3,044 research outputs found

    SeedsGraph: an efficient assembler for next-generation sequencing data

    Get PDF

    Disaggregating non-volatile memory for throughput-oriented genomics workloads

    Get PDF
    Massive exploitation of next-generation sequencing technologies requires dealing with both: huge amounts of data and complex bioinformatics pipelines. Computing architectures have evolved to deal with these problems, enabling approaches that were unfeasible years ago: accelerators and Non-Volatile Memories (NVM) are becoming widely used to enhance the most demanding workloads. However, bioinformatics workloads are usually part of bigger pipelines with different and dynamic needs in terms of resources. The introduction of Software Defined Infrastructures (SDI) for data centers provides roots to dramatically increase the efficiency in the management of infrastructures. SDI enables new ways to structure hardware resources through disaggregation, and provides new hardware composability and sharing mechanisms to deploy workloads in more flexible ways. In this paper we study a state-of-the-art genomics application, SMUFIN, aiming to address the challenges of future HPC facilities.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes

    Get PDF
    Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.Peer reviewe

    Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits

    Get PDF
    Apple (Malus 7domestica Borkh) fruits are stored for long periods of time at low temperatures (1 \ub0C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress

    Parallel machine architecture and compiler design facilities

    Get PDF
    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role
    • …
    corecore