398 research outputs found

    Precise SAR Measurements In The Near-Field of RF Antenna Systems

    Get PDF
    Wireless devices must meet specific safety radiation limits, and in order to assess the health affects of such devices, standard procedures are used in which standard phantoms, tissue-equivalent liquids, and miniature electric field probes are used. The accuracy of such measurements depend on the precision in measuring the dielectric properties of the tissue-equivalent liquids and the associated calibrations of the electric-field probes. This thesis describes work on the theoretical modeling and experimental measurement of the complex permittivity of tissue-equivalent liquids, and associated calibration of miniature electric-field probes. The measurement method is based on measurements of the field attenuation factor and power reflection coefficient of a tissue-equivalent sample. A novel method, to the best of the author's knowledge, for determining the dielectric properties and probe calibration factors is described and validated. The measurement system is validated using saline at different concentrations, and measurements of complex permittivity and calibration factors have been made on tissue-equivalent liquids at 900MHz and 1800MHz. Uncertainty analysis have been conducted to study the measurement system sensitivity. Using the same waveguide to measure tissue-equivalent permittivity and calibrate e-field probes eliminates a source of uncertainty associated with using two different measurement systems. The measurement system is used to test GSM cell-phones at 900MHz and 1800MHz for Specific Absorption Rate (SAR) compliance using a Specific Anthropomorphic Mannequin phantom (SAM)

    Body-centric wireless communications: wearable antennas, channel modelling, and near-field antenna measurements

    Get PDF
    This thesis provides novel contribution to the field of body-centric wireless communications (BCWC) with the development of a measurement methodology for wearable antenna characterisation on the human body, the implementation of fully-textile wearable antennas and the on-body channel modelling considering different antenna types and user's dynamic effects. More specifically, a measurement methodology is developed for characterising wearable antennas on different locations of the human body. A cylindrical near-field (CNF) technique is employed, which facilitates wearable antenna measurements on a full-body solid anthropomorphic mannequin (SAM) phantom. This technique allows the fast extraction of the full spherical radiation pattern and the corresponding radiation efficiency, which is an important parameter for optimising wearable system design. It appears as a cost- effective and easy to implement solution that does not require expensive positioning systems to rotate the phantom, in contrast to conventional roll-over-azimuth far-field systems. Furthermore, a flexible fully-textile wearable antenna is designed, fabricated and measured at 2.4 GHz that can be easily integrated in smart clothing. It supports surface wave propagation and exhibits an omni-directional radiation pattern that makes it suitable for on-body communications. It is based on a multilayer low-profile higher-mode patch antenna (HMMPA) design with embroidered shorting vias. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that play an important role in generating the optimal mode for on-body radiation. The radiation pattern shape of the proposed fully-textile antenna was found to be similar to a copper rigid antenna, exhibiting a high on-body radiation efficiency of 50 %. The potential of the embroidery technique for creating wearable antennas is also demonstrated with the fabrication of a circularly polarised spiral antenna that achieves a broadband performance from 0.9-3 GHz, which is suitable for off-body communications. By testing the textile spiral antenna on the SAM phantom, the antenna-body interaction is examined in a wide frequency range. Finally, a statistical characterisation of on-body communication channels is undertaken both with EM simulations and channel measurements including user's dynamic movement (walking and running). By using antenna types of different polarisation, the on-body channels are examined for different propagation conditions. Four on-body channels are examined with the one part fixed on the waist of the human body while the other part located on the chest, back, wrist and foot. Channel path gain is derived, while large-scale and small-scale fading are modelled by best-fit statistical distributions

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Interaction of antenna systems with human body

    Get PDF
    The research investigates the influence on the human body on a communication system. To understand this, the effect of hands free kit (HFK) on energy absorption in the body was investigated when operating a smart phone at 2G. Findings on the research are given in the thesis report. Also, the influence of the way in which a phone is held on a phone s received power was investigated. The result was compared to that obtained using a hand phantom acquired from SPEAG. This was to check if the hand phantom best represents the human hand when using it in experiments. The setup for the experiment was in an anechoic chamber at Loughborough University. The mobile phone transmitted in the 2G system. In further experiments carried out on the body, two antennas were attached to the body in six different orientations to receive power from a source creating a Single Input Multiple Output (SIMO) system. The antennas used were monopoles mounted on a circular ground plane. These antennas were designed and constructed with the influence of the body taken into consideration. The use of diversity techniques to improve transmission to an on-body system is investigated with the antennas on the body. For each alignment, the transmission to the on-body was compared with the transmission to the corresponding off-body (free space). Experiments for this work were carried out in three environments

    A Study on EMF Exposure Assessments With Different Metrics for User Equipment Antennas at 6 and 10 GHz

    Get PDF
    User equipment (UE) needs to comply with regulations limiting the exposure of the human body to electromagnetic fields (EMFs). In this paper, three exposure metrics including specific absorption rate (SAR), incident power density, and absorbed power density are quantified for different UE antenna designs. The study is conducted for three antennas - planar dipole, inverted-F antenna (IFA), and planar inverted-F antenna (PIFA), at two frequencies - 6 and 10 GHz, and for evaluation distances from 4 to 10 mm, which are within or close to the antenna’s reactive near field. The exposure ratios of the metrics are quantified according to the relevant EMF limit values. For validation purposes, prototypes are fabricated, and SAR and incident power density are measured. The average difference between the numerical and experimental results is 0.4 dB for SAR and 0.9 dB for the incident power density, meaning that good agreement between simulations and measurements is obtained. The study provides valuable input for EMF as- sessment requirements and test methodologies for emerging technologies at or close to the transition frequency between different exposure metrics

    Development of multi-material phantoms and implanted monopole antennas for bone fracture monitoring

    Get PDF
    This thesis presents a novel method for monitoring the healing of severe bone fractures. This would be particularly useful during the first two to four weeks after trauma where x-ray and computerised tomography scanning cannot provide an accurate indication regarding the healing status of the fractured bone. The technique involves measuring the radiofrequency transmission from one bone-implanted monopole to another, each one located on either side of the bone fracture. Throughout this thesis, it is envisaged that the monopoles will also act as the screws of an external fixation implanted into patients for the stabilization and alignment of the bone fragments. To replicate a simplified version of a human limb, several multi-material semi-solid phantoms were developed to represent bone marrow, bone cortical, blood and muscle. Medical literature indicates that the amount of blood found at the initial stage of a bone fracture decreases as bone regeneration takes place towards the healed state. The rate of change of the 21 of the implanted monopoles over time was shown to provide a tool that allowed the estimation of the amount of blood (hematoma) inside any bone fracture. In this thesis it has been shown that as the effective dielectric properties of the investigated fractured area shifted from the dielectric properties of blood towards the properties of bone, the 21 of the monopoles increased, thus, this technique can be used to indicate bone healing. The simulated results were validated in measurements using several multi-material phantoms and a real lamb joint. Finally, an analytical model on the approximation of the 21 of the monopoles in the near field inside the multi-material phantoms was developed. The results showed good agreement over the frequency spectrum of 1 to 4GHz and reasonable agreement over the parametric investigation of separation distance between them for the range of 1 to 7cm. This will potentially allow the application of the proposed technique for special types of fractures where the screws of the external fixation are separated by different distances

    Wideband Electromagnetic Body Phantoms for the Evaluation of Wireless Communications in the Microwave Spectrum

    Full text link
    [ES] La constante evolución de la tecnología y la búsqueda de nuevas aplicaciones que mejoren la vida de las personas ha llevado a la incorporación de estas tecnologías en el organismo. Las redes inalámbricas de área corporal (WBAN) son un buen ejemplo de esto, que consisten en redes de comunicaciones ubicadas en el propio cuerpo, tanto en la superficie como implantadas en su interior mediante el uso de dispositivos inalámbricos. Estas redes utilizan el cuerpo humano como medio de transmisión, por lo que debe evaluarse la influencia del mismo sobre la propagación. Además, las nuevas generaciones de comunicaciones móviles se están moviendo hacia el uso de frecuencias cada vez más altas, como las ondas milimétricas, que son más sensibles a la presencia de cualquier objeto en el entorno, incluidos los humanos. La investigación y el diseño de antenas y dispositivos que tengan en cuenta el cuerpo humano requiere pruebas en el entorno donde se supone que deben usarse. Los fantomas se convierten en una herramienta para evaluar la transmisión de señales electromagnéticas en un medio equivalente al cuerpo para evitar la experimentación en humanos o animales. Además de eso, se puede estudiar la influencia de estas ondas electromagnéticas sobre los propios tejidos en cuanto a la tasa de absorción específica (SAR).[CA] L'evolució constant de la tecnologia i la recerca de noves aplicacions que milloren la vida de les persones ha portat a la incorporació d'aquestes tecnologies en l'organisme. Les xarxes sense fils d'àrea corporal (WBAN) són un bon exemple d'açò, que consisteixen en xarxes de comunicacions ubicades al propi cos, tant en la superfície com implantades en el seu interior mitjançant l'ús de dispositius sense fils. Aquestes xarxes empren el cos humà com a medi de transmissió, per la qual cosa se n'ha d'avaluar la influència sobre la propagació. A més, les noves generacions de comunicacions mòbils s'estan movent cap a l'ús de freqüències cada vegada més altes, com les ones mil·limètriques, que són més sensibles a la presència de qualsevol objecte en l'entorn, incloent-hi els humans. La investigació i el disseny d'antenes i dispositius que tinguen en compte el cos humà requereix proves en l'entorn on se suposa que han d'usar-se. Els fantomes esdevenen una eina per a avaluar la transmissió de senyals electromagnètics en un medi equivalent al cos per tal d'evitar l'experimentació en humans o animals. A més d'això, es pot estudiar la influència d'aquestes ones electromagnètiques sobre els teixits mateixos en relació amb la taxa d'absorció específica (SAR).[EN] The constant evolution of technology and the search for new applications that improve people's lives has led to the arrival of the incorporation of these technologies in the organism. Wireless body area networks (WBANs) are a good example of this, consisting of communications networks located in the body itself, both on the surface and implanted inside it through the use of wireless devices. These networks use the human body as the transmitting medium, so its influence over the propagation has to be assessed. Besides, new generations of mobile communications are moving towards the use of higher frequencies, as the millimetre waves, which are more sensitive to the presence of any object in the environment, including humans. The research and design of antennas and devices that take into account the human body requires testing in the environment where these are supposed to be used. Phantoms become a tool for evaluating the transmission of electromagnetic signals in a body-equivalent medium in order to avoid experimentation on humans or animals. In addition to that, the influence of these electromagnetic waves over the tissues themselves can be studied with regard to the specific absorption rate (SAR).This thesis has been possible thanks to the funding contribution of the Universitat Polit`ecnica de Val`encia through the PAID-01-16 programme. This work was also supported by the UPV-IIS La Fe programme (STUDER, 2016 and EMOTE, 2017). The research stay was supported by the European Union’s Erasmus+ funding programme under a traineeship grant.Castelló Palacios, S. (2019). Wideband Electromagnetic Body Phantoms for the Evaluation of Wireless Communications in the Microwave Spectrum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/13218

    Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Tissue-equivalent phantoms play a key role in the development of new wireless communication devices that are tested on such phantoms prior to their commercialization. However, existing phantoms cover a small number of tissues and do not reproduce them accurately within wide frequency bands. This paper aims at enlarging the number of mimicked tissues as well as their working frequency band. Thus, a variety of potential compounds are scanned according to their relative permittivity from 0.5 to 18 GHz. Next, a combination of these compounds is characterized so the relation between their dielectric properties and composition is provided. Finally, taking advantage of the previous analysis, tailor-made phantoms are developed for different human tissues up to 18 GHz and particularized for the main current body area network (BAN) operating bands. The tailor-made phantoms presented here exhibit such a high accuracy as would allow researchers and manufacturers to test microwave devices at high frequencies for large bandwidths as well as the use of heterogeneous phantoms in the near future. The key to these phantoms lies in the incorporation of acetonitrile to aqueous solutions. Such compounds have a suitable behavior to achieve the relative permittivity values of body tissues within the studied frequency band.This work was supported by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R) and by the European FEDER Funds.Castelló-Palacios, S.; García Pardo, C.; Fornés Leal, A.; Cardona Marcet, N.; Vallés Lluch, A. (2016). Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz. IEEE Transactions on Microwave Theory and Techniques. 64(11):3987-3994. https://doi.org/10.1109/TMTT.2016.2608890S39873994641
    corecore