was to be set at 5 or 10 seconds, the initial EWMA

and upper/lower bounds would not been initialized as quickly and may take the attack

traffic into account when computing the initial values for subsequent EWMA and

bound computations. Consequently, when the attack occurred, the initial values used

to compute the next iteration’s EWMA would believe that the observed attack traffic

was within the acceptable bounds, thus the degradation in detection when monitoring

interval was increased from 3 seconds to 10 seconds. We see this phenomena flip

slightly when the attack was initialized at 40 seconds, in which Detection Rate was

improved with an increase of the monitoring interval from 3 to 5 seconds. However,

when the interval was set to 10 seconds, the Detection Rate again degraded drastically.

The approach worked best when there was significant time between observing “normal”

traffic behavior of a device and attack initiation. The attack launched at 60 seconds

best reflected this, as we see a steady increase in Detection Rate from 3 second

monitoring to 10 second monitoring.

79

Table 5.8. UDP Flood Detection Results (α = 0.10)
3 Sec Interval 5 Sec Interval 10 Sec Interval

DR(%) FP(%) DR(%) FP(%) DR(%) FP(%)
Attack at 30 sec 92.50 7.50 80.00 0.00 0.00 5.00
Attack at 40 sec 87.50 0.00 92.11 0.00 0.00 0.00
Attack at 60 sec 90.00 1.67 94.83 1.72 100.00 0.00

We attribute the decrease in DR and increase in FPR for UDP Flooding attacks,

compared to the TCP SYN Flood attack, due to the inherent unreliability of UDP and

its susceptibility to packet drops. It is entirely possible that during an unlucky streak,

multiple UDP packets sent outbound from the device could be dropped, causing the

client to continuously send more packets than it would receive. This of course skews

all four flow features such that it may occur in a false positive alert. On the other

hand, if the Byte and Packet count features remain in range of the computed bounds,

the lack of responses will still skew the asymmetry features. This will not result in

an alert as all four features must fall out of bounds to satisfy the detection condition,

but will instead bring down the average of the asymmetry features down, and thus

also bring down the lower bound to values that are common during occurrences of

DDoS attacks. This is exactly what had occurred in Trial 16 of our experimentation,

in which a sequence of responses that were not received cause more bytes and packets

to be sent than received, reducing the value of the lower bound to approximately

0. Consequently in this scenario, when the flooding attack occured and the spoofed

packets sent resulted in more packets going out of a device versus packets received

by the device, the 0 values of the asymmetry features were still to be considered

legitimate and within the computed bounds, causing the True Negative to occur.

These sequences of events leading to this case can be observed in the Wireshark

traffic capture of the attacking device, H3, in Figure 5.10.

80

Figure 5.10. H3 UDP Flood Wireshark Capture, Trial 16: True Negative
Occurrence

These sequence of events can be summarized as follows:

• Line 172: DNS query

• Line 173: DNS response

• Line 174: UDP packet sent (Result: dropped response or request)

• Line 175: DNS request (Result: dropped response or request)

• Line 176: DNS query

• Line 177: DNS response received

• Line 178: UDP packet sent (Result: dropped response or request)

• Line 179 to 180: ARP (ARP cache timeout)

• Line 181: DNS query

• Line 182: DNS response

• Line 183: UDP packet sent (Response is received back on this attempt on Line

184)

This sequence represents the series of traffic right before the attack is initiated (seen

81

on Line 191), and spans approximately 7 seconds, which can be equated to two moni-

toring intervals in which no response was received. During these intervals, the skewed

Asymmetry of Bytes and Asymmetry of Packets features resulted in the lower bound

being pushed further down to 0. Consequently, the DDoS attack was not detected be-

cause the values for these two features during the attack was considered within range

of the bounds. Although the Bytes per Second and Packets per Second features surge

drastically from the computed upper bounds during the next observation during the

occurrence of an attack, the asymmetry features are well within range, since the lower

bound had been pushed to 0, and thus it lead our method into believing the traffic

to have been legitimate.

We again compared the detection performance of our approach on larger network

topologies of 4 and 8 networks, each network consisting of 5 hosts. The bandwidth,

delay, and packet loss probability, and alpha value remained the same due to time

constraints. Table 5.9 show the performance results when monitoring intervals of 3

seconds, 5 seconds, and 10 seconds were selected.

Table 5.9. UDP Flood Detection Results (Larger Topology, α = 0.10)
3 Sec Interval 5 Sec Interval 10 Sec Interval

DR(%) FP(%) DR(%) FP(%) DR(%) FP(%)
4 Networks, 20 Hosts 91.30 7.50 91.47 2.50 99.15 0.00
8 Networks, 40 Hosts 96.09 2.89 99.57 5.29 100.00 7.06

Despite the results of the larger network UDP flood experiment lacking in accuracy

when compared with its TCP SYN Flood counterpart, the increased accuracy as a

result of increased monitoring time can be observed. The trade off again is that we

sacrifice earlier detection time for increased accuracy in DR performance. At worst

case, the attack is detected x seconds after its initiation, where x is the value of

the set monitoring interval. Despite the removal of the lower bound constraint from

82

the Bytes per Second and Packets per Second features, FPR in our UDP flooding

experiments remain relatively high, as seen in the scenario of 8 networks.

Overall, two major shortcomings are identified in our evaluation. The first is the

relatively high rate of false positives in comparison with some other approaches. In

various tests we are able to reduce the false positive occurrences by lowering α value,

but it also seems that size of the network makes a significant impact on this value as

well. While we try several approaches in reducing the FPR such as lowering alpha

values and eliminating the lower bound constraints on Bytes per Second and Packets

per Second, it is noted that more work is required to find a more consistent approach

towards reducing the occurrence of false positives, especially in small surges of traffic

that are not significantly higher than the computed averages and upper bounds, but

still resemble the volumetric and asysmmetric behaviors of DDoS attacks. The other

current shortcoming of our approach is the inability to detect application layer attacks

such as HTTP flooding attacks. One of the cornerstones of our approach is the ability

to find deviations from normal expected behavior through the measurement of flow

features at each observation. However, HTTP attacks oftentimes do not engage in

flooding that is entirely obvious and oftentimes the attack traffic is very hard to

distinguish from normal HTTP traffic [14]. It can be envisioned however, that our

approach can still play a role in detecting these kinds of attacks through first flagging

suspected attacking nodes and then forwarding it to the SDN controller to be run

through IDS or IPS application as a second step.

83

Chapter 6

CONCLUSION

In this thesis, we examined how the Manufacturer Usage Descriptions (MUD)

proposed standard implemented in an Software Defined Networking (SDN) context

can be leveraged to detect DDoS flooding attacks that are launched from IoT sources

through periodic observations of the device flows, in order to detect any unexpected

deviations. We generated flow rules that were translated from the MUD files that

detailed the permitted traffic patterns and behaviors, and used these flow rules as a

means of identifying the traffic coming in and out of the associated device. We then

used the centralized capabilities of SDN to periodically monitor all the MUD flows

installed on each connected OpenFlow switch of each IoT network that is managed by

the SDN controller. The Exponentially Weighted Moving Average (EWMA) function

was utilized to take into account slight deviations of past and future traffic, along

with being used to generate an upper and lower bound to define an acceptable range

of observed flow features. Detection of attacks sought to identify the presence of the

volumetric and asymmetric characteristics of DDoS flooding attacks through observ-

ing large deviations in Bytes Per Second, Packets Per Second, Asymmetry of Bytes,

and Asymmetry of Packets from their respective EWMAs. Our approach serves as

a simple method of detecting common flooding attacks such as TCP flooding and

UDP flooding (albeit with a bit more difficulty) from IoT sources. We demonstrate

that given sufficient time between attack and the initialization of the first EWMA

computation, we are able to achieve a high detection rate. While the values of False

Positive Rate is a factor to be improved upon, for traffic that follow an expected be-

84

havior (as defined by their respective MUD rules), we are able to consistently achieve

above 98% detection rate performance for TCP SYN attacks while a 90% detection

rate performance for UDP attacks. We are able to improve overall accuracy of the

approach by setting the monitoring interval to a larger value, the trade off being the

delay in detection time. The improvement in accuracy can be demonstrated when

the interval times for the UDP attacks are increased to 10 seconds, increasing the

detection rate from 90% to 100%.

85

REFERENCES

[1] A. Mosenia and N. K. Jha, “A Comprehensive Study of Security of Internet-of-
Things,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4,
pp. 586–602, Oct. 2017.

[2] G. Kambourakis, C. Kolias, and A. Stavrou, “The Mirai Botnet and the IoT
Zombie Armies,” in Proc. MILCOM 2017 - 2017 IEEE Military Communica-
tions Conf. (MILCOM), Oct. 2017, pp. 267–272.

[3] M. E. Ahmed and H. Kim, “DDoS Attack Mitigation in Internet of Things
Using Software Defined Networking,” in Proc. IEEE Third Int. Conf. Big Data
Computing Service and Applications (BigDataService), Apr. 2017, pp. 271–276.

[4] E. Lear and B. Weis, “Slinging MUD: Manufacturer usage descriptions: How
the network can protect things,” in Proc. Int. Conf. Selected Topics in Mobile
Wireless Networking (MoWNeT), Apr. 2016, pp. 1–6.

[5] Intel, A Guide To the Internet of Things, Accessed: 2018-03-23. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/images/iot/
guide-to-iot-infographic.png.

[6] M. Özçelik, N. Chalabianloo, and G. Gür, “Software-Defined Edge Defense
Against IoT-Based DDoS,” in Proc. IEEE Int. Conf. Computer and Information
Technology (CIT), Aug. 2017, pp. 308–313.

[7] B. Krebs, Who Makes the IoT Things Under Attack? Accessed: 2018-05-22, Oct.
2016. [Online]. Available: https://krebsonsecurity.com/2016/10/who-makes-
the-iot-things-under-attack/.

[8] ——, Who is Anna-Senpai, the Mirai Worm Author? Accessed: 2018-03-23, Jan.
2018. [Online]. Available: https://krebsonsecurity.com/2017/01/who-is-anna-
senpai-the-mirai-worm-author/.

[9] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai
and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, Jul. 2017.

[10] S. Hilton, Dyn Analysis Summary Of Friday October 21 Attack, Accessed: 2018-
03-23, Oct. 2016. [Online]. Available: https ://dyn.com/blog/dyn- analysis -
summary-of-friday-october-21-attack/.

[11] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage Description Speci-
fication,” IETF Secretariat, Internet-Draft (work in progress) draft-ietf-opsawg-

86

https://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
https://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

mud-22, May 2018, https://tools. ietf .org/html/draft- ietf- opsawg-mud-22.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-opsawg-mud-22.

[12] NIST, Software Defined Virtual Networks, Accessed: 2018-03-07, Oct. 2017. [On-
line]. Available: https://www.nist.gov/programs-projects/software-defined-
virtual-networks.

[13] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39–53,
Apr. 2004, issn: 0146-4833. [Online]. Available: http://doi.acm.org/10.1145/
997150.997156.

[14] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms Against
Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 4, pp. 2046–2069, 2013, issn: 1553-877X.

[15] H. Sinanović and S. Mrdovic, “Analysis of Mirai malicious software,” in Proc.
Telecommunications and Computer Networks (SoftCOM) 2017 25th Int. Conf.
Software, 2017, pp. 1–5.

[16] T. Degroote, WATER TORTURE: A SLOW DRIP DNS DDOS ATTACK,
Accessed:2018-05-06, Feb. 2014. [Online]. Available: https : / / secure64 . com/
water-torture-slow-drip-dns-ddos-attack/.

[17] M. Kumar, New Mirai Okiru Botnet targets devices running widely-used ARC
Processors, Accessed: 2018-05-06, Jan. 2018. [Online]. Available: https://theha
ckernews.com/2018/01/mirai-okiru-arc-botnet.html.

[18] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Pro-
ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, issn: 0018-9219.

[19] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-Defined Networking (SDN)
and Distributed Denial of Service (DDoS) Attacks in Cloud Computing Envi-
ronments: A Survey, Some Research Issues, and Challenges,” IEEE Communi-
cations Surveys Tutorials, vol. 18, no. 1, pp. 602–622, 2016, issn: 1553-877X.

[20] K. Kalkan and S. Zeadally, “Securing Internet of Things (IoT) with Software
Defined Networking (SDN),” IEEE Communications Magazine, pp. 1–7, 2017,
issn: 0163-6804.

87

https://tools.ietf.org/html/draft-ietf-opsawg-mud-22
https://tools.ietf.org/html/draft-ietf-opsawg-mud-22
https://www.nist.gov/programs-projects/software-defined-virtual-networks
https://www.nist.gov/programs-projects/software-defined-virtual-networks
http://doi.acm.org/10.1145/997150.997156
http://doi.acm.org/10.1145/997150.997156
https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://thehackernews.com/2018/01/mirai-okiru-arc-botnet.html
https://thehackernews.com/2018/01/mirai-okiru-arc-botnet.html

[21] F. Hu, Q. Hao, and K. Bao, “A Survey on Software-Defined Network and Open-
Flow: From Concept to Implementation,” IEEE Communications Surveys Tu-
torials, vol. 16, no. 4, pp. 2181–2206, 2014, issn: 1553-877X.

[22] M. Jethanandani, L. Huang, S. Agarwal, and D. Blair, “Network Access Control
List (ACL) YANG Data Model,” IETF Secretariat, Internet-Draft draft-ietf-
netmod-acl-model-18, Mar. 2018, http://www.ietf.org/internet-drafts/draft-
ietf - netmod - acl - model - 18 . txt. [Online]. Available: http : / /www . ietf . org /
internet-drafts/draft-ietf-netmod-acl-model-18.txt.

[23] N. Feamster, “Outsourcing Home Network Security,” in Proceedings of the 2010
ACM SIGCOMM Workshop on Home Networks, ser. HomeNets ’10, New Delhi,
India: ACM, 2010, pp. 37–42. [Online]. Available: http://doi.acm.org/10.1145/
1851307.1851317.

[24] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting Traffic Anomaly Detec-
tion Using Software Defined Networking,” in International Workshop on Recent
Advances in Intrusion Detection, Springer, 2011, pp. 161–180.

[25] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detec-
tion using NOX/OpenFlow,” in Proc. IEEE Local Computer Network Conf, Oct.
2010, pp. 408–415.

[26] X. Yang, B. Han, Z. Sun, and J. Huang, “SDN-Based DDoS Attack Detection
with Cross-Plane Collaboration and Lightweight Flow Monitoring,” in Proc.
GLOBECOM 2017 - 2017 IEEE Global Communications Conf, 2017, pp. 1–6.

[27] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented DDoS blocking
scheme for botnet-based attacks,” in Proc. Sixth Int. Conf. Ubiquitous and
Future Networks (ICUFN), Jul. 2014, pp. 63–68.

[28] C. Aggarwal and K. Srivastava, “Securing IOT devices using SDN and edge
computing,” in Proc. 2nd Int. Conf. Next Generation Computing Technologies
(NGCT), Oct. 2016, pp. 877–882.

[29] P. Bull, R. Austin, E. Popov, M. Sharma, and R. Watson, “Flow Based Security
for IoT Devices Using an SDN Gateway,” in Proc. IEEE 4th Int. Conf. Future
Internet of Things and Cloud (FiCloud), Aug. 2016, pp. 157–163.

[30] NIST, NIST/SEMATECH e-Handbook of Statistical Methods, Accessed: 2018-
03-24, Oct. 2013. [Online]. Available: http://www.itl.nist.gov/div898/handboo
k/.

88

http://www.ietf.org/internet-drafts/draft-ietf-netmod-acl-model-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-netmod-acl-model-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-netmod-acl-model-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-netmod-acl-model-18.txt
http://doi.acm.org/10.1145/1851307.1851317
http://doi.acm.org/10.1145/1851307.1851317
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

[31] T. Finch, “Incremental calculation of weighted mean and variance,” University
of Cambridge, Tech. Rep., Feb. 2009.

[32] B. Lantz, B. Heller, N. Handigol, and V. Jeyakumar, Mininet, Accessed: 2018-
05-28, Apr. 2018. [Online]. Available: https://github.com/mininet/mininet.

[33] NTT Labs, Ryu, Accessed: 2018-05-28, Jun. 2018. [Online]. Available: https :
//github.com/osrg/ryu.

[34] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, Open vSwitch,
Accessed: 2018-05-28, Jun. 2018. [Online]. Available: https://github.com/open
vswitch/ovs.

[35] E. Poger, T. Lemon, and Internet Systems Consortium, Dhclient, Accessed:
2018-05-28, Mar. 2018. [Online]. Available: http : / /manpages . ubuntu . com/
manpages/xenial/man8/dhclient.8.html.

[36] Internet Systems Consortium, Dhclient.conf, Accessed: 2018-05-28, Mar. 2018.
[Online]. Available: http://manpages.ubuntu.com/manpages/xenial/man5/
dhclient.conf.5.html.

[37] C. Gibson, K. Katterjohn, Mixter, and Fyodor, Ncat, Accessed: 2018-05-28, Apr.
2018. [Online]. Available: https://github.com/nmap/nmap/tree/master/ncat.

[38] N. Tallim, StaticDHCPd, Accessed: 2018-05-28, Dec. 2017. [Online]. Available:
https://github.com/flan/staticdhcpd.

[39] S. Kelley, Dnsmasq, Accessed: 2018-05-28, Oct. 2017. [Online]. Available: http:
//www.thekelleys.org.uk/dnsmasq/doc.html.

[40] R. Klöti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” in Proc.
21st IEEE Int. Conf. Network Protocols (ICNP), Oct. 2013, pp. 1–6.

[41] S. Sanfilippo, Hping3, Accessed: 2018-06-14, Feb. 2014. [Online]. Available: htt
ps://tools.kali.org/information-gathering/hping3.

89

https://github.com/mininet/mininet
https://github.com/osrg/ryu
https://github.com/osrg/ryu
https://github.com/openvswitch/ovs
https://github.com/openvswitch/ovs
http://manpages.ubuntu.com/manpages/xenial/man8/dhclient.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/dhclient.8.html
http://manpages.ubuntu.com/manpages/xenial/man5/dhclient.conf.5.html
http://manpages.ubuntu.com/manpages/xenial/man5/dhclient.conf.5.html
https://github.com/nmap/nmap/tree/master/ncat
https://github.com/flan/staticdhcpd
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://tools.kali.org/information-gathering/hping3
https://tools.kali.org/information-gathering/hping3

APPENDIX A

GENERATED MUD FILES

90

A.1 Generated MUD Files

1 {
2 "ietf -mud:mud": {
3 "mud -version": 1,
4 "mud -url": "https://www.example -mud -server.com/toaster/v

1/mudfile.json",
5 "last -update": "2018-04-29T22:06:59+02:00",
6 "mud -signature": "https://www.example -mud -server.com/

toaster/v1/mudfile.json.sig",
7 "cache -validity": 48,
8 "is-supported": true,
9 "systeminfo": "IoTCompany toasterv1",

10 "mfg -name": "IoTCompany",
11 "model -name": "toasterv1",
12 "from -device -policy": {
13 "access -lists": {
14 "access -list": [
15 {
16 "name": "mud -92922-v4fr"
17 }
18]
19 }
20 },
21 "to-device -policy": {
22 "access -lists": {
23 "access -list": [
24 {
25 "name": "mud -92922-v4to"
26 }
27]
28 }
29 }
30 },
31 "ietf -access -control -list:access -lists": {
32 "acl": [
33 {
34 "name": "mud -92922-v4to",
35 "type": "ipv4-acl -type",
36 "aces": {
37 "ace": [

91

38 {
39 "name": "cl0-todev",
40 "matches": {
41 "ipv4": {
42 "ietf -acldns:src -dnsname": "service1.

example -iot -service1.com",
43 "protocol": 6
44 },
45 "tcp": {
46 "source -port": {
47 "operator": "eq",
48 "port": 1234
49 }
50 }
51 },
52 "actions": {
53 "forwarding": "accept"
54 }
55 }
56]
57 }
58 },
59 {
60 "name": "mud -92922-v4fr",
61 "type": "ipv4-acl -type",
62 "aces": {
63 "ace": [
64 {
65 "name": "cl0-frdev",
66 "matches": {
67 "ipv4": {
68 "ietf -acldns:dst -dnsname": "service1.

example -iot -service1.com",
69 "protocol": 6
70 },
71 "tcp": {
72 "destination -port": {
73 "operator": "eq",
74 "port": 1234
75 }
76 }

92

77 },
78 "actions": {
79 "forwarding": "accept"
80 }
81 }
82]
83 }
84 }
85]
86 }
87 }

Listing A.1. Generated TCP MUD File

1 {
2 "ietf -mud:mud": {
3 "mud -version": 1,
4 "mud -url": "https://www.example -mud -server.com/toaster/v

1/mudfile.json",
5 "last -update": "2018-04-29T22:06:59+02:00",
6 "mud -signature": "https://www.example -mud -server.com/

toaster/v1/mudfile.json.sig",
7 "cache -validity": 48,
8 "is-supported": true,
9 "systeminfo": "IoTCompany toasterv1",

10 "mfg -name": "IoTCompany",
11 "model -name": "toasterv1",
12 "from -device -policy": {
13 "access -lists": {
14 "access -list": [
15 {
16 "name": "mud -92922-v4fr"
17 }
18]
19 }
20 },
21 "to-device -policy": {
22 "access -lists": {
23 "access -list": [
24 {
25 "name": "mud -92922-v4to"
26 }

93

27]
28 }
29 }
30 },
31 "ietf -access -control -list:access -lists": {
32 "acl": [
33 {
34 "name": "mud -92922-v4to",
35 "type": "ipv4-acl -type",
36 "aces": {
37 "ace": [
38 {
39 "name": "cl0-todev",
40 "matches": {
41 "ipv4": {
42 "ietf -acldns:src -dnsname": "service1.

example -iot -service1.com",
43 "protocol": 6
44 },
45 "tcp": {
46 "source -port": {
47 "operator": "eq",
48 "port": 1234
49 }
50 }
51 },
52 "actions": {
53 "forwarding": "accept"
54 }
55 }
56]
57 }
58 },
59 {
60 "name": "mud -92922-v4fr",
61 "type": "ipv4-acl -type",
62 "aces": {
63 "ace": [
64 {
65 "name": "cl0-frdev",
66 "matches": {

94

67 "ipv4": {
68 "ietf -acldns:dst -dnsname": "service1.

example -iot -service1.com",
69 "protocol": 6
70 },
71 "tcp": {
72 "destination -port": {
73 "operator": "eq",
74 "port": 1234
75 }
76 }
77 },
78 "actions": {
79 "forwarding": "accept"
80 }
81 }
82]
83 }
84 }
85]
86 }
87 }

Listing A.2. Generated UDP MUD File

95

APPENDIX B

CONFIGURATION FILES

96

B.1 Modified dhclient.conf

Configuration f i l e fo r / sbin/ dhcl ient .
#
This i s a sample conf igurat ion f i l e fo r dhc l ient . See dhcl ient . conf ’ s
man page for more information about the syntax of th i s f i l e
and a more comprehensive l i s t of the parameters understood by
dhcl ient .
#
Normally , i f the DHCP server provides reasonable information and does
not leave anything out (l i k e the domain name, fo r example) , then
few changes must be made to th i s f i l e , i f any .
#

option rfc3442−c l a s s l e s s−s tat i c−routes code 121 = array of unsigned integer 8 ;

MUD Options Added

option option−mud−url−v4 code 161 = text ;
send option−mud−url−v4 = ” https ://www. example−mud−server . com/ toaster /v1/mudfile . json ” ;
#send option−mud−url−v4 = ” https ://www. example−mud−server . com/ toaster /v2/mudfile . json ” ;

##########################

send host−name = gethostname () ;
request subnet−mask , broadcast−address , time−o f f s e t , routers ,

domain−name, domain−name−servers , domain−search , host−name,
dhcp6 .name−servers , dhcp6 . domain−search , dhcp6 . fqdn , dhcp6 . sntp−servers ,
netbios−name−servers , netbios−scope , inter face−mtu,
rfc3442−c l a s s l e s s−s tat i c−routes , ntp−se rvers ;

Listing B.1. Modified dhclient.conf for MUD Support

97

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Background
	3 Related Works
	4 Approach Description and Procedure
	5 Evaluation and Results
	6 Conclusion
	References

	Appendix
	A Generated MUD Files
	B Configuration Files

