Manchester
Metropolitan
University

Ujjan, Raja Majid Ali and Pervez, Zeeshan and Dahal, Keshav and Bashir,
Ali Kashif and Mumtaz, Rao and Gonzalez, J (2019) Towards sFlow and
adaptive polling sampling for deep learning based DDoS detection in SDN.
Future Generation Computer Systems. ISSN 0167-739X

Downloaded from: https://e-space.mmu.ac.uk/624538/
Version: Accepted Version

Publisher: Elsevier BV

DOI: https://doi.org/10.1016/j.future.2019.10.015

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/624538/
https://doi.org/10.1016/j.future.2019.10.015
https://e-space.mmu.ac.uk

Journal Pre-proof o

FIGICIS:
Towards sFlow and adaptive polling sampling for deep learning based S Rt T

DDoS detection in SDN

Raja Majid Ali Ujjan, Zeeshan Pervez, Keshav Dahal, Ali ==
Kashif Bashir, Rao Mumtaz, J. Gonzalez

PII: S0167-739X(19)31833-3
DOI: https://doi.org/10.1016/j.future.2019.10.015
Reference: FUTURE 5240

To appear in: Future Generation Computer Systems

Received date: 12 July 2019
Revised date: 18 September 2019
Accepted date: 27 October 2019

Please cite this article as: R.M.A. Ujjan, Z. Pervez, K. Dahal et al., Towards sFlow and adaptive
polling sampling for deep learning based DDoS detection in SDN, Future Generation Computer
Systems (2019), doi: https://doi.org/10.1016/j.future.2019.10.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2019.10.015
https://doi.org/10.1016/j.future.2019.10.015

This paper presented a sFlow and adaptive pooling based sampling approach to efficiently
detect distributed denial of service attack for loT applications.

The programmability of SDN enables flexible placement of intrusion detection capabilities
such as Snort and data sampling.

In the data-plane of SDN to reduce the processing and network overhead at switches, we

deployed sFlow and adaptive polling based sampling individually.

In control-plane, to optimize detection accuracy, we deployed Snort IDS collaboratively with
Stacked Autoencoders (SAE) deep learning model.

The empirical evaluation of the proposed work demonstrated higher detection accuracy for

sFlow as compared to adaptive pooling based approach.

Towards sFlow and adaptive polling sampling for deep learning based

DDoS detection in SDN

Raja Majid Ali Ujjan“, Zeeshan Pervez¢, Keshav Dahal®, Ali Kashif Bashir’, Rao Mumtaz¢ and

J. Gonzalez¢

4School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PAI 2BE, UK

bDepartment of Computing, Mathematics, and Digital Technology, Manchester Metropolitan University, Manchester M1 5GE, UK

¢GS LDA, Aveiro, Portugal

ARTICLE INFO

Keywords:
DDoS

IoT

SDN
Snort
Sampling

ABSTRACT

Distributed Denial of Service (DDoS) is one of the most rampant attacks in the modern Internet of
Things (IoT) network infrastructures. Security plays a very vital role for an ever-growing heteroge-
neous network of IoT nodes, which are directly connected to each other. Due to the preliminary stage of
Software Defined Networking (SDN), in the IoT network, sampling based measurement approaches
currently results in low-accuracy, higher memory consumption, higher-overhead in processing and
network, and low attack-detection. To deal with these aforementioned issues, this paper proposes
sFlow and adaptive polling based sampling with Snort Intrusion Detection System (IDS)and deep
learning based model, which helps to lower down the various types of prevalent DDoS attacks inside
the IoT network. The flexible decoupling property of SDN enables us to program network devices
for required parameters without utilizing third-party propriety based hardware or software. Firstly,
in data-plane, to lower down processing and network overhead of switches, we deployed sFlow and
adaptive polling based sampling individually. Secondly, in control-plane, to optimize detection accu-
racy, we deployed Snort IDS collaboratively with Stacked Autoencoders (SAE) deep learning model.
Furthermore, after applying performance metrics on collected traffic streams, we quantitatively in-
vestigate trade off among attack detection accuracy and resources overhead. The evaluation of the
proposed system demonstrates higher detection accuracy with 95% of True Positive rate with less

than 4% of False Positive rate within sFlow based implementation compared to adaptive polling.

1. Introduction

The rapid growth of the Internet of Things (IoT) has be-
come very popular throughout the world, it has emerged in
our modern smart homes, vehicles and many other wearable
gadgets. IoT is a combination of large interconnected de-
vices, such as household appliances, wearable devices, med-
ical devices, smart vehicles and public facilities provider [41,
31]. According to the research [64], tens of billions of vul-
nerable devices will be connected to IoT. Most of these de-
vices do not use secure communication protocols or appro-
priate security measures when interfacing with computing
and storage units. These vulnerabilities provide temptation
not only for enterprises wanting to acquire data for the adop-
tion of intelligent management system or digital proof but
also for malicious users (i.e., attackers), which diffuse intru-
sion or service disruption such as Distributed Denial of Ser-
vice (DDoS). Once a DDoS attack occurs then it can severely
threaten human life safety directly or indirectly - for instance,
connected medical devices, home or critical infrastructure
monitoring. Current studies in [58, 30] depict that IoT is also
vulnerable to viruses. Studies of current DDoS attacks have
also proved that IoT has ubiquitous loopholes with the initial
stage. If the security approaches have not been deployed in
IoT then DDoS attacks unwillingly arise. DDoS attacks are

B9 raja.vjjan@uws.ac.uk (R.M.A. Ujjan); zeeshan.pervez@uws.ac.uk
(Z. Pervez); keshav.dahal@uws.ac.uk (K. Dahal); dr.alikashif.b@ieee.org
(A.K. Bashir); shmu@gs-1da.com (R. Mumtaz); jonathan@gs-1da.com (J.
Gonzélez)

ORCID(S):

capable to make most of the network services unavailable by
utilizing all available server resources with continuous unde-
sirable traffic floods. Cisco Visual Networking Index (VNI)
has depicted in a survey, nearly 17 millions of DDoS intru-
sion activities can happen by 2020, as a triple increment to
2015 incidents [11]. Nature of attacks is also switching from
a single flooding attack to multiple attack vectors.

In 2016, the largest DDoS attacks [42]were recorded,
these DDoS attacks were caused due to unauthorised remote
access to IoT devices and security weakness. This vulnera-
bility enables the undetected attackers to instal Botnet at var-
ious nodes of IoT devices, where compromised IoT devices
nodes generate the high traffic and exhausts the resources.

Most of financial, social-media, entertainment, medical,
business and engineering sectors are under attacks [22], thus
posing reputation and financial losses of these sectors at risk.
However, it has become a very mandatory concern to detect
this kind of attacks in real time with larger network premises.
In large networks, Intrusion Detection Systems (IDS) are
widely deployed for providing a safeguard against network
threats. IDS is capable to monitor and analyze network pack-
ets either in-line mode or passive mode. Most of the de-
tection systems utilize collaborative work with IDS and al-
gorithms for accurate detection processing and reliable data
analysis. IDS cannot be a feasible solution for real-time mon-
itoring without these capabilities, which left systems vul-
nerable for various attackers [4]. The major concerns be-
hind this fact is that network traffic is exponentially growing
day by day, so it is becoming more complex to select ap-

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 1 of 19

propriate IDS placement point, addition to this IDS is also
limited with hardware resources within large networks. The
survey of recent study [55] depicts performance comparison
between Snort and machine learning applications, experi-
mental results show that Snort as a stand-alone tool reaches
9.5% average packet drop with 4 Gbps network and 20% av-
erage packet drop within 10 Gbps network. To optimize net-
work packet losses several studies have been proposed such
as sampling-based IDS in SDN [18] and deep learning based
DDoS detection system in SDN [45].

Software Defined Networking (SDN) in collaboration with
packet sampling and deep learning based applications have
received much attention from researchers [17, 45, 18]. SDN
provides the centralized global view of the entire infrastruc-
ture with programmable control-plane and data-plane indi-
vidually. As intrusion detection technology is exponentially
rising in current network security approaches, researchers
are facing challenges on how to manage a large significant
amount of sampled traffic load in an effective way. The re-
searchers have proposed network traffic characteristics which
comprise the size of flow table [5], deviation in traffic flow
[26] and anomaly statistics with sampling [33]. The au-
thors in [5] proposed sampling technique based on flow-size.
According to the authors, most of the network attacks use
the small size of traffic flow from a malicious traffic source.
From experiments, they depicted that malicious traffic flow
size is much smaller than certain sampled threshold values
with constant probability. The authors of [26] proposed an
IDS based method on statistics of traffic flow. The research
studies represent that flow rapidly increased during the event
of a network attack. The sampled traffic was partitioned
into sub-sections followed by a source autonomous system
data. Moreover, their experimental analysis pragmatically
improves the overall intrusion detection ability. In [33], the
authors presented that sampling approaches reduce detection
ability for non-volume dependent anomalies. The authors
implemented three different intrusion detection algorithms
for detecting non-volume malicious traffic from both sam-
pled traffic and original data trace. Their results depicted that
sampling network traffic can increase false-positive triggers
and reduce overall detection capability of IDS. The authors
of [20] proposed a feasible pattern matching approach to
improve Snort IDS performance, the research work mainly
focused to reduce false-positive alarms. The deployment
of IDS was based on co-detection of misuse and anomaly
approaches. The overall system proposed fast and reliable
packet inspection with very fewer resources utilization. Most
of the authors have proposed DDoS detection approaches in
SDN with unreal and redundant datasets, which mainly focus
only on SDN control-layer. The existing literature comprises
control-plane sampling approaches due to the initial stage of
SDN features, which also lead to low detection accuracy and
higher resource consumption.

To solve the aforementioned problems, we proposed a
novel solution to effectively detect DDoS traffic in IoT. Our
proposed solution uses sFlow and adaptive polling based sam-
pling in data-plane to manage heavy traffic flows. These

sampling approaches lower down network burden and en-
ables IDS to record malicious activities effectively. Our work
uses Snort and Stacked Autoencoders (SAE), an unsuper-
vised algorithm to improve detection accuracy with real-time
network traces collected with IDS in SDN. In this work, we
utilized packet based sFlow and time-oriented adaptive polling
based sampling approaches inside data-plane switches, to
rebuild real-time network flows statistic with low CPU and
network overhead. This enables the DDoS detection model
to effectively classify traffic during DDoS floods. We also
provided a comparison between OpenFlow based sFlow and
adaptive polling based sampling schemes to improve the IDS
detection inaccuracies, while keeping total sampled flows
lower than IDS processing power. This enables to acquire
data with Snort IDS over the controller. Our work achieved
less than 4% of False Positive alerts with 95% True Positive
rate in packet-based sampling, which is comparatively better
than time oriented sampling. Proposed work is evaluated in
Tensorflow 1.4 by utilizing a confusion matrix.

This paper is organised as: in Section II, we present re-
lated work. Section III provides main sampling approaches.
In the Section IV, we discuss main architectural components
of the proposed system. In Section V, we present traffic anal-
ysis. Finally, we discuss experimental setup and results eval-
uation in Section VI and VII respectively.

2. Related work

The researchers have performed a significant amount of
work with intrusion detection technologies on traditional net-
work infrastructure[65]. Most of the research is carried out
with detection of DDoS and mitigation of DDoS attacks within
legacy network [3]. Comparing to traffic demands of future
networks, legacy networks are found significantly expensive
and least secure with a different perspective of traffic analysis
and deployment. To address these challenges, SDN infras-
tructure with OpenFlow protocol has successfully improved
various security challenges [56]. Despite providing modern
solutions in SDN, control-plane and data-plane is not exten-
sively explored with real-time datasets to detect new types of
DDoS attacks. Due to centralized network activity manage-
ment and programmability approaches, SDN networks could
become vulnerable for potential attacks [28]. In particular,
attacking SDN control-plane with DDoS floods could run
down a larger portion of network [62]. In data-plane, detect-
ing DDoS attacks is difficult due to the fact that OpenFlow
enabled switches have the least information due to isolated
traffic flows, this weakness makes the network more vulnera-
ble to attacks. Attackers can launch DDoS traffic with simple
knowledge, and available tools and hardware assets [24].

In existing research, only preliminary research is carried
out for optimising the security of IoT with SDN technology.
The authors in [15] designed a distributed secure architec-
ture based in SDN for the IoT domain. Similarly, authors
of [2] also investigated preliminary discussion for how to
mitigate the DDoS attacks OF IoT devices, the authors have
utilised the SDN based sampling approaches for identifying

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 2 of 19

the anomalies, the major aim was to collect the switches in-
formation for enhancing security accuracy. Moreover, the
authors of [44] also designed a hybrid security countermea-
sure system to provide a safeguard against link spoofing at-
tacks inside SDN based IoT controller.

Many researchers have proposed well known DDoS de-
tection approaches in SDN context. The authors in [6] uti-
lized Self Organizing Maps (SOM), a machine learning (ML)
model to detect DDoS attacks by utilizing the features of
traffic flow. In this method, authors presented six tuples of
feature extraction such as Average of Packet per flow (APf),
Average of Bytes per flow (ABf), Average of Duration per
flow (ADf), Percentage of Pair flows (PPf), Growth of Sin-
gle flow (GSf), and Growth of Different Ports (GDP). Flow
is divided into sub-components if there exists a larger con-
nection in time context then all six features of this work are
modified to be used in identical flows. The major aim was
to detect DDoS flooding attacks inside kernel based modu-
lar detection engine. Based on traffic features, detection en-
gine classified in benign traffic and malicious traffic entries.
The proposed work can only perform with table flow and
cannot be extended to detect DDoS attacks in heavy traffic
flow streams inside switches. Similarly, authors in [39] also
utilized ML approaches to analyse and differentiate network
traffic flows. In [7], authors used four malicious traffic detec-
tion algorithms in SDN contexts, such as Threshold Random
Walk with Credit-Based (TRW-CB), Rate-Limiting, Maxi-
mum Entropy Detector and Network Traffic Anomaly De-
tector (NETAD). According to authors TRW-CB algorithm
and Rate-Limiting algorithm were capable to detect every
first packet arriving with new sessions, then collected pack-
ets were sent to the controller for deep inspection to iden-
tify attack event. The Maximum Entropy Detector was able
to collect every initial packet then consistently collect these
packets by every predefined ¢ seconds, this helps to make
traffic class distribution to classify normal traffic distribution
class with the help of maximum entropy estimation. The au-
thors in [56] depicted malicious traffic mitigation AVANT-
GUARD approach. The mitigation performed only at control-
plane traffic. Authors modified data-plane with the help of
OpenFlow for utilizing two new models such as connection
mitigation model and actuating trigger model.

In [51] SDN provides the various DDoS defence mecha-
nisms via programmability feature, in the proposed solution
of SD-IoT framework, the majority of IoT controllers of the
pool are responsible for the centralised logic, which handles
the overall IoT networks. The centralised logical controller
is easy to maintain and manage but it also carries some se-
curity vulnerabilities. Like SDN based networks, SD-IoT
is also responsible for creating detection and mitigation ap-
proaches by utilising programmability features.

Generally, most of ML approaches differentiate attacks
traffic flows followed by certain feature characteristics, which
are obtained from that traffic. Many researchers have utilized
ML.-based anomaly detection approaches within small-sized
networks, but in large networks, acquiring network flows and
feature statistics manipulation provides significant overhead

in SDN controller [17], according to the authors, controller
response time plays a vital role in attack detection scenarios.
In general, ML-based anomaly detection techniques rely on
trained datasets in the model. Moreover, authors of [17] pro-
posed anomaly detection and mitigation techniques by em-
ploying sFlow based data gathering in the SDN platform.
The proposed model consists of a collector unit, anomaly
detection unit and anomaly mitigation unit. The collector
unit acquires all incoming traffic flows with sFlow technique.
After flow acquisition, an entropy-based algorithm differ-
entiates traffic flows with benign class and malicious class.
After malicious traffic identification, anomaly detector uti-
lizes IP addresses and port numbers, which helps to miti-
gate the attacks. In contrast to anomaly detection, some re-
searchers have proposed a statistical solution to detect DDoS
traffic [61, 54]. The authors of [38] provided an entropy-
based solution for early stage DDoS detection mainly at POX
SDN controller. This proposed solution carries some limi-
tations such as, if hosts number increases then model trig-
gers a higher false-positive rate. To lower down the network
overhead such computation process from various hosts, the
authors of [63] proposed fast and effective entropy-based de-
tection method for abnormal traffic, which works with traffic
flows. The proposed approach utilizes scheduling based sin-
gle queue process with k numbers of queues with logical sub-
sets, these were individually assigned to network switches.
In the event of heavy traffic request at controller, the system
utilized logical queues to manage traffic requests with the
sequential scheduling process.

According to [40] IoT, dynamic environment requires ac-
cess control from a centralised controller, that is responsible
for managing traffic flows and to restrict the unauthorised
access from IoT network nodes. Controller access control
helps to simplify the nodes authentication on each IoT end-
points nodes for reducing network and computation over-
head.

In [7], the authors utilize maximum entropy estimation
methodology to detect the benign traffic class to resolve net-
work security issues inside home and office-based SDN net-
works. The authors performed the experiment with Open-
Flow switches in POX controller, where the proposed tech-
nique only worked with low rate network traffic traces, mainly
focused to detect attacks inside networks. Addition to this,
other authors also used entropy detection to catch port-scans
and worm-propagation attacks [17]. Moreover, anomaly-
based DDoS detection approach was also proposed by [61].
This research work significantly lowers down control-plane
overhead carried out in the SDN based edge switches.

Most of the legacy network routing protocols are limited
for designing an IoT infrastructure due to lack of its com-
putational and energy efficient approach. According to the
authors of [29], DDoS attacks are the most common security
threats, especially in IoT based infrastructures. Most of IoT
gateways for traffic collection can become a single point of
failure for other IoT sensors. These types of vulnerabilities
generate DDoS attacks in IoT. The authors of [50] proposed
another distinctive solution which is based on packet_in fil-

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 3 of 19

tering methodology. This approach utilizes the contents lists
extracted from the header field of the packet_in event of the
SDN controller. However, if the attacker launches new at-
tack flows which do not match to predefined content lists,
then the proposed approach failed to detect abnormal activ-
ities. To improve the aforementioned issue, the authors in
[13] depicted an attack detection approach. This proposed
solution locate all infected interfaces, which are used by in-
truders to infiltrate and ex-filtrate network sources. Gener-
ally, anomaly detection approaches use fixed threshold val-
ues. If some deviations occur in incoming abnormal statisti-
cal features, then it can easily identify malicious traffic. The
authors of [37], proposed detection solution to count TCP
SYN flooding traces in SDN. The main aim of authors is to
effectively mitigate flooding attacks with SDN programmable
countermeasures. The proposed solution deployed with Open-
Daylight extension module, where it monitors all TCP con-
nections and block the infected hosts.

Research has also carried out to accomplish network se-
curity in the SDN with traffic sampling. Researchers have
mainly focused to process a large amount of traffic effec-
tively, they depicted various solutions with traffic charac-
teristics, including flow information, flow size and entropy
changes in flow [17]. The authors of [32] proved that sam-
pling with detection traffic results in massive false positive
detection rate within non-volume dependant anomalous traf-
fic. The authors utilized three various detection algorithms
to catch non-volume-based traffic flows separately with sam-
pled data and original data of the model. The results showed
a low detection rate with false alerts, overall model detec-
tion performance was degraded. To overcome this issue,
the authors of [21] suggested a new improved solution with
new pattern matching technique in co-detection of Snort IDS
sensor. The authors merged misuse detection and anomaly
detection techniques to lower down false alarms. The pro-
posed method caters an effective and fast packet inspection
by utilizing low IDS resources comparatively to legacy sys-
tems. Recently, the authors in [10] depicted a high precision
DDoS detection solution with SDN based Xboost classifier.
In this method, most of DDoS attack mechanism is analyzed
to provide an effective solution. ICMP floods, TCP SYN
floods and UDP floods were sent to POX controller via grab
bag tool, all these attacks were manipulated using grab bag
connection records for evaluation in DDoS classifier. Table
1 precisely depicts major contributions of authors in SDN to
detect DDoS traffic.

From the above literature, we identify most of the re-
search has been carried out for the DDoS detection only at
SDN control layers with redundant unreal datasets, rather
than at network data layers. There has been a significant
work deployed to classify heavy traffic DDoS attacks into
real data traces.

The Internet of Things (IoT) is always under considera-
tion for adopting security and privacy requirements to create
personal profiles. With the adoption of Personal Network
and access to the specific function of advanced APIs, it is
also capable to utilises third parties devices on Layer 2 for

security consideration. the IoT network can easily become
vulnerable due to multiple points of IoT nodes. Addition to
this, the lack of computational and memory resources con-
straints, which are associated with DDoS attack and anomaly
detection mechanism rely on traffic sampling approaches to
detect real-time DDoS attack detection accuracy. The major
aim of our research is to focus the DDoS detection with the
processing of large packets of IoT network.

In contrast, we proposed co-detection model for IoT, firstly,
we utilize distributed traffic sampling in network data-plane
to maintain heavy network flows, secondly, the model uti-
lizes Snort IDS parallel to deep learning model to adopt higher
detection accuracy with low false triggers. In data-plane,
the appropriate sampling rate is employed inside all network
switches so that IDS can differentiate malicious and benign
traffic during heavy flow. This model caters analytical evalu-
ation for detection accuracy, which is mainly based on sFlow
and adaptive polling based sampling. The sampling approaches
in collaboration with IDS can adopt effective detection, which
is a significant improvement over existing work. Primarily,
these methodologies require less processing due to rectified
data features. Due to low network overhead, the proposed
model is feasibly capable to be used in various scales to meet
security requirement in modern networks.

3. Background Overview

This paper mainly focuses on IoT DDoS attack detection
model by first utilising sFlow and adaptive polling sampling
with Snort IDS to identify the network traffic, and then clas-
sify the traffic with Stacked AutoEncoder (SAE) into benign
and malicious traffic. In the following, we present the build-
ing block of our proposed DDoS attack detection.

3.1. Stacked AutoEncoder (SAE) in SDN

The SAE comprises several auto-encoders, its structure
consists of three layers, input or visible layer, hidden layer,
and reconstruction or output layer. The data inputs are fed
into a visible layer. The reconstruction layer generates out-
put. SAE algorithm is unique in nature as compared to CNN,
DBN, and RBM deep neural networks. Firstly, SAE is made
up of simple and straightforward structure, it is trained in
very less time as compared to other mentioned Deep Neural
Network (DNN) algorithms [45]. Secondly, SAE does not
use labelled datasets due to the nature of the unsupervised
learning approach. In contrast, CNN is based on supervised
learning, whereas, DBN and RBM utilize semi-supervised
datasets. Finally, the SAE algorithm also utilizes the outputs
as inputs, and detailed features from flows can be extracted
with good training approach in SAE. This paper utilizes de-
tailed features of a dataset based on the SAE approach to
improve the detection rate of DDoS attacks in SDN. SAE as
deep neural networks (DNN) utilizes sparse auto-encoders
and soft-max classifier for extraction and classification of
unsupervised datasets. A sparse AutoEncoder is a neural
network that uses three layers, where input and output layers
work with P nodes and hidden nodes with Q nodes. The M
nodes from input layers show records with P features such

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 4 of 19

Table 1
Existing literature survey for DDoS detection in SDN.

Author Year Description Methods

[6] 2010 Proposed work utilizes six SDN based Neural network model, SOM.
traffic features to detect DDoS attacks.

[7] 2010 Proposed method utilizes collected flow Periodic flow based detection
entries with fixed time intervals at controller.

[9] 2010 Packet-in Bloom filter used in switch memory Load balancing, Bloom filter
to manage the DDoS traffic.

[60] 2011 this work utilizes SDN TE application SDN TE, load balancing.
for effectively detection in networks.

[34] 2011 Depicted various traffic collection and TRW-CB, maximum entropy,
detection approaches to detect DDoS. Rate limiting.

[59] 2012 Block-based neural network (BBNN) used BBNN algorithm, IDS,
with IDS to detect DDoS in FPGA.

[56] 2013 Proposed method lower down the burden Interface mitigation.
between control-plane and data-plane.

[21] 2013 Utilized Snort with combined techniques Anomaly, misuse detection,
of anomaly detection and misuse detection. Snort IDS.

[17] 2014 Flow based feature extraction to detect Entropy detection.
worm propagation, DDoS, portscan attacks.

[18] 2015 Heavy traffic request handled using multiple direction for
scheduling based traffic scenarios. malicious data

[61] 2015 Detection model employed in edge switch to Entropy based detection
reduce traffic flows at controller.

[14] 2016 Utilized semi-supervised SVM SVM, anamoly detection
to detect anamolies in SDN.

[38] 2016 Quantitative Shannon entropy utilized Shannon method of entropy
to classify early stage DDoS attacks.

[13] 2016 A heavy DDoS attack rate is detected via SPRT method.
Sequential Probability Ratio Test .

[46] 2017 Deep learning based, multi-vector DDoS Deep learning, SAE algorithm
traffic monitoring and detection system.

[37] 2017 Counter measure mitigation implemented as SLICOTS methods
SLICOTS at controller for TCP SYN floods.

[10] 2018 Extreme gradient algorithm proposed to Machine learning.
classify DDoS attacks with low false triggers.

as X = {xq,x9,%3,..., xp}. The training function manipu-

lates the output layer as the input layer. The main objective
of sparse auto-encoders as network is to calculate feasible
values for the weighted matrices like U € ge?? = wwT)
and U € cePd = (W/TW/). The bias vectors are given
as b, =€ oe2¥1 similarly, b; =€ ceP*1. We set a learn-
ing identity approximation function X" ~ X by using back
propagation algorithm [43]. There is a large number of ac-
tivation functions used for hidden and output nodes but we
utilized Sigmoid activation function to activate the function
of sy, b,,, which is formulated in the following equations:

JW) = 5U,b, = s(UX +b,) = m v

JW) = g D IPX),=PXN), | [+0SAW Wy W TW')
@

q
Jsparse(W) = J(W) + ﬂ Z dKL(p”P/J\) (3)
J=1

In equation 2, we optimize SAE generalization ability
to get feasible features representation of datasets. For this
objective we added cost function to achieve feasible weight
learning in sparse SAE, backpropagation is utilized for mini-
mization. In this equation term of 93 Y P(X),—P(X™M),
represents the all data inputs avera:ge of sum-of-square er-
rors records with corresponding model output values with
number of r records. The second term of 0.5A(W W, +
W'TW')is used for weight decay with the help of 4 to main-
tain over fitting inside our model. In equation 3, f represents
the weight coefficient of sparsity penalty with Kullback-Leibler
divergence function. This divergence function is used to ma-
nipulate low average activation values, this function reaches
the minimum values of 0 when p = p’J\, among them p is
sparsity coefficient and p’J\ is known as average activation of

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 5 of 19

Jth hidden node during training input. The divergence func-
tion of Kullback-Leibler (KL) is provided in equation 4 as
below:

KLl = plog 2 +(1 = p)log —2)
oy ()
3.2. The sFlow Sampling Approach

To deal IDS aforementioned issues which are depicted
in Section II, we implemented packet sampling with sFlow
capability in our proposed design. The sFlow sampling tech-
nique creates mandatory flow statistics, which is normally
used for manipulation purpose [17]. Due to this nature sFlow
approach gathers sampled packets and then rebuilds the new
flow patterns by updating packet counters for each flow en-
tries in OpenFlow (OF) enabled controller. The sFlow col-
lector propagates all related traffic statistics to malicious de-
tection model. The sFlow approach enables data-plane for-
warding logic in more efficient and aggregate way, which
reduces network overhead from all deployed infrastructure.
This approach of sFlow does not rely on specific flow entries
but the major aim is to reduce the number of flow entries up
to the relevant level for detection model.

According to [48], sFlow is a suitable technology to mon-
itor real-time and virtual networks. sFlow agents are utilized
in network switches to collect switch statistics with the re-
quired sample rate then transfer to common sFlow collec-
tor. Normally, mechanism of sampled data gathering com-
prises either replicating real packetdAZs header or feature
extraction from network packets, then sample packets after
being decoded transferred to cache flow record, every flow
record is updated and saved to look up each flow record en-
try. Following by protocol information such as FIN flags,
timeout, inactivity or once cache memory is full then records
are wiped out from its cache memory and transferred to traf-
fic analysis application. However, in sFlow case, all moni-
toring, decoded hash flow, flush functionality are wiped out
from switches then these are propagated to centralized sFlow
analyses also known as a collector, this runs on an individual
server with abundant resources to support a large number of
request flows with network stabilization.

Moreover, the sFlow helps to overcome possible table
size flow limitation which is mandatory for specific OF hard-
ware deployed infrastructure [17]. Meanwhile, the sFlow
data collection technique gathers appropriate statistics for
the effective anomaly detection process. As sFlow collector
gathers packet samples consistently, it also updates relevant
counters for monitoring module with a specific time window.
Therefore, each flow entry does not require further mainte-
nance for manipulating detailed flow statistics, this enables
to lower down the complexities for flow collection models.
In Section VI, low CPU and resources usage of the model
will be presented to support sFlow mechanism in our pro-
posed work.

“4)

3.3. Adaptive Polling Sampling Approach
In proposed work, adaptive polling sampling algorithm
is used to refine polling intervals based on the rate of change

of each flow. If switches flow rapidly changes then polling
interval is reduced, on contrast, if polling intervals increased
then flow remains stable. The polling interval becomes un-
changed when flow fluctuates. We dynamically manipulated
polling frequency by predicting future flow rates on the ba-
sis of historical data. The polling interval is calculated with
the help of predicted future flow rates rather than the current
live flow rate. We utilized the combined approach of propor-
tional linear prediction (PLP) and weighted linear prediction
(WLP) to estimate the next flow rate. This approach in the
SDN environment is also discussed in [8]. Firstly, we im-
plemented a low pass filter [19] to estimate the future flow
rate. Low pass filter for flow rate prediction is provided in
equation 5.

Zixy=pC+U-pHW 5)

In equation 5, Z x,, represents the predicted values for
flow rate pf next upcoming polling, C is currently calculated
value and W depicts two different current polling values such
as 0 < f < 1, based on the network load, it is implemented
in experiment. Afterwards, next flow rate is calculated with
PLP given as below:

Zy —Zyx)

Zhey = Zx(1 4 ———5) ©6)
X-1)
Zixey = BZl oy + (=P Zx (7)

Overall, aggregated rate of change in flow is provided as
below in equation: 8:

M= | Z(x+1) — Zx]|
Zx

In equation 8, M represents overall flow changes where,
two threshold values of M,;, and M, used with0 < M <
1 conditions. If the value of M < M,,;, then detected flow
gradually changes as compared to current conditions. When
M > M,,;, thenitbrings increment in polling interval thresh-
olds, and detected flow rate rapidly changes in contrast to
current predictions, it leaves polling threshold values slow
down here. Other than these depicted conditions, the de-
tected flow rate becomes proportional to current predictions
and leaves polling thresholds unchanged.

The adaptive polling algorithm to sample SDN switches
is depicted in algorithm 1. This algorithm uses U B,,,, and
LB,,;, as upper bound and lower bound intervals respec-
tively. ATy is polling intervals for N, intervals numbers, in
the algorithm, the line 3 and 4 represent overall flow which
is currently active in switches with no sampling rate adjust-
ment. Afterwards, we utilized the equations 2, 3, 4 to get the
next predicted sample rate with the rate of change of flow
in line 7. The given algorithm line 8 to 11 depicts adopted
polling intervals rules. The line 8 and 9, if M < LB,,,,
represent that polling interval is higher, similarly if M >
U B,,,, pragmatically depicts the polling interval is reduced
shown in line 10, 11. Finally, line 11 and 12 leave the overall
polling intervals unchanged.

®)

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 6 of 19

CSV-ClassA

CSV-Storage <—» Bamyard2 +“—>
P(X1)
P(X2)
F Snort-IDS | SMi1-Mode | i
sFlow-Collector sFlow-RT P(Xn)

i

MACssrc

wow-TabIe

MAC dst

IPsrc
1P dst
TCP SYN
TCP ACK

Port src

Port dst
TIL

sFlow-Datagrams

IP protocol

Priority

ToS

Traffic

Figure 1: Data Acquisition with sFlow Sampling.

Algorithm 1 Adaptive polling sampling in SDN switches
1. Input: M, .M, UB,,. LB,,, polling intervals,

max> max>
active flows, historic flows

2: Ensure Output: Time;,,, next polling intervals

3: if active flow in packet — in — event, return False

4: function DO NOT SEND (flow to Switches table)

5: elseif polling table AT, = Currg,. — Preg, re-
turn True

6: Utilize equation 6 , 3, fo calculate next flow rate;

7: Utilize equation 8
to compute aggregate flow change,

if M < LB,,, then do;

: TIntervaIs = min(TimerUals + 17 Tmax);
10 elseif M >UB

max then do;
11: Trntervals = max([Tinteruals/zL T pin);
12: else Tintervals = mln(Timervals’ Tmax);

13: end if

4. Proposed Design

In our proposed design, we mainly utilized open source
tools and technology such as sFlow-RT [12] collector and
Ntopng [47] collector for sFlow and adaptive polling based
sampling respectively in data-plane. Snort as Network Intru-
sion Detection System (NIDS) with Barnyard2 is also used
for creating a database to store datasets inside Ryu SDN con-
troller.

/a4

_%
w
“

(—)

T
DDoS g

RYU-SDN-Controller

)

OF-Protocol

I:I] Normal
= Traffic

4.1. sFlow Collector (sFlow Sampling)

In the sFlow sampling approach, we utilized three main
modules consisting on sFlow-collector, Snort-IDS, and Data-
storage. This section of the proposed design utilizes sFlow
sampling and Snort IDS to manipulate flow classification for
higher rate DDoS detection model. This approach collabo-
ratively works with OpenFlow SDN controller and north-
bound interface communication, which is feasible to cre-
ate new insertion policies for traffic engineering in Open
vSwitch (OVS) switches. The sFlow module is used to ap-
ply packet flow sampling with individual sampling agents
on each OVS switches. All sFlow agents deployed remotely
via northbound APIs with sampling decision rates of 1/28,
1/64/, 1/256, 1/512, 1/1024 [49]. These sFlow agents stan-
dalone deliver collected sampled traffic streams with suitable
sampling rate from all deployed switches towards sFlow-RT.
The sFlow-RT is a real-time network monitoring tool that
collects and analyze sampled streams in detailed visualized
form. The sFlow-RT is an industry standard and helps to in-
corporates InMon asynchronous analytics[16]. The sFlow-
RT [49] real-time analytics engine is capable to receive the
continuous flow streams from agents of network-embedded
switches. The sFlow-RT decodes the received flow from
sFlow agents into actionable metrics via RestFlow API [52].
The RestFlow API is capable to customize the configuration
of setting up thresholds, metrics manipulation and flow mea-
surements. These API works with HTTP and rest calls with
external applications, in addition to this embedded JavaScript
and standardized ECMA scripts enable to work internally.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 7 of 19

Table 2

Six Major DDoS attack types in our test-bed

DDoS Attacks i:::; EI:::\(/jork C;)Spelclicatlon Description
HTTP-DDoS floods v Volumetric attacks with HTTP GET or HTTP POST request.
DNS-DDoS floods v Attacks to infect DNS resolution, such as application or API.
ICMP-DDoS floods v These attacks are ping floods, to overwhelm the ICMP-echo requests
UDP-DDoS floods v These attacks disrupt the device processing ability.
Smurf-DDoS floods v These attacks launch spoofed IP addresses to target.
IP-DDoS floods v Attacks on server source and destination IP addresses

Overall, sFlow-RT provides detailed visible pipeline which
helps to bring the sustainable performance of all hosts, servers,
applications and embedded devices in a single global view.
This helps to classify and analyze feasible network features
so that the deployed model can work effectively.

4.2. Snort-IDS (sFlow Sampling)

Our paper uses Snort as NIDS to collect malicious traf-
fic and benign traffic, We used various frameworks and tools
eg. The Metasploit framework [35], hping3 [23]and Low
Orbit Ion Cannon (LOIC) [1] to launch various DDoS at-
tacks with customized TCP/IP packets, we utilize the hping3
tool to emulate customized DDoS attacks. Our model also
uses the LOIC DDoS tool to launch TCP, UDP and ICMP
floods. By utilising Metasploit and Kali Linux framework,
LOIC, and hping3, we generated six most common types of
DDoS attack, which are provided in Table 2.

The main purpose of the Metasploit framework is to gen-
erate malicious traffic with some payloads. Snort collects
malicious traffic with SM1-mode and benign traffic is ac-
quired using SM2-mode shown below in Table 3. Both be-
nign and malicious traffic is manually emulated from hosts
connected directly to OVS switches, attacking hosts are as-
sumed to perform DDoS attack flooding with port scanning
using hping3 and LOIC DDoS tool. We implemented a stan-
dalone rule set in Snort detection-engine configuration file
for both modes mentioned with details in Table 3. In test-
bed, once traffic is collected with deployed sFlow sampling
agents, then all sampled traffic stream is mirrored with port
6343 to the sFlow-collector module. In Figure 1, sFlow-
collector module is integrated with sFlow-RT. Due to the
flexibility of SDN Ryu controller modular design, we uti-
lized sFlow-collector module traffic into Snort-IDS module.
In this module Snort is configured with packet logging mode,
if traffic is emulated from malicious hosts then it utilizes
SM1-mode and if traffic is coming from benign hosts then
SM2-mode is used to record logs followed by Table 3.

4.3. Flow-collector (Adaptive Polling Sampling)

In this Flow-collector module, we deployed a time-driven
sampling mechanism with adaptive polling intervals shown
in Figure 2. In this section, the polling scheme enables to
fetch timely accurate switches statistics on a fine-grained level.
Our polling mechanism instructs all active switches stream
flows by giving limited bandwidth channels and time inter-
vals. It is mandatory to adjust all active flows polling inter-
vals. The main objective of this polling based sampling is
to focus, if the number of flows is exponential rising then

Table 3
Snort Traffic acquiring modes with sFlow sampling.

Description Snort Two Modes
SM1 (Malicious) | SM2 (Benign)
TCP rules 15 signatures 8 signatures
UDP rules 10 signatures 6 signatures
ICMP rules 6 signatures bsignatures
CSV Database Barnyard?2 Barnyard2
Log file snort.log.xx1 snort.log.xx2
Traffic Monitor sFlow-RT sFlow-RT
Traffic Manipulation Python 2.7 Python 2.7

polling intervals between control-plane and data-plane also
increase, which utilizes very large bandwidth.

It is also mandatory to maintain polling bounds given as
LB,,;, and UB,,,, for each flow passing through switches,
where stable flows are placed in higher polling intervals and
lower polling intervals will be used for heavy, busy and un-
stable flows [25]. We manipulated the tunning frequency
by sending FlowStatisticsRequest Messages for individual
flows. Control-plane messages are not capable to capture ac-
knowledged flow traffic statistics, instead, we gathered flow
statistics by simple multiplication of sampling ratio with the
number of bytes in each flow, addition to this we also utilized
sampling based adaptive polling interval algorithm elabo-
rated in Algorithm 1. The equation 8 depicts rate of change
with unit value if the predicted status is very closer to the ac-
tual status. All other values must satisfy given condition of
0 < g <1, where 0 and 1 values represents minimum value
of M and maximum value of M respectively. In the Table 4,
we depicted feasible rules to manipulate AT imey,,, based
on values of M, where M,,,;, is set to 0.6 seconds and M,
is set to 1.4 seconds. The main reason to set these values is to
acquire the best performance of switches polling query. Our
adaptive polling-based sampling inside all switches mainly
focuses on time-oriented configurations to maintain the net-
work data sampling for higher accuracy. If the upper bound
limit is set to a large value, then network data after sampling
will not be up to date, majority of live network traffic will
not be recorded. Similarly, if we reduce lower bound time
to live (TTL) in the polling algorithm, then it also causes
degrade the sampling accuracy . In our algorithm, we tried
various upper bound and lower bound conditions based on
network traffic in our test-bed and configurations mentioned
in Table 4, these parameters of adaptive polling achieves best
sampling performance in switches across the test best.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 8 of 19

RYU-SDN-Contr

oller

CSV-Class B
CSV-Storage 4> Bamyard2 <+
¢ PX1)
P(X2)
g
8 Adaptive Sampling
MACsTe \\Flow~TabIe o Decision
MAC dst § \;
IPsrc
2 rat
= 0 OF-Protocol
° E TCPSYN
Y
9 g TCPACK Port mirror
E 8 |uopsre
e // \\
T
< m
1P protocol {
Priority = > xt}- Adaptive Polling
ToS p——N Pp=—=N Sampling
[_____ R
s1 L S3
OF-Switches .
o
S 5 2o N AT next
e gl E’j—N‘ Polling
[— TINJ-T[N-1] a1
+ 3
o . VT
= J— _x_Et-n
Benign Traffic DDoS Traffic (Qlient figy)
Figure 2: Data Acquisition with Adaptive Polling Interval Sampling.
Table 4 Table 5

Rules to adjust intervals for Polling sampling.

Calculated M Values

New Sample Values

M<M,,, ATimey,, = M X ATime,,,
Mmin < M < Mmax AT‘i'neNew = AT‘i’lnecurr
M, <M ATimey,, = ATime,,,. +1,,.

M not defined ATimey,, = 2,,. X ATime

curr.

4.4. Snort-IDS (Adaptive Polling Sampling)

In this module, we deployed Snort as NIDS with promis-
cuous enabled mode. The traffic from adaptive switches query
with a sampling threshold is propagated to Snort detection
engine to log data streams. Sampled traffic is visually ana-
lyzed and maintained with Ntopng tool [47]. This module
uses two modes of packet logging with Snort IDS. SM1-
mode is slightly different from the previous mode as shown
in Table 5. SM1-mode is applied for malicious traffic collec-
tion and SM2-mode for benign traffic collection. This mod-
ule uses Ntopng tool with OpenFlow enabled switches and
software-based Ryu controller, which helps traffic engineer
to predict and regulate the sampled traffic based on traffic
behaviour and relevant features. In our proposed work, we
created a SDN based application to collect sampled traffic
with Snort signature based modes.

Snort Traffic Acquiring Modes with AP sampling.

Description Snort Two Modes
SM1 (Malicious) | SM2 (Benign)
TCP rules 15 signatures 8 signatures
UDP rules 10 signatures 6 signatures
ICMP rules 6 signatures 6signatures
CSV Database Barnyard2 Barnyard2
Log file snort.log.xx3 snort.log.xx4
Traffic Monitor Ntopng Ntopng
Traffic Manipulation Python 2.7 Python 2.7

4.5. CSV-storage (sFlow and adaptive polling
Sampling)

This module is very fundamental for classifying different
feature extractions and collecting network traffic as a CSV
file. In this module, we used Barnyard2 a well known MySQL
database, which collaboratively works with Snort IDS. It is
capable to reduce the workload of Snort as it writes Snort
events in human readable modes either on console, text or
CSV file. We utilized Barnyard?2 to read all binary outputs
from Snort into a MySQL database in the CSV form. In
Barnyard2 database we deployed unified barnyard2 plug-in
and CSV plug-in to acquire easily readable CSV file such
as snort.sflow-log.xxx for benign and malicious traffic flow.
However, data is gathered in CSV form in two different ways
of SM1-mode and SM2-mode. Similar to sFlow this mod-

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 9 of 19

ule also uses Barnyard2 with unified plug-in and csv-plug-in
for adaptive polling sampling, where Snort creates two sep-
arate files such as snort.asq_log.xxx for normal traffic and
malicious traffic.

5. Traffic Analysis

Data acquisition with virtual machine (VM) is utilized
in our work, where both benign data and malicious data is
collected based on signature-based IDS with sampling ap-
proaches. Our research work mainly focuses on real-time
network data acquisition. Our data acquisition methodol-
ogy uses two types of sampling sFlow and adaptive polling
interval sampling approaches. In data-plane, we deployed
both sampling approaches individually and we gathered ma-
licious and benign datasets with Snort SM1-mode and SM2-
mode. We utilized two virtual machines, where VM1 is only
used for data-plane and implementing sampling, VM2 ma-
chine is created with signature-based Snort IDS, Barnyard2
and central SDN Ryu controller. Both virtual machines com-
municated via OpenFlow 1.3 protocol and sFlow protocol,
which is depicted in Figure 1 and Figure 2. To lower down
the workload from detection engine of Snort, Barnyard?2 is
implemented that supports to capture maximum data with
monitoring ability. Snort detection engine file is configured
with specific rules to generate DDoS alerts.

In sFlow sampling we used 15, 10 and 6 rules for TCP,
UDP and ICMP respectively in snort.conf, refers to Snort-
mode (SM1) file for malicious dataset. Similarly, we utilized
8, 6 and 6 simple rules in snort.conf refers to Snort-mode
(SM2) file for acquiring normal dataset as show in Table 3.
In adaptive polling based sampling we also used 15, 10 and
6 rules for TCP, UDP and ICMP respectively in snort.conf
refers to Snort-mode (SM1) file for the malicious dataset.
Similarly, we utilized 8, 6 and 6 simple rules in snort.conf
refers to Snort-mode (SM2) file for acquiring normal dataset
detail is provided in Table 5.

Snort is capable to offer various functional outputs such

Table 6
Common List of Extracted Headers for TCP, UDP and ICMP
packets.

TCP UDP ICMP
Src-IP Src-IP Src-IP
Dst-IP Dst-IP Dst-IP
Src-Port Src-Port ICMP-code
Dst-Port Dst-Port ICMP-Type

protocol-Type
Packet-Length

protocol-Type
Packet-Length

protocol-Type
Packet-Length

TTL TTL TTL

SYN-ACK Length DF Flag

Window Checksum Timestamps
Table 7

Feature Extraction from TCP Flows.

1 No of packets in each incoming TCP-flows

2 No of packets in each outgoing TCP-flows

3 Change of packets in each incoming TCP-flows
4 Change of packets in each outgoing TCP-flows
5 No of distinctive Src-IP per incoming T CP-flows
6
7
8
9

Change of of distinctive Src-IP per incoming TCP-flows
Total Bytes per incoming TCP-flows
Total Bytes per outgoing TCP-flows
Symmetric windows length per incoming TCP-flows
10 Distinctive windows length per incoming TCP-flows
11 No of symmetric incoming TCP-flows
12 No of asymmetric incoming TCP-flows
13 No of symmetric TTL values per incoming TCP-flows
14 No of asymmetric TTL values per incoming TCP-flows
15 No of asymmetric src-ports per incoming T CP-flows
16 Change of asymmetric src-ports per incoming T CP-flows
17 No of asymmetric Dst-ports per incoming TCP-flows
18 Change of asymmetric Dst-ports per incoming T CP-flows
18 No of Dst — ports < 1024 per incoming TCP-flows

ther details of this implementation are also provided in Table
3.

Our traffic collector section examines all incoming Open-
Flow messages at controller, where signature-based Snort
IDS and Barnyard2 extracts various header fields based on

as alert_syslog, alert_fast, alert_full, alert_unixsock, log_tcpdumgam pled flows to make CSV files. The flow is TCP and UDP

and alert_csv, any of these standard Snort directives can be
utilised in snort.conf file to achieve desirable network output
packets file.

Our paper utilises the alert_csv output plugin in collab-
oration with SM1-mode and SM2-mode. We have utilised
SM1-mode with 15-10-6 rules and SM2-mode with 8-6-6
rues. The main reason for using limited signatures is to write
network alerts details in a csv file to process with DNN DDoS
detection model. We did not use various Snort signature on
snort.conf as it significantly reduced the quality of features
extracted from maclious and benign traffic.

In SM1-mode, we configured all TCP, UDP and ICMP
signatures with specific field values, such as port numbers,
content numbers, threshold types and values, priority values,
track by_src, track by_dst and classtype. These signatures
values were filtering and classifying network data as mali-
cious output. In SM2-mode we utilised only default signa-
ture values from Snort repository to record each and every
packet, SM2-mode is used to collect only benign data. Fur-

protocol combination, which comprises similar values of the
type of protocol, source IP addresses and destination IP ad-
dresses, source ports and destination ports. ICMP contains
the majority of similar fields other than source and desti-
nation port numbers. We used Barnyard2 alert_csv plug-in
by editing barnyard.conf with csv features such as times-
tamp, msg, proto, src, srcport, dst, dstport, ethsrc, ethdst,
ethlen, tcpflags, tcpseq, tcpack, teplen, tcpwindow, ttl, tos,
id, dgmlen, iplen, icmptype, icmpcode, icmpseq.

However, as shown in the Table 6, the features are ex-
tracted using Python and literature survey, Python and SAE
unsupervised machine learning to derive proposed feature
set depicted in Table 7, for 22 TCP flows, Table 8, for 15
UDP flows and Table 9, for 10 ICMP flows.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 10 of 19

Table 8
Feature Extraction from UDP Flows.

1 No of packets in each incoming UDP-flows

2 No of packets in each outgoing UDP-flows

3 Change of symmetric packets each incoming UDPflows
4 Change of asymmetric packets each incoming UDP-flows
5 No different Src-IP in each incoming UDP-flows
6
7
8
9

Total Bytes per incoming UDP-flows

Total Bytes per outgoing UDP-flows

Total packets per incoming UDP-flows

Total packets per outgoing UDP-flows
10 No different Src-ports in each incoming UDP-flows
11 No different Dst-ports in each incoming UDP-flows
12 No different Dstports < 1024 per incoming UDP-flows
13 No different Dst — ports < 1024 per incoming UDP flows
14 No of asymmetric TTL values per incoming UDP flows
15 No of symmetric TTL values per incoming UDP-flows

Table 9
Feature Extraction from ICMP Flows.

No of ICMP-flows in each incoming flows

No of ICMP-flows in each outgoing flows

No of symmetric incoming ICMP-flows

No of symmetric Src-IP per incoming ICMP-flows

Total Bytes per incoming ICMP-flows

Total Bytes per outgoing ICMP-flows

No of packets per incoming ICMP-flows

No of packets per outgoing ICMP-flows

Symmetric windows length per incoming TCP-flows
0 Different TTL values per incoming ICMP-flows

fuy

=[Ol N|o| o B W N

6. Evaluation

Our model mainly focuses to attack capture-failure rate
with the false-negative rate. False-negative rate is highly
used performance metrics of IDS systems, it is represented
as when IDS systems fail to classify attacks that have been
taken place on it. Our overall proposed model is based to
improve the capture-failure rate and to provide a compari-
son between sampling approaches, which is another perfor-
mance metric in this paper. The capture-failure rate implies
as unawareness of the system to detect the attack on network
infrastructure. This paper takes advantages of both sampling
techniques with SDN flexibility such as sFlow sampling and
adaptive polling sampling inside OVS switches with Ryu
controller. In this work, the standard amount of sampled
traffic flows are utilized with proposed sampling rather than
deep packets sampling. In contrast, deep packets sampling
utilizes many available network and processing resources.
The detailed systematic overview of our proposed model is
presented in this section.

6.1. Experimental Setup

Our experiment is performed into two different virtual
machines, which is created with Intel (R) Xeon (R) X5560
CPU with 2.88 GHz processor and 16 GB RAM (DDR3
ECC-Registered Memory PC3-12800) running TensorFlow
1.4 on Ubuntu LTS 16.04-64 bit. VMware Player is used for

sented in Figure 3, sFlow sampling agents and adaptive polling
intervals based sampling parameters are also implemented in
Mininet based Open vSwitch (OVS). Snort-IDS as NIDS is
utilized to actively collects sampled normal and malicious
traffic streams, then Snort output plug-in creates csv data
files with Barnyard2. In the same VM1, various malicious
traffic of DDoS floods is emulated with Metasploit, hping3
and LOIC tool. However benign traffic is generated to eval-
uate our detection model. VM2 utilizes more tools and tech-
nologies, so more CPU processing and memory are assigned
for flexible performance. In VM2, the model utilizes cen-
tral SDN Ryu controller, and the SAE a deep neural network
model for intrusion detection, which classifies traffic features
and detects malicious traffic, this will be further discussed
in results section with more details. Figure 4, represents the
simplified flow diagram of our proposed design.

SDN Ryu controller centrally controls VM2 to install
sampling policies and other network manipulations via Rest
APIs configuration. VM1 is developed as data-plane and
VM2 for control-plane, where VM1 communicates with VM2
by OpenFlow 1.3 protocol. The SDN Ryu controller manip-
ulates and manages OpenFlow OVS switches in data-plane.
The ovs-ofctl utility is used to insert new policies into switches
table. The ovs-ofctl programme is used for OpenFlow switch
administration and monitoring purpose, this programme is
configured with north-bound APIs. SDN Ryu controller and
Snort are integrated with each other, where Snort utilizes
promiscuous enabled mode at ethQ interface which helps to
collect all network traffic and propagate these packets to Open-
Flow switch via port mirroring. On ethl, Snort and Ryu
socket with IP 192.168.232.x1 is configured for collecting
packets remotely. Snort continuously propagates data to-
wards control-plane with 192.168.232.x2 IP address, this en-
ables detection algorithms to work with the collaboration of
Snort.

In VM2, OVS is remotely managed by Ryu controller in-
side Mininet simulator. The Snort switch (switch_snort.py)
application is programmed on top of Ryu controller, this
supports Layer L2 switch coding and redirects all traffic via
OpenFlow switches with promiscuous enabled mode, traffic
is redirected between one of the Snort port and Ryu (Unix
Socket) port. The Snort supports two integration option with
Ryu controller, the first option is very basic only suitable
for demonstration purpose. On the other hand, we utiliz-
ing the second option, where Snort is implemented with a
remote machine. SDN Ryu controller receives alerts from
Snort with unixsock network socket. When the Snort uses
unixsock = false, then it receives all network packets for
forwarding to Barnyard2 log file. This is the main reason to
manage data-plan of network and hosts packets within main
SDN controller. The tools utilized in our work are presented
in Table 11.

In VM2, Tcpreplay tool is also implemented for the pur-

creating both virtual machines such as VM1 with 192.168.232.x1 pose of classifying and analyzing benign and malicious traf-

IP address and VM2 with 192.168.232.x2 IP address. The
VM1 machine, uses network emulator tool such as Mininet
tool for creating and customizing IoT network topology pre-

fic individually. Addition to this, Python is used for manipu-
lating and saving computed features from each packet acqui-
sition intervals. Finally, the dataset file is categorized into

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 11 of 19

Flow based Sampling Class-A csv

Time based Sampling

Class-B csv
Unsupervised X1 (4—p
Pe. . < x2
Classification 5
Flow-collector . SAE xn
DNN -
DDoS Detection
RYU-SDN RYU-SDN
Controller Controller
X \h ST
sFlow-Protocol Adoptive Polling-)
T —— Sampling Sampling ——
MAC dst MAC dst
ol | o
IP P .
=) =
g TCP SYN TCP SYN =g
0O | 1cp ACK TCP ACK € g
; L D
O | Portsrc Port src E g
% [port dst (Port dst §' [a
it it <
1P protocol / 1P protocol
VLAN prio |Cj] VLAN prio
ToS Flow-Table DDoSm """ Normal Flow-Table G

Figure 3: Proposed System in SDN.

training and testing datasets. Table 10 depicts the dataset
distribution, all feature values are positive non-zero num-
bers. This model utilizes unity based feature scaling, Min-
Max normalization approach to breaks all real-valued into 0
and 1 ranges as shown in equation 9, where model uses 60
seconds time (start to end) fitting slot to extract features. Af-
ter data normalization, proposed work collaboratively works
with widely used DNN model of SAE to detect malicious
and normal activities.

P(X); = P(X) pin
PX) . _)]
normalized(0 to 1) P(X)max ~ P(X)min
P(X),0x = maximum value range in P(X);

P(X),pi, = minimum value range in P(X);
P(X); = total set of observed values

6.2. Results

This section mainly focuses on performance comparison
of detection rate of DDoS within sFlow and adaptive polling
based sampling approaches, the overall performance of the
proposed mechanism is evaluated on the datasets presented
in Table 10. As discussed in Section IV, traffic sampling
can either be deployed as packet-oriented or time oriented.
The control-plane uses SAE detection model with sampled
and extracted features of data-plane and it also comprises of
major sampling policies, flow policies, and OVS insertion
rules.

Table 10
Representation of normal and attack records for training and
testing.

CSV Traffic Class 1 sFlow Traffic
Training Testing
Normal 45,263 12,528
Al . 34,103 7,347
CSV Traffic Class 2 | Adaptive Polling Sampling Traffic
Training Testing
Normal 43,895 11,259
All ks 35, 097 8,564

In order to get feasible classification results, this work
uses SAE, a simple DNN model with extracted features. Firstly,
features based input vectors acquired from sFlow and adap-
tive polling based sampling datasets, then SAE applied to
classify benign and malicious traffic. However, this type of
dataset comprises a higher level of unbalanced features, and
in the real network there are very small portions of malicious
traffic as compared to emulated malicious traffic. Most of the
learning models create alarming situations for such reasons.
Due to this fact, huge numbers of neural network models
classify all traffic streams as benign and malicious as traf-
fic noises. To achieve higher accuracy, a vast variety of ap-
proaches can be deployed to overcome this situation [27]. As
a solution to this case, we utilize weighted loss functions to
balance unbalanced feature frequencies, this work also uti-
lizes selected feasible metrics such as precision, recall and

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 12 of 19

Traffic-Input

:

sFlow & Adaptive polling
Sampling

sFlow-sampling=— =Adaptive-polling

Flow-
Collector

sFlow-RT
Collector

Snort-IDS

Benign-csv DDoS-csv Benign-csv

Benign & Malicious Traffic
No DNN-classifier —Ye
Non Attacks Attacks
Figure 4: Flow diagram of proposed work.

Table 11

Test-bed tools and technologies.
Technologies Name (Version) Description
Simulator Mininet-2.2.1 [36] Popular network emulator to create virtual switches, hosts and

networks links. A realistic test-bed created on VM1 virtual

machine, running real kernel, ovs switches, and application code.

Data-plane and control-plane communicate with OpenFlow 1.3 protocol.
SDN-controller Ryu-4.27[53] Ryu is component based SDN development framework with well

defined API to cater flexible and innovative network-management

and control-applications. It is open source, works with OpenFlow,

Netconf, OF-config etc. Ryu code is written with Python which is

available under Apache 2.0 license

IDS-Sensor Snort[57] Open source, widely used intrusion detection system with various
active detection and logging facility.
Traffic-Analyzer ~ Tcpreplay Open source UNIX based utility to edit and replaying network

traffic, helps to rewrite and classify traffic at various layers

on client and server side. Specially works with IDS/IPS systems
Attacking Tools hping3[23] LOIC [1] Well known freely available application,

mainly used for netwrok stress testing with DoS/DDoS attacks

emulation. These toos can emulate huge TCP, UDP, HTTP-GET

floods to specific target via IP address of target machines.
Development-kit Python-2.4 Python a well known scripting language is utilized for script

development specially for routing flow management, traffic

sampling and ovs-switches.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier Page 13 of 19

F1 score on dataset specified in Table 10. These metrics pro-
vide useful information about the goodness of the detection
rate of the proposed model. These parameters are depicted
with the help of a confusion matrix, and its entries are pro-
vided as below:

1. True Positive (TP) - these values are correctly iden-
tified attacks records.

2. True Negative (TN) - these values are correctly iden-
tified non attack values.

3. False Positive (FP) - output values are incorrectly pre-
dicted attack records.

4. False Negative (FN) - output values are incorrectly
identified non attacks

5. Precision (P): - calculates proportion of predicted pos-
itive cases (real attacks) with correct values:

p_ 1P (10)
TP+ FP
6. Recall (R): calculates percentage of predicted NIDS
malicious activities with all available attacks. Higher
value of R is very important:

R= _re (11)
TP+ FN
7. F-measure (F): The NIDS model test accuracy is cal-
culated by utilizing harmonic mean with both of pre-
cision (P) and the recall (R) values, where higher F
score is considered feasible:
F = % (12)

P+R

Our study uses the two different dataset portions, based
on sFlow and adaptive polling sampling as discussed before
for training and testing, each dataset is divided into training
and test sets followed by 80% of training and cross-validation
and 20% of test sets. This work uses a combination of be-
nign and normal datasets for training and cross-validation
purpose, to make detection approach more realistic and en-
abling generalization for detecting new attack behaviours,
which is a very crucial aspect for network security. Consid-
ering all these factors, the proposed solution employs a deep
learning model with the appropriate classification. Where
the model achieves great results as feasible evidence of our
proposed study. For this mandatory purpose, we set SAE do-
main with only three hidden-layers with encoding/decoding
elements of 10, 5, 2, all three layers processed following by
descending order of 22-10-5-2-1, 22-10-5-1, 22-10-1. The
hyper parameters and tested numeric values are depicted in
Table 12.

This paper utilizes the two-class classification model for
normal and attack class including TCP, UDP and ICMP traf-
fic streams. For better comparison, the SAE detection model

Table 12
Proposed model configuration values.

Hyper parameters Model values

Total hidden-layers 1, 2, 3
Hidden-layers size 10, 5, 2
Learning-rate 0.1, 0.01, 0.001
Activation-function ~ Sigmoid
Dropout 0.75, 0.50
Batch-size 100, 50, 50

is employed individually for sFlow and adaptive polling based
datasets. After that the evaluation of the precision, recall, F-
measure, accuracy and false-positive values is carried out for
both traffic classes, these values are derived from confusion
matrix shown in Figure 5. Value of comparison is depicted
in Figure 6. Figure 5 presents evaluation results of sFlow and
adaptive polling based sampling approaches, where, classi-
fication model evaluated with two class model separately for
sFlow and adaptive polling sampling considering TCP, UDP
and ICMP DDoS attacks into single class against normal
class traffic. Figure 5 (a) confusion matrix for sFlow based
two-class classification achieves nearly 95% of TP detection
rate with only 4% of FP rate, on the other hand in Figure
5 (b), adaptive polling based sampling detection rate of TP
rate was around 92%, whereas FP rate was higher than 8%.
Figure 6 depicts detailed comparison between both sampling
approaches by using standard classifier parameters as it can
be observed from Figure 6, DNN model with sFlow class
achieved accuracy of 91% with greater F_measure values of
88.10%. Similarly DNN model with adaptive polling based
sampling achieved accuracy of 89% with 85% of F_measure
values. Precision values for sFlow and adaptive polling based
sampling was 95% and 92% respectively. Recall values were
also nearly 5% higher for sFlow as compared to adaptive
polling. Table 13 depicts the model summary of evaluation
in term of Accuracy, Precision, Recall, F-sores, TP-rate, TN-
rate, FP-rate and FN-rate.

Figure 7 depicts two classes ROC curve to provide over-
all DNN model detection performance, with sFlow based
implementation model achieves greater sensitivity probabil-
ity values of 94% for positive model test outcomes, however,
this implementation model receives less than 4% of negative
outcomes of DNN model test. In contrast, the polling based
implementation model receives positivity of DNN model at
92% values of sensitivity with nearly 8% of negativity values
of specificity. Moreover, the overall performance of sFlow
based implementation was satisfying with our proposed DNN
model in testbed in various network terms such as packets
flows, network, CPU and memory and network overhead.

6.3. System Performance Evaluation

This section depicts the comparison of average CPU uti-
lization for sFlow based and adaptive polling based sampling
approaches between data-plane to control-plane locations,
which is considered as highly influencing factor for detec-
tion model. Figure 8 (a) presents the different CPU usages

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 14 of 19

Table 13

Summary of two class model evaluation for sFlow and adaptive polling sampling.

Sampling types TP TN FP FN Accuracy-value Precision-value R-value F-value
sFlow 95% 89% 4% 11.44% 91% 95% 83% 88.10%
Adaptive Polling 92% 74% 8.89% 24% 89% 92% 78% 85%
Table 14
Summary of total CPU utilization of controller.
CPU Utilization(%)
sFlow Sampling Adaptive Polling Sampling
Time(sec) | CPU(TCP) | CPU(UDP) | CPU(ICMP) | CPU(AN) | CPU(TCP) | CPU(UDP) | CPU(ICMP) | CPU(AN)
20 36 22 21 57 30 22 29 80
40 39 33 17 60 39 29 31 63
60 29 30 18 42 25 56 21 65
80 38 40 16 50 44 21 33 69
100 22 31 23 53 33 50 32 72
120 27 57 28 70 49 37 37 64
140 55 13 27 74 11 10 18 56
0.90 - N sFlow
-
0.75 B0
_ 0.60 i
[} B0
2
£ 0.45
% 20
0.30
0.15 =
o 0 ==
Predicted ﬂa\uﬁ . nqa‘\“as Al e A qe®
. Fctﬁ;ac:i« v“"‘ﬁm - et - ?a\ee,
(a) sFlow Sampling.
Figure 6: Accuracy, Precision, Recall, F-sores and FP-rate for
0.90 two class model.
0.75
. ROC Curve
_ 0.60
m
2
£ 0.45
24.05% 0.30 4?
>
=
0.15 =
[
Q . .
Predicted V925 Je? sFlow-Sampling
el —— AP-Sampling
(b) Adaptive Polling based Sampling. 0.00 i
. _ _ . ' 02 04 06 08 10
Figure 5: Confusion Matrix of 2 Class Classification. e
Specificity

such as CPU(TCP), CPU(UDP), CPU(ICMP), CPU(AlL).
The summary of CPU utilisation for sFlow and adap-
tive polling sampling with time is depicted in Table 14. The
proposed model receives TCP, UDP and ICMP attack with
100 Kb/s to 600 Kb/s. Overall 290 M Bytes of total ma-
licious traffic injected to observe CPU utilization individ-
ually only at control-plane after sampling, from Figure 8
(a), it can be observed that CPU(UDP) only uses 29% of

Figure 7: ROC Curve of 2 Class Classification.

CPU utilization with 2164 encoding and decoding threads
instructions. The CPU(TCP) utilizes only 38% CPU with
2479 CPU threads, In ICMP the CPU is constantly used at
26% with 2011 threads. Due to sFlow sampling, it can be
observed that overall CPU utilization reduced from 90% to

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 15 of 19

Table 15

Summary of total network load of controller.

Controller Network Load (KB/s)
sFlow Sampling Adaptive Polling Sampling
Time(sec) | Control-plane (packets) | Data-plane (packets) | Control-plane (packets) | Data-plane (packets)
20 130 330 110 330
40 357 1400 250 1400
60 470 1078 430 1078
80 366 7600 380 7600
100 378 600 330 600
120 358 650 311 650
140 578 702 230 702
L — CPUIUDP) — (Control-plane{packets)
CPU(TCP) 1400 Data-plane{packets)
= CPUTICMP)Y _ 1200
z 2t —— CPULAIN =
£ < 1000
& 60
= B o0
g e
é 0 g 600
= e e, 2 0 / _/‘/_}/\
o Ir 1
(=] ¥
2 200 \/
D @ 4 e B 100 120 1o . 100 200 40 A0
Time (sec)
Time (sec)
. a) sFlow Sampling.
(a) sFlow Sampling. @) ping
100 —— CPU{UDP) —— Control-plane{packets)
CPU(TCP) 1400 Data-plane({packets)
= CPU{ICMP) — 1200
= & —— CPUAI &
&= =
5 = 1000
5 B
E | E 800
E | g 600
g § |
: /B/\ \ 400 ’\ /_A/_;
o 1
20)< 20l Ry
T T [I) 160 260 360 460

0 &0 B 100 120 140
Time (sec)

(=]
(5]
R

(b) Adaptive Polling based Sampling.

Figure 8: CPU Utilization of Controller over time.

52%. Similarly, in Figure 8 (b), based on adaptive polling
sampling, CPU(TCP) utilization increased from 38% to 42%
with threads execution of 2659. CPU (UDP) utilization also
raised to 37% with 2551 threads. CPU utilization for ICMP
stood at 6% higher than sFlow with some threads increment.
However, in polling based sampling overall CPU usage was
also higher as 74.25% during TCP, UDP, ICMP malicious
data flow due to the nature of being calculating flows and
packets equation individually in various switches.

Figure 9 depicts the network load of sFlow sampling and
adaptive polling based sampling between two virtual ma-
chines VM1 data-plane and VM2 control-plane. In VM1
data-plane(packets) represents injected traffic flows before

sampling, and control-plane(packets) represents flows received

by the controller after sampling. The network overhead cal-

Time {sec)

(b) Adaptive Polling based Sampling.

Figure 9: Controller Network Load over time.

culated with malicious packets of TCP, UDP, ICMP flood-
ing attacks. Malicious traffic emulation rate was gradually
changed from 150 KB/s to 1500 KB/s, which was kept the
common flow for sFlow and adaptive based polling sampling
to calculate network overhead, where Ntopng tool is used to
analyze network manipulating facts. Summary of the con-
troller network load with time is also presented in Table 15.
As shown in Figure 9 (a), once controller connected to sFlow
agent enabled switches then it received accumulated aver-
age packets flows of 340 KB/s after sFlow sampling, due
to link utilization and network queue packet flow was fluc-
tuating nearly 500 KB/s after every 40 seconds. The con-
troller received total control-plane (packets) 192 MB out of
290 MB. Similarly, as we can observe from Figure 9 (b), the
controller was receiving accumulated average packets at the
rate of 244KB/s, Due to polling-based sampling, controller

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 16 of 19

received total 140MB out of 290 MB. Moreover, adaptive
polling based sampling measures higher network load due
to the fact that this sampling requires individual calculations
and queering FlowStats Request inside all switches flow ta-
ble, it utilizes more CPU which make flow slower to reach
at controller detection model.

7. Discussion

Our proposed system is based on IoT nodes sampling
which effectively works in collaboration of SAE deep neural
network model. It collects flows from data-plane via packet
based sampling (sFlow) and time-based (Adaptive Polling)
sampling respectively. Overall our model has clear advan-
tage of detecting the enormous amount of malicious traffic
either with packet-based or flow based sampling approaches
which reduce the Snort and deep learning models overhead
processing, as intrusion detection systems are limited with
processing and detection capabilities. Similarly, DNN mod-
els are also demanding more training time and complex con-
figurations during the event of heavy flows. This enabled us
to parse all crucial malicious and benign traffic streams to
classify and label correctly. In case of mitigation or block-
ing any switches or hosts unwanted incoming flow would be
more accurate and reliable task for SDN controller with sim-
ple northbound APIs. In collaboration, an SAE model indi-
vidually performs on the attack and normal classes, which
successfully achieve accuracy nearly 99% on normal traffic
to qualify our proposed model parameters before our pro-
posed model test.

Most of the common features from both of proposed sam-
pling extracted with 22 input vectors shown in Table 7, 8, 9.
The proposed solution derives common features following
the literature of [45] then merge all of the testbed features
with only 22 feature vectors class. As observed from experi-
mental results, sFlow achieved a higher detection rate of TP
= 95%, TN = 90% with less than 4% of FP rate, whereas
polling based implementation detection was around 5% less
as compared to sFlow. Overall experiments represent that
sFlow based implementation in our proposed work has sig-
nificantly higher detection accuracy with minimal CPU and
network load. There are some important factors that support
this point, such as sFlow is flow oriented sampling technol-
ogy, which utilizes sFlow agents in OVS switches with a
sampling rate of 1/28, 1/ 64, 1/128, 1/256, 1/512 for sl to
s5 respectively. In this way, accurate sampled traffic was
flexibly flowing to Snort IDS at the controller. The con-
troller received around 192 M Bytes of total packets within
20 minutes of packets injection, the controller used 50% of
total CPU overhead. On contrary the polling based imple-
mentation, we can observe that controller only receives 140
M Bytes within 20 minutes of packets injection, which is
at least 27% fewer packets than sFlow at detection engine
of Snort at the controller. Due to the fact of adaptive polling
uses higher resource consumption to manipulate each packet
inside switches and constantly sends each packet once match
polling query. In this way, external traffic collectors have
to wait for the next packets. Moreover, this implementation

used 74% of total CPU, which is significantly higher for 140
M bytes of network packets as in real-time existing networks
there large number of packets flows passing through ingress
and egress ports of autonomous and service providers net-
work.

8. Conclusion and Future Directions

This paper presents co-detection model of deep learn-
ing with Snort IDS, to detect unwanted IoT nodes DDoS
traffic with the help of sFlow and polling based traffic sam-
pling at data-plane. This work analyzes network overhead
between the SDN controller and data-plane with each sam-
pling implementation to improve detection of IDS and DNN
model capabilities. sFlow as flow oriented sampling uti-
lized 50% of CPU with propagation rate of 340 KB/s pack-
ets towards detection unit of the controller, whereas adap-
tive polling based uses more than 70% total machine CPU at
parsing rate of around 240 KB/s. Moreover, sFlow measures
very low CPU and network overhead without sacrificing de-
tection accuracy of deep learning model which is based on
real-time detection of traffic with Snort IDS. DDoS detec-
tion accuracy trade-off between sFlow and adaptive polling
based sampling was achieved 95% with less than 4% FP rate
and 92% with an FP rate of 8% respectively. However, sFlow
consistently stood superior for proposed DDoS detection model
in term of accuracy, low CPU, and network overhead.

These adopted sampling techniques are mandatory to sup-
port the future IoT application requirements, which can pro-
vide flexible and efficient data handling for classifying DDoS
and benign traffic by reducing data for detection model of
IoT networks. For future improvement, there are several di-
rections being considered. First, to implement intelligent
periodic polling based sampling only at SDN-enabled edge
switches with real-time traffic streams that can help to lower
down the crucial overhead. Secondly, it is very vital to train
unsupervised deep learning model with two individual train-
ing of rule-based and signature-based real-time network data-
grams, which could help to maximize DDoS detection accu-
racy as a whole, which is suitable for small to larger net-
works.

Compliance with Ethical Standards

This research has been produced as a part of PhD work,
no funding is sought for this research by the authors.

Conflict of Interest

Raja Majid Ali Ujjan, Zeeshan Pervez, and Keshav Da-
hal have declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human par-
ticipants or animals performed by any of the authors.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 17 of 19

References

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

abatishchev, 2019. Loic a network stress testing application. URL:
https://sourceforge.net/projects/loic/.

Ahmed, M.E., Kim, H., 2017. Ddos attack mitigation in internet of
things using software defined networking, in: 2017 IEEE Third In-
ternational Conference on Big Data Computing Service and Appli-
cations (BigDataService), pp. 271-276. doi:10.1109/BigDataService.
2017.41.

Alanazi, S., Al-Muhtadi, J., Derhab, A., Saleem, K., AIRomi, A.N.,
Alholaibah, H.S., Rodrigues, J.J.P.C., 2015. On resilience of wire-
less mesh routing protocol against dos attacks in iot-based ambient
assisted living applications, in: 2015 17th International Conference
on E-health Networking, Application Services (HealthCom), pp. 205—
210. doi:10.1109/HealthCom.2015.7454499.

Androulidakis, G., Papavassiliou, S., 2008a. Improving network
anomaly detection via selective flow-based sampling. IET Commu-
nications 2, 399-409. doi:10.1049/iet-com: 20070231.

Androulidakis, G., Papavassiliou, S., 2008b. Improving network
anomaly detection via selective flow-based sampling. IET Commu-
nications 2, 399-4009.

Braga, R., Mota, E., Passito, A., 2010a. Lightweight ddos flooding
attack detection using nox/openflow, in: IEEE Local Computer Net-
work Conference, pp. 408—415. doi:10.1109/LCN.2010.5735752.
Braga, Braga, R., Mota, Mota, E., Passito, Passito, A., 2010b.
Lightweight ddos flooding attack detection using nox/openflow, in:
Proceedings of the 2010 IEEE 35th Conference on Local Com-
puter Networks, IEEE Computer Society, Washington, DC, USA.
pp. 408-415. URL: http://dx.doi.org/10.1109/LCN.2010.5735752,
doi:10.1109/LCN.2010.5735752.

Bu, C., Wang, X., Huang, M., Li, K., 2018. Sdnfv-based dynamic
network function deployment: Model and mechanism. IEEE Com-
munications Letters 22, 93-96. doi:10.1109/LCOMM. 2017.2654443.
Carlos, A.B.M.; Rothenberg, C.M.F., 2010. In-packet bloom filter
based data center networking with distributed openflow controllers.
In Proceedings of the 2010 IEEE GLOBECOM Workshops (GC Wk-
shps), , 584 —588.

Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., Peng, J., 2018. Xg-
boost classifier for ddos attack detection and analysis in sdn-based
cloud, in: 2018 IEEE International Conference on Big Data and
Smart Computing (BigComp), pp. 251-256. doi:10.1109/BigComp.
2018.00044.

Cisco, 2019. Cisco visual networking index predicts near-
tripling of ip trac by 2020.
press-release-content?articleId=1771211.

Corp, I, 2019. Inmon corp. URL: https://sflow-rt.com/.

Dong, P., Du, X., Zhang, H., Xu, T., 2016. A detection method for a
novel ddos attack against sdn controllers by vast new low-traffic flows,
in: 2016 IEEE International Conference on Communications (ICC),
pp. 1-6. doi:10.1109/1CC.2016.7510992.

Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C., 2016.
High-dimensional and large-scale anomaly detection using a linear
one-class svm with deep learning. Pattern Recognition 58, 121-134.
Flauzac, O., Gonqulez, C., Hachani, A., Nolot, F., 2015. Sdn based
architecture for iot and improvement of the security, in: 2015 IEEE
29th International Conference on Advanced Information Networking
and Applications Workshops, pp. 688-693. doi:10.1109/WAINA.2015.
110.

Giegel, J., 2018. inmon. URL: http://www.inmon.com.

Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D.,
Maglaris, V., 2014. Combining openflow and sflow for an effective
and scalable anomaly detection and mitigation mechanism on sdn en-
vironments. Comput. Netw. 62, 122-136. URL: http://dx.doi.org/
10.1016/3j.bjp.2013.10.014, d0i:10.1016/3.bjp.2013.10.014.

Ha, T., Kim, S., An, N., Narantuya, J., Jeong, C., Kim, J., Lim, H.,
2016. Suspicious traffic sampling for intrusion detection in software-
defined networks. Comput. Netw. 109, 172-182. URL: https:
//doi.org/10.1016/j.comnet.2016.05.019, d0i:10.1016/j.comnet.2016.
05.019.

URL: https://newsroom.cisco.com/

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(311

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Jacobson, V., 1995. Congestion avoidance and control. SIGCOMM
Comput. Commun. Rev. 25, 157-187. URL: http://doi.acm.org/10.
1145/205447.205462, d0i:10.1145/205447 .205462.

Kacha, C.C., Shevade, K.A., Raghuwanshi, D.K.S., 2013a. Improved
snort intrusion detec- tion system using modified pattern matching
technique , 81-88.

Kacha, C.C., Shevade, K.A., Raghuwanshi, D.K.S., 2013b. Im-
proved snort intrusion detection system using modified pattern match-
ing technique.

Kain, E., 2018. ‘world of warcraft: Legion’ goes down as
blizzard servers hit with ddos. URL: https://www.forbes.com/
consent/?toURL=https://www.forbes.com/sites/erikkain/2016/09/01/

world-of-warcraft-legion-goes-down-as-blizzard-servers-hit-with-ddos/.

Kalitool, 2019. hping3 package description. URL: https://tools.
kali.org/information-gathering/hping3.

Kandoi, R., Antikainen, M., 2015. Denial-of-service attacks in open-
flow sdn networks, in: 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 1322—1326. doi:10.1109/
INM.2015.7140489.

Kaspersky, 2019. Kaspersky ddos
port for gl 2016. URL:
kaspersky-ddos-intelligence-report-for-q1-2016/74550/.

Kawahara, R., Mori, T., Kamiyama, N., Harada, S., Asano, S., 2007.
A study on detecting network anomalies using sampled flow statistics
, 81.

Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al., 2006. Handling
imbalanced datasets: A review. GESTS International Transactions on
Computer Science and Engineering 30, 25-36.

Kreutz, D., Ramos, F.M., Verissimo, P., 2013. Towards secure and
dependable software-defined networks, in: Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ACM, New York, NY, USA. pp. 55-60. URL: http://
doi.acm.org/10.1145/2491185.2491199, doi:10.1145/2491185.2491199.
Kurose, J.F., Ross, K.W., 2009. Computer Networking: A Top-Down
Approach. 5th ed., Addison-Wesley Publishing Company, USA.
Lindqvist, U., Neumann, P.G., 2017. The future of the internet of
things. Commun. ACM 60, 26-30. URL: http://doi.acm.org/10.
1145/3029589, doi:10.1145/3029589.

Ma, H., Liu, L., Zhou, A., Zhao, D., 2016. On networking of inter-
net of things: Explorations and challenges. IEEE Internet of Things
Journal 3, 441-452. doi:10.1109/J10T.2015.2493082.

Mai, J., Sridharan, A., Chuah, C., Zang, H., Ye, T., 2006a. Impact
of packet sampling on portscan detection. IEEE Journal on Selected
Areas in Communications 24, 2285-2298. doi:10.1109/JSAC.2006.
884027.

Mai, J., Sridharan, A., Chuah, C.N., Zang, H., Ye, T., 2006b. Impact
of packet sampling on portscan detection. IEEE J.Sel. A. Commun.
24, 2285-2298. URL: https://doi.org/10.1109/JSAC.2006.884027,
doi:10.1109/JSAC. 2006 . 884027.

Mehdi, S.A., Khalid, J., Khayam, S.A., 2011. Revisiting traffic
anomaly detection using software defined networking, in: Proceed-
ings of the 14th International Conference on Recent Advances in In-
trusion Detection, Springer-Verlag, Berlin, Heidelberg. pp. 161-180.
URL: http://dx.doi.org/10.1007/978-3-642-23644-0_9, doi:10.1007/
978-3-642-23644-0_9.

Metasploit, 2018. Penetration testing software, pen testing security.
URL: https://www.metasploit.com/.

Mininet, 2019. An instant virtual network on your laptop (or other
pc). URL: http://mininet.org/.

Mohammadi, R., Javidan, R., Conti, M., 2017. Slicots: An sdn-
based lightweight countermeasure for tcp syn flooding attacks. IEEE
Transactions on Network and Service Management 14, 487-497.
doi:10.1109/TNSM. 2017.2701549.

Mousavi, S.M., St-Hilaire, M., 2015. Early detection of ddos at-
tacks against sdn controllers, in: 2015 International Conference on
Computing, Networking and Communications (ICNC), pp. 77-81.
doi:10.1109/ICCNC.2015.7069319.

Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., Yang, B., 2016. Pre-

intelligence re-
https://securelist.com/

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 18 of 19

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]
[58]

[59]

dicting network attack patterns in sdn using machine learning ap-
proach, in: 2016 IEEE Conference on Network Function Virtual-
ization and Software Defined Networks (NFV-SDN), pp. 167-172.
doi:10.1109/NFV-SDN.2016.7919493.

Networks:, J., 2019. Juniper networks junos 7.2 software documen-
tation. URL: https://www.juniper.net/documentation/product/en_US/
junos-os.

Neumann, P.G., 2016. Risks of automation: A cautionary total-
system perspective of our cyberfuture. Commun. ACM 59, 26-30.
URL: http://doi.acm.org/10.1145/2988445, doi:10.1145/2988445.
Newman, L., 2019. What we know about fridayéAZs massive
east coast internet outage. URL: https://www.wired.com/2016/10/
internet-outage-ddos-dns-dyn.

Ng, A., 2011. Sparse autoencoder. CS294A Lecture notes.

Nguyen, T.H., Yoo, M., 2017. A hybrid prevention method
for eavesdropping attack by link spoofing in software-defined
internet of things controllers. International Journal of Dis-
tributed Sensor Networks 13, 1550147717739157. URL: https:
//doi.org/10.1177/1550147717739157, doi:10.1177/1550147717739157,
arXiv:https://doi.org/10.1177/1550147717739157.

Niyaz, Q., Sun, W., Javaid, A.Y., 2017a. A deep learning based ddos
detection system in software-defined networking (sdn). ICST Trans.
Security Safety 4, e2.

Niyaz, Q., Sun, W., Javaid, A.Y., 2017b. A deep learning based ddos
detection system in software-defined networking (sdn). EAI Endorsed
Transactions on Security and Safety 4. doi:10.4108/eai.28-12-2017.
153515.

ntop, 2019. How enable dpi-based traffic management in
pfsense using nedge. URL:
how-to-setup-nedge-to-support-pfsense-operation/.

Phaal, P., 2002. Packet sampling basics. URL: http://www.sfow.org/.
Phaal, P., Panchen, S., Mckee, N., 2001. Inmon corporations sflow: A
method for monitoring traffic in switched and routed networks doi:10.
17487/rfc3176.

Prokhorenko, V., Choo, K.K.R., Ashman, H., 2016. Web application
protection techniques: A taxonomy. Journal of Network and Com-
puter Applications 60, 95 — 112. URL: http://www.sciencedirect.
com/science/article/pii/S1084804515002908, doi:https://doi.org/10.
1016/3.3jnca.2015.11.017.

Rawat, D.B., Reddy, S.R., 2017. Software defined networking archi-
tecture, security and energy efficiency: A survey. IEEE Communica-
tions Surveys Tutorials 19, 325-346. doi:10.1109/COMST. 2016.2618874.
Restflow, 2018. Restflow. Https://github.com/restflow-
org/restflow/wiki.

Ryu, 2018. Ryu. available online:. Https://osrg.github.io/ryu/.
Sahoo, K.S., Tiwary, M., Sahoo, B., 2018. Detection of high rate
ddos attack from flash events using information metrics in software
defined networks, in: 2018 10th International Conference on Com-
munication Systems Networks (COMSNETS), pp. 421-424. doi:10.
1109/COMSNETS.2018.8328233.

Shah, S.A.R., Issac, B., 2018. Performance comparison of
intrusion detection systems and application of machine learn-
ing to snort system. Future Generation Computer Systems 80,
157 — 170. URL: http://www.sciencedirect.com/science/article/
pii/Se167739X17323178, doi:https://doi.org/10.1016/].future.2017.
10.016.

Shin, S., Yegneswaran, V., Porras, P., Gu, G., 2013. Avant-guard:
Scalable and vigilant switch flow management in software-defined
networks, in: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ACM, New York,
NY, USA. pp. 413-424. URL: http://doi.acm.org/10.1145/2508859.
2516684, d0i:10.1145/2508859.2516684.

Snort, 2019. Snort-intrusion detection system and prevention. URL:
https://www.snort.org/.

Sonar, K., Upadhyay, H., 2014. A Survey : DDOS Attack on Internet
of Things 10, 58-63.

Tran, Q.A., Jiang, F., Hu, J., 2012. A real-time netflow-based intru-
sion detection system with improved bbnn and high-frequency field

https://www.ntop.org/ntopng/

[60]

[61]

[62]

[63]
[64]

[65]

programmable gate arrays. 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications ,
201-208.

Wang, R., Butnariu, D., Rexford, J., 2011. Openflow-based server
load balancing gone wild, in: Proceedings of the 11th USENIX Con-
ference on Hot Topics in Management of Internet, Cloud, and Enter-
prise Networks and Services, USENIX Association, Berkeley, CA,
USA. pp. 12-12. URL: http://dl.acm.org/citation.cfm?id=1972422.
1972438.

Wang, R., Jia, Z., Ju, L., 2015. An entropy-based distributed ddos de-
tection mechanism in software-defined networking, in: 2015 IEEE
Trustcom/BigDataSE/ISPA, pp. 310-317. doi:10.1109/Trustcom.
2015.389.

Yan, Q., Yu, FR., Gong, Q., Li, J., 2016. Software-defined net-
working (sdn) and distributed denial of service (ddos) attacks in
cloud computing environments: A survey, some research issues, and
challenges. IEEE Communications Surveys Tutorials 18, 602-622.
doi:10.1109/COMST. 2015.2487361.

Yang, S., Kim, Y., Kim, H., Yang, S., Lim, S., 2015. Controller
scheduling for continued sdn operation under ddos attacks 51.
Zhang, L., Yang, K.U.N., 2018. A DDoS Attack Detection and Miti-
gation With Software-Defined Internet of Things Framework 6.
Zhou, L., Liao, M., Yuan, C., Sheng, Z., Zhang, H., 2015. Ddos at-
tack detection using packet size interval, in: 11th International Con-
ference on Wireless Communications, Networking and Mobile Com-
puting (WiCOM 2015), pp. 1-7. doi:10.1049/cp.2015.0754.

Ujjan Raja Majid Ali et al.: Preprint submitted to Elsevier

Page 19 of 19

Journal Pre-proof

The authors declares there is no conflict of interest regarding the publication of this journal paper.

Raja Majid Ali Ujjan is a PhD candidate at the University of the West of Scotland (UWS) United
Kingdom - where is involved in researching application of machine learning for protecting computer
and loT networks from modern day cyber attacks. He completed his post graduated in Cisco
Networks from the University of Sunderland, United Kingdom. His major research interests comprise
software-defined networking (SDN) based network security application with machine learning
methods, mainly DDoS attacks traffic classification and detection via packets analysis, packets
sampling and entropy calculation.

Zeeshan Pervez is with the University of the West of Scotland (UWS) as an Associate Professor
(Reader in the UK). He is a Senior Member of IEEE, Fellow of Higher Education Academy (UK), and a
Full Member of EPSRC Peer Review College (UK). His areas of technical expertise are large-scale data
analysis, data stream processing, internet-of-things (loT), cybersecurity, and cloud computing. He has
published over 70 indexed journals, peer-reviewed conferences and book chapters. He is actively
involved in various UK/EU and international funded projects. He has a track record of securing
substantial funding and delivering projects funded through H2020, Erasmus+, Innovate UK,
Knowledge Transfer Partnership (KTP), Microsoft Asia, Microsoft Research, Scottish Funding Council,
Ministry of Knowledge Economy (South Korea), to name a few.

Keshav Dahal is a Professor in Intelligent Systems and the leader of the Artificial Intelligence, Visual
Communication and Network (AVCN) Research Centre at the University of the West of Scotland. Prior
to this he was with the University of Bradford and University of Strathclyde UK. He obtained his PhD
and MSc degrees from Strathclyde. His research interests lie in the areas of applied Al, trust and
security modelling in distributed systems, and scheduling/optimization problems. He has published
extensively in his research fields with award winning papers, and has sat on organizing/program
committees of over 60 international conferences including general chair or program chair of five IEEE
sponsored conferences. He is a senior member of the IEEE.

Ali Kashif Bashir is a Senior Lecturer at School of Computing, Mathematics, and Digital Technology,
Manchester Metropolitan University, United Kingdom. He is a senior member of IEEE and
Distinguished Speaker of ACM. His past assignments include: Associate Professor of Information and
Communication Technologies, Faculty of Science and Technology, University of the Faroe Islands,
Denmark; Osaka University, Japan; Nara National College of Technology, Japan; the National Fusion
Research Institute, South Korea; Southern Power Company Ltd., South Korea, and the Seoul
Metropolitan Government, South Korea. He received his Ph.D. in computer science and engineering
from Korea University, South Korea. MS from Ajou University, South Korea and BS from University of
Management and Technology, Pakistan. He is author of over 80 peer-reviewed articles. He is
supervising/co-supervising several graduate (MS and PhD) students. His research interests include
internet of things, wireless networks, distributed systems, network/cyber security, cloud/network
function virtualization, etc. He is serving as the Editor-inchief of the IEEE FUTURE DIRECTIONS
NEWSLETTER. He is editor of several journals and also has served/serving as guest editor on several
special issues in journals of IEEE, Elsevier, and Springer. He has served as chair (program, publicity,
and track) chair on several conferences and workshops. He has delivered several invited and keynote
talks, and reviewed the technology leading articles for journals like IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, the IEEE Communication Magazine, the IEEE COMMUNICATION LETTERS,
IEEE Internet of Things, and the IEICE Journals, and conferences, such as the IEEE Infocom, the IEEE
ICC, the IEEE Globecom, and the IEEE Cloud of Things.

R.Mumtaz (SM’16) received the M.Sc. degree from the Blekinge Institute of Technology, Sweden, and
the Ph.D. degree from the University of Aveiro, Portugal. He is currently a Senior Research Engineer
with the GS-Lda, where he is involved in EU funded projects. He has authored several conferences,
journals, and books publications. His research interests include MIMO techniques, multihop relaying
communication, cooperative techniques, cognitive radios, game theory, energy efficient framework
for 4G, position information-assisted communication, and joint PHY and MAC layer optimization in
LTE standard.

J.Gonzalez (M’'04-SM’13) received the master’s and Ph.D. degrees in electronic and electrical
engineering from the University of Surrey, U.K., in 1998 and 2004, respectively. In 2014, he became a
Researcher with the GS-Lda, 1148. He has served as a Project Coordinator for major international
research projects (Eureka LOOP, FP7 C2POWER), whilst acting as the Technical Manager for FP7
COGEU and FP7 SALUS. He is currently leading the H2020-ETN SECRET project. In 2009, he was an
Assistant Professor with the Universidade de Aveiro, where he was granted as an Associate Professor
in 2015. He has been a Chartered Engineer since 2013. He has been a Professor of mobile
communications with the University of South Wales since 2017. He was a fellow of IET in 2015.

Raja Majid Ali Ujjan Zeeshan Pervez

R.Mumtaz).Gonzalez

'

	Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN

